Critical Power Slope: Understanding the Runtime Effects
of Frequency Scaling

Akihiko Miyoshif

tReal-Time and Multimedia Systems Lab

Charles Lefurgy*
Ram Rajamony*

Eric Van Hensbergen?
Raj Rajkumart

tAustin Research Laboratory

Dept. of Electrical and Computer Engineering IBM

Carnegie Mellon University

ABSTRACT

Energy efficiency is becoming an increasingly important fea-
ture for both mobile and high-performance server systems.
Most processors designed today include power management
features that provide processor operating points which can
be used in power management algorithms. However, existing
power management algorithms implicitly assume that lower
performance points are more energy efficient than higher
performance points. Our empirical observations indicate
that for many systems, this assumption is not valid.

We introduce a new concept called critical power slope
to explain and capture the power-performance characteris-
tics of systems with power management features. We eval-
uate three systems - a clock throttled Pentium laptop, a
frequency scaled PowerPC platform, and a voltage scaled
system to demonstrate the benefits of our approach. Our
evaluation is based on empirical measurements of the first
two systems, and publicly available data for the third. Using
critical power slope, we explain why on the Pentium-based
system, it is energy efficient to run only at the highest fre-
quency, while on the PowerPC-based system, it is energy ef-
ficient to run at the lowest frequency point. We confirm our
results by measuring the behavior of a web serving bench-
mark. Furthermore, we extend the critical power slope con-
cept to understand the benefits of voltage scaling when com-
bined with frequency scaling. We show that in some cases, it
may be energy efficient not to reduce voltage below a certain
point.

Categories and Subject Descriptors

C.5.0 [Computer System Implementation]: General;
C.4 [Performance of Systems]:

General Terms

Measurement, Performance, Design

Permissionto malke digital or hard copiesof all or part of this work for
personalor classroomuseis grantedwithout fee provided that copiesare
not madeor distributedfor profit or commercialadvantageandthatcopies
bearthis noticeandthefull citationonthefirst page.To copy otherwiseto
republisho poston senersor to redistrituteto lists, requiresprior specific
permissiorand/orafee.

ICS 02, June22-26,2002,New York, New York, USA.

Copyright 2002ACM 1-58113-483-5/02/0006.$5.00.

Keywords

Energy aware computing

1. INTRODUCTION

Energy efficiency is becoming an increasingly important
feature for both mobile systems [12] and server systems|2, 4].
Most processors designed today include power management
features, such as frequency scaling [5] or dynamic frequency
and voltage scaling [20]. These features provide a choice
of processor operating points, which can be used in power
management algorithms.

This paper presents a novel technique for determining the
operating points of a processor that should not be consid-
ered by a power management algorithm. Specifically, the
operating points identified by our technique will always lead
to reduced energy efficiency. Knowing the domain of en-
ergy efficient operating points is important because exist-
ing power management algorithms [20, 9, 13, 18] implicitly
assume that lower performance points are more energy ef-
ficient than higher performance points. As we show later,
this assumption does not always hold, and there exist lower
performance operating points that are not energy efficient.

Figures 1 and 2 illustrate the key concept of an energy-
efficient operating point. Both figures depict the operation
of a system when it executes the same load within the same
period of time t at different operating points. In Figure 1,
the system operates at a low performance-power mode for
the entire duration and consumes energy FEgctive—iow- In
Figure 2, the system operates at a high performance-power
mode and completes the job in a shorter amount of time.
During the time that the processor is executing the work-
load, the system consumes energy Fqctive—high- After com-
pleting the job, the system goes into an idle state, where
it consumes energy E;qie—nigrh. The total energy consumed
in this case is Eactive—high + Fidie—high. For this system,
the energy efficient operation point depends on the relative
values of Eqctive—iow and Eactive—hi_qh + Eidle—h,igh,-

One can look at this load as individual tasks in the con-
text of real-time systems where ¢ represents a period. In
server systems, ¢ corresponds to the time to respond to a
request within the server. Customer Service Level Agree-
ments or QoS requirements place a practical upper bound
on t. Therefore it is appropriate to think of ¢ as a soft-
deadline in server systems as well[6, 13]. Since most power
management techniques exploit the fact that the load im-

Watts

time

Figure 1: System at low performance point
Watts

E idie-high

time

Figure 2: System at high performance point

posed on the system is low enough to run at a lower perfor-
mance state without sacrificing the overall throughput, we
make this assumption also.

Given a system with a set of operating points, the crit-
ical power slope can be used to ascertain which operating
points must not be considered by a power management al-
gorithm. Hence, our technique complements existing power
management techniques, and can be used to determine an
optimal frequency for a device with a fixed frequency mi-
croprocessor which is not able to scale the frequency and
voltage dynamically.

Frequency scaling, clock throttling, and dynamic voltage
scaling! are three processor power management techniques
available on existing processors [7, 1, 10]. We evaluate three
systems using the critical power slope methodology to de-
termine the range of operating points that power manage-
ment algorithms should consider. The first system is a Dell
Inspiron 8000 laptop with a Pentium III processor whose
performance could be clock throttled from 104 MHz to 850
MHz. The second system we consider is a single board com-
puter with a PowerPC 405GP microprocessor that could be
frequency scaled between 66 MHz and 266 MHz. The third
system uses a dynamic voltage scaled StrongARM SA-1100
processor whose voltage and frequency can be varied from
59MHz/0.79V to 251MHz/1.65V. For the first two systems,
we directly measured the base data necessary for calculating
the critical power slope. We use data published elsewhere to
determine the critical power slope for the third system. Our
findings are counter—intuitive. On the Dell system, we found
that the highest frequency point will always be the most en-
ergy efficient operating point. On the PowerPC system, we
find that the lowest frequency point will be most energy ef-
ficient, presenting power management algorithms with the
ability to trade off execution time for reduced energy usage.

