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Executive Abstract

This report addresses the capacitated vehicle routing problem (CVRP) and the split delivery
vehicle routing problem (SDVRP) with uncertain travel times and demands when planning vehicle
routes for delivering critical supplies to the affected population in need after a disaster. A robust
optimization approach is used to formulate the CVRP and the SDVRP with uncertain travel times
and demands for five objective functions: minimization of the total number of vehicles deployed
(minV), minimization of the total travel times/travel costs (minT), minimization of the summation
of arrival times (minS), minimization of the summation of demand-weighted arrival times (minD),
and minimization of the latest arrival time (minL). The minS, minD, and minL are critical for
deliveries to be fast and fair in routing for relief efforts, while the minV and minT are common
cost-based objective functions in the traditional VRP. A two-stage heuristic method that combines
the insertion algorithm and tabu search is used to solve the VRP models for large-scale problems.
The solutions of the CVRP and the SDVRP are compared for different examples.
Keywords: Robust Optimization, Vehicle Routing Problem, Tabu Search, Insertion Algorithm
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1 Introduction

There are significant devastating effects of natural and man-made disasters. For example, the
Hurricane Katrina in August 2005 is a well-known disaster, resulting in damage estimates exceeding
200 billion U.S. dollars (Burby, 2006). More recently, two severe earthquakes occurred in Nepal
on April 25th and May 12th of 2015, which caused at least 8,000 deaths, 25,000 injuries, and
approximately two million homeless people (Binns and Low, 2015). Unfortunately, the scale of
natural disasters is becoming larger. Therefore, the importance of effective management of disasters
cannot be overemphasized as it is directly relevant to human life, health, and welfare.

Disaster management is typically divided into three phases: preparation, immediate response, and
reconstruction (Kovács and Spens, 2007) or four phases: mitigation added after preparation (Pearce,
2003). In this project, we focus on the immediate response phase in the context of disaster relief
operations and humanitarian logistics, which takes part in the aftermath of disasters. Specifically,
we tackle the relief routing problems to effectively and equitably deliver critical supplies to the
affected population.

The vehicle routing problems (VRPs) are one type of important problems considered in disaster
relief operations, especially in the immediate response phase, as vehicles are an essential part of
the supply chain for delivering supplies. The VRP aims to design optimal delivery or collection
routes from one or several depots to a number of geographically scattered customers, subject to
some constraints (Laporte, 1992). In disaster relief operations, vehicle routing problems are involved
in detailed information collection, medical aid deliver, medical supply deliver, food supply deliver,
etc (Luis et al., 2012).

It is not logical to assume that the vehicle capacity is always sufficient to carry all the demand
from a customer locations and, therefore, the location may need to be visited multiple times (Yi
and Kumar, 2007), which implies split delivery. Özdamar et al. (2004) point out that in emergencies
the load to be transported is quite large and a vehicle’s capacity is usually sufficient to carry only a
small part of the load. Wang et al. (2014) also state that an affected area can be served more than
one time when the demand of the disaster area is greater than the capacity of the vehicle, given the
large demand of relief at the affected areas in the post-earthquake. Therefore, the split delivery
vehicle routing problem (SDVRP) should play an important role in disaster relief operations to
handle large demands.

The SDVRP, which was introduced in Dror and Trudeau (1989), is relatively new compared
with the capacitated vehicle routing problem (CVRP). The SDVRP allows a demand node to be
visited by more than one vehicle, while the CVRP requires that a demand node be visited exactly
once. The SDVRP has attracted researchers’ interest because of the potential cost savings (Dror
and Trudeau, 1989; Archetti et al., 2006). The variants of the SDVRP and algorithms to solve
the SDVRP and its variants have been extensively studied in recent years. In this project, the
SDVRP with uncertain travel times and demands is addressed in the context of disaster relief
operations, and is compared with the CVRP counterpart. Uncertainties in travel times and demands
are critical factors in planning a vehicle route after a disaster because the optimal deterministic
routes could be even infeasible due to a small perturbation in parameters caused by uncertainties.
Therefore, it is essential to mitigate the impact of uncertainty in planning a vehicle route. We aim
to enhance disaster relief vehicle routing operations by taking into uncertainties explicitly. To do
so, robust-optimization based models of the SDVRP with uncertain travel times and demands are
proposed to consider different objectives in disaster relief operations. To the best of our knowledge,
there are no such robust models of the SDVRP in the context of humanitarian logistics in the
literature.

Stochastic programming and robust optimization are two main modeling approaches that can
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handle uncertainty. Stochastic programming has some disadvantages in the VRP for disaster relief
operations. It requires the known probability distribution function and generally needs heavy
computations (Bertsimas et al., 2011; Sim, 2004). However, we may not know the exact information
or even the probability distribution of the uncertainties in travel times and demands. When we can
only estimate the range of uncertain parameter, we still need to find efficient and effective solution
to VRPs for the immediate response operations. In that case, stochastic programming may not
perform well. To address this issue, robust optimization can be a good option to formulate the VRP
with uncertainty in context of disaster relief operations.

The rest of this report is organized as follows. In Section 2, the literature review of robust
optimization in VRP is provided. In Section 3, the deterministic models of CVRP and SDVRP
are described as the basis of the robust models, then the robust models of CVRP and SDVRP are
presented. The proposed algorithms are illustrated in Section 4. The results are shown in Section 5.
Conclusion follows in Section 6.

2 Literature Review

Uncertainty is an important and frequently encountered issue in the VRP for the humanitarian
logistics. Among others, the uncertainty in demands and travel times are frequently considered
in the literature (Allahviranloo et al., 2014; Braaten et al., 2017). Robust optimization is a
modeling methodology of optimization problems in which part of (or all) data are uncertain and
only known to belong to some uncertainty sets (Ben-Tal and Nemirovski, 2002). Without the
probability distribution information regarding such uncertain data, a solution constructed by robust
optimization can be feasible for any realization of the uncertainty in a given set (Bertsimas et al.,
2011). Robust optimization has been applied in various areas such as emergency logistics planning
(Ben-Tal et al., 2011; Najafi et al., 2013) and value-based performance and risk management in
supply chains (Hahn and Kuhn, 2012).

In the CVRP research, Sungur et al. (2008), Erera et al. (2010), Ben-Tal et al. (2011), Gounaris
et al. (2013), and Allahviranloo et al. (2014) use robust optimization to address the demand
uncertainty. Regarding the uncertain travel times, Braaten et al. (2017) consider a robust version of
the CVRP with time windows, in which travel times are uncertain. Han et al. (2013) consider the
CVRP with uncertain travel times in which a penalty is incurred for each vehicle that exceeds a
given time limit. Agra et al. (2013) address the CVRP with time windows and travel times that
belong to an uncertainty polytope. We note that Lee et al. (2012) consider uncertain travel times
and demands at the same time in the CVRP, while most other papers focus on only one of the two.
Furthermore, Solano-Charris et al. (2014) apply robust optimization for the CVRP with uncertain
travel costs. Chen et al. (2016) apply robust optimization for the road network daily maintenance
routing problem with uncertain service times. We also note that most papers mentioned above
consider the objective of minimizing the total travel time (or travel costs), which may not be relevant
to the humanitarian logistics.

