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Abstract

Many existing rule learning systems are
computationally expensive on large noisy
datasets	 In this paper we evaluate the
recently
proposed rule learning algorithm
IREP on a large and diverse collection of
benchmark problems	 We show that while
IREP is extremely e�cient� it frequently
gives error rates higher than those of C�	�
and C�	�rules	 We then propose a num

ber of modi
cations resulting in an algo

rithm RIPPERk that is very competitive
with C�	�rules with respect to error rates�
but much more e�cient on large samples	
RIPPERk obtains error rates lower than or
equivalent to C�	�rules on �� of �� bench

mark problems� scales nearly linearly with
the number of training examples� and can
e�ciently process noisy datasets containing
hundreds of thousands of examples	

� INTRODUCTION

Systems that learn sets of rules have a number of de

sirable properties	 Rule sets are relatively easy for
people to understand �Catlett� ������ and rule learn

ing systems outperform decision tree learners on many
problems �Pagallo and Haussler� ����� Quinlan� �����
Weiss and Indurkhya� �����	 Rule sets have a nat

ural and familiar 
rst order version� namely Prolog
predicates� and techniques for learning propositional
rule sets can often be extended to the 
rst
order case
�Quinlan� ����� Quinlan and Cameron
Jones� �����	
Certain types of prior knowledge can also be easily
communicated to rule learning systems �Cohen� �����
Pazzani and Kibler� �����	

One weakness with rule learning systems is that they
often scale relatively poorly with the sample size� par

ticularly on noisy data �Cohen� �����	 Given the preva

lence of large noisy datasets in real
world applications�

this problem is of critical importance	 The goal of this
paper is to develop propositional rule learning algo

rithms that perform e�ciently on large noisy datasets�
that extend naturally to 
rst
order representations�
and that are competitive in generalization performance
with more mature symbolic learning methods� such
as decision trees	 The end product of this e�ort is
the algorithm RIPPERk� which is competitive with
C�	�rules with respect to error rates� scales nearly lin

early with the number of training examples� and can
e�ciently process noisy datasets containing hundreds
of thousands of examples	

� PREVIOUS WORK

��� COMPLEXITY OF RULE PRUNING

Many of the techniques used in modern rule learn

ers have been adapted from decision tree learning	
Most widely
used decision tree learning systems use an
over�t�and�simplify learning strategy to handle noisy
data� a hypothesis is formed by 
rst growing a com

plex tree which �over
ts� the data� and then sim

plifying or pruning the complex tree �Quinlan� �����
Mingers� �����	 Usually �but not always� such pruning
strategies improve error rates on unseen data when the
training data is noisy �Quinlan� ����� Mingers� �����
Scha�er� �����	 A variety of methods have been
proposed to prune trees� but one e�ective technique
is reduced error pruning �REP�	 REP can be easily
adapted to rule learning systems �Pagallo and Haus

sler� ����� Brunk and Pazzani� �����	

In REP for rules� the training data is split into a grow�
ing set and a pruning set 	 First� an initial rule set
is formed that over
ts the growing set� using some
heuristic method	 This overlarge rule set is then re

peatedly simpli
ed by applying one of a set of pruning
operators� typical pruning operators would be to delete
any single condition or any single rule	 At each stage
of simpli
cation� the pruning operator chosen is the
one that yields the greatest reduction of error on the



pruning set	 Simpli
cation ends when applying any
pruning operator would increase error on the pruning
set	

REP for rules usually does improve generalization per

formance on noisy data �Pagallo and Haussler� �����
Brunk and Pazzani� ����� Weiss and Indurkhya� �����
Cohen� ����� F�urnkranz and Widmer� ������ however�
it is computationally expensive for large datasets	 In
previous work �Cohen� ����� we showed that REP re

quires O�n�� time� given su�ciently noisy data� in fact�
even the initial phase of over
tting the training data
requires O�n�� time	 We then proposed an alterna

tive over
t
and
simplify method called Grow that is
competitive with REP with respect to error rates� and
was an order of magnitude faster on a set of benchmark
problems	