'In this paper, we refer to the combination of voltage scaling
and frequency scaling as voltage scaling and pure frequency
scaling without modification to voltage, as frequency scaling.

On the DVS system, the published data leads us to conclude
that operating the system in a voltage—scaled mode below
74 MHz will not be energy efficient from a system point of
view.

Our findings are important because existing algorithms
build upon processor power management techniques by im-
plicitly assuming that operating at a lower performance point
saves energy. Our findings show that this assumption is not
always true. Furthermore, we present a technique that en-
ables the inefficient operating points to be identified, en-
abling power management algorithms to correctly function
by trading off performance for increased energy savings.

The rest of this paper is organized as follows. In section
3, we provide performance, power, and energy characteris-
tics of a Pentium-based Linux system. We provide similar
evaluation results for a PowerPC-based Linux system in sec-
tion 4. Then in section 5, we provide a generalization of the
two systems and introduce a concept we call critical power
slope. Section 6 deals with performance and energy tradeoff
issues in the context of voltage scaling systems. In section
7, we confirm our findings on a realistic workload. Finally,
we discuss related work in section 8 and then conclude in
section 9.

2. POWER MANAGEMENT
2.1 Frequency Scaling

Frequency scaling is a technique where the processor clock
is reduced by some multiple of the maximum, permitting
the processor to consume less power at the expense of re-
duced performance. Frequency scaled processors can have
anywhere from two operating points to several operating
points.

2.2 Clock Throttling

The Advanced Configuration and Power Interface speci-
fication(ACPI) [1] enables the use of clock throttling to dy-
namically modify the performance of an active processor. In
contrast with frequency scaling where the frequency of the
processor clock is actually modified, clock throttling keeps
the clock running at the original frequency. However, the
clock signal is gated or disabled for some number of cycles
at regular intervals. This slows down the CPU since it re-
ceives fewer clock signals per unit of time.

2.3 Dynamic Voltage Scaling (DVS)

Dynamic voltage scaling (DVS) reduces the power con-
sumed by a processor by lowering its operating voltage. A
reduction in operating voltage generally also requires a pro-
portional reduction in frequency [16, 17]. Voltage scaling is
advantageous because the energy consumed by a processor
is directly proportional to V2, where V is the operating volt-
age. By varying the voltage along with the frequency, it is
possible to obtain a quadratic reduction in power consump-
tion. Transmeta’s Crusoe processor[7] and Intel’s Pentiums
with SpeedStep[10] are examples of processors with DVS.

3. LINUX ON PENTIUM

As an example of a high performance system, we choose a
laptop (Dell Inspiron 8000) with 850MHz Pentium III pro-
cessor with 512MB of RAM running Linux-2.4.6-pre6. We
used the clock throttling capabilities provided by ACPI to

state | clock unhalted (MHz) | slowdown
100.0 % 848.00 1.00
875 % 727.65 1.17
75.0 % 623.61 1.36
62.5 % 519.33 1.63
50.0 % 415.33 2.04
37.5 % 311.24 2.72
25.0 % 207.13 4.09
12.5 % 103.56 8.19

Table 1: Performance change due to clock throttling

change the processor performance states. On our Dell lap-
top, the processor runs at 8 different performance states.
The eight states operate the processor at 100%, 87.5%, 75%,
62.5%, 50%, 37.5%, 25%, and 12.5% 2 of the maximum per-
formance. When the system is idle, the CPU will go into
sleep state and does not execute instructions.

3.1 Effectsof Clock Throttling using ACPI

First, we evaluated the actual effect on the processor when
throttling the clock. We observed the CPU slowdown by
recording the wunhalted cycles event on the Pentium per-
formance counters. This returns the number of unhalted
(ungated) cycles observed by the processor. As mentioned
earlier, we are able to measure the actual clock cycles (origi-
nal clock frequency) using the Pentium time stamp counter.
By comparing the original clock frequency against the num-
ber of unhalted cycles, we get accurate information of the
slowdown/speedup of the processor.

At 100% performance state, the clock is running at 848
MHz. When the performance state is set to 87.5%, the clock
is unhalted 727.65 million times a second. This suggests that
the processor slowed down by 1.17 times. The complete
results for each performance state are shown in Table 1.

3.2 Pentium MicroBenchmark: Performance

To compare the actual performance with the clock slow-
down observed in the previous section, we ran several bench-
marks and measured the running times at different perfor-
mance states. The micro benchmarks we used are:

e Access to register: Continuously copies the contents of
a register to another register.

e L1 cache (read): Continuously reads bytes from a 1KB
data structure that fits in the L1 cache.

o L1 cache (write): Continuously writes bytes into a 1KB
data structure that fits in the L1 cache.

e Access to memory (read): Continuously reads bytes
from a 32 MB memory region in a way so that each
read causes a D-cache miss.

e Access to memory (write): Continuously writes a byte
into a 32 MB memory region in a way so that each
write causes a D-cache miss.

e Disk read: Continuously reads the contents of a new
and different 1KB size file from disk.

In our figures, we often denote the performance state with
a integer number due to space limitations. (eg. 87.5 % is
denoted as 87%)

T T
Clock slowdown —+—
Access to register ---x--- |
L1 cache (read) ---*---
L1 cache (write) ~-&- |]
Access to memory (read) --m--
7 LY Access to memory (write) ---o---
"\ Disk read ----e---
6

Time normalized to 100% performance state
(4]
T

12 25 37 50 62 75 87 100
CPU performance state (% of max)

Figure 3: Micro benchmark performance (Pentium)

The results are shown in Figure 3. The CPU performance
state is listed on the X axis, and the normalized slowdown
of the benchmarks relative to the 100% performance state
is shown on the Y axis. Clock slow down shows the ideal
slowdown of the processor suggested by the measured clock
frequencies reported in Table 1 (which is clockspeed/clock
unhalted). We expected the benchmarks access to register,
L1 cache read, and L1 cache write, to perform close to the
ideal slowdown since they do not access memory. However,
they are consistently above the ideal slowdown indicated by
clock slowdown. For example at 12.5% performance state,
all three benchmarks show a slowdown of 9.17 where as the
clock slowdown is only 8.19. We expected a slow down of
8.19 for these benchmarks. Although we are not able to
explain the cause of this phenomenon, we believe this is
due to some architectural restriction on how the Pentium is
implemented. (For example, an overhead incurred by phase
lock loop). But aside from that, all three CPU intensive
benchmarks show equal slowdown.