In the literature, only limited number of papers, e.g., Bouzaiene-Ayari et al. (1992), Yu et al.
(2012), and Lei et al. (2012), that focus on the SDVRP with stochastic demands are found. Bouzaiene-
Ayari et al. (1992) propose a heuristic algorithm for the SDVRP with stochastic demands. Yu et al.
(2012) address the large scale stochastic inventory routing problem with split delivery and service
level constraints. Lei et al. (2012) present a paired vehicle recourse policy for the SDVRP with
stochastic demands. An adaptive large neighborhood search heuristic is applied for solving this
problem. To the best of our knowledge, there are no robust models of the SDVRP with uncertain
travel times and demands for different objective functions in the literature.
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In this project, we explicitly consider travel time and demand uncertainty in the CVRP and
the SDVRP, and explore several objectives that may better suit the humanitarian logistics such as
minimizing the summation of arrival times and the latest arrival time.

3 Models

In this section, the deterministic models for the CVRP and the SDVRP with different objectives are
presented as a basis for the robust counterparts. The robust models of the CVRP and the SDVRP
are then proposed.

3.1 Deterministic Models of the CVRP

In the deterministic CVRP, let the depot be located at node 0 and the set of nodes except the depot
is denoted by N = {1, ..., n}. The set of all nodes is then N0 = {0} ∪ {1, ..., n}. The set of all arcs is
denoted by A such that G = G(N0, A) represents the road network. The travel time between nodes
i and j in N0 is denoted by tij , ∀(i, j) ∈ A. In our assumption, the travel cost between nodes i and
j is equivalent to its travel time by setting the travel cost as one for the unit travel distance. The
demand from node i is denoted by qi, which needs to be served as soon as possible.

The set of available vehicles is denoted by K = {1, ..., |K|}, and k is the index of a vehicle. All
vehicles are assumed to be homogeneous, and C denotes the capacity of a vehicle. The decision
variables xij ,∀(i, j) ∈ A are binary variables that indicate whether a vehicle travels from i to j.

In consistent with the well-known Miller-Tucker-Zelmin (MTZ) formulation of the VRP (Miller
et al., 1960), a continuous variable ci,∀i ∈ N is used, denoting the flow in the vehicle when it
leaves the node i, to construct constraints that prevent sub-tours. A continuous variable ai,∀i ∈ N
denotes the arrival time of a vehicle at node i and an upper bound on the total travel times for
each vehicle is denoted by T , which can be relaxed if needed in the problem context by assigning a
sufficiently large number on it. We do not consider a time window for delivering critical supplies,
as the objectives in the context of humanitarian logistics are on prompt deliveries and we assume
that all the demand nodes can accept deliveries any time (e.g., shelters that are open 24 hours).
However, time window constraints can be easily added when necessary. The deterministic model
that minimizes the total number of vehicles deployed (minV) is formulated as follows:

(CVRP-minV) min
n∑

i=1

x0i (1)

s.t.
∑
j∈N0

xij = 1 ∀i ∈ N (2)

∑
j∈N0

xij −
∑
j∈N0

xji = 0 ∀i ∈ N0 (3)

tij ≤ aj − ai + T (1− xij) ∀i, j ∈ N (4)

t0ix0i ≤ ai ∀i ∈ N (5)

qj ≤ cj − ci + C(1− xij) ∀i, j ∈ N (6)

qi ≤ ci ≤ C ∀i ∈ N (7)

xij ∈ {0, 1} ∀(i, j) ∈ A (8)

The objective (1) is to minimize the number of vehicles deployed. The constraints (2) require that
each node should be visited once by exactly one vehicle and equations (3) are flow conservation

6



constraints. The variables xij are associated with arrival times in inequalities (4), which also prevent
subtours not including the depot. The appropriate minimum arrival time for each node is guaranteed
in inequalities (5), and the inequalities (6) work in a similar fashion as inequalities (4). The capacity
constraints are imposed in inequalities (7). To solve the CVRP-minV more effectively in the solvers,
an additional constraint can be added in the model:

n∑
i=1

x0i ≥
∑n

i=1 qi
C

(9)

The inequality (9) provides a tight lower bound of the objective function value, which can reduce
the time for solving the model.

The model to minimize the total travel times (minT) is exactly as same as the CVRP-minV
except the objective function. That is,

(CVRP-minT) min
∑

(i,j)∈A

tijxij (10)

s.t. (2)–(8)

To minimize the summation of arrival times (minS), one more constraint to specify the number
of vehicles available, |K|, needs to be added, because the optimal solution will be a trivial one that
utilizes maximum vehicles, e.g., n vehicles, if there is no such constraint. The CVRP-minS can be
formulated as:

(CVRP-minS) min
∑
i∈N

ai (11)

s.t. (2)–(8)∑
i∈N

x0i = |K| (12)

To minimize the summation of demand-weighted arrival times (minD) can be formulated as:

(CVRP-minD) min
∑
i∈N

qiai (13)

s.t. (2)–(8), (12)

At last, the model to minimize the latest arrival time (minL) is formulated as:

(CVRP-minL) min al (14)

s.t. (2)–(8), (12)

ai ≤ al ∀i ∈ N (15)

3.2 Deterministic Models of the SDVRP

The two-index formulation, e.g., xij , is used in the CVRP formulation. We now introduce the
three-index formulation for the SDVRP while the notation for parameters remains the same to be
consistent. The new decision variables xijk,∀(i, j) ∈ A, k ∈ K are binary, indicating whether vehicle
k travels from i to j (xijk = 1) or not (xijk = 0). The amount of demand served by vehicle k to
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node i is denoted by yik,∀i ∈ N, k ∈ K and a continuous variable aik,∀i ∈ N, k ∈ K denotes the
arrival time of vehicle k at node i. The minimum number of vehicles needed, Kmin, for the SDVRP
can be calculated by solving the following equation.

Kmin =

⌈∑n
i=1 qi
C

⌉
(16)

In order to obtain feasible solution, |K| ≥ Kmin. Based on the deterministic model of the SDVRP
in Berbotto et al. (2014), the subtour elimination constraints are modified to include aik in the
deterministic models shown in this section. The model to minimize the total travel times of the
SDVRP (SDVRP-minT) is formulated as follows.

