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Abstract

Multi-view stereo is a popular method for 3D-reconstruction. Super resolution is

a technique used to produce high resolution output from low resolution input. Since

the quality of 3D-reconstruction is directly dependent on the input, a simple path is

to improve the resolution of the input.

In this dissertation, we explore the idea of using super resolution to improve 3D-

reconstruction at the input stage of the multi-view stereo framework. In particular,

we show that multi-view stereo when combined with multi-frame super resolution

produces a more accurate 3D-reconstruction.

The proposed method utilizes images with sub-pixel camera movements to produce

high resolution output. This enhanced output is fed through the multi-view stereo

pipeline to produce an improved 3D-model. As a performance test, the improved

3D-model is compared to similarly generated 3D-reconstructions using bicubic and

single image super resolution at the input stage of the multi-view stereo framework.

This is done by comparing the point clouds of the generated models to a reference

model using the metrics: average, median, and max distance. The model that has the

metrics that are closest to the reference model is considered to be the better model.

The overall experimental results show that the generated models, using our tech-

nique, have point clouds with average mean, median, and max distances of 4.3%,

8.8%, and 6% closer to the reference model, respectively. This indicates an improve-

ment in 3D-reconstruction using our technique. In addition, our technique has a

significant speed advantage over the single image super resolution analogs being at

iv



least 6.8x faster.

The use of multi-frame super resolution in conjunction with the multi-view stereo

framework is a practical solution for enhancing the quality of 3D-reconstruction and

shows promising results over single image up-sampling techniques.
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Enhancing Multi-View Stereo Using Multi-Frame Super Resolution

1 Introduction

Computer vision is a technological problem which seeks to provide machines with the

ability to see, interpret, and predict an understanding of the physical world through

digital mediums such as video and images. These mediums can provide data for re-

constructing 3D geometry for modeling real world objects and scenes. Stereo Vision

was one of the first methods used to accomplish this by using two views, taken from

slightly different overlapping perspectives, which provided the missing depth infor-

mation. Later, improvements to 3D-reconstruction using more than two views was

developed to overcome problems such as reduction of matching ambiguity, occlusions,

and depth error [18,30,58,94,95].

The use of more than two views is called multi-view stereo (MVS). This framework

builds 3D-reconstructions using a set of input images and calculates camera param-

eters from those images using structure from motion (SFM) [28]. One of the key

features is that the process only requires images for reconstruction. However, the

captured scene must be static. The steady improvement in the quality, resolution,

and cost of digital cameras makes this a favourable cost-effective solution for quality

3D-reconstruction.

Since the quality of 3D-reconstruction is directly dependent on the input, a simple

1



path is to improve the input. Super resolution (SR) is a technique used to produce

high resolution output from low resolution input. Previous work, concentrated on

using super resolution to improve the input images [77]. Their work focused on using

a single image super resolution (SISR) algorithm.

In this dissertation, we explore the idea of using multi-frame super resolution (MFSR)

to improve 3D-reconstruction at the input stage of the multi-view stereo framework.

In particular, we show that multi-view stereo when combined with MFSR produces

a more accurate reconstruction. We address limitations of prior work by focusing

on indoor small scale objects and using a simple MFSR based algorithm for super

resolution, which does not require training and has inherent noise reduction.

Proposed Framework:

Multi-view Stereo with Multi-frame Super-Resolution

Input Images MFSR MVS Output

• MFSR applied to the input stage of the MVS framework will yield higher 3D-

reconstruction accuracy with a particular focus on indoor small scale objects

This document is structured as follows:

2



Chapter 2 : Contains background and related work. Covers the following topics:

Camera model, traditional stereo vision, multi-view stereo, super resolution, and

related work combining vision frameworks with super resolution.

Chapter 3 : Method and hardware. This chapter details the experimental methods

and techniques used, as well as, describes the hardware specifications of the vision

system and its 3 major sub-systems: Image acquisition, linear motion, precision mea-

surement.

Chapter 4 : Experiments. This chapter demonstrates some of the capabilities of

the vision system and tests obtaining metrics from a scene, average distance per step

and sub-pixel motion of the linear stage, super resolution comparisons, and 3D-model

generation.

Chapter 5 : Conclusion and future work.

3



2 Background and Related Work

2.1 Camera Model

This subsection covers the basic camera model and summarizes the mathematical

representation of intrinsic, extrinsic, and lens distortion parameters from [21,44,139].

2.1.1 The Pinhole Camera Model

A Pinhole Camera consists of a light proof chamber with a tiny aperture that

projects an inverted image on the side opposite of the aperture.

The oldest known description of this device, also known as a Camera Obscura, dates

back to the 4th century BCE in the writings of the Chinese philosopher Mozi(Mo-tzu)

from the Han dynasty [39,88,108,123].

The Pinhole Camera model is a representation of the projection process that traces

light rays from the camera scene through the aperture to the image plane. The image

produced is inverted both horizontally and vertically, that is the image will appear

upside down and left to right.

This process can be viewed as a 3-Dimensional (3D) to 2-Dimensional (2D) transfor-

mation or as a projection from 3D-space onto 2D-space.

In Figure 1, we see light rays from world point P (X, Y, Z) passing through the camera

4



Figure 1: Pinhole Camera Model. 3D to 2D transformation a projection from 3-space
into 2-space. P (X, Y, Z) projected onto image plane at Q(x, y).

aperture at O to the image plane at point Q(x, y). The depth, Z, is the distance

from the world point to the camera at O. The focal length, f , is the distance from

the camera at O to the image plane point Q(x, y).

Using similar triangles we get the following relationships for 3-space World point

P (X, Y, Z) and image plane point Q(x,y):

Z
f

= X
x
⇔ x = f X

Z

Z
f

= Y
y
⇔ y = f Y

Z
.

Combining the two we get,

Q =

x
y

 =

f XZ
f Y
Z

 (1)
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2.1.2 Camera Matrix Model (Intrinsic)

The Camera Matrix Model is the formal method for mapping camera coordinates

into image coordinates. It contains all the parameters in matrix form accounting for

parameters like focal length, translation, and skew. The following builds the Camera

Matrix Model from the Pinhole Camera model.

The optical center of the camera needs to be aligned with the image plane coordinates

since images have their origin, (0, 0), in a corner region so it is necessary to translate.

Let cx and cy be the translation offset. So, the projection map becomes:

Q =

x
y

 =

f XZ + cx

f Y
Z

+ cy

 (2)

Positions in camera coordinates are represented by units of measure such as millime-

ters whereas images use pixels. To convert from camera units into image coordinates

we introduce variables kx and ky which are expressed in pixels per unit measure (eg.

pixels
mm

). Equal values for kx and ky indicate that the sensor has square pixels but there

is no guarantee that the aspect ratio will be equal to one, so it is possible that the

values for each are different.

6



Q =

x
y

 =

fxXZ + cx

fy
Y
Z

+ cy

 , (3)

where fx = fkx and fy = fky.

We introduce a skew factor, α, that accounts for any shear present in the coordinate

system possibly occurring when the optical axis is not orthogonal to the image plane

which causes a translation in x of αY .

Q =

x
y

 =

fxXZ + cx + αY

fy
Y
Z

+ cy

 (4)

A convenient way to express Equation (4), since it permits the use of matrix multi-

plication to represent the complete transformation.

Qh =


x

y

Z

 =


fxX + cxZ + αY Z

fyY + cyZ

Z

 =


fx s cx

0 fy cy

0 0 1




X

Y

Z

 , (5)

where s = αZ.
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The familiar intrinsic camera matrix, K, can be seen in Equation (5) which can be

re-written as:

Qh =


x

y

Z

 =


fx s cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K

Ph (6)

The Intrinsic Camera Matrix parameters consisting of focal length, skew/distor-

tion/scale factor, and image center can be clearly seen. The following is written in

it’s recognizable 3x3-matrix form:

K =


fx s cx

0 fy cy

0 0 1

 (7)

The skew/shear distortion factor for modern cameras is normally very close to zero.

So, it is customary to accept this value as zero. However, under unusual circumstances

this factor could be non-zero in cases such as capturing an image of an image.
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2.1.3 Extrinsic Parameters(Localization)

The intrinsic camera matrix maps points from the 3D-camera-space into the 2D-

image-plane. We would like to be able to work with the world reference. So, we

need to build a transformation from 3D-world coordinates into camera coordinates.

The transformation is accomplished by rotation, R, and translation, T , from world

coordinates into camera coordinates. Given some world point, Pw, we can apply the

following transformation to move into camera coordinates:

Ph =

R3x3 T3x1

01x3 1

Pw (8)

Combining both the intrinsic and extrinsic matrices, Equations (6) and (8), we get:

Qh =


x

y

Z

 =


fx s cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K

[
I3x3

~03x1

]R3x3 T3x1

01x3 1


︸ ︷︷ ︸

Rot Trans

Pw (9)
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2.1.4 Perspective Projection Matrix M

The intrinsic and extrinsic relationship expressed in Equation (9) can be simplified

using the following Projection matrix M3x4:

Qh = MPw, (10)

where

M =


fx s cx

0 fy cy

0 0 1


︸ ︷︷ ︸

K


r11 r12 r13 tx

r21 r22 r23 ty

︸ ︷︷ ︸
R

r31 r32 r33 ︸︷︷︸
T

tz

 =


m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34



Camera Calibration, also known as Camera Pose Estimation, Resectioning, or Geo-

metric Camera Calibration, is an operation that approximates intrinsic and extrinsic

parameters of a camera.

2.1.5 Camera Lens Distortion

Pinhole cameras require the size of the aperture to be as small as possible to create

a clear and sharp image. If the aperture is too large, incident rays of light cause

the image to become blurry. But, if the aperture is too small, not enough light will
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strike the sensor and will produce an image that is dark and grainy. The solution

is to focus the light using a lens. This will produce an image that is bright and

clear. However, using a lens will introduce distortion effects. The distortions can be

modeled mathematically and to reduce image distortion caused by the lens. Most

lens models accommodate for the following types of distortion:

• Radial Distortion: The unequal bending of light at the edges of the lens

versus the center causing straight lines to appear curved. These curved lines

can be classified as either Barrel or Pincushion distortion.

• Tangential Distortion: This type of distortion makes the image appear

stretched or tilted and is caused by the angle of the lens with respect to the

image sensor.