For access to memory (read), we start to see the mismatch
between processor speed and memory speed showing an ef-
fect. At 12.5% performance state, the benchmark slowdown
is slightly lower than 9.17. By lowering the performance of
the processor, the relative memory speed increases. The pro-
cessor wastes less cycles waiting for memory. Hence, one can
say that the resources are utilized in a more efficient manner
when the processor is running at a lower performance state.
For access to memory (write) benchmark, we see a signifi-
cant benefit compared to the ideal slow down. This is due
to the asynchronous nature of writes using the write buffer.
The processor need not stall waiting for the write buffer to
empty. In the case of memory reads, the interaction between
the memory and the processor is more synchronous. Hence,
the performance benefits are not as large.

For the disk read benchmark, this trend becomes stronger.
Even when the processor is throttled down to 12.5 % perfor-
mance, the program slows down by less than 2 times. This
indicates that the processor was underutilized when it was at
a higher performance state, and there were opportunities to
lower the processor speed without sacrificing user perceived
performance. We expect the granularity of clock throttling
to have an effect on how efficiently the memory or the disk
is utilized. For example, if the clock is gated for 1K cycles
every 8K cycles rather than every 1 cycle every 8 cycles,

CPU performance state | C1 (Watts) | C2 (Watts)
100.0 % 12.03 12.05
87.5 % 12.10 12.02
75.0 % 12.06 11.99
62.5 % 12.04 11.94
50.0 % 12.02 11.93
375 % 12.01 11.90
25.0 % 12.00 11.89
125 % 11.99 11.97

Table 2: Power usage in idle mode (Pentium)

the effect of clock throttling on performance should not be
as strong. Another conclusion one can draw from these re-
sults is that for CPU intensive benchmarks, the runtime of
the benchmark and the frequency of the processor has an
approximate inverse relationship.

3.3 Pentium: Power M easurements

We determined the energy consumed by the system by
measuring the drawn voltage and current. While we could
directly measure voltages, we used a sense resistor in se-
ries with each system to measure the current. Signals from
the sense resistors were filtered with a 10kHz low pass fil-
ter, gained to be within £10V using custom circuitry, and
then passed to a PCI-6071E A-to-D board from National
Instruments. Each channel was sampled at 1,000 times per
second, and custom software was written to gather and pro-
cess the data. We estimate the accuracy of our facility to
be within +-2 %, with sense resistor accuracy and amplifier
voltage offset being the dominant source of errors. For our
Pentium-based laptop, we were only able to measure the to-
tal system power consumption. That is, wall power drawn
by the laptop as a whole. In the numbers we report, power
used by components such as CPU, memory, network, and
disks are all included. The LCD was turned off.

Table 2 shows the system power consumption while the
operating system is in idle mode. The Linux scheduler puts
the processor into C1 or C2 sleep state defined by ACPI and
waits until there is useful work to do. The idle system uses
around 12 Watts in either sleep states. Idle power consumed
in each performance state decreases as the performance is
lowered but not significantly. Therefore, we can consider the
idle state power to be a constant.

Next, we ran a simple benchmark (continuously incre-
menting a register) that exercises the CPU and changed the
performance state dynamically from 100% to 12.5% while
the program is running. Figure 4 shows power at the Y
axis and the performance state at the X axis. We lowered
the CPU performance state every 5 seconds, starting from
100%. Each second, 200 samples of the power used by the
system is recorded. When the CPU is running at maximum
performance, the system uses approximately 30 Watts. As
the performance state is lowered, power decreases. At the
lowest performance state (12.5%), the system uses around
16 Watts on average.

From these results, we see that clock throttling has the ef-
fect of bounding peak power consumption as well as average
power consumption. We also see that power consumed by
the system has a linear relationship with the performance
state of the processor. As the performance of the processor
is lowered, system power usage decreases linearly.

Clock Throttling to 8 Performance States
T

" T T T T T

25

20

Watts

15

10 + g

0 1 1 1 1 1 1 1

100 87 75 62 50 37 25 12
Performance state (% of max)

Figure 4: Power consumption at different perfor-
mance states

3.4 Pentium Micro Benchmark: Energy
consumption

To understand the effect of clock throttling on energy,
we revisit the micro benchmarks used in section 3.2. As
shown in Figures 1 and 2, we classify energy usage into two
parts. Energy required to complete the benchmark: Eqctive,
and energy required to be in idle state: Ejqe. Our goal
is to compare the energy used to execute the same load
at different operating points during the same time interval.
The time interval does not end at E,ctive because the server
may not be simply turned off after responding to a request.
It must be kept on since the arrival time of the next request
is unknown.

The amount of energy consumed (FEqyctive) While running
the benchmark is measured. Simultaneously, the time to
run the benchmark is also recorded. We compare this time
against the time the benchmark takes at the lowest per-
formance state. The difference becomes the eztra time the
system is in idle state. Since we know how much power is
used in the idle state, we compute the amount of energy
consumed while in this extra idle time (F;q.). Figures 5, 6,
and 7 illustrates the results 3. In these Figures, the amount
of extra idle time (E;q;) is put on top of energy required to
run the benchmark (FEgctive) . The sum of these two num-
bers show us whether it is energy efficient to run them at a
certain performance state.