(SDVRP-minT) min
∑

(i,j)∈A

∑
k∈K

tijxijk (17)

s.t.
∑
j∈N0

∑
k∈K

xijk ≥ 1 ∀i ∈ N (18)

∑
j∈N0

∑
k∈K

x0jk ≤ |K| (19)

∑
j∈N0

∑
k∈K

x0jk ≥ Kmin (20)

∑
j∈N0

xijk −
∑
j∈N0

xjik = 0 ∀i ∈ N0, k ∈ K (21)

tij ≤ ajk − aik + T (1− xijk) ∀i, j ∈ N, k ∈ K (22)

t0ix0ik ≤ aik ∀i ∈ N, k ∈ K (23)

yik ≤ qi
∑
j∈N0

xijk ∀i ∈ N, k ∈ K (24)

∑
i∈N

yik ≤ C k ∈ K (25)∑
k∈K

yik = qi ∀i ∈ N (26)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (27)

yik ≥ 0 ∀i ∈ N, k ∈ K (28)

The constraints (18) require that each node should be visited by at least one vehicle. The inequality
(19) ensures that at most K vehicles depart from the depot. The inequality (20) ensures that at
least Kmin vehicles depart from the depot. The equations (21) are flow conservation constraints.
The variables xijk are associated with arrival times in inequalities (22), which also prevent subtours
not including the depot. The appropriate minimum arrival times for each node are guaranteed in
inequalities (23). The inequalities (24) ensure that the node can only be served if the vehicle visits
it. The inequalities (25) ensure that the maximum load of each vehicle does not exceed capacity C.
The equations (26) require that the entire demand of each node is satisfied.

To minimize the summation of arrival times, the SDVRP-minS can be formulated as:

(SDVRP-minS) min
∑
i∈N

∑
k∈K

aik (29)
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s.t. (18)–(28)

To minimize the summation of demand-weighted arrival times, the SDVRP-minD can be
formulated as:

(SDVRP-minD) min
∑
i∈N

∑
k∈K

yikaik (30)

s.t. (18)–(28)

Note that the SDVRP-minD is a mixed integer nonlinear programming (MILP) model, as yik and
aik are variables.

The objective to minimize the latest arrival time, al, is formulated as:

(SDVRP-minL) min al (31)

s.t. (18)–(28)

aik ≤ al ∀i ∈ N, k ∈ K (32)

3.3 Robust Models of the CVRP

In robust optimization (RO), there are various ways to model uncertainty depending on how to
define the sets to which the uncertain parameters belong. We assume that uncertainty sets in this
project, which may be obtained by analyzing the historical data, are convex, closed, and bounded.
Let us denote an uncertainty set by U , and the travel times and demands are subject to uncertainty.
That is, (t, q) ∈ U where t and q are the vectors such that t = (tij : (i, j) ∈ A) and q = (qi : i ∈ N).
Taking into account the uncertainty and considering that RO aims to find the best worst-case
solutions, the robust CVRP-minV (RCVRP-minV) can be formulated as:

(RCVRP-minV) min

n∑
i=1

x0i (33)

s.t. (2)–(3), (8)

max
(t,q)∈U

tij ≤ aj − ai + T (1− xij) ∀i, j ∈ N (34)

max
(t,q)∈U

t0ix0i ≤ ai ∀i ∈ N (35)

max
(t,q)∈U

qj ≤ cj − ci + C(1− xij) ∀i, j ∈ N (36)

max
(t,q)∈U

qi ≤ ci ≤ C ∀i ∈ N (37)

Likewise, the robust CVRP-minT (RCVRP-minT) can be formulated as:

(RCVRP-minT) min
x

max
(t,q)∈U

∑
(i,j)∈A

tijxij (38)

s.t. (2)–(3), (8), (34)–(37)
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The robust counterparts for the CVRP-minS, CVRP-minD, and CVRP-minL can be formulated in
a similar fashion as follows:

(RCVRP-minS) min
∑
i∈N

ai (39)

s.t. (2)–(3), (8), (12), (34)–(37)

(RCVRP-minD) min
x

max
(t,q)∈U

∑
i∈N

qiai (40)

s.t. (2)–(3), (8), (12), (34)–(37)

(RCVRP-minL) min al (41)

s.t. (2)–(3), (8), (12), (15), (34)–(37)

Note that the objective functions of the RCVRP-minT and the RCVRP-minD are subject to
uncertainty while the ones of other models are not.

Let us assume that there is no correlation between t and q, then U = UT ×UQ where t ∈ UT and
q ∈ UQ. Indeed, this assumption can be made without loss of generality in our robust formulations
because inequalities (34)–(37), and functions (38) and (40) consider only one type of uncertainty.

In RO, all uncertainty sets are assumed to be bounded. Accordingly, let UT =
{
t | t̄ ≤ t ≤ t̄+ t̂

}
and UQ = {q | q̄ ≤ q ≤ q̄ + q̂} where t̄ and q̄ are the nominal travel time and demand vectors,
respectively, and t̂ and q̂ are vectors for the maximum travel delay and increased demand caused by
the destabilized infrastructure after a disaster. Such uncertainty sets employed in this report are
called box sets and we refer readers interested in a more general notion of uncertainty sets, e.g.,
ellipsoidal set and convex hull, to Ordóñez (2010) and Ben-Tal and Nemirovski (2002). Because
there is only one uncertain factor per constraint, inequalities (34)–(37) can be rewritten as follows:

t̄ij + t̂ijxij ≤ aj − ai + T (1− xij) ∀i, j ∈ N (42)

t̄0i + t̂0ix0i ≤ ai ∀i ∈ N (43)

q̄j + q̂jxij ≤ cj − ci + C(1− xij) ∀i, j ∈ N (44)

q̄i + q̂ix0i ≤ ci ≤ C ∀i ∈ N (45)

These new constraints are deterministic with given t̄ij , t̂ij , q̄i, and q̂i.
For the objective function of RCVRP-minT (38), it has uncertain travel times up to the number

of arcs in the road network. By employing the concept of the budget of uncertainty (Bertsimas and
Sim, 2004), its uncertainty set can be reformulated as:

UT =

t | t̄ij ≤ tij ≤ t̄ij + t̂ijx
′
ij , (i, j) ∈ A,

∑
(i,j)∈A

x′ij ≤ ΓT , x
′
ij ∈ {0, 1}

 (46)

The parameter ΓT is called the budget of uncertainty and it controls the degree of conservatism or
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robustness of the solution. The RCVRP-minT is then:

(RCVRP-minT) min
x∈X

∑
(i,j)∈A

t̄ijxij + max
t∈UT

∑
(i,j)∈A

t̂ijx
′
ij (47)

where X is the feasible set for x. We may relabel t̂ij , (i, j) ∈ A in a decreasing order, i.e.,
t̂e1 ≥ t̂e2 ≥ · · · ≥ t̂em ≥ t̂em+1 (= 0). Therefore, t̂ei is the ith greatest t̂ij , (i, j) ∈ A. For the sake of
notational convenience, we also employ xei that corresponds t̂ei . The following Theorem 1 shows
that the solution of RCVRP-minT can be found by solving multiple deterministic CVRP-minT
problems.