(a) No Distortion (b) Barrel (c) Pincushion

Figure 2: Lens Distortion.
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The general model used for lens distortion is as follows:

xd = x+ x̂(1 + k1r
2 + k2r

4 + k3r
6 + . . .) + [p1(r2 + 2x̂2) + 2p2x̂ŷ](1 + p3r

2 + . . .)

yd = y + ŷ(1 + k1r
2 + k2r

4 + k3r
6 + . . .)︸ ︷︷ ︸

Radial Distortion

+ [p2(r2 + 2ŷ2) + 2p1x̂ŷ](1 + p3r
2 + . . .)︸ ︷︷ ︸

Tangential Distortion

which is normally simplified to:

xd = x+ x̂(1 + k1r
2 + k2r

4 + k3r
6 + . . .) + [p1(r2 + 2x̂2) + 2p2x̂ŷ] (11)

yd = y + ŷ(1 + k1r
2 + k2r

4 + k3r
6 + . . .)︸ ︷︷ ︸

Radial Distortion

+ [p2(r2 + 2ŷ2) + 2p1x̂ŷ]︸ ︷︷ ︸
Tangential Distortion

, (12)

where (xd, yd) is the distorted image coordinate, x and y are the projected undistorted

image components from the world coordinates after rotation and translation, (xc, yc)

is the radial optical center, r2 =
√
x̂2 + ŷ2, x̂ = (x − xc), and ŷ = (y − yc). (See

[21,71,139] for more detail.)
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2.2 Traditional Stereo Vision

Stereo Vision uses two cameras, with a known separation distance, to capture an

image pair. The displacement between the two views is known as disparity.

Figure 3: Stereo Vision: Tea Cup

Intuitively, our brains naturally interpret the inverse relationship between disparity

and depth (the distance from the subject to the camera plane). This is easily re-

alized with Anaglyphs where two images with a slight perspective displacement are

superimposed on top of each other, in different colours (red and blue), producing a

stereo effect giving the perception of 3D.

Figure 4: Anaglyph: Tea Cup
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2.2.1 Triangulation

Captured images can be considered as projections of a scene onto a plane, so they only

contain 2D information and as a consequence depth information is lost. To recover

this information we can use triangulation, this process matches identical points from

one image to the other, to estimate the 3D positions.

Figure 5: Scene to Stereo Image Plane, where P (X, Y, Z) is the scene point and
{PL(XL, YL), PR(XR, YR)} are the corresponding scene left and right image plane
points, respectively.
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X =
b(XL +XR)

2(XL −XR)

Y =
b(YL + YR)

2(XL −XR)
(13)

Z =
bf

(XL −XR)

Figure (5) with equation set (13) illustrate the relationship for the reconstruction of

the point P (X, Y, Z) given corresponding Left and Right image points PL(XL, YL),

PR(XR, YR), base length b, and focal length f(in pixels).

From equation set (13) we can clearly see the inverse relationship of disparity and

depth by examining the formula for Z.

Sometimes it is useful to calculate the distance between two scene points, so, the well

known formula (14) can be used.

Dist =
√

(∆X)2 + (∆Y )2 + (∆Z)2 , (14)

where
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∆X = X1 −X2

∆Y = Y1 − Y2 (15)

∆Z = Z1 − Z2

To accommodate for multiple scene points we modify the notation of the equations

from (13) to get the equation set (16).

Xn =
b(XLn +XRn)

2(XLn −XRn)

Yn =
b(YLn + YRn)

2(XLn −XRn)
(16)

Zn =
bf

(XLn −XRn)

We also define the 3-space point Pn in the following way:

Pn = (Xn, Yn, Zn) , (17)

where {Xn, Yn, Zn} come from the image point computations of equation set (16).
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2.3 Multi-View Stereo (MVS)

Traditional Stereo Vision is a good method for 3D-reconstruction but has limitations

such as matching ambiguity, occlusions, and fixed working distance [18,30,58,94,95].

This is naturally improved by incorporating additional scene information through the

use of more views [see Figure (6)]. The methodology of using more than two views

is called: Multi-View Stereo (MVS). This framework is a general description of

techniques that use stereo correspondence from more than two images [28, 112, 120]

and shares many principles with traditional Stereo Vision but differs with algorithms

that can handle the larger variance in viewpoints [28]. It uses overlapping information

from images taken from different viewpoints to aid in 3D-reconstruction.

Figure 6: Multi-View Stereo reconstruction from set of images (left) to 3D-model
(right).

The noisy measurements of any given scene point can be made more robust by ac-

counting for the overlapping information from the multi-view images through the use

of redundant cues such as: texture, contours, shading, de-focus, and stereo correspon-

dences.

The general pipeline for MVS is as follows (as illustrated in Figure 7): Image Acqui-
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Image Ac-
quisition

Compute Camera
Parameters

3D-Geometry
Reconstruction

Texture/-
Materials

Reconstruction

Figure 7: General Multi-View Stereo (MVS) Pipeline.

sition, Compute Camera Parameters, 3D-Geometry Reconstruction, Textures/Mate-

rials Reconstruction from the scene.

2.3.1 Image Acquisition

Multi-View Stereo utilizes a set of input images and estimates a reconstruction of the

most likely 3D shape from the given information. The Image Acquisition process

is a passive and fast method for accurately capturing content. Technical advances in

this area, due to low-cost digital cameras with increasing image quality, have made

it both an inexpensive and reliable method to generate 3D models. The acquisition

of image data for MVS can be accomplished using a simple camera to complicated

configurations using an automated turntable with high quality lighting. On a large

scale, images can also be utilized from multiple cameras and sources such as images

acquired from drones or crowd-sourcing from the Internet [36,116].

2.3.2 Compute Camera Parameters

The advancement of image acquisition hardware for both quality and cost was not

the sole factor that permitted the recent development of the MVS research field but
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the success of progress can be partially attributed to the steady increase in com-

putational power, which in turn aided the ability to process many images quickly

and the development of the algorithms used to Compute Camera Parameters.

Particularly, the rise and improvement of Reconstruction and Structure from Motion

(SfM) algorithms used to compute these parameters played a significant role. This

opened the possibility to process and calculate camera parameters for multi-terabytes

of images for 3D-reconstruction [126].

Structure from Motion operates under the assumption that the scene is rigid and uses

point correspondences as cues to compute the camera models for parameters. It is

a similar technique to Visual Simultaneous Localization and Mapping (VSLAM) but

differs in that it generates parameters, most often in non real-time, using unordered

sets of images. Whereas, VSLAM computes locations and parameters of cameras from

video streams in real-time [28]. Although, there exists works that utilize MVS with

VLSAM techniques [90, 122], in this document we concentrate on MVS algorithms

that use unordered sets of images in non real-time and save MVS with VSLAM for

future research.

Early work in Photogrammetry, the field of study that obtains 3D measurements

from photographs, used triangulation to solve for 3D locations in a scene from mul-

tiple photographs having different vantage points. This process utilizes a priori, the

position and orientation, of where each photo was taken during the triangulation

process. The converse of the problem, given 3D locations determine the position and

orientation of where the photo was taken from (Camera Pose Estimation/Resection-
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Detect 2D
features

Match 2D
features

Construct
2D tracks

Solve SfM Model

Refine SfM
Model

Figure 8: General SfM Pipeline.

ing). Traditionally, this problem is solved with known reference points in the photos,

sometimes indicated by fiducial markers, which can be used to obtain Camera Pose

Estimation. Structure from Motion simultaneously answers the problem of not know-

ing 3D locations or Camera Pose Estimation. This is a relaxation on the requirements

of traditional Photogrammetry.

The purpose of Structure from Motion is to produce camera parameters of all input

images and 3D points along with their corresponding 2D coordinates from subsets

of the input images. The combination of a 3D point with its list of corresponding

coordinates derived from a subset of input images is a called a track. The SfM pipeline

can be generally outlined as (Figure 8): Detect 2D features, Match 2D features,

Construct 2D tracks, Solve SfM Model, Refine SfM Model.

Much of the success for the development of the SfM methodology for unordered

sets of images is due to the creation of high quality feature detectors [43,78,106] and

descriptors [2,5,67,107], which permit stronger matching and higher quality tracks on
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images where pose and illumination could be substantially different. Algorithms such

as SIFT (Scale-Invariant Feature Transform) and ORB (Oriented FAST [Features

from Accelerated Segment Test] and Rotated BRIEF [Binary Robust Independent

Elementary Features]) are popular algorithms used for this process. Other areas of

advancement that have attributed to the success in the development of SfM with

unordered images are with efficient indexing [92], improved graph connectivity of

tracks [117], and parallelization [1, 26] have improved the performance of matching

features and descriptors. These improvements reduce the matching complexity of

unordered images, that is every image has to be matched to all other images, which

structured sequences of images do not have due to prior knowledge derived from

nearby images.

The SfM process globally optimizes 3D points and the camera poses by minimizing

the error, er, between the detected 2D points and the estimated re-projection of the

3D points from each camera (See Equation (18)).

Total Error =
k∑
i=0

n∑
j=0

er(i, j)
2 =

k∑
i=0

n∑
j=0

|Πj(x
3D
i )− x2D

ij |2 , (18)

where k is the number of points, n is the number of cameras/views, Πj(x
3D
i ) is the

estimated re-projection of the ith 3D point on the image plane of the jth camera, x2D
ij

is the ith point in the image of the jth camera.
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Figure 9: Bundle Adjustment: Re-projection Error, er, of point x3D
i in the jth camera

plane.

The process of minimizing Equation (18)) is called Bundle Adjustment, which

comes from the idea of having geometric bundles of light rays from each 3D point

converging at a camera’s optical center. The minimization of the function uses a

nonlinear least-squares algorithm such as Gauss-Newton or Levenberg-Marquardt.

Much success has been with the Levenberg-Marquardt Algorithm due to its sim-

plicity by iteratively solving the non linear least squares problem by combing the

gradient-descent method with Gauss-Newton. The reduction of error is accomplished

by updating parameters in the steepest-descent direction for gradient-descent, and for
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the Gauss-Newton method it assumes the parameters are locally quadratic thus re-

ducing the problem to minimizing a quadratic. As a result, the Levenberg-Marquardt

algorithm behaves like gradient-descent for parameters that are far from their optima,

and behaves like Gauss-Newton for values close to their optimal value [34,83].

2.3.3 3D-Geometry Reconstruction

Structure from Motion produces both camera parameters and a sparse 3D-reconstruction

but the 3D-Geometry Reconstruction process seeks to produce a dense recon-

struction. So, this part of the process uses the information generated from the

previous stage to create a dense reconstruction. This is accomplished by match-

ing corresponding pixels across images. The goal of finding dense correspondences

is similar to that of Optical Flow, where correspondences are typically only over

two images (MVS uses more than two), camera calibration is not required (MVS

assumes camera calibration is known), and the application is for interpolation and

not 3D-reconstruction [4,28]. For Optical Flow the matching search space is 2D since

every pixel for an image can be matched against any other pixel but for MVS the

search space is simplified since the camera parameters are known which reduces the

search space to a 1D problem due to Epipolar Geometry (for more information on

Epipolar Geometry the reader is directed to [44]).