To run L1 cache read benchmark (Figure 5) at the lowest
performance state, it takes 174.3 seconds and uses 2591.5
Joules. At 100% performance state, the system uses 621.5
Joules to run the benchmark in 18.99 seconds. Then the
system will be in extra idle state until 174.3 seconds. Dur-
ing this extra idle state, the system at 100% performance
state consumes 1868.7 Joules. This means that the system
consumes 2490.2 Joules (1868.7 + 621.5) at 100% to serve
the same benchmark which is 101 Joules less than running
the same benchmark at the lowest performance.

All our results show that the total system energy required
to run the benchmark (Eqctive) decreases as the performance
state is raised. This is because the benchmark takes shorter
time to complete. But on the other hand, the extra en-

3We omit the results from other benchmarks due to space
limitations but they show results consistent with our argu-
ment.

Eociper ENGIGy UsEd By —
Eiye: Extra energy required to be'in idle mode -------

2500

2000

1500

Joules

1000

500 H
0

12 25

il

87 100

37 50 62 75
Performance state (% of max)

Figure 5: L1 cache (read)

3500 T

Eocier ENGIGy UsEd By —
Eiye: Extra energy required to be'in idle mode -------

3000 M A

2500

2000

Joules

1500

1000

500

Figure 6: Memory (read)

ergy required to be in the idle state after the benchmark
completes (E;q) increases. The sum of Egctive and Eigre
decreases slightly as the performance state is increased. This
means that if we impose the same load on the system at dif-
ferent performance states, the system at higher performance
state uses less energy.

For benchmarks that go to memory (writes) and disk, ac-
tual energy required to run the benchmark (Egsctive) does
not decrease as much in high performance states compared
to other benchmarks. This is because the memory or the
disk becomes the bottleneck, and the runtime decreases less.
From a performance perspective, the reduction of CPU stalls
due to lower processor states lead to a smaller slowdown. At
higher performance states, performance does not increase
equally with the increased clock rate due to the processor
waiting for memory and disks. From an energy perspec-
tive, at higher performance states, energy is spent for the
CPU stalling while running the benchmark. Since it takes
longer to complete the benchmark compared to CPU inten-
sive ones, there is less time and energy spent in extra idle
state. The two effects cancel each other out, and in our
measurements, the overall results did not change. We ex-
pect this result may change if the power consumed while
stalling for memory or disk was substantially different from
the power required to be in idle state. In summary, when
we consider the total system energy (Eqctive + Fidie), the
benchmarks suggest that we should run this system at the
highest performance state possible.

4. LINUX ON POWERPC

Next, we analyze a different system, which is a single

2000 T

Ea;wE: Enen"gy used l;y Benchmark ——
E,e: EXtra energy required to be in idle mode -------

1500

1000

Joules

500 | B

12 25 87 100

37 50 62 75
Performance state (% of max)

Figure 7: Disk read

5 T T T T
Frequency slowdown —+——
Access to register —->--

o 45 L1 cache (read) ---%--- 4

k| L1 cache (write) &

« Access to memory (read) —-#-—

§ 4+ Access to memory (write) ---0---

3

13

€ 35 J

©

a

X

8 3r i

=

2

-

g 25 -

]

£

S 2+ -

2

o

E

F 15 4

133 200
CPU Frequency (MHz)

Figure 8: Micro benchmark performance (PPC)

board computer based on PowerPC 405GP microprocessor.
The processor has 8KB of D-cache and 16KB of I-cache. The
board has 32MB of memory and by modifying the strapping
on the board, we can change the frequency of the proces-
sor and the processor local bus (PLB) that directly affects
memory speed. We used Linux 2.4.0 as our operating sys-
tem. On this system, we are able to change the actual clock
frequency. For example, when the processor local bus (PLB)
is set to 66MHz, the clock frequency of the processor can be
set to 66, 133, 200, and 266 MHz. In this environment, we
are able to measure the power usage of each of the separate
components in the system. We report measurements of the
memory and the CPU as well as the total system energy.

4.1 PowerPCMicroBenchmark: Performance

Figure 8 reports the performance of the same micro bench-
marks used in Section 3.2. Since the board does not have
a hard disk, we did not perform the disk read micro bench-
mark. Frequency slowdown indicates the slowdown of the
clock relative to the maximum frequency of 266MHz. For
the benchmark which accesses the register or the L1 cache
(Access to register, L1 cache read, write), we see that the
slowdown overlaps with the slowdown indicated by the clock
frequency (Frequency slowdown). When the benchmark ac-
cesses memory, the slowdown becomes less than what the
clock frequency indicates. This is due to the reduction of
CPU stalls waiting for memory when CPU becomes slower
as discussed previously.

Frequency | CPU (Watts) | Mem (Watts) | Total (Watts)
66 MHz 0.51 0.17 2.02

133 MHz 0.59 0.17 2.10

200 MHz 0.65 0.17 2.17

266 MHz 0.69 0.17 2.21
Table 3: Power usage in idle mode (PowerPC)

Frequency | CPU (Watts) | Mem (Watts) | Total (Watts)
66 MHz 0.74 0.17 2.27

133 MHz 1.09 0.18 2.63

200 MHz 1.36 0.18 2.89

266 MHz 1.58 0.18 3.13

200 :

150 v
Pl

100 |-

Joules

T

CPU

acnéeD
act others
E,mE Extra energy required to be in |uﬁe mode

tive

3
L

L

66/66

133/66

200/66

266/66

Table 4: Active state power for PowerPC system

4.2 PowerPC: Power Measurements

Table 3 shows the system power consumption while the
operating system is in idle mode. Unlike clock throttling
on the Pentium system, we see that there is a difference in
power usage while in idle mode at different frequencies. In
the PowerPC implementation, the wait enable (WE) bit is
set in the processor status register to prevent the proces-
sor from fetching instructions. Although the processor is
not executing instructions, the clock is still operating at the
specified frequency. The power consumption of the proces-
sor itself increases slightly as the frequency increases, but
it is a small increase when compared to the total system
power.