We also showed that Grow was asymptotically faster
than REP on random data�if one assumes that
Grow�s hypothesis is approximately the same size as
the target concept	 However� Cameron
Jones ������

later showed that Grow systematically over
ts the tar

get concept on noisy data	 This has an adverse e�ect
on Grow�s time complexity and as a result Grow also
requires O�n�� time asymptotically	

In another response to the ine�ciency of REP�
F�urnkranz and Widmer ������ proposed a novel learn

ing algorithm called incremental reduced error pruning
�IREP�	 IREP was shown experimentally to be com

petitive with both REP and Grow with respect to error
rates� and much faster than either� in fact� on �� of ��
benchmark problems� IREP was faster than the initial
step of over
tting the data	

In this paper� we will take as our point of departure
the promising results obtained by F�urnkranz and Wid

mer with the IREP algorithm	 Our initial goal was
simply to replicate their results� to evaluate IREP on
a broader set of benchmarks� and to compare IREP
to more mature tree and rule induction methods	 In
the course of doing this� we discovered that IREP�s
generalization performance could be considerably im

proved� without greatly a�ecting its computational ef


ciency	 In the remainder of the paper we will describe
our implementation of the original IREP algorithm�
and give evidence that it a�ords room for improve

ment	 We will then outline three modi
cations� a new
metric for guiding its pruning phase� a new stopping
condition� and a technique for �optimizing� the rules
learned by IREP	 Taken together these modi
cations
give generalization performance that is comparable to
C�	� and C�	�rules �Quinlan� ����� on a large set of di

verse benchmarks	 The modi
ed learning algorithm�
however� still scales well with the number of training

procedure IREP�Pos�Neg�
begin

Ruleset �� �
while Pos�� � do

�� grow and prune a new rule ��
split �Pos�Neg� into �GrowPos�GrowNeg�
and �PrunePos�PruneNeg�

Rule �� GrowRule�GrowPos�GrowNeg�
Rule �� PruneRule�Rule�PrunePos�PruneNeg�
if the error rate of Rule on
�PrunePos�PruneNeg� exceeds ��� then

return Ruleset
else

add Rule to Ruleset
remove examples covered by Rule
from �Pos�Neg�

endif

endwhile

return Ruleset
end

Figure �� The IREP algorithm

examples	 The current implementation can e�ciently
handle training sets of several hundred thousand ex

amples	

��� INCREMENTAL REDUCED ERROR

PRUNING

The IREP rule
learning algorithm is described in de

tail by F�urnkranz andWidmer ������� but we will sum

marize it below	 IREP tightly integrates reduced error
pruning with a separate
and
conquer rule learning al

gorithm	 Figure � presents a two
class version of this
algorithm	 �In the two
class Boolean case a �rule� is
simply a conjunction of features� and a �rule set� is a
DNF formula	� Like a standard separate
and
conquer
algorithm� IREP builds up a rule set in a greedy fash

ion� one rule at a time	 After a rule is found� all exam

ples covered by the rule �both positive and negative�
are deleted	 This process is repeated until there are
no positive examples� or until the rule found by IREP
has an unacceptably large error rate	

In order to build a rule� IREP uses the following strat

egy	 First� the uncovered examples are randomly par

titioned into two subsets� a growing set and a pruning
set 	 In our implementation� the growing set contains
� � of the examples	

Next� a rule is �grown�	 Our implementation of
GrowRule is a propositional version of FOIL �Quinlan�



����� Quinlan and Cameron
Jones� �����	 It begins
with an empty conjunction of conditions� and consid

ers adding to this any condition of the form An � v�
Ac � �� or Ac � �� where An is a nominal attribute
and v is a legal value for An� or Ac is a continuous
variable and � is some value for Ac that occurs in the
training data	 GrowRule repeatedly adds the condi

tion that maximizes FOIL�s information gain criterion
until the rule covers no negative examples from the
growing dataset	

After growing a rule� the rule is immediately pruned	
To prune a rule� our implementation considers deleting
any 
nal sequence of conditions from the rule� and
chooses the deletion that maximizes the function

v�Rule�PrunePos�PruneNeg � �
p! �N � n�

P !N
���

where P �respectively N � is the total number of exam

ples in PrunePos �PruneNeg� and p �n� is the number
of examples in PrunePos �PruneNeg� covered by Rule	
This process is repeated until no deletion improves the
value of v	