Theorem 1. The solution of RCVRP-minT (47) can be computed as the minimum of m + 1
deterministic VRP problems, for l = 1, 2, ...,m+ 1:

Z l = ΓT t̂el + min
x∈X

 ∑
(i,j)∈A

t̄ijxij +
l∑

k=1

(
t̂ek − t̂el

)
xek

 (48)

where m is the number of arcs in the road network. Let l∗ = arg minl Z
l, then Z∗ = Z l∗ and

x∗ = xl
∗

where xl is the optimal solution of Z l.

Proof. See Bertsimas and Sim (2003).

The objective function of RCVRP-minD (40) can have uncertain demand nodes up to the number
of nodes in the road network. A set SQ ⊆ UQ, |SQ| = ΓQ is introduced, where ΓQ is the budget
of uncertainty, to the degree which the system is protected deterministically. Then the objective
function of RCVRP-minD can be written as follows:

(RCVRP-minD) min

∑
i∈N

q̄iai + max
{SQ|SQ⊆UQ,|SQ|≤ΓQ}

∑
i∈SQ

q̂iai

 (49)

This objective function is protected by:

β(a,ΓQ) = max
{SQ|SQ⊆UQ,|SQ|≤ΓQ}

∑
i∈SQ

q̂iai (50)

where a is vector of ai,∀i ∈ N .

Proposition 1. Equation (50) is equivalent to the following linear optimization problem:

β(a,ΓQ) = max
∑
i∈N

q̂iaiz
′
i (51)

s.t.
∑
i∈N

z′i ≤ ΓQ (52)

0 ≤ z′i ≤ 1 ∀i ∈ N (53)

Proof. It is clear that the optimal solution value of function (51) consists of bΓQc variables z′i at
1. This is equivalent to the selection of subset {SQ | SQ ⊆ UQ, | SQ |≤ ΓQ} with corresponding
function

∑
i∈SQ

q̂iai.

Theorem 2. The RCVRP-minD has the equivalent formulation as follows.

11



(RCVRP-minD) min
∑
i∈N

q̄iai + ΓQg
′ +
∑
i∈N

p′i (54)

s.t. (2)–(3), (8), (12), (42)–(45)

g′ + p′i ≥ q̂iai ∀i ∈ N (55)

p′i ≥ 0 ∀i ∈ N (56)

g′ ≥ 0 (57)

Proof. Consider the dual of function (51):

min ΓQg
′ +
∑
i∈N

p′i (58)

s.t. g′ + p′i ≥ q̂iai ∀i ∈ N (59)

p′i ≥ 0 ∀i ∈ N (60)

g′ ≥ 0 (61)

By strong duality, since function (51) is feasible and bounded for ΓQ ∈ [0, |SQ|], then the dual
problem (58) is also feasible and bounded and their objective values coincide. Using Proposition 1,
we have that function (50) is equal to the objective function value of function (58). Substituting
(58)–(61), we obtain that function (49) is equivalent to function (54).

3.4 Robust Models of the SDVRP

The robust models of the SDVRP use the same fashion of the robust models of the CVRP.

(RSDVRP-minT) min
x

max
(t,d)∈U

∑
(i,j)∈A

∑
k∈K

tijxijk (62)

s.t.
∑
j∈N0

∑
k∈K

xijk ≥ 1 ∀i ∈ N (63)

∑
j∈N0

∑
k∈K

x0jk ≤ |K| (64)

∑
j∈N0

xijk −
∑
j∈N0

xjik = 0 ∀i ∈ N0, k ∈ K (65)

max
(t,d)∈U

tij ≤ ajk − aik + T (1− xijk) ∀i, j ∈ N, k ∈ K (66)

max
(t,d)∈U

t0ix0ik ≤ aik ∀i ∈ N, k ∈ K (67)

yik − max
(t,d)∈U

qi
∑
j∈N0

xijk ≤ 0 ∀i ∈ N, k ∈ K (68)

∑
i∈N

yik ≤ C k ∈ K (69)∑
k∈K

yik − max
(t,d)∈U

qi = 0 ∀i ∈ N (70)

xijk ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K (71)
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yik ≥ 0 ∀i ∈ N, k ∈ K (72)

The robust model to minimize the summation of arrival times can be formulated as:

(RSDVRP-minS) min
∑
i∈N

∑
k∈K

aik (73)

s.t.(63)–(72)

The robust model to minimize the summation of demand weighted arrival times can be formulated
as:

(RSDVRP-minD) min
∑
i∈N

∑
k∈K

yikaik (74)

s.t.(63)–(72)

The robust model to minimize the latest arrival time is formulated as:

(RSDVRP-minL) min al (75)

s.t.(63)–(72), (32)

Inequalities (66) – (68), (70) can be written as:

t̄ij + t̂ijxijk ≤ ajk − aik + T (1− xijk) ∀i, j ∈ N, k ∈ K (76)(
t̄0i + t̂0i

)
x0ik ≤ aik ∀i ∈ N, k ∈ K (77)

yik − (q̄i + q̂i)
∑
j∈N0

xijk ≤ 0 ∀i ∈ N, k ∈ K (78)

∑
k∈K

yik − (q̄i + q̂i) = 0 ∀i ∈ N (79)

The main difference between the CVRP models and the SDVRP models is whether an arc (i, j)
can be used by multiple vehicles or not. In the CVRP, an arc (i, j) can be used at most once,
therefore, each tij is related to one variable xij . In contrast, an arc (i, j) in the SDVRP can be used
by multiple vehicles. Therefore, tij is related to xijk, k ∈ K. A set S ⊆ UT , |S| = ΓT is introduced,
where ΓT is the budget of uncertainty. Then the RSDVRP-minT can be written as follows:

(RSDVRP-minT) min

 ∑
(i,j)∈A

∑
k∈K

t̄ijxijk + max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

∑
k∈K

t̂ijxijk

 (80)

As in the CVRP case, the objective function is protected by:

β(x,ΓT ) = max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

∑
k∈K

t̂ijxijk (81)

where x is vector of decision variables.
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Proposition 2. Equation (81) can be written as

β(x,ΓT ) = max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

t̂ij
∑
k∈K

xijk (82)

A new type of variable wij is introduced, which denotes the number of vehicles using arc (i, j).
Therefore,

β(x,ΓT ) = max
{S|S⊆UT ,|S|≤ΓT }

∑
(i,j)∈S

t̂ijwij (83)

s.t. wij =
∑
k∈K

xijk ∀(i, j) ∈ A (84)

Equations (83) and (84) are equivalent to the following linear optimization problem:

β(x,ΓT ) = max
∑

(i,j)∈A

t̂ijwijzij (85)

s.t. (84)∑
(i,j)∈A

zij ≤ ΓT (86)

0 ≤ zij ≤ 1 ∀(i, j) ∈ A (87)

Proof. Clearly the optimal solution value of function (85) consists of bΓT c variables zij at 1. This
is equivalent to the selection of subset {S | S ⊆ UT , |S| ≤ ΓT } with corresponding function∑

(i,j)∈S t̂ijwij .