Table 4 shows the total active system power usage at each
frequency when running the simple benchmark. As with the
Pentium-based system, power increases as the frequency is
raised.

4.3 PowerPC Micro Benchmark: Energy
consumption

Figures 9, and 10 shows the energy usage of two micro
benchmarks. (We omit the results of other benchmarks due
to space limitations). As with the results shown in the pre-
vious section using the Pentium-based system, the energy
to actually complete the benchmark is denoted as FEgctive
and extra idle time as Ejq. Further, since we are able
to measure the power usage of each component, we sepa-
rate Egctive into several components. CPU, SDRAM, and
all other components of the board (which includes a PCI
bridge and a network card).

In all our benchmarks we ran, our results showed that by
lowering the frequency, the total energy used by the sys-
tem including the extra idle time energy (Factive and Ejqze)
decreases. For example, when running the L1 cache (read)
benchmark, the system consumes 162.07 Joules at 266 MHz,
while it takes 150.53 Joules at 66MHz. Hence, on this sys-
tem, by lowering the frequency to a point where the work-
loads can be adequately served without sacrificing latency,
energy is saved. This result is opposite from the results we
obtained from our Pentium-based system.

5. CHARACTERIZATIONOFTWO SYSTEMS

There is a tradeoff one must make when looking at both
performance and power. Should the processor run slower
and reduce active state power, but take a longer time to

CPU Frequency/ PLB (MHz)

Figure 9: L1 cache (read): PowerPC

T T T T
CPU _—
140 acl%eD 777777 i

ﬂze ot hers ———————
Ejgie: Extra energy required to be in |rﬁe mode
120 A

100 - T

80 -

Joules

60 - ; T A

40

20 B

66/66 133/66 200/66 266/66
CPU Frequency/ PLB (MHz)

Figure 10: Access to memory (write): PowerPC

complete a job which in turn reduces the time the system
is in idle state, or should the processor run faster and move
into the idle state more frequently? Our earlier measure-
ments show the choice is unclear. It was energy efficient
to run the same workload at a higher performance state on
our Pentium-based system, and at a lower frequency on the
PowerPC-based system. Here, we identify the qualities of
the system one must understand to make this tradeoff deci-
sion.

Based on our measurement shown previously, we assume
that the following characteristics should generally hold for
systems with frequency scaling processors:

e Power usage of a system shows bimodal behavior. The
system will either be in active state or idle state[2].

e Performance and frequency (processor performance state)

has a linear relationship.

o Active state power increases linearly with frequency of
the processor. We denote the active state power as a
function of frequency: Pfeq.

o Idle state power P;qie will be considered approximately
constant for all frequencies.

Now, lets look at a CPU intensive workload W, and as-
sume the lowest frequency that meets the deadline require-
ments of workload W is fp,in. To keep our discussions sim-
ple, we assume that the utilization of the system at fre-
quency fmin is 1, and W takes T, , units of time to com-

Frequency Scaling
7 T T

e idle state --<--
P(freq) with slope mcico When idfe= 0.5 Watt ke
P(freq) with slope m;co When idle = 1.5 Watt -

T T
P(freg): active state —+—

Watts

0 I I I I I
300 350 400 450 500 550 600
MHz

Figure 11: Frequency scaling system

plete. This implies the system is in active state (and con-
suming active state power Py, ,) for the duration of T}, ;, .
From this, we know that the energy Ef_. consumed by the
system while processing W is:
Efpin = Ttmin Pfmin

At a higher frequency f, we look at a system with the same
workload W imposed for the same duration of time T}, ,, .
At frequency f, the utilization of the system decreases to
fmin (since for CPU intensive workloads, we expect the per-
formance of the system to be inversely proportional to the
frequency). That means that the system is active T, ;.
fmin ynits of time and idle Ty, ,, (1 - f”%) units of time.

e can thus compute the energy consumed while processing
W at frequency f as:

Ef = (Tfpin 2%2) Py + T, (1 = L22) Pt
5.1 Critical Power Slope

As we recall, a generic system would show power charac-
teristics such as the one shown in Figure 11. Power increases
linearly with the frequency of the processor, and constant at
idle state. Both our Pentium and PowerPC systems share
these properties. We denote the slope of the line represent-
ing active state power in Figure 11 as m. Then,

Py = Py,;, + m(f — fmin)
If we substitute Py, Ef becomes

Ef = (Tfpin £22) [Pt +m(f = Frain)]+ (T —
T, in 262) Piate

Now we can calculate the energy required to complete W
at various frequencies. By comparing the energy used in
various frequencies, we would know if it is energy efficient
to lower the frequency or not. Then, we see that the slope
m determines the resulting decision, and there should be a
slope where energy usage at all frequencies is equal. We will
call this slope, critical power slope and denote as Mcritical-

To derive this slope, we find slope m such that Ey is con-
stant for all frequencies by solving for m when Ey_, = Ejy.
Then the critical power slope becomes:

Pgsnin ~ Fidle

Meritical = Fmin

From this equation, we see that the critical power slope is
determined by the active state power Py, , and idle state
power Pig.. These two attributes are influenced by various
aspects such as configuration of the system. From a systems
perspective, the implication Mmerizicar has is as follows:

e if actual slope m of the hardware used is less than
the critical power slope mcrstical , it is energy efficient
to run the system at higher frequency. That is, it is
energy efficient to minimize the time in active state
and maximize idle time of system.

e if actual slope m of the hardware is greater than me,iticai,
the system should be run at slower frequency to save
energy.

e the more optimized the idle state is, the more favorable
it is to run at a higher frequency.

For the system depicted in Figure 11, the critical power

slope when the idle state power is 1 Watt is:
5Watts—1Watts _
§00M H > —3000 11z — ‘013

It turns out that the active state power line equals the crit-
ical power slope. This means that for CPU intensive work-
loads, one should end up with the same energy regardless
of the frequency. If the idle state energy becomes smaller
than 1 Watt, critical power slope will become higher than
the active power line as shown in the Figure 11 which fa-
vors running the workload at a higher frequency. (Since idle
state power is cheap, system should go into idle state as
long as possible). On the other hand, when idle state power
becomes higher than 1 Watt, critical power slope becomes
smaller than the active power line.