The matching process evaluates correspondences between images using the concept

of photo consistency, which measures similarity, coherence, and accuracy. The
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general form of the photo consistency measure cost function for a pair of input

images, Ii and Ij, and a 3D point p (seen by all images) is as follows (as taken

from [28]):

Cij(p) = s(Ii(Ω(πi(p))), Ij(Ω(πj(p)))) , (19)

where s(f, g) is a similarity measure that compares vectors f and g, πk(p) is the

projection of p into the kth image plane, Ω(x) defines a support domain around point

x, Ik(x) is the image intensity of the kth image at position x.

Every photo consistency measure can be described as a particular choice of s and

Ω [28]. Some examples of similarity measures used are: Sum of Squared Differences

(SSD), Sum of Absolute Differences (SAD), Normalized Cross Correlation (NCC),

Census, and Rank. The support domain Ω is used to encapsulate an area that defines

the size of a unique region that has consistent illumination and viewpoint. The larger

the defined region the more local uniqueness inside the domain thereby making it

easier to match to other images but comes at the expense of loss of invariance with

illumination and viewpoint due to issues such as reflectance, geometry assumptions,

and boundaries. (For more information on photo consistency see [28].)
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2.3.4 Texture/Materials Reconstruction

This process in the pipeline applies textures/materials to the 3D-Model to yield a

realistic appearance. Sometimes it is considered an optional procedure during the

MVS process depending on end-application. This is normally accomplished using

a texture chart, obtained from the images of the acquisition stage and from the

segmentation of the generated model mesh, which overlays and maps 2D surface

images to various regions on the models mesh. Texture reconstruction is simply

the registration between image and model geometry. Most approaches, for texture

chart generation, use a Markov Random Fields (MRF) energy function to label each

triangular face in the mesh. All triangles of identical labels are aggregated together

into the texture chart [7, 64,69,141].
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2.4 Super Resolution (SR)

Super Resolution (SR) is the reconstruction of Low Resolution (LR) input to

produce High Resolution (HR) output. Throughout this document when referencing

images we will interchangeably use Low Resolution (LR) for Low Quality (LQ), and

High Resolution (HR) for High Quality (HQ), respectively. Super Resolution has

been used in a wide variety of applications such satellite remote sensing, radar, and

medical imaging [79,118,118,128,145,145]. A simplified version of the taxonomy for

Super Resolution, similar to [87], is presented in Figure (10). The diagram shows

that Super Resolution can be achieved using frequency or spatial domains with both

having two sub-categories: Fourier and Wavelet for frequency domain, and Single

Image and Multi-Frame for spatial domain.

Super
Resolution

Frequency Domain Spatial Domain

Fourier

Wavelet

Single Image

Multi-Frame

Figure 10: Taxonomy of Super Resolution.

Early work by Tsai were based on frequency domain and were easy to implement

and computationally cheap but lacked the ability to add image priori and could only

get good results for images without noise and degradation [75]. Although, this for-

mulation through frequency domain gave excellent insights into the theory of Super
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Resolution it is only effective for simple motion models (planar translation and ro-

tation / rigid motion) and so cannot model for arbitrary displacement [60, 124, 129].

Further more, a tractable Linear Shift Invariant (LSI) kernel, by means of Fourier

transform, for blur is necessary which restricts flexibility of the underlying image for-

mation model [60]. So, for these reasons the spatial domain has been preferred and

widely studied. The body of this research also uses Super Resolution that concentrates

on the spatial domain with a particular interest in the Multi-Frame sub-category.

2.4.1 Super Resolution Mathematical / Generative / Observation Model

X Mk Bk D
⊕

Yk

HR Motion Blur Decimation

nk

Noise LR

Figure 11: Super Resolution Mathematical Model Flow Chart.

The SR acquisition process has been modeled to accommodate for various degrada-

tions of the HR image to the observed LR image(s) using the following operations

(Figure (11)):

• Warp / Motion

• Camera Blur

• Decimation / Down-sampling
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• Noise

Warp / Motion. This operation describes the geometric transformation of an image

with respect to a common coordinate reference, which encodes for camera motion

and/or object motion.

Camera Blur. This operation describes various camera blurs such as motion and

focus blurs. This process is normally accomplished using a low-pass filter, which is

sometimes modeled from a Point Spread Function (PSF).

Decimation / Sampling. This describes the reduction in resolution/dimension

from the HR image to the LR image(s).

Noise. This is the independent noise associated with each LR image, which is nor-

mally modeled using White Gaussian noise.

The widely accepted mathematical model (a.k.a Generative or Observation Model) for

Super Resolution (SR) [22, 53, 87, 101] accounts for the degradation factors: motion,

blur, and decimation (Down-sampling). Given by the following:

Yk = DBkMkX + nk , (20)

where Yk is the kth Low Resolution (LR) image for k = 1, 2, . . . , N , X is the ideal High

Resolution (HR), Mk is the geometric sub-pixel motion of the kth image, Bk is the blur
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matrix of the kth image, D is the down sampling matrix, nk is the nonhomogeneous

additive Gaussian noise (uncorrelated between different measurements) of the kth LR

image.

It is standard practice to simplify Equation (20) by combining D, Bk, and Mk as one

matrix Wk [75, 101,102,124,125] (sometimes denoted with Hk):

Yk = WkX + nk (21)

Sometimes the literature uses a functional notation to represent the model:

Yk(m,n) = D(Bk(Mk(f(x, y)))) + nk(m,n) (22)

2.4.2 Single Image Super Resolution (SISR)

Single Image Super Resolution (SISR) uses a single LR input to produce HR out-

put. Most approaches are based on priori and use an explicit distribution or energy

function, or are implicit example-based [27,104]. Learning based algorithms are most

often used for implementing SISR [3, 57, 59, 65] which require a training step. The

training step learns the relationship between LR input and the HR output in the
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hopes that high resolution details can be recovered when presented with arbitrary

LR input. There are two main approaches to defining low resolution to high reso-

lution relations: mapping patches or mapping structures/features [59, 87]. It is well

known that Learning approaches are only as good as their training and that gener-

ated output may not be a true representation [59, 91]. These imaginary details or

hallucinations may cause undesirable effects on the output reducing the suitability

for specific applications where true representations are preferred.

2.4.3 Multi-Frame Super Resolution (MFSR)

Figure 12: Multi-Frame Super Resolution overlapping sub-pixel example.

Multi-Frame Super Resolution (MFSR) uses multiple LR inputs to produce HR out-

put. It works on the premise that multiple views capture independent information,

of the same scene from slightly different perspectives, that can be combined to create

output that has more information than its inputs alone (as illustrated in Figure (12)).
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MFSR

Iterative Probabilistic Interpolation

Figure 13: Taxonomy of MFSR over spatial domain.

Multi-Frame Super Resolution can be further broken down into three categories (as

illustrated in Figure (13)) :

Iterative. Iterative methods most commonly use Iterative Back Projection (IBP)

or Projection onto Convex Sets (POCS). Iterative Back Projection estimates the HR

image iteratively as the projected sum of simulated LR images obtained through

refined estimations of motion, blur, and noise in conjunction with the original LR

images. This method is among the first algorithms developed for SR with notable

works from [19, 53, 54, 96, 130, 148]. Projection onto Convex Sets produces solutions

from the intersection of constraint sets that contain possible values for Super Reso-

lution pixels such that every possible SR image can lead to each LR image. That is,

each LR image imposes an a priori on the Super Resolution result. [100,111]

Probabilistic. This method uses stochastic operations such as Bayesian inference,

Markov/Gaussian Random Fields, and Total Variation to reconstruct HR images

from LR images using probabilistic techniques that utilize methods such as Maximum

Likelihood (ML), Maximum A Posteriori (MAP), and Inference models. (We refer

the reader to [87] for a more detailed description.)

Interpolation. Interpolation-based methods, also known as Direct Methods, are the
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Acquisition Registration Reconstruction

Figure 14: Multi-Frame Super Resolution Flow Chart.

simplest and most straight forward procedures for producing super resolved HR out-

put. They involve a three step process (Figure (14)): Acquisition, Registration,

and Reconstruction.

The Acquisition process obtains LR images from slightly different viewpoints. The

larger the overlap between all of the images the better since this would produce a

result that has the greatest area and helps make the Registration process easier.

Ideally, sub-pixel shifts are desired between the images.

The LR images are then geometrically aligned during the Registration process.

Normally, one of the images is selected from the LR image set as reference for the

alignment process since each of the LR images may have different sub-pixel displace-

ments or rotations. The Registration process estimates motion parameters using

methods like Optical Flow by matching pixel-to-pixel or feature-based methods [121].

Pixel-to-pixel approaches shift or warp images to the reference image and produce an

alignment of pixels with the least discrepancy. Feature-based methods extract details

from images such as corners, edges, ridges, and shapes. These details are matched to

the reference image and a mapping is defined to transform the images to the reference

space.
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The Reconstruction stage, also known as Restoration, utilizes the aligned images

and produces a High Resolution output image by scaling and filtering. Filters such

as mean and median are commonly used for this process [25]. Other filters such as

SVD-based [86] and Adaboost classifiers [114] have been used. Optionally, during

this stage a de-blurring kernel kernel is applied to sharpen the result.

2.4.4 Image Registration Using Enhanced Correlation Coefficient

A good method for image registration, that achieves sub-pixel accuracy and is in-

variant to photometric illumination, is the enhanced correlation coefficient (ECC)

maximization algorithm [23]. This method uses gradient descent with enhanced nor-

malized cross correlation (ENCC) as the objective function. Although, this function

is nonlinear the iterative scheme they proposed reduces the process to linear compu-

tational complexity.

The following is a brief overview of the ECC process (see [23] for more detail).

Let Ir(x) and Iw(y) be image intensity values of the reference and template/registra-

tion images with coordinates x = (x1, x2) and y = (y1, y2), respectively.

The performance for geometric registration is quantified by error metrics, having

warping transformation parameters p, with the criterion represented by Equation

(23).
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EECC(p) =

∥∥∥∥ īr
‖̄ir‖

− īw(p)

‖̄iw(p)‖

∥∥∥∥2

, (23)

where īr is the zero-mean of reference image Ir, īw(p) is the zero-mean of registration

image Iw warped by parameter p, and ‖ · ‖ is the standard Euclidean norm.

The minimization of the EECC criterion yields the optimal image alignment, which

is equivalent to the maximization of the duality given by ENCC [103] represented by

Equation (24).

