Spark-based cluster implementation of a bug report assignment recommender system

AC Florea, J Anvik, R Andonie - … ICAISC 2017, Zakopane, Poland, June 11 …, 2017 - Springer
Artificial Intelligence and Soft Computing: 16th International Conference …, 2017Springer
The use of recommenders for bug report triage decisions is especially important in the
context of large software development projects, where both the frequency of reported
problems and a large number of active developers can pose problems in selecting the most
appropriate developer to work on a certain issue. From a machine learning perspective, the
triage problem of bug report assignment in software projects may be regarded as a
classification problem which can be solved by a recommender system. We describe a highly …
Abstract
The use of recommenders for bug report triage decisions is especially important in the context of large software development projects, where both the frequency of reported problems and a large number of active developers can pose problems in selecting the most appropriate developer to work on a certain issue. From a machine learning perspective, the triage problem of bug report assignment in software projects may be regarded as a classification problem which can be solved by a recommender system. We describe a highly scalable SVM-based bug report assignment recommender that is able to run on massive datasets. Unlike previous desktop-based implementations of bug report triage assignment recommenders, our recommender is implemented on a cloud platform. The system uses a novel sequence of machine learning processing steps and compares favorably with other SVM-based bug report assignment recommender systems with respect to prediction performance. We validate our approach on real-world datasets from the Netbeans, Eclipse and Mozilla projects.
Springer
Showing the best result for this search. See all results