If we look at the critical power slope for our Pentium-
based system, it is:

15Watts—12Watts _
848’3\4;1,2*12.50;’/0 = =.028

Since the actual slope of a particular system can be calcu-
lated by,
Ps—Piimin

f=Ffmin

the actual slope m for the Pentium-based system becomes

30Watts—15Watts =.020
848M Hz— (848M H2z%12.5%)

which is smaller than the critical power slope. Hence, it is
energy efficient to run at the highest performance state. For
our PowerPC-based system, the critical power slope is:

2.2TWatts—2.02Watts __
66 M H z = .0038

where as the actual slope is:

e = o0

Critical power slope is smaller then the actual slope on
the PowerPC. This resulted in a tradeoff where it is energy
efficient to reduce frequency which is the opposite from the
Pentium case. Of course, the amount of reduction in fre-
quency is subject to other constraints such as the desired
performance, QoS level, or real-time requirements. Another
observation we can make from this is that, if we are able to
optimize the idle state power consumption of our PowerPC-
based system to below 1.77 Watts (for example, going into
deeper processor sleep modes, or shutting down parts of the

system like the network, or memory, which makes the criti-
cal slope smaller), then running at the highest frequency is
more energy efficient than running at the lowest frequency.

As we can see, critical power slope captures the runtime
tradeoff relationship between the active state energy and
idle state and can be considered a metric which indicates
the efficiency of idle state relative to active states.

6. CRITICAL POWER SLOPE IN
SYSTEMS WITH VOLTAGE SCALING
PROCESSORS

In the previous section, we assumed that the active power
was linear with frequency. Critical power slope can be used
to understand the runtime performance tradeoff of systems
where this assumption does not hold. Voltage scaling pro-
cessors show a nonlinear active power behavior as illustrated
in Figure 12*. Unlike systems with frequency scaling pro-
cessors, the combination of voltage scaling and frequency
scaling yields a nonlinear savings of power (due to P o< V2
relationship). This means that the slope of the active state
power is not constant, and it decreases as performance is
lowered.

In the case where we assumed that the active power slope
was linear, we only needed to look at one reference oper-
ating point at fmin to make the tradeoff decision. Since
active power is linear with frequency, the relative relation-
ship between active power slope and the critical power slope
(whether one is larger than the other) is the same at all
operating points.

For voltage scaling systems, we need to look at every op-
erating point since the slopes are not constant. That is, for
every operating point at frequency f., we look at the active
power P, and derive the critical power slope for frequency
fx as:

mc:itical = W

Then, we compare it against the actual power slope m?’=
at operating point with frequency f,. From this, we know
that Ey, which is energy consumed at frequency f, has the
following property to run some workload W:

3 fa fa
o if m < Meriticals

then E¢ _.>E; > Efm+€

o if m > Meriticals

then Ef <Ef < Efa:+e

where € is a small number. If we look at a system with
voltage scaling processors such as the one shown in Figure
12 and compare the critical power slope and the actual slope,
we obtain the following results:

600MHz __ .0083 600MHz __ .0240

critical — < m =
miBME: = 0061 < mPPMH: = 0187
masonE = 0040 < m™OMP= = 0107
SToMEE = 0027 < mPTMPE = 0040
m30OMIz — 0023 < mPOOMH= = (027
m223MIE = 0022 > m*PMPE = 0007
190MHz — 0030 > m!SOMH: = 004
mIPMHE — 0056 > m™MH: = 0003

We see that at higher frequencies, m/® > mfiitical and

hence Ey,_, < Ef, < Ey,,.. That means it is energy ef-
ficient to lower the frequency. As we lower the frequency,

* Active state power based on Transmeta document|7]

Voltage Scaling
7 T T T T

T T
active state —+—
idle state -->--

Watts

I I I I I
0 100 200 300 400 500 600
MHz

Figure 12: Voltage scaling system

fa

there will be a point where m.’.,. ., becomes larger than
mf=. This occurs somewhere between 225MHz and 300MHz.
For the purpose of our discussion, lets assume that point was
290MHz. This means that it is no longer beneficial to further
reduce voltage below a point at which it is capable of han-
dling 290MHz, since Fagomnm. < Easmu.. Going into idle
state becomes cheaper than running longer at lower perfor-
mance below 290MHz. That is, the system would be energy
efficient to run at 290MHz and go into idle state, rather than
reducing voltage and running at 225MHz and going into idle
state less frequently.

Further energy reduction after voltage scaling becomes
ineffective may be achieved by performing clock throttling
(and maintaining the voltage) below 290MHz iff the slope of
active state power line using clock throttling is greater than
the critical power slope. If the slope for active state power
using clock throttling is smaller than the critical power slope,
there is no incentive to reduce frequency lower than 290MHz.
Techniques such as clock throttling can theoretically reduce
active state power down to a level close to idle state power
even after slope of active state power flattens out for voltage
scaling. This means that the slope for clock throttling can
potentially be steeper than the slope for active state power
line using voltage scaling. This is indeed the case illustrated
in [7].