Theorem 3. The RSDVRP-minT has the equivalent formulation as follows.

(RSDVRP-minT) min
∑

(i,j)∈A

∑
k∈K

t̄ijxijk + ΓT g +
∑

(i,j)∈A

pij (88)

s.t. (63)–(65), (69)–(72), (76)–(79), (84)

g + pij ≥ t̂ijwij ∀(i, j) ∈ A (89)

pij ≥ 0 ∀(i, j) ∈ A (90)

g ≥ 0 (91)

0 ≤ wij ≤ |K| ∀(i, j) ∈ A (92)

Proof. Consider the dual of Problem (85):

min ΓT g +
∑

(i,j)∈A

pij (93)

s.t. g + pij ≥ t̂ijwij ∀(i, j) ∈ A (94)

pij ≥ 0 ∀(i, j) ∈ A (95)

g ≥ 0 (96)

14



By strong duality, since function (85) is feasible and bounded for ΓT ∈ [0, |S|], then the dual
function (93) is also feasible and bounded and their objective values coincide. Using Proposition 2,
we have that function (81) is equal to the objective function value of function (93). Substituting
(93)–(96), we obtain that function (80) is equivalent to function (88).

4 Heuristic Algorithms

For small-sized problems, the problems can be solved by using the solvers such as Gurobi. However,
for large-scale problems, it is by no means practical to utilize the solvers, as the VRPs are NP-hard.
Considering that the routing decisions need to be made quickly in the immediate response phase of
disaster management, it is desirable to obtain the near-optimal solutions within a short time period.
In light of this, we propose a heuristic algorithm for which the well-known insertion algorithm is
modified and used in conjunction with tabu search method. The overall, high-level main framework
is shown in Algorithm 1. In particular, the insertion algorithm is used to find the good feasible
solution as an initial solution for tabu search. The maximum CPU time allowed is set by the users.
Then, a tabu search method is implemented iteratively until the elapsed CPU time is greater than
the maximum CPU time allowed. The best-so-far solution during the whole procedure is returned.

Main Framework for Solving the VRP Problems
Implement the insertion algorithm to construct a good feasible solution sI ;
Set sI as the initial solution for the tabu search;
while elapsed CPU time < Max CPU time do

Implement one iteration of the tabu search method;
Update best-so-far solution sB;

end
Return best-so-far solution sB

Algorithm 1: Main Framework

4.1 Extended Insertion Algorithms

We employ the insertion algorithm to find a good initial solution. It has been used for solving various
vehicle routing problems, see, e.g., Campbell and Savelsbergh (2004); Campbell et al. (2008a). It
constructs a reasonably good feasible solution by repeatedly and greedily inserting an unrouted
customer node into a partially constructed feasible solution. The constructed solution from insertion
algorithm is not guaranteed to be an optimal solution or a near-optimal solution. Therefore, it is
used as the initial solution for a tabu search method in this project.

The insertion algorithm, presented in Campbell and Savelsbergh (2004) and Campbell et al.
(2008a), constructs the routes that do not take demands into account. In this project, we extend
the insertion algorithms in Campbell and Savelsbergh (2004) to consider the capacity constraints of
the CVRP and the SDVRP with different objective functions. For the SDVRP, we further extend
the insertion algorithm to consider the split delivery.

The notation used in the extended insertion algorithms proposed are as follows. Let N ′ denote
the set of unassigned nodes, R′ denote the set of assigned routes, and |R′| denote the number of
assigned routed (not including empty route). The index of a route is denoted by r ∈ R. The flow
for route r is denoted by cr, which means the total amount of demands of the nodes in current
route r. A variable E is used to record the number of vehicles that can not take demand of node j
because C − cr ≤ qj . The end of route r is denoted by Lr. The objective value of R′ is denoted by
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f ′. The objective value of Ri,j,r is denoted by fi,j,r. The objective value of Rj is denoted by fj . The
difference between two objective values is denoted by δ. The amount of demand served by route r
to node j is denoted by yjr. The remaining demand of node j is denoted by q′j . The variables i?, j?,
r? and δ? are used to record the best choices of i, j, r, and δ, respectively.

The extended insertion algorithm for the CVRP-minV is shown in Algorithm 2. The objective
of Algorithm 2 is to find a solution to minimize the number of vehicles needed in the problem.
The algorithm starts with one route, and keeps adding the nodes into the set of routes. If a node
cannot be added into any routes, then add a new route in the set of routes. Algorithm 2 stops
when all nodes have been assigned into routes. When the CVRP-minV is solved, the number of
vehicles is fixed and used for the CVRP-minT, CVRP-minS, CVRP-minD, and CVRP-minL. The
insertion algorithms for the CVRP-minT, CVRP-minS, CVRP-minD, and CVRP-minL share the
same structures, as shown in Algorithm 3. The algorithm starts with |K| routes that only contain
the depot. During the initialization, the algorithm searches j? with the smallest δ? if add j? at the
end of route r for R′. After j? is added into R′, j? is removed from N ′. When N ′ 6= ∅, the algorithm
searches i?, j?, r? and δ? iteratively. By doing so, the algorithm can insert node j? into R′ with
the smallest δ? in each iteration. In addition, during searching i?, j?, r? and δ?, the constraint
C − cr ≥ qj is checked for all j and r. Therefore, the algorithm can guarantee R′ is feasible for the
capacity constraint.

The insertion algorithms for the SDVRP-minT, SDVRP-minS, SDVRP-minD, and SDVRP-minL
share the same structures, as shown in Algorithm 5. In Algorithm 5, split delivery is allowed. The
procedure to find i?, j?, r?, and δ? is as same as the one in Algorithm 3. The capacity constraint is
replaced by C − cr ≥ 0 in Algorithm 5 because a vehicle can serve partial demand of a node. Once
j? is added into R′, yj?r? , q′j? , and cr

?
are updated based on the condition (C − cr) < q′j? . If the

full demand of a node has been served by the routes, then this node is removed from N ′.

4.2 Tabu Search

The tabu search (TS) approach is a single solution based and deterministic method to search optimal
solution. For tutorials, we refer readers to (Glover, 1990). The tabu search algorithm used in this
project to solve the VRPs is shown in Algorithm 6.

In TS, the initial solution is given. In this reserch, the initial solution can be found by
implementing the proposed extended insertion algorithm. The current solution during TS is denoted
by R′ and the tabu list is denoted by σ. The best-so-far solution during TS is denoted by Rbest,
and the objective value of Rbest is denoted by f best. In addition, the neighbor solution of R′ is
denoted by R′h, and f ′h is the objective value of R′h. The set of R′h that satisfies all constraints is
denoted by M , and R′h are rearranged from the smallest f ′h to largest f ′h. The maximum CPU time
that allows program to run is denoted by Bmax and the elapsed CPU time is denoted by B. While
B < Bmax, TS is implemented iteratively. At each iteration, all R′h of R′ are found according the
move operators shown in Algorithms 7–9. In Algorithms 7–9, the nodes are denoted by i and i′ and
the routes are denoted by r and r′.