ρ(p) =
īTr īw(p)

‖̄ir‖‖̄iw(p)‖
= îTr

īw(p)

‖̄iw(p)‖
, (24)

where īr and īw(p) are the same as in Equation (23), and îTr = īTr
‖̄ir‖ is the normalized

zero-mean reference image.

Gradient descent is applied to ENCC, ρ(p), by updating p = p̃+ ∆p (where p̃ is some

nominal parameter close to p and ∆p is a vector of perturbations) and approximating

Iw by first order Taylor expansion represented by Equation (25).
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Iw(y) ≈ Iw(ỹ) + [∇yIw(ỹ)]T
δφ(x; p̃)

δp
∆p , (25)

where ỹ = φ(x; p̃) are the warped coordinates under the nominal parameter vector,

y = φ(x; p) under the perturbed vector, φ(· ; ·) be a well-defined coordinate mapping

for motion estimation between the reference and registration images, ∇yIw(ỹ) denotes

the gradient vector of Iw(y) of the warped image, and δφ(x;p̃)
δp

denotes the Jacobian

matrix of the transform with respect to the parameters at the nominal values.

Applying Equation (25) to all coordinates will yield a linear version of the warped

parameters p represented by Equation (26).

iw(p) ≈ iw(p̃) +G(p̃)∆p , (26)

where G(p̃) denotes the Jacobian matrix of the warped intensity vector with respect

to the parameters at p̃.

Using the estimation of Iw(p) from Equation (refeqn:IwApproxJacobian) we can ap-

proximate Equation (refeqn:ENCC) under the nominal parameter and perturbation

vectors shown in Equation (27).
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ρ(p) ≈ ρ(∆p|p̃) = îTr
īw(p̃) + Ḡ(p̃)∆p

‖̄iw(p̃) + Ḡ(p̃)∆p‖
, (27)

where Ḡ(p̃) and īw(p̃) are the column-zero-mean versions of G(p̃) and iw(p̃) , respec-

tively.

2.4.5 MFSR: Quality vs Quantity Tradeoff

The suggested minimum number of images required for good consistent super resolved

output such that the tradeoff between number of images and quality, since there

are diminishing returns after a certain number of images, is N2, where N is the

magnification factor [97, 111,127].

2.4.6 Multi-Frame: Noise Reduction

It is well known that signals obtained with Charged Coupled Devices (CCDs) are

inherently degraded by shot noise [99, 109] and that this noise can be modeled by

a Poisson Distribution [55, 76]. This means that digitized images that are captured

will have a certain degree of noise present in their result. The process of combining

multiple image frames results in a noise reduction, which can be approximated using

the following equation [47,48]:
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Percentage Noise Reduction ≈
(

1− 1√
N

)
× 100 , (28)

where N is the number of images/frames.

By examining Figure 15 and Table 1, we can see that there is a diminishing return

of noise reduction as the number of images increase. Using Equation (28) the noise

reduction for 16 to 25 images will give an approximate reduction of 75% to 80%.

Figure 15: Multi-Frame Percentage Noise Reduction.

Number of Images Noise Reduction

4 50%
8 65%
16 75%
25 80%
32 82%
64 88%

Table 1: Noise reduction from using multiple images.
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2.4.7 Metrics for Image Quality Assessment

Determining the effects of processing on the quality of an image is an important

operation used to evaluate resulting effects such as loss of information or degradation.

Image quality assessment can be broken down into two categories [50,110]:

• Subjective: A qualitative measure based on human perception and judgement

without an explicit reference criteria.

• Objective: A quantitative measure that uses explicit numerical criteria for

comparisons with references such as ground truth and statistical prior knowl-

edge.

There are many methods to perform image quality assessment. In this document we

use the following well known objective metrics: Mean Squared Error (MSE), Peak

Signal to Noise Ratio (PSNR), and Structural SIMilarity (SSIM) (a.k.a. Structural

Similarity Index Measure (SSIM)).

Mean Squared Error (MSE) is the average squared intensity difference between

a test and reference image. MSE can be considered as a quadratic loss risk function

based on the expected value of squared error loss [8] and is given by Equation (29).

This metric, in simple terms, tells you how far apart two images are.
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MSE =

∑M
n=0

∑N
m=1(I1(n,m)− I2(n,m))2

MN
(29)

Peak Signal to Noise Ratio (PSNR) is the ratio, in decibels, between the peak

(maximum) power of a signal and the noise floor as is given by Equation (30). It is

often used as a measurement of quality between two images. The value for PSNR

tends to infinity as MSE tends to zero, which can be interpreted as: The larger the

PSNR value the better the quality of the signal or image. This means a smaller

difference between the test and reference. Conversely, the smaller the PSNR value

the larger the difference between the signal or image.

PSNR = 10log10(peak2)/MSE (30)

Structural SIMilarity (SSIM) is a normalized measure of the similarity between

two images and is given by Equation (31). This metric was first described by Wang et

al. [138] and was developed with the idea of perceived human perception. It models

image perception as distortions of luminance, contrast, and loss of correlation. The

normalized result of SSIM is in [0, 1] with 0 meaning the images are not similar or

no correlation exits, and 1 meaning the images are completely similar and 100%

correlated, that is the two images are equal.
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SSIM =
(2µxµy + C1)(2σxσy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(31)

40



2.5 Related Work

2.5.1 Stereo Vision with Super Resolution

There have been approaches that use Stereo Vision with Super Resolution some of

which concentrate on view synthesis from 2D video to Stereoscopic 3D for use with

multi-user 3D displays or auto-stereoscopic displays [62]. Other approaches work

at improving the spatial resolution of Stereo images using parallax priori or cross

view capture [15,56,135,137,144,147] or improving disparity/depth map using Super

Resolution [17,143].

Super Resolution has also been applied to 3D face recognition using low resolution

acquisition devices such as RGB-D (Red Green Blue - Depth) cameras. The low

resolution 3D scans are super resolved to produce higher resolution 3D face models

(superface models) [6, 51,85].

2.5.2 Combining Multi-View Stereo with Super Resolution

Producing a Super Resolution image from a sparse 3D-reconstruction and

Low Resolution input images.

The combination of using Multi-View Stereo with Super Resolution is a natural evo-

lutionary path to improving either of the frameworks and has been accomplished

in few different ways. One of the first works used multiple Low Resolution images

to generate a sparse 3D-reconstruction, which was used to produce a super-resolved
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image that exceeded the spatial resolution of the input images and could view the

scene from an angle different from the observed input views [89]. The focus of their

research was not the 3D-reconstruction to produce a 3D model but the production of

a super resolved image, that can have a different viewpoint than the input images,

from a scene with depth. Although, the work presented used an adaptation of a

Bayesian SR algorithm from [131], the produced framework permits the usage of any

2D Super Resolution algorithm to generate super resolved output from a scene with

depth variation.

Producing Super Resolution images from Multi-View images and depth

maps.

The use of multi-view images in combination with depth maps have been used as

a Super Resolution technique [31]. This technique uses high frequency details from

adjacent views in conjunction with correspondences based on the related depth maps.

Their work concentrates on a mixed resolution multi-view framework that yields a

result with notable gain in Peak-to-Signal-Noise-Ratio (PSNR) over up-sampled and

non-resolved images.

Enhancing model appearance by applying Super Resolution to textures.

Applying Super Resolution to the surface textures of a 3D model generated by Multi-

View Stereo is another combination of the two frameworks used to improve the ap-

pearance of a model. The original motivation of this work came from the emergence

of high quality 3D models and the importance to recover high resolution and high
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quality texture maps from low resolution input images with the goal of estimating

texture maps as precisely as possible.

One of the early works used a Partial Differential Equation (PDE) based gradient

descent method to solve Euler-Lagrange equation of the texture surface [38]. In a later

work, the authors extended and modernized their method by switching from a PDE

based gradient descent to a convex optimization based method. This switch made

their work easy to implement and consequently more computationally efficient [37].

Another method to enhance MVS model textures with SR used a direct keyframe-

based Simultaneous Localization And Mapping (SLAM) frontend to estimate RedGreenBlue-

Depth (RGB-D) camera motion followed by image alignment and volumetric fusion

to produce a mesh. Low Resolution RGB-D images are deblurred and fused into

Super Resolution keyframes which are texture mapped to the mesh and results in

an improved texture quality as compared to simple volumetric blending alone [81].

The method uses an assumption of consistent 3D model geometry and camera poses

between corresponding pixel values from neighbouring LR images and uses computes

the weighted median of those values.

However, this procedure is subject to the same geometric inaccuracies as those of

MVS reconstruction to which the median filter is supposed to correct for. The method

from [12] overcomes this limitation of prior work by using an optical flow algorithm

that corrects the initial geometric registration error directly in the image domain

on a sub-pixel level. Another method for reconstructing 3D structure with high
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resolution texture of a scene from multiple low resolution images, taken from different

viewpoints, directly uses image intensity and iteratively estimates high resolution

texture and structure forgoing the necessity for point correspondences among multiple

images [93]. By simultaneously estimating high resolution textures and 3D structure

they were able to produce an improved result that cannot be obtained alone by

traditional methods.

More recently, the improvement in the appearance of 3D models by enhancing textures

with Super Resolution using a Deep Learning based approach has been done by [70].

They address the limitation in the lack of multi-view data for a deep learning approach

by introducing the data set 3D Appearance SR (3DASR) which is based on existing

ETH3D, SyB3R, MiddleBury, and a few scenes of their own. Their method uses

2D Deep Learning SR techniques adapted to the texture domain using geometric

information via normal maps which yeilds similar performance to that of model based

methods.

Enhancing MVS by applying Super Resolution to depth maps.

Super Resolution has been applied to the depth map stage of the Multi-View Stereo

framework to address the limitations between the resolution of captured depth in-

formation, using methods like Structured Light or Time-Of-Flight (TOF), to regular

colour cameras.

One such implementation generated a Low Resolution (LR) 3D model, using a real-

time depth sensor that captured RedGreenBlue-Depth (RGB-D) images, to guide

44



the acquisition process. Super Resolution methods were then applied to enhance the

RGB-D images and merged with High Resolution images into a single mesh that was

later textured using data from a high quality camera (Canon EOS 5D) [113]. This

process generates an improved model appearance, due to the high quality textures

captured by the high quality camera, in comparison to texture generation with the

original LR colour images alone.