Pouwelse [19] shows power measurement data very similar
to Figure 12 for a system based on a StrongARM processor
(SA-1100). Just like Figure 12, the active power slope for
their system flattens out as voltage and frequency is lowered.
Idle state power which is not strictly constant, shows a slight
increase as the frequency is raised. Their experience with
voltage scaling shows that the SA-1100 processor was able to
operate from 59MHz at 0.79V up to 2561MHz at 1.65V. We
estimate from their data, that the critical power slope for
their system becomes larger than the actual power slope at
around 74MHz. From the figure provided, we approximate
the critical power slope at 74MHz as:

TAMHz __ 121mW —46mW __
Meritical = T4MH 2 = 0.001
and the actual power slope as:

TAHz __ 121mW —106mW __
m = TaarmL—sorry — 0-001

This means that, although their system can support volt-
age scaling from 251MHz to 59MHz, voltage scaling most

Repeated Request to Apache Top Page
1800 T T T T T T T T T T T
L100% —+—
62% —->--

1700 H

1600 4

1500 B

1400 B

1300

T
1

1200

T
1

Energy (Joules)

1100 - X 4

1000

T
1

,X//
900 X~ 4

800 z 1 1 1 1 1 1 1 1 1 1 1 1 1
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
Requests/sec

Figure 13: Repeated request to 3KB page

likely becomes inefficient starting at 74MHz. Thus, there
is no incentive to operate at the range between 74MHz and
59MHz using voltage scaling.

Further, there is a chance that frequency scaling can pro-
vide more energy savings below 74MHz on the SA-1100-
based system. The active power slope for frequency scal-
ing when the voltage is kept constant at 1.5V was approxi-
mately 0.0029 which is greater than the critical power slope
at 74MHz. We are uncertain at what voltage the system
was able to handle 74MHz. But if the slope for that volt-
age is greater than the critical power slope at 74MHz, then
the most energy efficient policy on the SA-1100-based sys-
tem would be to employ voltage scaling until around 74MHz
and switch to pure frequency scaling down to 59MHz.

Critical power slope can also be used to determine an
optimal frequency for an embedded device with a fixed fre-
quency microprocessor which is not able to scale the fre-
quency/voltage dynamically. Designers can measure the ac-
tive power slope, idle state power, and calculate the critical
power slope. With this information, one can decide the op-
timal operating point for that particular device.

7. CRITICAL POWER SLOPE IN A
REALISTIC WORKLOAD

To confirm our findings on a more realistic workload, we
measure a static page request on a web server. Static page
requests constitute an significant portion of real web server
workloads. We used Apache-1.3.12-25 as our web server.
The Pentium-based laptop was connected directly to a switch
via IBM EtherJet 32bit cardbus 100Mb network card. The
client is also directly connected to the switch with a 1 Gb
connection. To generate requests, we used a publicly avail-
able web request generator called httperf[14].

By first observing the responses from our server, we con-
cluded that our server at 100 % performance was able to
handle up to 1500 requests/sec to requests to the top page
of the server. The top page of the server was approximately
3KB in size, and in all our experiments, the page was cached
in memory.

Figure 13 show results of energy measurements of the
servers at two processor performance states, at 100% and
62.5% handling HTTP requests for 60 seconds. We mea-
sured the energy used by the server at different requests
rates. At 100% performance state, the server handles up to

1500 requests/second. At 62%, the server is able to handle
more than 700 requests/sec. We have confirmed this fact by
looking at the number of requests handled in the 60 second
period. Both the 62% and 100% performance state servers
handled the same number of requests in that 60 second pe-
riod, meaning that there was not a significant increase in
response latency.

We see that the energy used by the servers increase lin-
early as the request rate is increased. Also, the result clearly
indicates that on this particular Pentium-based system, it
is energy efficient to run at a higher performance state,
rather than to run them at a lower speed even though it
may provide equal user perceived performance. With 100
requests/sec request rate, the server at 100% performance
consumed 807.6 Joules. The server at 62% performance
state used 832.6 Joules. A 25 Joule difference in 60 sec-
onds. At 700 requests/sec, 100% server used 1190.4 Joules
and the 62% server used 1243.9 Joules. A 53.5 Joule dif-
ference in 60 seconds. The same trend held true for other
experiments with HTTP requests to pages of different sizes
(eg. 1K and 10K) and different performance states (com-
paring them only if they can handle the same workload).

As shown in Section 5.1, critical power slope indicated
that on our Pentium based system, it is energy efficient to
run at the highest performance state. The results based on
a realistic workload also confirm our findings.

8. RELATED WORK

Many newer processors have the capability to provide
some power management features including Strong ARM
SA-1100[19], and Transmeta’s Crusoe[7] which provides fre-
quency scaling and voltage scaling. Intel SpeedStep[10] tech-
nology offers two operating points each at different voltages.
For example, 1GHz at 1.70V which consumes a maximum of
34.0 Watts, and 700MHz at 1.35V which consumes a maxi-
mum of 16.1 Watts. If we were to look only at the processor,
the active power slope that the two operating points draw is
much higher than the critical power slope for the processor.
Hence, the runtime tradeoffs between active state power and
idle state power strongly favors going into the lower operat-
ing point using SpeedStep whenever possible. It is unclear
at this point how much limitation in energy savings there is
by having only two operating points.

There has been several reports on the effects of frequency
scaling. Farkas [5] quantified the energy consumption of a
pocket computer running Java applications. Pouwelse [19]
provides detailed analysis on the impact of dynamic voltage
scaling looking at CPU and memory power consumptions.

There are various works on reducing system energy con-
sumption. Power aware memory systems have been pro-
posed in [11]. Dynamic voltage scaling (DVS) algorithms
address the issue by reducing the voltage and the frequency
of the CPU [20][9][15]. The basic approach is to reduce the
performance of the processors by modifying the frequency
and voltage while still providing adequate performance. Dy-
namic voltage scaling algorithms decide how much to scale
the frequency/voltage and when. Often it predicts future re-
quirements and decides the scaling factor by observing pre-
vious resource usage or utilization. PACE[13] provides per-
formance equivalent optimization to DVS algorithms. We
believe that our work is complementary or can be used to
extend these works. For example, we capture the cost of the
system being idle which is often neglected. We have shown

through actual measurement data, that idle cost can be very
expensive, and hence, the basic premise of DVS algorithms
that lower voltage/frequency uses less energy, may not al-
ways be true. Through the use of critical power slopes, we
are able to inform these DVS algorithms the range of effec-
tive and ineffective operating points.