Two types of neighbor solutions for the CVRP are defined in this report: exchange-node neighbor
solutions and relocate-node neighbor solutions. The exchange-node neighbor solutions can be found
by choosing two different nodes in the routes and switching the two nodes. The set of exchange-node
neighbor solutions is denoted as M1 in Algorithm 7. The relocate-node neighbor solutions can
be found by removing one node from a route and relocate this node in another route. The set of
relocate-node neighbor solutions is denoted as M2 in Algorithm 8. The move operators for searching
exchange-node neighbor solutions and relocate-node neighbor solutions are shown in Algorithms 7
and 8, respectively. For the SDVRP, besides exchange-node neighbor solutions and relocate-node
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Extended Insertion Algorithm for CVRP-minV
Start one route r ∈ R′, each route only contains depot;
while N ′ 6= ∅ do

for j ∈ N ′ do
initialize E = 0 ;
for r ∈ R′ do

if C − cr ≥ qj then
r? = r

else
E = E + 1

end

end
if E = |R′| then

add a new route r′ in R′;
add j in r′ ;

cr
′

= qj ;

else
add j in r? ;

cr
?

= cr
?

+ qj
end
Remove j from N ′;

end

end
Return R′, |R′|.

Algorithm 2: Insertion Algorithm Extended for CVRP-minV
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Extended Insertion Algorithm for CVRP
start with K route r ∈ R′, each route only contains depot, f ′ = 0 ;
cr = 0, ∀r ∈ R′;
for r ∈ R′ do

δ? =∞;
for j ∈ N ′ do

Rj = R′, add j at the end of route r for Rj ;
evaluate fj , δ = fj − f ′;
if δ < δ? then

δ? = δ, j? = j
end

end
add j? at the end of route r for R′, cr = qj? , f ′ = f ′ + δ?;
remove j? from N ′;

end
while N ′ 6= ∅ do

δ? =∞;
for j ∈ N ′ do

for r ∈ R′ do
if C − cr ≥ qj then

for i ∈ r do
Ri,j,r = R′, insert j in front of i in route r for Ri,j,r;
evaluate fi,j,r, δ = fi,j,r − f ′;
if δ < δ? then

δ? = δ, j? = j, i? = i, r? = r
end

end
Ri,j,r = R′, add j at the end of route r for Ri,j,r;
evaluate fi,j,r, δ = fi,j,r − f ′;
if δ < δ? then

δ? = δ, j? = j, i? = Lr, r
? = r

end

end

end

end
if i? = Lr? then

add j? at the end of route r? for R′

else
insert j? in front of i? in route r? for R′

end
f ′ = f ′ + δ?;

cr
?

= cr
?

+ qj? ;
remove j? from N ′;

end
return R′, f ′.

Algorithm 3: Extended Insertion Algorithm for CVRP
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Function to find i?, j?, r? and δ? for Insertion Algorithm of SDVRP
δ? =∞;
for j ∈ N ′ do

for r ∈ R′ do
if C − cr ≥ 0 then

for i ∈ r do
Ri,j,r = R′, insert j in front of i in route r for Ri,j,r;
evaluate fi,j,r, δ = fi,j,r − f ′;
if δ < δ? then

δ? = δ, j? = j, i? = i, r? = r
end

end
Ri,j,r = R′, add j at the end of route r for Ri,j,r;
evaluate fi,j,r, δ = fi,j,r − f ′;
if δ < δ? then

δ? = δ, j? = j, i? = Lr, r
? = r

end

end

end

end

Algorithm 4: Function to Find i?, j?, r? and δ? for Insertion Algorithm of SDVRP

neighbor solutions, two more types of neighbor solutions are defined: add-split-node neighbor
solutions and delete-split-node neighbor solutions (Berbotto et al., 2014). The add-split-node
neighbor solutions can be found by adding node i of route r into route r′ if i /∈ r′, i 6= i′, r 6= r′. The
demand of node i is split and served by route r and route r′. The set of add-split-node neighbor
solutions is denoted as M3. The delete-split-node neighbor solutions can be found by choosing a
node that is served by more than one route, and the node from one of the routes is removed. The
set of delete-split-node neighbor solutions is denoted as M4. The move operators for searching
add-split-node neighbor solutions and delete-split-node neighbor solutions are shown in Algorithms
9 and 10.

Subsequently, all the neighbor solutions are evaluated and ranked according to their objective
values. The best neighbor solution which is not in the tabu list is used as current solution for the
next iteration, and added in the tabu list. At the end of each iteration, the tabu list is updated
based on frequency. For example, when frequency is 50, a solution is stored in the tabu list for 50
iterations. After 50 iterations, this solution is removed from the tabu list. The best-so-far solution
is saved during the whole procedure.

5 Results

5.1 Simple Examples

Two simple examples from Campbell et al. (2008b) are used to illustrate how different objective
functions can influence the solutions, and one simple example from Huang et al. (2012) is used to
show the difference between the CVRP and the SDVRP. These examples are shown in Figures 1, 2,
and 3, respectively.

The main observation from the results, shown Table 2, is that the minS and minL objectives

19



Extended Insertion Algorithm for the SDVRP
start with K route r ∈ R′, each route only contains depot, f ′ = 0, q′j = qj ,∀j ∈ N ′;
yjr = 0,∀j ∈ N ′,∀r ∈ R′;
cr = 0, ∀r ∈ R′;
for r ∈ R′ do

δ? =∞;
for j ∈ N ′ do

Rj = R′, add j at the end of route r for Rj ;
evaluate fj , δ = fj − f ′;
if δ < δ? then

δ? = δ, j? = j
end

end
add j? at the end of route r for R′, f ′ = f ′ + δ?;
if C < q′j? then

yj?r = C, q′j? = q′j? − C, cr = C

else
yj?r = q′j? , q′j? = 0, cr = qj?

end
if q′j? = 0 then

remove j? from N ′

end

end
while N 6= ∅ do

implement Algorithm 4 to find i?, j?, r? and δ?;
if i? = Lr? then

add j? at the end of route r? for R′

else
insert j? in front of i? in route r? for R′

end
f ′ = f ′ + δ?;
if (C − cr) < q′j? then

yj?r? = yj?r? + (C − cr?), q′j? = q′j? − (C − cr?), cr
?