The IREP algorithm described above is for two
class
learning problems	 Our implementation handles mul

tiple classes as follows	 First� the classes are ordered	
In the experiments described below the ordering is al

ways in increasing order of prevalence�i�e�� the order

ing is C�� � � � � Ck where C� is the least prevalent class
and Ck is the most prevalent	 Then� IREP is used to

nd a rule set that separates C� from the remaining
classes� this is done with a single call to IREP where
PosData contains the examples labeled C� and Neg�
Data contains the examples labeled C�� C�� 	 	 	 � or
Ck	 Next� all instances covered by the learned rule set
are removed from the dataset� and IREP is used to
separate C� from classes C�� � � � � Ck	 This process is
repeated until a single class Ck remains� this class will
be used as the default class	

We also extended the rule learning algorithm to handle
missing attributes as follows� all tests involving the
attribute A are de
ned to fail on instances for which
the value of A is missing	 This encourages the learner
to separate out the positive examples using tests that
are known to succeed	

��� DIFFERENCES FROM F�URNKRANZ

AND WIDMER�S IREP

This implementation di�ers from F�urnkranz and Wid

mer�s in several details	 In pruning rules� our imple

mentation allows deletions of any 
nal sequence of con

ditions� whereas F�urnkranz and Widmer�s implemen

tation allows only deletions of a single 
nal condition	

Our implementation also stops adding rules to a rule
set when a rule is learned that has error rate greater
than ���� whereas F�urnkranz and Widmer�s imple

mentation stops when the accuracy of the rule is less
than the accuracy of the empty rule	�

More importantly� our implementation supports miss

ing attributes� numerical variables and multiple
classes	 This makes it applicable to a wider range of
benchmark problems	

� EXPERIMENTS WITH IREP

Experiments with IREP showed that it is indeed fast	
Results for one representative arti
cial problem� are
summarized in the 
rst graph in Figure �� the CPU
time needed by C�	�rules is also shown	� The results
are shown on a log
log scale� recall that polynomials
appear as lines on such a plot� with the slope of the line
indicating its degree	 C�	�rules scales roughly as the
cube of the number of examples� whereas IREP scales
almost linearly	 Extrapolating the curves suggests that
it would require about �� CPU years for C�	�rules to
process the ������� example dataset� which IREP han

dles in around seven CPU minutes	

Although we have used an arti
cial concept with an ex

tremely large number of training examples to demon

strate these issues� similar performance issues also
arise on natural datasets� as the two smaller graphs
of Figure � demonstrate	

For reference� the 
rst graph in Figure � also shows
the curves kx� and y � kx log� x	 F�urnkranz and Wid

mer�s formal analysis of IREP predicts a running time
ofO�m log�m�� wherem is the number of examples� on

�Actually	 F
urnkranz and Widmer described two prun�
ing algorithms� The 
rst	 which they called IREP	 prunes
according to Equation �	 and stops when p��p� n� �
N��P �N�� The second	 which they called IREP�	 prunes
according to the metric v�Rule�PrunePos�PruneNeg� �
p

p�n
and stops when p��p� n� � ���� Our experiments

con
rmed the conclusion of F
urnkranz and Widmer that
IREP generally outperforms IREP�� however	 we also dis�
covered that IREP�s performance was noticibly improved
by adopting IREP��s stopping condition�

�The concept ab � bcd � defg with �� irrelevant bi�
nary attributes	 ��� classi
cation noise	 and uniformly
distributed examples� CPU time was measured on a MIPS
Irix �	 con
gured with � ��� MHz R���� processors and
�Gb of memory� Since IREP is a randomized algorithm
�because of its random partitioning of the examples� the
curve for IREP is the average of �� trials�

�The time for C���rules ignores the time needed to
run C���� However	 C��� is generally much faster than
C���rules� on this problem	 C��� requires less than ���
CPU seconds to handle the ���	��� example dataset� The
run�time of C��� is generally comparable to that of IREP�



1sec

1min

1hr

1day

1month

500 1k 2.5k 5k 10k 25k 100k 500k

C
P
U
 
t
i
m
e

number of examples

(ab+bcd+defg) with 20% noise

kx^3
C4.5rules

kxlog^2(x)
RIPPER2

IREP

0.1

1

10

100

1000

10000

1000 10000

C
P
U
 
t
i
m
e
 
-
 
s
e
c

number of examples

weather

IREP
RIPPER2

C4.5rules

0.1

1

10

100

1000

10000

1000 10000
number of examples

fire

IREP
RIPPER2

C4.5rules

Figure �� CPU times for C�	�rules� IREP� and RIPPER�

any dataset that contains a 
xed percentage of classi


cation noise	 Our results are consistent with this pre

diction	 Analysis similar to F�urnkranz and Widmer�s
also predicts the cubic behavior shown by C�	�rules	

Although IREP is e�cient� experiments on real
world
datasets showed that the generalization performance
of IREP o�ered substantial room for improvement	 We
compared IREP to C�	� and C�	�rules on a diverse
set of benchmark problems� summarized in Table �	
Where a test set associated with the benchmark is indi

cated� we ran C�	� and C�	�rules once� and ran IREP
�� times and averaged	 Where no test set is indicated�
we ran �� di�erent ��
fold cross
validations for all the
algorithms and averaged the results	 Due to space con

siderations we will focus on comparisons to C�	�rules�
since it also learns rule sets� however� the performance
of C�	� and C�	�rules on these datasets was similar	

We used C�	� Release � �Quinlan� ������ and the most
recent version of C�	�rules �Quinlan� �����	

The left
hand graph of Figure � contains one point for
each benchmark problem� positioned so that IREP�s
error rate is the x
axis position and C�	�rules� error
rate is the y
axis position	 Thus for points below the
line y � x IREP�s performance is inferior to C�	�rules�
and for points above the line IREP�s performance is
better	 From the graph one can readily see that IREP
does worse than C�	�rules more often than it does bet

ter� speci
cally� IREP�s error rate is higher �� times�
lower �� times� and the same � times	

Of course� it may be that IREP is in fact as likely
to outperform C�	�rules as the converse on problems
from this test suite� and that the won
lost
tie ratio of
��
��
� is due to random variation in the error esti




Table �� The �� benchmark problems used in the experiments� with size of training and testing sets� number of
classes� number of nominal �n� and continuous �c� attributes� and a brief description	 Starred problems are from
the UC Irvine Repository	

Name Train Test Classes Attributes Description
AP�
�� ��� � � ��
���n text categorization ��� problems�
audiology� ��� � �� ��n medical diagnosis
bridges�
�� ��� � �
� �n �c mech	 engineering �� problems�
iris� ��� � � �c "ower classi
cation
labor� �� � � �n �c labor negotiations
promoters� ��� � � ��n DNA promoter sequences
sonar� ��� � � ��c sonar signal classi
cation
ticket�
� ��� � � ��n text categorization �� problems�
ui ��� � �� ��n text
to
speech subproblem
coding�� ���� ����� � ��n DNA coding sequences

re ���� ��� � ��c risk of forest 
res
market ���� ���� � �n �c market analysis
mushroom� ���� ���� � ��n random split of mushroom data
netwk� ���� ���� � ��c predict equipment failure
netwk� ���� ���� � ��c predict equipment failure
ocr ���� ���� � ���n image classi
cation
segment� ���� ���� � ��n image analysis
splice� ���� ���� � ��n split of DNA splice
junction data
thyroid� ���� ���� � ��n �c medical diagnosis
vidgame ���� ���� � ��n decide if game moves are random
voting� ��� ��� � ��n congressional voting records
weather ���� ���� � ��c weather prediction

mates	 Using a nonparametric sign test �Mendenhall
et al�� ����� page ����� one can determine that the
probability of observing a ratio this one
sided would
be just under �	�� if IREP had a �� �� chance of bet

tering C�	�rules on problems in this test suite	 We
can thus conclude with ��� con
dence that C�	�rules
outperforms IREP on this test suite	�

It is also evident from the graph that IREP seldom
does much better than C�	�rules� and not infrequently
does much worse	 It is not obvious how to best aggre

gate measurements across learning problems� but one
method is to consider the average value of the ratio

error rate of IREP

error rate of C	�
rules

For this set of problems the average of this ratio is
�	��� if one discounts a single extreme outlier� thus on
average IREP�s error rates are about ��� higher than
those of C�	�rules	 �This average is �	�� if one includes

�More precisely	 we can conclude that C���rules outper�
forms IREP in this sense� if a problem is drawn at random
from this test suite and its error rate is measured as de�
scribed above	 then with probability greater than ���	 the
measured error rate of C���rules will be lower than that of
IREP�

the mushroom dataset�on this benchmark C�	�rules
obtains an error of �	�� to IREP�s �	��	�

As an additional point of reference� we also ran propo

sitional FOIL without any pruning mechanism	 The
ratio of the error rate of the hypothesis obtained by
�over
tting� the data with propositional FOIL to the
error rate of C�	�rules is �	�� excluding the mush�
room dataset� and �	�� overall	 Finally� we ran IREP�
�also described by F�urnkranz and Widmer ������� and
IREP with F�urnkranz and Widmer�s stopping condi

tion	 The average ratio for IREP� was �	�� with

out the mushroom dataset� and �	�� overall	 For
IREP with the more restrictive F�urnkranz and Wid

mer stopping condition� the average ratio was �	��
without mushroom and �	�� overall	 The best won

loss
tied record of any of these three systems relative to
C�	�rules was ��
��
�� achieved by propositional FOIL
without pruning	 To summarize� on average� all of
the IREP variants performed substantially worse than
C�	�rules� and none of the IREP variants performed
substantially better than simply over
tting the data	

There is also evidence that IREP fails to converge
on some natural datasets	 One example is the well

known KRK
illegal problem �Muggleton et al�� �����
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Figure �� Comparison of generalization performances� C�	�rules vs� IREP and RIPPER�	

Quinlan� �����	 We encoded a propositional version
of this problem� and implemented a data generator	�

Without noise� IREP reliably learns an approximate
theory with an error rate of �	�� from as few as ���
examples� however� IREP does not improve this error
rate even if as many as ������� examples are given	
In contrast C�	�rules reliably produces a perfect the

ory from only ���� examples	 Arti
cial examples can
also be constructed which show non
convergence to a
greater extent� for example� IREP obtains an error of
�	�� given anywhere between ��� and ������� noise

free examples of the concept ab�ac�ade	 This is wor

risome behavior for an algorithm whose main strength
is that it e�ciently handles very large numbers of ex

amples	

� IMPROVEMENTS TO IREP

Based on our experiments with IREP� we implemented
three modi
cations to the algorithm� an alternative
metric for assessing the value of rules in the pruning
phase of IREP� a new heuristic for determining when
to stop adding rules to a rule set� and a postpass that
�optimizes� a rule set in an attempt to more closely
approximate conventional �i�e�� non
incremental� re

duced error pruning	

��� THE RULE	VALUE METRIC

The occasional failure of IREP to converge as the num

ber of examples increases can be readily traced to the
metric used to guide pruning �given above in Equa


�Our propositional encoding is the one that would be
constructed by LINUS �D�zeroski and Lavrac	 �����	 and
we used a uniform distribution to generate KRK positions�

tion ��	 The preferences encoded in this metric are
sometimes highly unintuitive� for instance �assuming
that P and N are 
xed� the metric prefers a rule R�

that covers p� � ���� positive examples and n� � ����
negative examples to a rule R� that covers p� � ����
examples and n� � � negative example� note� however�
that R� is highly predictive and R� is not	 We thus
replaced IREP�s metric with

v��Rule�PrunePos�PruneNeg� �
p� n

p! n

which seems to have more intuitively satisfying behav

ior	

��� THE STOPPING CONDITION

Our implementation of IREP stops greedily adding
rules to a rule set when the last rule constructed has an
error exceeding ��� on the pruning data	 This heuris

tic often stops too soon given moderate
sized samples�
this is especially true when learning a concept con

taining many low
coverage rules	 Our assessment of
the problem is that for low
coverage rules� the esti

mate of error a�orded by the pruning data has high
variance� thus in learning a series of small rules� there
is a good chance that one of the rules in the series will
have its error rate incorrectly assessed at more than
���� causing IREP to stop prematurely	 Put another
way� IREP seemed to be unduly sensitive to the �small
disjunct problem� �Holte et al�� �����	