Model based Compressive Sensing (CS) is another technique that has been used as a

reconstruction method to address the resolution differences between LR depth cam-

eras and regular colour cameras [74]. This method transforms a LR depth map to

a High Resolution (HR) depth map using CS depth map Super Resolution. Com-

pressive Sensing (CS) is a signal processing technique for the acquisition of sparse

compressible signals which permits signal reconstruction from a small set of random

samples. That is, if a signal has a compressible representation then it can be rep-

resented by fewer samples than traditional Shannon/Nyquist representations [119].

The authors of [74] demonstrated that model based CS can be used effectively as a

reconstruction method when applied as a SR technique to depth maps.

Super Resolution Depth maps have also been obtained using a Joint Bilateral Up-

sampling (JBU) filter in a final refining step and an energy cost minimization of

the similarity between the measured and estimated depth values, as well as, the

smoothness of neighbouring pixels of those estimated depth values [16]. This method

produced better HR depth maps than previous up-sampling methods (Bicubic up-

sampling, Multi-lateral filtering [32], Pixel Weighted Average Strategy (PWAS) [33],
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and Joint Bi-lateral Up-sampling (JBU) [63]).

In a similar work [66], two stages were applied to the depth map SR framework:

Credibility and Synthesis. In the credibility based stage they perform a Multi-view

Depth Map Fusion (MDMF) and in synthesis they performed a View Synthesis Qual-

ity - Trilateral Depth-map Up-sampling (VSQ-TDU). The fusion algorithm uses the

credibility of depth map values by examining the disparity range from different view

points that should fall within a certain error, and values of neigbouring views should

be similar. The view synthesis quality algorithm uses the Joint Adaptive Bilateral

Depth map Up-sampling (JABDU) filter from [61] since it is both simple, fast, and

produces the desired results during up-sampling. Their method produces improved

results since it considers both view synthesis and depth map quality in the depth map

SR process whereas most algorithms only consider either or.

Another work combined Multi-View Stereo and Super Resolution in a unified frame-

work [98]. Their work optimized a unified energy function between HR images and

HR depth maps imposing consistency constraints between corresponding HR and LR

images, as well as, employing a regularization constraint for depth map smoothness.

They showed their formulation improves accuracy and eliminates mosaic artifacts

from HR output.

Satellite imagery has been used to create 3D topographic surface maps of the earth,

traditionally using Digital Elevation Model (DEM) generation which uses 2 or 3

images during the reconstruction process. This process can be enhanced by using more
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view points and Super Resolution. Due to the advent of low cost micro-satellites there

is a larger selection of available images from different view points, which permits the

creation of many disparity maps that can be up-sampled, stacked, and transformed to

produce a super resolved depth map [134]. The authors demonstrated their technique,

which used Phase Correlation (PC) based sub-pixel stereo matching, to produce a

super resolved topographic 3D-reconstruction of Usak (Western Turkey) from SkySat

images. This lays the ground work for producing, on a large scale, super resolved

topographic maps.

The authors of [105] applied a custom Super Resolution pipeline to depth map data to

enhance the 3D reconstruction process. Their process used the following steps: Pre-

process (Calculate 3D Volume Bounding Box), Registration (Enhanced Correlation

Coefficient (ECC) Affine), Up-sampling (Nearest Neighbour), Warp (Registration of

Up-sampled - Affine), Reconstruction (Mean filter with removal of invalid depths

indicated by 0). The added pre-processing to calculate the volume bounding box,

secondary registration, and elimination of invalid depth values during mean filter-

ing are what’s different from the traditional SR pipeline. Their work demonstrated

an improved smoothness and reduction of holes in the generated models from Low

Resolution low cost depth sensors on MAE/UFBA (Museum of Archaeology and

Ethnology/Universidade Federal da Bahia) museum artifacts.

The development of learning based approaches for improving depth map resolution

for 3D-reconstruction has been studied. One such work utilized a simple visual dif-

ference based loss function [133]. The loss function method yielded a significant im-
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provement in 3D shapes when used with a simple deep prior or trained Convolutional

Neural Network (CNN) and compared to standard metrics such as Structural Simi-

larity (SSIM). Their method compared rendered images of the model surface which

guided the depth map Super Resolution process. A similar method [68], improved

the depth map resolution using a depth SR network based on gradient saliency which

was further improved and guided by learning surface normals, occlusion boundaries,

and blurriness of images from HR images. Another data driven learning approach

used a Deep Residual Network to progressively up-sample LR depth images guided

by HR intensity images on multiple scales [149]. The depth structure is recovered in a

course to fine progression using multiple scale frequency synthesis which provides fast

convergence and improved performance for both qualitative and quantitative. The

authors of [45], provide a method that adaptively decomposes high frequency com-

ponents from RGB images to guide depth map Super Resolution called Fast Depth

Map Super Resolution (FDSR). Their work exploits contextual information from high

frequency multi-scale structure which guides the depth map SR process.

Enhancing MVS by applying Super Resolution to the input stage.

Increasing the resolution of 3D geometry by enhancing the input stage using a com-

bination of wavelet-bilinear interpolation based Super Resolution has been achieved

in [136]. The authors improve on the stereo spatially enhanced 3D-reconstruction

analog by using 3-views and super resolving each of those views using an adaptive

interpolation between wavelet edge areas and bilinear up-sampling. Their work fo-

cuses on a theoretical basis for the combination of image enhancement and 3D model
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reconstruction.

A similar work, generalizes the previous idea of of solely enhancing the input stage

of Multi-View Stereo to improve 3D reconstruction by using Single Image Super

Resolution (SISR) [77]. Their work improved completeness of 3D-reconstruction and

is very effective for textured and outdoor scenes. They developed their framework

around the Deep Back Projection Networks (DBPN) SISR algorithm which they

directly apply to the LR input images before MVS reconstruction. The results of the

models they obtained were improved in most cases by their methodology and had more

robust and dense representations. Furthermore, they showed a strong correlation

between quality of input images and quality of reconstructed models. However, their

work performs well for large scale outdoor settings and concentrates on using a Deep

Learning based SISR algorithm but has the following limitations:

• Does not perform as well with indoor compared to outdoor.

• Focuses only on large scale scenes and not small scale objects.

• SISR quality is dependent on network training [91] and may not be a true

representation.

• Computationally intense for both training and usage (requires GPU for speed).

• Noise in the input data is propagated to the output.
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3 Method and Hardware of the Vision System

This chapter covers the experimental method and techniques, as well as, the hardware

specifications for the vision system and outlines its major subsystems (see Table 2 for

more details).

3.1 Method

Input Images Bicubic Resize
ECC Reg-

istration

Reconstruct

Median Image

Compute

Camera

Parameters

3D-Geometry

Reconstruction

Texture

Materials

Reconstruction

3D-Model

MFSR

MVS

Figure 16: Proposed MFSR-MVS framework flow chart.

Our goal is to improve the output of the multi-view stereo framework by directly

enhancing the input. We propose a method, Figure 16, that captures images from sub-

pixel camera movements. These images can be recombined, using super resolution,

to create a higher resolution image that contains more information or details than

each image alone. For the super resolution process, we chose a multi-frame algorithm
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because it only reconstructs information from details obtained from the scene, unlike

SISR algorithms which use inferred details from learned priori and can potentially

suffer from artifacts. We use a simple interpolation-based method, also known as a

direct method, for MFSR. First, we bicubically up-scale the LR images and then use

ECC to register the images, followed by a median filter to reconstruct and form the

final super resolved image. Next, at the MVS stage camera parameters are computed

and a sparse model is created. Using the generated parameters and the images, the

sparse model is refined into a dense model, which is then textured to produce the

final 3D-Model.

The proposed framework requires a comparison to a ground truth reference model.

However, the availability of reference models and data sets, that are suitable for

MFSR with MVS, present a difficulty due to the sub-pixel motion requirements. So,

the popular data sets such as Middlebury, KITTI, Stretcha, and BlendedMVS are

not suitable. One solution would be to generate reference models using a high quality

laser scanner, but our research laboratory does not have access to such a device.

So, instead we utilize a method that is similar to the literature for super resolution

[41,72]. This method uses down-sampled HR images that are up-sampled back up to

the original resolution by the super resolution algorithm and compared to the original

HR image as reference. Our process generates models through the MVS pipeline using

the original HR images and up-sampled LR images (generated from down-sampled

HR images) as input for reference and comparison models, respectively. These models

are compared by measuring the average, median, and max distance away from the
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reference model. The model that has the closest metrics to the reference model is

determined to be the best model.

In addition to the HQ and up-sampled models, we also generate a standard model

solely from the LR images which represents a base starting point without enhancement

and provides a reference to what a model would be if the starting point was at the

lower resolution. This gives us a relative comparison for the other methods versus a

standard starting point.
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3.2 3D Vision System: Hardware Outline

Figure 17: 3D Vision System: Image Acquisition System mounted on a linear rail
with precision feedback.

Table 2: Materials: List of Major Hardware Components

System Item

Image Acquisition Raspberry Pi Zero W
Raspberry Pi Camera Module V2

Linear Motion Linear Stage w/ NEMA 17 Stepper
Stepper Controller (TB6560)

Measurement Mastercraft Vernier Digital Caliper

Power 12V 10A Switching Power Supply
5V 2A DC Wall Adapter

Misc. ESP8266 SOC (HUZ/ZAH)
Logic Level Converter
Wireless Router (Netis WF2411)

The vision system is composed of 3 major subsystems:

1. Image Acquisition

2. Linear Motion
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3. Precision Measurment

3.2.1 Image Acquisition

The Image Acquisition system consists of two single board computers (Raspberry Pi

Zero W) each attached with a camera module (RPiV2). The Raspberry Pi systems

are running the standard LINUX Raspbian OS on a BCM2835 processor (ARM11

1GHz single-core) with 512MB RAM supporting wireless communication via WiFi

(802.11n) and Bluetooth (v4.1). The RPiV2 camera modules utilize an 8-MegaPixel

Sony IMX219 CMOS sensor (see Table 3 for more details) and are individually

mounted in enclosures with their corresponding Raspberry Pi Zero W. The enclo-

sures are attached to the Linear Stage by aluminum angle with regular screws and

standoff mounting hardware. No additional effort was made in the alignment of the

camera systems other than getting them close to a side by side parallel orientation

by eye.

Table 3: Raspberry Pi V2 Camera Module with IMX219 CMOS Sensor Specifications.

Description Property

Resolution 8 Megapixels
Sensor res. 3280 x 2464 px

Sensor dims. 3.68mm x 2.76mm
Pixel Size 1.12µm x 1.12µm

Optical Size 1/4”
Focal Length 3.04mm

The Raspberry Pi Zero W was selected because of its adequate computational power,

low-cost, wireless capabilities, and highly functioning Operating System which has
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a large support in the open-source community and a plethora of software and de-

velopment tools, Application Programming Interfaces (APIs), and libraries such as

support for C/C++, Python, and OpenCV.