= C

else
yj?r? = yj?r? + q′j? , q′j? = 0, cr

?
= cr

?
+ q′j?

end
if q′j? = 0 then

remove j? from N ′

end

end

Algorithm 5: Extended Insertion Algorithm for the SDVRP
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Tabu Search Algorithm
initialize R′, Rbest = R′, σ = ∅ ;
while B < Bmax do

M = ∅;
find all R′h of R′ according to the move operators, and add them into M ;
for R′h ∈M do

evaluate f ′h of R′h;
end
rank R′h ∈M from the smallest f ′h to the largest f ′h;
for R′h ∈M ′ do

if R′h /∈ σ then
R′ = R′h;
add R′h to σ;

if f ′h < f best then
Rbest = R′h;

f best = f ′h;

end

else
if f ′h < f best then

R′ = R′h;
add R′h to σ;

Rbest = R′h;

f best = f ′h;

end

end
break the for-loop when R′ is updated;

end
update σ based on frequency.

end

return Rbest and f best

Algorithm 6: Tabu Search Algorithm
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Exchange-nodes Move Operator
for r ∈ R′ do

for r′ ∈ R′ do
for i ∈ r do

for i′ ∈ r′ do
if i 6= i′ then

R′h = R′;
exchange i and i′ in R′h;
if R′h satisfies all constraints then

add R′h in M1

end

end

end

end

end

end
return M1

Algorithm 7: Exchange-nodes Move Operator

Relocate-node Move Operator
for r ∈ R′ do

for r′ ∈ R′ do
for i ∈ r do

for i′ ∈ r′ do
if i 6= i′ and r 6= r′ then

R′h = R′;
take i out of r for R′h, insert i after i′ in r′ for R′h;
if R′h satisfies all constraints then

add R′h in M2

end

end

end

end

end

end
return M2

Algorithm 8: Relocate-node Move Operator
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Add-splite-node Move Operator
for r ∈ R′ do

for r′ ∈ R′ do
for i ∈ r do

for i′ ∈ r′ do
if i /∈ r′, i 6= i′ and r 6= r′ then

R′h = R′, Y ′h = Y ′;
randomly generate a number α in range [1, yir];
insert i after i′ in r′ for R′h;
for Y ′h, yir = yir − α, yir′ = yir′ + α;
if R′h and Y ′h satisfy all constraints then

add R′h in M3

end

end

end

end

end

end
return M3

Algorithm 9: Add-split-node Move Operator

Delete-splite-node Move Operator
for r ∈ R′ do

for r′ ∈ R′ do
for i ∈ r do

if i ∈ r′ and r 6= r′ then
R′h = R′, Y ′h = Y ′;
remove i from r;
for Y ′, yir′ = yir′ + yir, yir = 0 ;
if R′h and Y ′h satisfy all constraints then

add R′h in M4

end

end

end

end

end

Algorithm 10: Delete-split-node Move Operator
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Figure 1: Network and Solutions of Example 1
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Figure 3: Network and Solutions of Example 3
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ensure the better response times for serving the demands of nodes at the possible expense of reduced
efficiency (the increase total travel time). In disaster management, this implies that the minS and
minL objectives allow delivering the critical supplies to the demand node faster, which is important
for the sake of humanitarian logistics. The minD considers the demand-weighted arrival times
at the nodes, which ensures the better response times for serving unit demand regardless of the
node locations. In example 1, the minimum number of vehicles required is one for the CVRP and
the SDVRP. The objective function values provided by the CVRP and the SDVRP are the same
corresponding to the minT, minS, and minL.

The main observation, summarized from Table 3, is that the minS and minL objectives may
provide different solutions depending on the network. In example 2, we can see that the optimal
solution of minimizing the summation of arrival times does not guarantee the minimum latest arrival
time. The optimal solution of minimizing the latest arrival time does not guarantee the minimum
summation of arrival times either.

From Table 4, we may point out several observations. In this example, the CVRP nominal
model requires at least three vehicles to produce feasible solutions, while the SDVRP nominal model
requires at least two vehicles. Considering the minV, the SDVRP model allows better utilization of
vehicles. In this example, the vehicles have not enough capacity to meet the entire demand of two
nodes in the CVRP. Therefore, each vehicle can only serve one node in the CVRP. In the SDVRP,
each node is allowed to be served by more than one vehicle. Therefore, vehicles can co-operate with
each other to serve the demand. In the SDVRP, the solutions with minimum number of vehicles
restrict the solution space. When three vehicles are allowed to be used in the SDVRP, we can see
that the optimal solutions vary regarding minT, minS, minL, and minD. To minimize the total
travel time, only two vehicles are used to serve the demand in the SDVRP nominal model even
though three vehicles are available. To minimize the summation of arrival times, summation of
demand-weighted arrival times, and latest arrival time, three vehicles are used to serve the nodes in
order to reduce the response times. From these observations, we can see that the SDVRP provides
more flexibility.

To test the robust models of the CVRP and the SDVRP, t̂ij , ∀ (i, j) ∈ A for examples 1–3 are
generated as shown in Table 1. We use q̂i = 1,∀i ∈ N for examples 1–3. In Table 1, we can see
that t̂01 and t̂10 are relatively very large, which implies that arcs (0, 1) and (1, 0) no longer function
in the aftermath of a disaster. From Tables 2 and 3, we can see that arcs (0, 1) and (1, 0) are not
selected in the solutions of the RCVRP and the RSDVRP for minT. For minS, minL, and minD,
arc (0, 1) is not selected in the solutions, and arc (1, 0) can be selected because arc (1, 0) does not
influence the arrival time of the nodes (except depot).

For example 3 where we set q̄i + q̂i = 5, at least three vehicles are needed. From Table 4, the
solutions of SDVRP models can avoid using arc (0, 1) by visiting nodes 2 and 3 more than once.
Based on the constraint of CVRP, there is only one feasible solution.

Table 1: Increased Travel Times of Examples 1–3

Node

t̂ij 0 1 2 3

0 0 100 3 5
Node 1 100 0 4 11

2 3 4 0 8
3 5 11 8 0

For the RCVRP-minT and the RSDVRP-minT, we can control the level of uncertainty of travel
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Table 2: Results of Example 1

Nominal Model

Model Route TV TT SUM MAX DA

CVRP-minV 0,3,1,2,0 1 22 22 14 52
CVRP-minT 0,1,2,3,0 1 20 30 18 68
CVRP-minS 0,1,3,2,0 1 22 22 14 56
CVRP-minL 0,1,3,2,0 1 22 22 14 56
CVRP-minD 0,3,2,1,0 1 20 30 18 52
SDVRP-minT 0,1,2,3,0 1 20 30 18 68
SDVRP-minS 0,1,3,2,0 1 22 22 14 56
SDVRP-minL 0,3,1,2,0 1 22 22 14 52
SDVRP-minD 0,3,2,1,0 1 20 30 18 52

