Skin-in-the-game: Decision making via multi-stakeholder alignment in llms

B Sel, P Shanmugasundaram, M Kachuee… - arXiv preprint arXiv …, 2024 - arxiv.org
arXiv preprint arXiv:2405.12933, 2024arxiv.org
Large Language Models (LLMs) have shown remarkable capabilities in tasks such as
summarization, arithmetic reasoning, and question answering. However, they encounter
significant challenges in the domain of moral reasoning and ethical decision-making,
especially in complex scenarios with multiple stakeholders. This paper introduces the Skin-
in-the-Game (SKIG) framework, aimed at enhancing moral reasoning in LLMs by exploring
decisions' consequences from multiple stakeholder perspectives. Central to SKIG's …
Large Language Models (LLMs) have shown remarkable capabilities in tasks such as summarization, arithmetic reasoning, and question answering. However, they encounter significant challenges in the domain of moral reasoning and ethical decision-making, especially in complex scenarios with multiple stakeholders. This paper introduces the Skin-in-the-Game (SKIG) framework, aimed at enhancing moral reasoning in LLMs by exploring decisions' consequences from multiple stakeholder perspectives. Central to SKIG's mechanism is simulating accountability for actions, which, alongside empathy exercises and risk assessment, is pivotal to its effectiveness. We validate SKIG's performance across various moral reasoning benchmarks with proprietary and opensource LLMs, and investigate its crucial components through extensive ablation analyses.
arxiv.org
Showing the best result for this search. See all results