3.2.2 Linear Motion

The Linear Motion system (FIG. 18) consists of a ball-screw driven stage with a

NEMA 17 stepper motor and has an effective working distance of 120mm with an

accuracy of ±0.01mm.

Figure 18: Linear Stage with NEMA 17 Stepper Motor.

The stepper motor is driven by a TB6560 controller attached to an ESP8266 SOC

(System On Chip). The ESP8266 SOC was selected because of its low-cost and

WiFi capability. It came pre-installed with the Lua interpreter by default which was

replaced by from firmware from the Arduino IDE. The Linear Stage was selected
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because of its low-cost, accuracy and precision, and rigid all metal construction.

3.2.3 Precision Measurement

The Precision Measurement system consists of digital Vernier calipers (Mastercraft)

wired to the same ESP8266 SOC as the TB6560 stepper controller. The jaws of

Mastercraft Vernier calipers are attached to the frame and moving platform of the

Linear Stage such that one jaw moves with the platform and the other is stationary

with the frame of the stage. The Mastercraft Vernier calipers have an accuracy of

±0.01mm and measuring range of 150mm.

Figure 19: Pinout of Vernier Caliper port ascertained from probing.

There is a small undocumented proprietary data port, opposite to the side of the

battery cover, which was carefully probed (See FIG. 19 for pinout) to ascertain it’s

functionality. The Mastercraft caliper uses a synchronous clock driven protocol for
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data communication represented by a 19-bit payload. The 19-bit payload represents

the measured value in 100ths of millimeters and is encoded using one’s complement.

The ESP8266 SOC is connected to the Clock (CLK) and Data lines of the digital

calipers through a level-shifter to capture the measurement data from the caliper’s

undocumented port, since the data logic for the caliper runs at 1.5v and the ESP8266

at 3.3v. Also, the caliper’s power requirement is very small and could be powered

through an Input/Output (IO) pin on the ESP8266 which was attached through a

simple voltage divider. This gives the functionality to turn the calipers on and off,

and consequently gives the ability to reset the caliper to zero.
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4 Experiments

4.1 Test: Obtaining Metrics From an Object

In this experiment, we demonstrate measuring the distance between two points on

an object (teacup) by using the vision system’s ability to move the cameras a precise

distance. It is this unique ability that we harness to compute scene metrics from

corresponding image points of the cameras. To illustrate this we examine Figures

20 and 21, and develop the scenario in the following way: we take a pair of pictures

from the left and right cameras (Stereo Pair) of the vision system then move the

mechanism 89.98mm where another picture pair is taken.

It is important that we differentiate between image sets from the Stereo Pair(STP)

and image sets from the Single Camera Pair(SCP). Images from the Single Camera

Pair are the ones from a single camera at precise positions on the vision system’s

linear stage, that is, the images taken from only either the left or right camera of the

vision system. Images from the Stereo Pair (or Standard Pair) are images taken from

both the left and right cameras of the vision system.

Using SCPs gives us the ability to accurately know the base distance between corre-

sponding images or images at different camera positions of the same scene.

So, for this example both the left and right cameras move 89.98mm. This means

that the base distance between the first left camera image and the second left camera

image is 89.98mm. Similarly, true for the images of the right camera. So, images
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Figure 20: Left Single Camera Pair(SCP) Coordinates for: Top(Left Image) [left
point (2585, 1942) : right point (2811, 1924)], Bottom(Right Image) [left point (1504,
1942) : right point (1716, 1922)]. Here (Left Image) and (Right Image) refer to the
SCP in terms of a stereo pair so the formulas from equation set (13) follow. The SCP
for the Top and Bottom images have a base length of 89.98mm

taken from the left camera make up the Left Single Camera Pair image set. Similarly,

images taken from the right camera make up the Right Single Camera Pair image

set. The image set generated by both the left and right cameras at the same position

make up the Stereo Pair image sets.

By matching corresponding points from an image from the Left Single Camera Pair

set to another, distinct, image of the Left Single Camera Pair set we can reconstruct

the scene in 3-space by using equation set (13). The same can be done for the Right

Single Camera Pair.

So, we can solve for the 3-space points P1 and P2, given base b = 89.98, focal length
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Figure 21: Right Single Camera Pair(SCP) Coordinates for: Top(Left Image) [left
point (1517, 1919) : right point (1729, 1899)], Bottom(Right Image) [left point (425,
1933) : right point (626, 1914)]. Here (Left Image) and (Right Image) refer to the
SCP in terms of a stereo pair so the formulas from equation set (13) follow. The SCP
for the Top and Bottom images have a base length of 89.98mm

f = 3.04mm, with the following points from Figure (20) and listed in Table 4.

Table 4: Left Single Camera Points from Figure 20.

Left point Right point
Left SCP (XL1 , YL1) (XL2 , YL2)

Set #1 (2585, 1942) (2811, 1924)
Set #2 (1504, 1942) (1716, 1922)

We note that the left points, in Table 4, of each set are corresponding(matching) and

calculate P1 and P2 with the results shown in Table 5.

We calculate the distance between P1 and P2 using distance formula (14) to get:
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Figure 22: Physical distance measured with Digital Vernier Calipers at 16.50mm.

Table 5: Reconstruction of Left Single Camera Pair points.

Left SCP #1 Left SCP #2 3D-Coord
Pn (XLn , YLn) (XRn , YRn) (Xn, Yn, Zn)

P1 (2585, 1942) (1504, 1942) (170.18, 161.65, 225.93)
P2 (2811, 1924) (1716, 1922) (186.00, 158.02, 223.04)

Left SCP Dist = ||P1 − P2||

= 16.49mm

Similarly, we do the same for the Right Single Camera Pair of Figure 21 listed in

Table 6.
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Table 6: Right Single Camera Points from Figure 21.

Left point Right point
Right SCP (XR1 , YR1) (XR2 , YR2)

Set #1 (1517, 1919) (1729, 1899)
Set #2 (425, 1933) (626, 1914)

Table 7: Reconstruction of Right Single Camera Pair points.

Right SCP #1 Right SCP #2 3D-Coord
Pn (XLn , YLn) (XRn , YRn) (Xn, Yn, Zn)

P1 (1517, 1919) (425, 1933) (80.01, 158.70, 223.66)
P2 (1729, 1899) (626, 1914) (96.06, 155.53, 221.42)

We calculate the distance for the Right Single Camera Pair between P1 and P2 using

distance formula (14).

Right SCP Dist = ||P1 − P2||

= 16.51mm

Taking the average of the Left and Right SCP distances we get 16.50mm and see that

this value agrees with the physical measurement of 16.50mm as shown in Figure 22.
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4.2 Determine Average Distance Per Step

In this experiment we determine the average distance, measured by the mounted

digital calipers, moved per step of the linear stage. We do the following to accomplish

this (illustrated in Figure 23):

• Move the linear stage to the home position

• Advance the mechanism 160 steps to remove backlash

• Read Caliper Start value

• Move the mechanism 14000 steps

• Read Caliper End value

• Repeat Process 10x.

The result of this experiment shows an average of about ∼ 0.9 × 10−2 mm per step

(as can be seen in Table 8).

Home
+

Remove
Backlash

Read Caliper
Start value

Move across
range

Read Caliper
End value

Figure 23: Determining average distance per step - Flow Chart.
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Start End Net Distance Distance/Step
(10−2 mm) (10−2 mm) (10−2 mm) (10−2 mm)

130 12420 12290 0.87786
132 12422 12290 0.87786
130 12419 12289 0.87779
131 12419 12288 0.87771
129 12418 12289 0.87779
129 12418 12289 0.87779
129 12418 12289 0.87779
129 12418 12289 0.87779
129 12418 12289 0.87779
130 12419 12289 0.87779

Average 0.877796

Table 8: Average distance per step (over 14000 steps).
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4.3 Proof of Sub-Pixel Motion

In this experiment, we demonstrate the vision system’s capability to move and capture

sub-pixel information. This is accomplished by making slight movements (right) of

the cameras mounted on the linear stage and capturing images at each position. For

this experiment, we will be capturing images of a Chessboard pattern and detecting

the positions of the corners.

Figure 24: Images of Chessboard Pattern: L0, L1, L2, and L3, respectively.

After detection of the corners for every image at each position we calculate and com-

pare the centroid values. The values in Table 9 show the results of the operation.

The values of the calculated centroids indicate sub-pixel motion as seen by the de-

creasing x-coordinate value. The x-coordinate value decreases because the motion of

the mechanism is to the right and results in the scene moving left in the captured

images.

Image (x, y) (px)

L0 (2017.422, 1143.328)
L1 (2017.190, 1143.323)
L2 (2017.129, 1143.335)
L3 (2017.074, 1143.320)

Table 9: Proof Sub-pixel Motion.
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4.4 Sub-pixel Motion Per Pixel

This experiment answers the question: How many movements/steps of the linear

stage mechanism can be made per pixel (@∼ 30cm)? Determining this information

will let us know if we can capture an adequate number of frames to support Multi-

Frame Super Resolution from a simple straight motion, since moving and being able to

capture sub-pixel information is a necessary requirement for the process. We perform

this process on a full resolution High Quality (HQ) (8 Mega-pixel) image and on a

down-sampled, using bilinear interpolation, Low Quality (LQ) (2 Mega-pixel) image.

Figure 25: Sub-pixel motion mechanism movements per pixel (HQ).

The scatter plot graph in Figure 25 indicates that for the HQ image about 12 frames

can be captured per pixel. This means we would need an equivalent of approximately

1.5 pixels of mechanism movements to achieve the suggested number of frames for

Multi-Frame Super Resolution (MFSR) (Quality vs Quantity tradeoff) to magnify the
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image by 4x. The graph indicates that there aren’t enough available frames to meet

the suggested number (42 = 16 frames) for simple straight motion of the mechanism

within a pixel. However, if one were to relax the condition of being within 1 pixel

to 2 pixels, there would certainly be enough room to capture frames for MFSR with

the only loss of enhancement being a 1 pixel border around the resulting image.

The other solution would be to relax the condition of simple straight motion and

allow for moving the mechanism backwards and capturing over the same area in

the opposite direction. Due to backlash, it is unlikely the mechanism would land in

exactly the same spots as the first pass and thus would collect unique information.

This introduces the problem of having to check the uniqueness of the reverse pass

and is beyond the scope of this document, so it reserved for future research. For our

current research, we are only concerned with restoring the down-sampled LQ images

to HQ through the use of MFSR. Since, the resolution of the LQ image has dimensions

with both half the height and width of the original HQ image, we expect that the

number of frames within a pixel to be about double that of the HQ image.