Our solution to this problem is the following	 After
each rule is added� the total description length of the
rule set and the examples is computed	 The new ver

sion of IREP stops adding rules when this description
length is more than d bits larger than the smallest de




scription length obtained so far� or when there are no
more positive examples	 In the experiments of this
paper we used d � ��	 The rule set is then simpli
ed
by examining each rule in turn �starting with the last
rule added� and deleting rules so as to reduce total
description length	�

Together� the revised rule
value metric and stopping
heuristic substantially improve IREP�s generalization
performance	 Unlike the original IREP� the modi
ed
version of IREP �henceforth IREP�� converges KRK�
illegal and the arti
cial concept ab�ac�ade	 IREP��s
won
lost
tied record against IREP is ��
�
�� thus with
high con
dence �p � ������ one can state that IREP�
outperforms IREP on problems from this test suite	
The error ratio to C�	�rules is also reduced from �	��
�or �	��� including mushroom� to �	�� �or �	��� includ

ing mushroom	� IREP��s won
lost
tied record against
C�	�rules is ��
��
�	

��� RULE OPTIMIZATION

The repeated grow
and
simplify approach used in
IREP can produce results quite di�erent from con

ventional �non
incremental� reduced error pruning	
One way to possibly improve IREP��s incremental ap

proach is to postprocess the rules produced by IREP�
so as to more closely approximate the e�ect of conven

tional reduced error pruning	 For instance� one could
re
prune each rule so as to minimize the error of the
complete rule set	

After some experimentation we developed the follow

ing method for �optimizing� a rule set R�� � � � � Rk	
Each rule is considered in turn� 
rst R�� then R��
etc� in the order in which they were learned	 For each
rule Ri� two alternative rules are constructed	 The re�
placement for Ri is formed by growing and then prun

ing a rule R�

i
� where pruning is guided so as to mini


�To brie�y summarize our MDL encoding scheme� the
method used for encoding a set of examples given a theory
is the same as that used in the latest version of C���rules
�Quinlan	 ������ One part of this encoding scheme allows
one to identify a subset of k elements of a known set of n
elements using

S�n� k� p� � k log�
�

p
� �n� k� log�

�

�� p

bits	 where p is known by the recipient of the message�
Thus we allow jjkjj� S�n� k� k�n� bits to send a rule with
k conditions	 where n is the number of possible conditions
that could appear in a rule and jjkjj is the number of bits
needed to send the integer k� As in C���rules �Quinlan	
����	 page ��� the estimated number of bits required to
send the theory is multiplied by ��� to adjust for possible
redundancy in the attributes�

Table �� Summary of generalization results
won
loss
tied error ratio
vs C�	�rules to C�	�rulesa

IREPb �
��
� �	�� �	�� �	��
IREP� ��
��
� �	�� �	�� �	��
IREPc ��
��
� �	�� �	�� �	��
IREP� ��
��
� �	�� �	�� �	��
RIPPER ��
��
� �	�� �	�� �	��
RIPPER� ��
��
� �	�� �	�� �	��

aFormat� all datasets� all datasets except mushroom� all
datasesets except mushroom and weighting similar datasets
together�

bUsing F
urnkranz and Widmer�s stopping criterion�
cAs described in Section ����

mize error of the entire rule set R�� � � � � R
�

i
� � � � � Rk on

the pruning data	 The revision of Ri is formed anal

ogously� except that the revision is grown by greedily
adding conditions to Ri� rather than the empty rule	
Finally a decision is made as to whether the 
nal the

ory should include the revised rule� the replacement
rule� or the original rule	 This decision is made us

ing the MDL heuristic	� Optimization is integrated
with IREP� as follows	 First� IREP� is used to ob

tain an initial rule set	 This rule set is next optimized
as described above	 Finally rules are added to cover
any remaining positive examples using IREP�	 Be

low� we will call this algorithmRIPPER �for Repeated
Incremental Pruning to Produce Error Reduction	�	