Compiler assistance [15] can be deployed in combination
with DVS to provide system with useful hints to make in-
formed decision. Real-Time DVS (RT-DVS) algorithms[18]
incorporates real-time scheduling algorithms with DVS al-
gorithms. This satisfies real-time guarantees as well as low-
ering the energy usage. Another approach is to adapt the
application [8] to the environment. Application can be pro-
grammed in a way (by changing the semantics or fidelity)
to conserve energy when required.

Burd|[3] proposes a similar model from the point of CMOS
microprocessor design in their overall power analysis method-
ology. Critical power slope agrees with their model, and we
illustrate this using actual measurement data. Further, we
used our model to define energy-inefficient operating points
which can be used by the operating system.

9. CONCLUSION

Frequency scaling and voltage scaling have been proposed
as promising techniques to reduce the energy usage by ex-
ploiting the fact that systems do not need to run at peak
performance all the time. In this paper, we analyzed the
runtime effects of frequency scaling on performance, power,
and energy.

We used two very different platforms running Linux. One
is a high performance PC based on a Pentium IIT 850MHz
processor. The other platform is targeted as an embedded
device with PowerPC 405GP processor. Our results show
that on our Pentium-based system, it is energy efficient to
run at the highest performance state, and on the PowerPC-
based system, at a lower frequency when voltage is kept
constant.

We explain the reason for the conflicting results by intro-
ducing a concept we call critical power slope. Critical power
slope represents the runtime tradeoffs between active state
power and idle state power. It tells us whether or not it
is energy efficient to run at a higher performance state and
complete the work and go into idle state. Hence, critical
power slope can be used as a metric to understand how effi-
cient the system is in regards to idle state relative to active
state.

Further, we extend our analysis to voltage scaling sys-
tems. By looking at the critical power slope of several sys-
tems, we address the limitation of voltage scaling at lower
performance states, and the basic premise that lower volt-
age/frequency uses less energy may not always be true. We
argue for the possibility that a combination of voltage scal-
ing and frequency scaling (while keeping the voltage con-
stant) more energy efficient than pure voltage scaling based
approaches.

10. ACKNOWLEDGEMENT

This work was supported by DARPA contracts F33615-
00-C-1736 and F33615-02-1-4004. We would like to thank
the members of Austin Research Lab at IBM , Real-Time
Multimedia Lab at CMU, and the anonymous referees for
their feedback.

11. REFERENCES

[1] Advanced Configuration and Power Interface Specification,
2001. http://www.teleport.com/ acpi/spec.htm.

[2] P. Bohrer, E. Elnozahy, T. Keller, M. Kistler, C. Lefurgy,
C. McDowell, and R. Rajamony. The case for power
management in web servers. Power Aware Computing,
2002. Klewer Academic Publishers.

[3] T. D. Burd and R. W. Brodersen. Energy efficient CMOS
microprocessor design. In Proceedings of the 28th Hawaii
International Conference on System Sciences, Jan. 1995.

[4] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and
R. Doyle. Managing energy and server resources in hosting
centers. In Proceedings of the 18th Symposium on
Operating Systems Principles (SOSP), Oct. 2001.

[5] K. Farkas, J. Flinn, G. Back, D. Grunwald, and J.-A.
Anderson. Quantifying the energy consumption of a pocket
computer and a java virtual machine. In Proceedings of the
International Conference on Measurement and Modeling of
Computer Systems (ACM SIGMETRICS), June 2000.

[6] K. Flautner, S. Reinhardt, and T. Mudge. Automatic
performance-setting for dynamic voltage scaling. In
Proceedings of the International Conference on Mobile
Computing and Networking (MOBICOM), 2001.

[7] M. Fleischmann. Dynamic Power Management for Crusoe
Processors, Jan. 2001. http://www.transmeta.com/.

[8] J. Flinn and M. Satyanarayanan. Energy-aware adaptation
for mobile applications. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Dec.
1999.

[9] D. Grunwald, P. Levis, K. Farkas, C. Morrey, and
M. Neufeld. Policies for dynamic clock scheduling. In
Proceedings of the Fourth Symposium on Operating
Systems Design and Implementation, Oct. 2000.

[10] Intel. Mobile Intel Pentium III Processor in BGA2 and
MicroPGA2 Packages, 2001. Order Number 283653-002.

[11] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power
aware page allocation. In Proceedings of Ninth
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
IX), Nov. 2000.

[12] J. Lorch and A. Smith. Energy consumption of Apple
Macintosh computers. IEEE Micro, 18(6), Nov. 1998.

[13] J. Lorch and A. Smith. Improving dynamic voltage scaling
algorithms with PACE. In Proceedings of the International
Conference on Measurement and Modeling of Computer
Systems (ACM SIGMETRICS), June 2001.

[14] D. Mosberger and T. Jin. httperf: A tool for measuring
web server performance. In Proceedings of the First
Workshop on Internet Server Performance, June 1998.

[15] D. Mosse, H. Aydin, B. Childers, and R. Melhem.
Compiler-assisted dynamic power-aware scheduling for
real-time applications. In Proceedings of Workshop on
Compiler and OS for Low Power (COLP), Oct. 2000.

[16] T. Mudge. Power: a first class design constraint.
Computer, 34(4):52-57, Apr. 2001.

[17] T. Pering, T. Burd, and R. Brodersen. Dynamic voltage
scaling and the design of a low-power microprocessor
system. In Power Driven Microarchitecture Workshop,
June 1998.

[18] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling
for low-power embedded operating systems. In Proceedings
of the ACM Symposium on Operating Systems Principles
(SOSP), 2001.

[19] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage
scaling on a low-power microprocessor . In Proceedings of
7th International Conference on Mobile Computing and
Networking (Mobicom), July 2001.

[20] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proceedings of the
Symposium on Operating Systems Design and
Implementation, Nov. 1994.