Examining Figure 26 confirms our expectation and we see that we get about 25 image

frames per pixel and is well within the suggest number of frames for MFSR.
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Figure 26: Sub-pixel motion mechanism movements per pixel (LQ).

4.5 Super Resolution Comparison Testing (SISR and MFSR)

In this experiment, we compare the up-sampling techniques Bicubic, Single Image

Super Resolution (SISR), and Multi-Frame Super Resolution (MFSR) by applying

them to down-sampled Low Resolution (LR) images to restore them to their original

resolution. The up-sampled images are compared to the original images using the

following metrics: Mean Squared Error (MSE), Peak Signal to Noise Ration (PSNR),

and Structural SIMilarity (SSIM) (See Chapter 2.4.7 for more detail).

For this experiment, we will be using the following SISR algorithms:

• Enhanced Deep Super Resolution (EDSR) [40]

• Deep Back Projection Networks (DBPN) [72]

and for the MFSR Algorithm, we will use the following simple algorithm (illustrated
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in Figure 27):

• Input images are bicubically resized / up-sampled

• Up-sampled images are registered with Enhanced Correlation Coefficient (ECC)

Maximization Image Alignment [23]

• Median image is reconstructed from registered images

Input Images Bicubic Resize
ECC Reg-
istration

Reconstruct
Median Image

Figure 27: Simple Multi-Frame Super Resolution (MFSR) Algorithm - Flow Chart.

The first test will apply the up-sampling algorithms: Bicubic, SISR (EDSR, DBPN),

and the simple MFSR algorithm outlined in Figure 27 to an image of a chessboard

pattern (Figure 28) that has been down-sampled. In the case of MFSR, 25 LR images

were used in the process which were obtained in a similarly fashion to Chapter 4.4.

The goal was to use the up-sampling algorithms to restore the down-sampled image

to the original resolution and determine which algorithm produced the closest output

compared to the original image using the metrics (MSE, PSNR, SSIM).

Examining the results, shown in Figure 29 and Table 10, we see that EDSR out-

performs all of the algorithms in terms of MSE, PSNR, and SSIM, with Bicubic in

a close second place. DBPN comes in-front of MFSR for all metrics except SSIM.

These results were slightly surprising and unexpected. Since, a closer examination of
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Figure 28: Image of Chessboard Pattern used for the comparison process.

the resulting output images of the algorithms revealed an intuitively different result

than shown in the metrics.

Figure 29: SR Comparison #1 Bar Graph (Chessboard).

By subjectively doing a visual comparison of the up-sampled images versus the orig-

inal HQ image. We saw that noise from the original HQ image was propagated

through, in varying amounts, for all of the algorithms with MFSR expressing the
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(px2) (dB) [0, 1]
Method MSE PSNR SSIM

EDSR 7.88 39.17 0.9558
Bicubic 8.35 38.91 0.9541
DBPN 11.32 37.59 0.9432
MFSR 25.85 34.01 0.9504

Table 10: SR Comparison #1 Testing (MSE, PSNR, SSIM) (Chessboard).

least (as shown in Figure 30). This made the results from Figure 29 and Table 10

understandable and coherent with intuitive reasoning.

Figure 30: Noise comparison HQ (left) vs MFSR (right). The HQ image appears
grainier than the MFSR image.

The noise reduction when combining multiple images, as outlined in Chapter 2.4.6,

accounts for the MFSR image appearing less grainy than the HQ image. So, the

MFSR image has less noise than the HQ image (ground truth) which gives the reason

for the MFSR results. To reduce the noise in the HQ image we can take the 25

HQ images used to make the LQ image set for MFSR and combine (stack) them to

produce a HQ image (stacked) with less noise.
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For this process, we use the following stacking algorithm (illustrated in Figure 31):

• Take HQ Input Images and Perform ECC Alignment / Registration

• Use Aligned / Registered Images to Reconstruct an Average Image

Input Images
ECC Reg-
istration

Reconstruct
Average Image

Figure 31: Noise Removing Stacking Algorithm - Flow Chart.

The 25 HQ images used to make the LQ image set for the MFSR process were used to

produce a stacked HQ image, which has a noise reduction of approximately 80% less

than the original HQ image, as calculated from Equation (28) or taken from Table 1.

The stacked HQ image was then down-sampled to produce a stacked LQ image, which

was then used with the up-sampling algorithms: Bicubic, SISR (EDSR, DBPN) to

restore the down-sampled image to the original resolution. These images along with

the MFSR image were then used in the same way as the first comparison test to

determine which algorithm produced the closest output compared to the original

image using the metrics (MSE, PSNR, SSIM).

The results, shown in Figure 32 and Table 11, indicate that the MFSR algorithm is

the top performer in terms of MSE, PSNR, and SSIM, with EDSR in second followed

by Bicubic and then DBPN. All non-MFSR algorithms showed improved metric scores

from the reduction of input noise and comparison with the stacked (noise reduced)

HQ image.
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Figure 32: SR Comparison #2 Bar Graph (Chessboard w/o Noise).

(px2) (dB) [0, 1]
Method MSE PSNR SSIM

EDSR 7.93 39.14 0.9824
Bicubic 8.13 39.03 0.9811
DBPN 9.95 38.15 0.9779
MFSR 6.18 40.22 0.9851

Table 11: SR Comparison #2 Testing (MSE, PSNR, SSIM) (Chessboard w/o Noise).

The stacked comparison process was then repeated again with an image of a feature

rich rock (shown in Figure 33). Similar results were obtained, as indicated in Figure

34 and Table 12, showing the MFSR dominating the MSE, PSNR, and SSIM scores,

followed by EDSR, Bicubic, and DBPN.

(px2) (dB) [0, 1]
Method MSE PSNR SSIM

EDSR 4.47 41.63 0.9784
Bicubic 4.61 41.49 0.9779
DBPN 5.50 40.73 0.9734
MFSR 3.00 43.36 0.9815

Table 12: SR Comparison #3 Testing (MSE, PSNR, SSIM) (Rock).
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Figure 33: Image of Rock used for the comparison process.

Figure 34: SR Comparison #3 Bar Graph (Rock).
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4.6 3D-Model Comparisons

In this section, we develop reference and comparison models using multi-view stereo

and the proposed architecture which enhances the input stage. In particular, we show

that multi-view stereo when combined with multi-frame super resolution produces

a more accurate 3D-reconstruction. The overall experimental results show that the

generated models, using our technique, have point clouds with average mean, median,

and max distances of 4.3%, 8.8%, and 6% closer to the reference model, respectively.

This indicates an improvement in 3D-reconstruction using our technique. The use of

multi-frame super resolution in conjunction with the multi-view stereo framework is a

practical solution for enhancing the quality of 3D-reconstruction and shows promising

results over single image up-sampling techniques.

4.6.1 Method (Model Comparison)

Our goal is to improve the output of the multi-view stereo framework by directly

enhancing the input. We propose a method that captures images from sub-pixel

camera movements. These images can be recombined, using super resolution, to

create a higher resolution image that contains more information or details than each

image alone. For the super resolution process, we chose a multi-frame algorithm

because it only reconstructs information from details obtained from the scene, unlike

SISR algorithms which use inferred details from learned priori and can potentially

suffer from artifacts. We use a simple interpolation-based method, also known as a
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direct method, for MFSR. First, we bicubically up-scale the LR images and then use

ECC to register the images, followed by a median filter to reconstruct and form the

final super resolved image.

The proposed framework requires a comparison to a ground truth reference model.

However, the availability of reference models and data sets, that are suitable for

MFSR with MVS, present a difficulty due to the sub-pixel motion requirements. So,

the popular data sets such as Middlebury, KITTI, Stretcha, and BlendedMVS are

not suitable. One solution would be to generate reference models using a high quality

laser scanner, but our research laboratory does not have access to such a device.

So, instead we utilize a method that is similar to the literature for super resolution

[41,72]. This method uses down-sampled HR images that are up-sampled back up to

the original resolution by the super resolution algorithm and compared to the original

HR image as reference. Our process generates models through the MVS pipeline using

the original HR images and up-sampled LR images (generated from down-sampled

HR images) as input for reference and comparison models, respectively. These models

are compared by measuring the average, median, and max distance away from the

reference model. The model that has the closest metrics to the reference model is

determined to be the best model.

In addition to the HQ and up-sampled models, we also generate a standard model

solely from the LR images which represents a base starting point without enhancement

and provides a reference to what a model would be if the starting point was at the
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lower resolution. This gives us a relative comparison for the other methods versus a

standard starting point.

(a) Photo of Rock (b) 3D-Model of Rock

(c) Photo of Bird (d) 3D-Model of Bird

(e) Photo of Gargoyle (f) 3D-Model of Gargoyle

Figure 35: Images and Models (Rock, Bird, Gargoyle).

In our experiment, we captured image data and developed 3D-model reconstructions

of a rock, bird, and gargoyle [Figure 35]. The image capture process used a turntable,

that rotated in 18 degree increments, with the object placed roughly in the cen-

ter for a full 360 degree capture. For each rotational increment, the vision system
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captured images from each camera at full resolution (3280 x 2464). This included

25 high resolution images (per camera) that contained sub-pixel motion from the

step-movements of the linear stage. So, the total number of images captured was

1000 = (20 incremental rotations)(25 sub-pixel frames)(2 cameras). We will refer

to these full resolution images as high quality (HQ) images and the down-sampled

versions of these images as low quality (LQ) images.

Next, we created HQ and standard reference models, [Figure 35(b,d,f)], by using the

HQ and LQ images as input through the MVS framework [as illustrated in Figure

36(blue)], respectively. This step only utilized the first image of each rotational

increment and did not use the images captured from successive movements of the

linear stage.

Similarly, we created comparison models using up-sampled LQ images [Figure 36(red)].

The LQ images were up-sampled to the same resolution as the original HQ images

using: bicubic, SISR (enhanced deep super resolution (EDSR), DBPN), and MFSR

algorithms. For the up-sampling algorithms that used a single image, we took the

first image of each rotational increment, like we did for the HQ reference model,

and ignored the images captured during the step-movements of the linear stage. For

the MFSR algorithm, we used the first image of each rotational increment as the

primary image in the registration process for the rest of the images captured dur-

ing the step-movements of the linear stage. After the registration process the images

were combined to produced a SR image which was used as input to the MVS pipeline.

(Each incremental rotation produced one super-resolved image for a total of 20 MFSR
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LQ Images
Up-Sample

(Bicubic or SR)
MVS 3D-Model

HQ or LQ
Images

Up-Sampled Model

Standard or HQ Model

Multi-View Stereo

Figure 36: Up-sampled / high quality / standard - multi-view stereo framework - flow
chart.

images per camera per full revolution.)