Optimization can also be iterated by optimizing the
rule set output by RIPPER and then adding addi

tional rules using IREP�� we will call this algorithm
RIPPER�� and in general use RIPPERk for the algo

rithm that repeatedly optimizes k times	

��� GENERALIZATION PERFORMANCE

RIPPER noticibly improves generalization perfor

mance over IREP�	 Its won
lost
tied record against
IREP� is ��
�
�� a signi
cant improvement �p �

�������	 The error ratio to C�	�rules is also reduced�
excluding mushroom� the error ratio is �	�� for IREP�
and �	�� for RIPPER� and including mushroom� the
error ratio is �	�� for IREP� and �	��� for RIPPER	
RIPPER�s won
lost
tied record against C�	�rules is ��

��
�	

One additional stage of optimization gives some fur


�More precisely	 a variant of Ri is evaluated by inserting
it into the rule set and then deleting rules that increase the
total description length of the rules and examples� The
total description length of the examples and the simpli
ed
rule set is then used to compare variants of Ri�



ther bene
t	 RIPPER� reduces the error ratio to
C�	�rules to �	��� excluding mushroom� or �	���
including mushroom� and RIPPER��s won
lost
tied
against C�	�rules is improved to ��
��
�	 RIPPER�
is not statistically signi
cantly better than C�	�rules�
however� RIPPER� is certainly quite competitive on
the problems in this test suite	 To make this concrete�
let q be the probability that RIPPER��s measured er

ror rate will be less than or equal to that of C�	�rules
on a problem taken at random from the test suite	 The
won
lost
tied record of ��
��
� means we can be ���
con
dent that q is at least �	�� ��� con
dent that q
is at least �	���� and ��� con
dent that q is at least
�	���	

The right
hand graph in Figure � gives a more de

tailed comparison of the error rates of RIPPER� and
C�	�rules� and Table � summarizes some of the gener

alization results given in this section	

One problem with averaging error ratios is that when
the actual error rates are very small� ratios tend to
have extreme values	 �This is the reason why we have
reported all averages with and without the mushroom
dataset� for this dataset the actual error rates range
from �	�� to �	�� and the ratios range from �	� to
��	�	� The following remarks may help reassure read

ers of the stability of our comparison�

	 If groups of similar datasets are weighted
together�� then the average ratio of RIPPER� to
C�	�rules is �	���	 If mushroom is excluded� then
the weighted average ratio is �	���	

	 If the two largest and the two smallest ratios are
excluded� then the average ratio of RIPPER� to
C�	�rules is �	���	 �The ratio formushroom is one
of the four extreme values	�

	 The average di�erence between RIPPER��s error
rate and C�	�rules� error rate is 
�	��	

	 The won
loss
tied record of RIPPER� to the C�	�
decision tree learner �with pruning� is ��
��
�	
The average ratio of RIPPER� to C�	� with prun

ing is �	��� with mushroom� and �	��� without	

��
 EFFICIENCY OF RIPPERk

Importantly� none of the modi
cations we have de

scribed have a major e�ect on computational e�

ciency	 Figure � also shows how RIPPER� scales with

	�Weighting similar datasets together� means that the
ratios for the ten AP datasets	 the 
ve bridges datasets	 the
three ticket datasets and the two network datasets are each
averaged together before being averaged with the ratios for
the remaining seventeed datasets�

the number of examples on three concepts� one arti


cial concept� and two of the larger and noisier natural
datasets in our test suite	 The fact that the lines for
RIPPER� and IREP are parallel shows that the mod

i
cations we have introduced a�ect only the constant
factors� and not the asymptotic complexity of the al

gorithm	 The constant factors for RIPPER� are also
still reasonably low� RIPPER� requires only �� CPU
minutes to process ������� examples of the arti
cial
concept of Figure �	 RIPPERk is also quite space e�

cient� as it requires no data structures larger than the
dataset	

In previous work �Cohen� ����� we sought formal ex

planations for the e�ciency or ine�ciencies of REP
and other rule
pruning algorithms	 While space does
not permit such an analysis here� we would like to
present some of the intuitions as to why RIPPERk is
so much faster on large noisy datasets	