In total, 40 images were used during the input stage of MVS framework for the devel-

opment of each model (HQ, bicubic, SISR, and MFSR). The models were evaluated

and compared using the open source software CloudCompare (v2.11.3) [35]. This was

accomplished by comparing the point clouds of the comparison models to the refer-

ence models using the metrics: average, median, max. The model that had metrics

closest to the HQ reference model indicated the better 3D-reconstruction.
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4.6.2 Results (Model Comparison)

The comparison results of the point clouds to reference models have been represented

in [Figures 37, 38, 39] for the rock, bird, and gargoyle models. These figures are

colour coded and visually represent the difference relationship between the comparison

models and reference models, such that green represents the zero distance (within

3.0× 10−4 pixels (px) of the reference model), yellow represents above zero, and blue

represents below zero. Having more green indicates that the comparison model is

closer to the reference model, which means more points are at a zero distance.

The numerical results for the rock model, [Figure 40] and [Table 13], show that the

MFSR model is closest to the reference model. Our technique generates a model

that outperforms all of the comparison models with mean and max distances that

are at least 2.0% and 11.6% closer to the reference model, respectively. The DBPN

model has an equivalent median but performs worse in all other categories. However,

DPBN is closely matched to the EDSR model but is slightly ahead due to the better

median and max values. The bicubic model has the worst performance but has the

second best max value that is only 11.6% farther from the reference model compared

to MFSR.

The numerical results for the bird model, [Figure 41] and [Table 14], indicate that the

MFSR model performs better than the comparison models and has mean and median

distances that are at least 0.5% and 11.6% closer to the reference model, respectively.

The bicubic model has a smaller (better) max distance from the reference model, at

80



(a) Standard (b) Bicubic

(c) EDSR (d) DBPN

(e) MFSR

Figure 37: Visual cloud compare (Rock).

Mean St.dev. Median Max
Model (10−2 mm) (10−1 mm) (10−2 mm) (mm)

Standard 9.952(310%) 1.433 6.858(347%) 3.224(37.8%)
Bicubic 2.525(4.1%) 0.436 1.659(8.1%) 2.610(11.6%)
EDSR 2.476(2.0%) 0.453 1.609(4.8%) 3.573(52.7%)
DBPN 2.500(3.1%) 0.493 1.535(0.0%) 3.063(30.9%)
MFSR 2.426 0.456 1.535 2.340

Table 13: Cloud compare (Rock): Standard, Bicubic, EDSR, DBPN, and MFSR.
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(a) Standard (b) Bicubic

(c) EDSR (d) DBPN

(e) MFSR

Figure 38: Visual cloud compare (Bird).
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(a) Standard (b) Bicubic

(c) EDSR (d) DBPN

(e) MFSR

Figure 39: Visual cloud compare (Gargoyle).
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Figure 40: Cloud compare bar graph (Rock): Bicubic, EDSR, DBPN, and MFSR.

31.4% closer, but performs considerably worse in terms of mean and median at 22.6%

and 38.8% farther from the reference model, respectively. The mean and median

distances make the bicubic performance worse than both the second and third placed

DBPN and EDSR, respectively, despite having a better max distance.

Figure 41: Cloud compare bar graph (Bird): Bicubic, EDSR, DBPN, and MFSR.

Mean St.dev. Median Max
Model (10−1 mm) (10−1 mm) (10−1 mm) (mm)

Standard 1.966(299%) 2.117 1.483(395%) 4.660(157%)
Bicubic 0.604(22.6%) 0.663 0.416(38.8%) 1.245(-31.4%)
EDSR 0.510(3.5%) 0.659 0.359(19.8%) 2.108(16.1%)
DBPN 0.495(0.5%) 0.711 0.334(11.6%) 2.096(15.5%)
MFSR 0.493 0.753 0.300 1.815

Table 14: Cloud compare (Bird): Standard, Bicubic, EDSR, DBPN, and MFSR.

The numerical results for the gargoyle model, [Figure 42] and [Table 15], show that all

models, excluding standard, performed relatively equivalent having mean and median
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values within 0.001mm (at most 2.6%) of each other. For this model, bicubic had

slightly better metrics and was followed by DBPN, EDSR, and MFSR. These results

are in contrast to the previous rock and bird comparisons, where bicubic had the

worse performance. This can be attributed to the dark and low contrast surfaces

of the gargoyle, which camouflage and make details less evident. With less evident

surface details the enhancement ability of SR algorithms are reduced. Thus, can

cause problems with correspondence matching and can reduce the quality of 3D-

reconstruction. This supports the reason why the models had relatively equivalent

performance.

Figure 42: Cloud compare bar graph (Gargoyle): Bicubic, EDSR, DBPN, and MFSR.

Mean St.dev. Median Max
Model (10−1 mm) (10−1 mm) (10−1 mm) (mm)

Standard 2.028(425%) 2.716 1.263(405%) 4.547(41%)
Bicubic 0.386(0.0%) 0.772 0.243(-3.0%) 2.618(-18.9%)
EDSR 0.396(2.6%) 0.745 0.253(1.0%) 2.841(-11.9%)
DBPN 0.389(0.6%) 0.706 0.245(-2.0%) 2.877(-10.8%)
MFSR 0.386 0.659 0.250 3.226

Table 15: Cloud compare (Gargoyle): Standard, Bicubic, EDSR, DBPN, and MFSR.

Summarizing the experimental results, we see that all up-sampling methods (bicubic,

EDSR, DBPN, MFSR) improve MVS 3D-reconstruction, [Table 16]. Of particular

interest, we see that the average percentage mean, median and max distances for the
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Model Mean Median Max

Standard 344.7% 382.3% 8.5%
Bicubic 8.9% 14.6% -12.9%
EDSR 2.7% 8.6% 19.0%
DBPN 1.4% 3.2% 11.9%

Overall Avg. 4.3% 8.8% 6.0%

Table 16: Summary of average percentage distance to reference models relative to
MFSR models: Standard, Mean, Median, and Max.

MFSR models are 344.7%, 382.3%, and 8.5% closer to the reference models than the

standard models, respectively. MFSR performs better than bicubic in terms of mean

and median with values of 8.9% and 14.6%, respectively. However, bicubic has an

average maximum of 12.9% closer to the reference than MFSR, but the maximum

values are outliers and do not represent the bulk of the data which is represented

by the higher mean and median values. Our technique also outperforms the SISR

methods having an average mean, median, and max distance that is at least 1.4%,

3.2%, and 11.9% closer to the reference models, respectively.

Combining the experimental results, we see that there is an improvement in 3D-

reconstruction using our technique over the other up-sampling methods with an over-

all average mean, median, and max distances that are 4.3%, 8.8%, and 6% closer to

the reference models, respectively.
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4.7 Up-Sampling and 3D-Reconstruction Time Comparison

In this subsection, we examine and compare the average up-sampling and 3D-reconstruction

times for the various methods (bicubic, EDSR, DBPN, MFSR) [Table 17]. These re-

sults are based on the average times for image up-sampling and 3D-reconstruction of

the three models (Rock, Bird, and Gargoyle). All times are generated using a CPU

(Intel Core i7).

The direct use of the LR images in the standard model performed the best total time,

at 6.23 mins, but it generated less accurate models (farthest from the reference). We

observe that the 3D-reconstruction times for the other methods are about 4 times

longer in comparison to the standard model. This can be attributed to the up-

sampled images having length and width dimensions that are twice the size, thus

having 4 times the resolution.

Up-Sampling Reconstruction
Model (mins) (mins/img) (mins)

Standard 0.00 0.00 6.23
Bicubic 0.39 0.01 25.53
EDSR 357.80 8.94 27.33
DBPN 292.79 7.32 26.93
MFSR 21.51 0.54 25.41

Table 17: Up-sampling and 3D-reconstruction time comparisons (for sets of 40 im-
ages).

The results indicate that MFSR produces the best quality model, at an average time

of 46.92 mins, which outperforms the other methods and is at least 6.8x faster than

the SISR methods. The bicubic results are faster, at 25.92 mins, but produces a less
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accurate model.

Overall, it can be seen that up-sampling the input images results in a more accurate

3D-reconstruction with MFSR yielding the best trade-off between model quality and

reconstruction time.
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5 Conclusions and Future Work

In this dissertation, we explored the idea of using multi-frame super resolution to

improve 3D-reconstruction at the input stage of the multi-view stereo framework.

We showed comparisons to bicubic and SISR (DBPN and EDSR) up-sampling as

inputs to MVS for 3D-model generation versus the MFSR generated equivalent.

The overall experimental results show that the generated models, using our technique,

have point clouds with average mean, median, and max distances of 4.3%, 8.8%, and

6% closer to the reference model when compared to the single image up-sampling

analogs, respectively. This indicates an improvement in 3D-reconstruction using our

technique. In addition, our technique has a significant speed advantage over the

SISR analogs being at least 6.8x faster. We addressed the limitations of prior work

by focusing on indoor small scale objects and using an MFSR based algorithm for

super resolution, which only uses data from scene images, does not require training,

and has built-in noise reduction. However, our technique is limited when applied to

dark and low-contrast surfaces. These surfaces cause problems with correspondence

matching and reduces the quality of reconstruction. This problem is not limited to

our technique but in general is a common problem for all image based reconstruction.

Under these conditions, we show that our technique performs equivalently to the

other methods.

The use of MFSR in conjunction with the MVS pipeline is a practical solution for

enhancing the quality of 3D-reconstruction by increasing the spatial resolution of the
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input stage. It shows promising results over simple up-sampling and SISR analogs.

Further improvements of this technique may be possible using different registration

techniques, back propagation, or different reconstruction filters with the MFSR algo-

rithm. In addition, expanding the acquisition process of the MFSR-MVS framework

using burst photography from devices such as mobile phones and drones offer in-

teresting possibilities for capturing high quality 3D-models with convenience. The

possibility of capturing beautiful nature scenes or bird’s eye view reconstruction are

examples of practical applications.

Summary of Contributions:

• Constructed vision system with image acquisition mounted on a linear rail with

precision feedback

• Up-sampling alone improves 3D-reconstruction with MFSR showing the most

improvement

• Overall experimental results with mean (4.3%), median (8.8%), and max (6%)

closer to the reference models averaged over all models

• At least mean (1.4%), median (3.2%), and max (11.9%) closer to the reference

models than state of the art SISR analogs

• At least 6.8x faster combined up-sampling and 3D-reconstruction times than

state of the art SISR analogs
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