The basic strategy used by RIPPERk to 
nd a rule

set that models the data is to 
rst use IREP� to 
nd
an initial model� and then to iteratively improve that
model� using the �optimization� procedure described
in �	�	 This process is e�cient because building the
initial model is e�cient� because the initial model does
not tend to be large relative to the target concept� and
because the optimization steps only require time linear
in the number of examples and the size of the initial
model	

C�	�rules also constructs an initial model and then
iteratively improves it	 However� for C�	�rules� the
initial model is a subset of rules extracted from a un

pruned decision tree� and the improvement process
greedily deletes or adds single rules in an e�ort to re

duce description length	 C�	�rules repeats this process
for several di�erent
sized subsets of the total pool of
extracted rules and uses the best ruleset found as its
hypothesis� the subsets it uses are the empty ruleset�
the complete ruleset� and randomly
chosen subsets of
���� ���� 	 	 	 � and ��� of the rules	

Unfortunately� for noisy datasets� the number of rules
extracted from the unpruned decision tree grows as m�
the number of examples	 This means that each initial
model �save the empty model� will also be of size pro

portional to m� and hence if m is su�ciently large�
all of the initial models will be much larger than the
target hypothesis	 This means that to build a theory
about the same size as the target concept always re

quires many �on the order of m� changes to the initial
model� and at each step in the optimization� many �on
the order of m� changes are possible	 The improve

ment process is thus expensive� since it is a greedy
search� it is also potentially quite likely to miss 
nding



the best ruleset		

In summary� both RIPPERk and C�	�rules start with
an initial model and iteratively improve it using heuris

tic techniques	 However� for large noisy datasets�
RIPPERk generally seems to start with an initial
model that is about the right size� while C�	�rules
starts with an over
large initial model	 This means
that RIPPERk�s search is more e�cient	 We conjec

ture also that RIPPERk�s search is also more e�ective
on large noisy datasets	 �RIPPER� generally seems
to do better compared to C�	�rules on larger datasets�
in particular for datasets with no more than ��� ex

amples� the average ratio of RIPPER� to C�	�rules is
�	���� and for datasets with more than ��� examples�
the average ratio of RIPPER� to C�	�rules is �	���	�

� CONCLUSIONS

Incremental reduced error pruning �IREP� is a recent
rule learning algorithmthat can e�ciently handle large
noisy datasets	 In this paper we have presented some
experiments on a large collection of benchmark prob

lems with an extended implementation of IREP which
allows continuous variables and multiple classes	 We
showed that IREP does not perform as well as the
more mature �but also more expensive� rule learning
algorithm C�	�rules	

We also proposed a series of improvements to IREP
that make it extremely competitive with C�	�rules�
without seriously a�ecting its e�ciency	 IREP� in

corporates a new metric to guide rule pruning and an
MDL
based heuristic for determining how many rules
should be learned	 RIPPERk adds to this k iterations
of an optimization step that more closely mimics the
e�ect of non
incremental reduced error pruning	

IREP� and RIPPERk were shown statistically to be
clear improvements over IREP on problems from our
test suite	 RIPPER� is also extremely competitive
with C�	�rules� in fact on �� of �� problems in the
test suite RIPPER� achieves error rates lower than or
equivalent to those of C�	�rules	

However� on noisy datasets� RIPPERk is much more
e�cient than C�	�rules	 It scales nearly linearly with
the number of examples in a dataset� in contrast
C�	�rules scales as the cube of the number of examples	
This asymptotic improvement translates to speedups
of several orders of magnitude on problems of modest


This situation should be contrasted to decision tree
pruning	 in which even a large tree can be pruned e�ciently
and	 in certain senses	 optimally� for instance	 the pruned
tree with the lowest error on a pruning set can be found in
linear time�

size �up to a few thousand examples�� and the ability
to e�ectively process datasets containing several hun

dreds of thousands of noisy examples	
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