Robust Model, Full Uncertainty

Model Route TV TT SUM MAX DA

RCVRP-minV 0,2,1,3,0 1 45 72 38 204
RCVRP-minT 0,3,1,2,0 1 45 63 34 201
RCVRP-minS 0,3,1,2,0 1 45 63 34 201
RCVRP-minL 0,3,1,2,0 1 45 63 34 201
RCVRP-minD 0,3,2,1,0 1 137 65 35 183
RSDVRP-minT 0,2,1,3,0 1 45 72 38 204
RSDVRP-minS 0,3,1,2,0 1 45 63 34 201
RSDVRP-minL 0,3,1,2,0 1 45 63 34 201
RSDVRP-minD 0,3,2,1,0 1 137 65 35 183

time considered in the solutions by adjusting the value of ΓT . When ΓT = 1, one t̂ij that increases
the objective value with greatest amount is considered in the solution and the objective value. When
ΓT = 2, two t̂ij that increase the objective value with greatest amount is considered in the solution
and the objective value. When the value of ΓT increases, more t̂ij are considered in the solution and
the objective value. As shown in Table 5, the optimal solutions may be the same when ΓT increases,
but the objective value increases due to more t̂ij considered in the solution. For examples 1 and
2, the optimal solutions of RCVRP and RSDVRP are the same because one vehicle is used. For
example 3, the only feasible solution of RCVRP is [0, 1, 0], [0, 2, 0], [0, 3, 0] because of the constraint.
For the RSDVRP of example 3, the optimal solutions avoid arcs (0, 1) and (1, 0).

For RCVRP-minD, we can control the level of uncertainty of demand considered in the solutions
by controlling the value of ΓQ. When the value of ΓQ increases, more q̂i are considered in the
solution and the objective value. As shown in Table 6, the optimal solutions may be the same when
ΓQ increases, but the objective value increases due to more q̂i considered in the solution.

5.2 Results from Heuristic Algorithms

For the large-scale examples, heuristic algorithms are used to obtain near-optimal solutions within
the time limit. We use examples from http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-
instances/. Examples named A − n32 − k5, A − n44 − k7, and E − n101 − k8 are used. The
number of nodes in these examples are 32, 44, and 101, respectively. The capacity of each vehicle in
A− n32− k5 and A− n44− k7 is 100. The capacity of each vehicle in E − n101− k8 is 200. For
examples A− n32− k5 and A− n44− k7, we set CPU time = 300 seconds for one run of model
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Table 3: Results of Example 2

Nominal Model

Model Route TV TT SUM MAX DA

CVRP-minV 0,2,3,1,0 1 20 31 16 51
CVRP-minT 0,1,2,3,0 1 13 19 10 39
CVRP-minS 0,1,2,3,0 1 13 19 10 39
CVRP-minL 0,3,2,1,0 1 13 20 9 39
CVRP-minD 0,3,2,1,0 1 13 20 9 39
SDVRP-minT 0,3,2,1,0 1 13 20 9 39
SDVRP-minS 0,1,2,3,0 1 13 19 10 39
SDVRP-minL 0,3,2,1,0 1 13 20 9 39
SDVRP-minD 0,3,2,1,0 1 13 20 9 39

Robust Model, Full Uncertainty

Model Route TV TT SUM MAX DA

RCVRP-minV 0,2,1,3,0 1 38 51 30 148
RCVRP-minT 0,2,1,3,0 1 38 51 30 148
RCVRP-minS 0,2,1,3,0 1 38 51 30 148
RCVRP-minL 0,3,2,1,0 1 130 55 26 160
RCVRP-minD 0,2,1,3,0 1 38 51 30 148
RSDVRP-minT 0,3,1,2,0 1 38 63 30 194
RSDVRP-minS 0,2,1,3,0 1 38 51 30 148
RSDVRP-minL 0,3,2,1,0 1 130 55 26 160
RSDVRP-minD 0,2,1,3,0 1 38 51 30 148

with minV, and CPU time = 3000 seconds for one run of model with other objectives. For example
E − n101− k8, we set CPU time = 300 seconds for one run of model with minV, and CPU time
= 9000 seconds for one run of model with other objectives.

For testing the robust models, we randomly generate t̂ij in range [0, 20], and q̂i = 1. From Tables
7–9, we can see that the performances of CVRP and SDVRP are at similar level in terms of the
objective values within the limited CPU time. From Figure 4, we can see that the total travel time
increases when ΓT increases, because more t̂ij in the solution are considered. As the near-optimal
solutions are obtained from heuristic algorithms, we can see that the best-so-far solution for the
smaller ΓT may not always provide smaller total travel time than the best-so-far solution for the
larger ΓT .

To test the RCVRP-minD with ΓQ, q̂i are randomly generated in range [0, 3]. From Figure
5, we can see that the summation of demand-weighted arrival times increases when ΓQ increases,
because more q̂i in the solution are considered. As the near-optimal solutions are obtained from
heuristic algorithms, we can see that the best-so-far solution for the smaller ΓQ may not always
provide smaller objective value than the best-so-far solution for the larger ΓQ.

6 Conclusion

In this project, we explicitly considered the uncertainty in travel times and demands when planning
vehicle routes for delivering critical supplies to the affected population in need after a disaster. To
consider different scenarios, we proposed robust optimization approaches for the capacitated vehicle
routing problems and the split delivery vehicle routing problems under uncertainty, respectively.
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(a) RCVRP, A− n32− k5 (b) RSDVRP, A− n32− k5

(c) RCVRP, A− n44− k7 (d) RSDVRP, A− n44− k7

(e) RCVRP, E − n101− k8 (f) RSDVRP, E − n101− k8

Figure 4: Robust Models of minT with ΓT
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(a) RCVRP, A− n32− k5 (b) RCVRP, A− n44− k7

(c) RCVRP, E − n101− k8

Figure 5: Robust Models of minD with ΓQ
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Table 4: Results of Example 3

Nominal Model

Model Routes TV TT SUM MAX DA

K = 3 CVRP-minV [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minT [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minS [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minL [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
CVRP-minD [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56

K = 2 SDVRP-minT [0,2,1,0], [0,2,3,0] 2 27 25 11 84
SDVRP-minS [0,3,2,0], [0,2,1,0] 2 27 25 11 80
SDVRP-minL [0,2,1,0], [0,3,1,0] 2 34 30 11 76
SDVRP-minD [0,2,1,0], [0,3,1,0] 2 34 30 11 76

K = 3 SDVRP-minT [0,2,1,0], [0,2,3,0] 2 27 25 11 84
SDVRP-minS [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
SDVRP-minL [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56
SDVRP-minD [0,1,0], [0,2,0], [0,3,0] 3 28 14 6 56

Robust Model, Full Uncertainty

Model Routes TV TT SUM MAX DA

K = 3 RCVRP-minV [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minT [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minS [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minL [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610
RCVRP-minD [0,1,0], [0,2,0], [0,3,0] 3 244 122 106 610

K = 3 RSDVRP-minT [0,2,0], [0,2,1,3,0], [0,3,1,2,0] 3 104 142 38 237
RSDVRP-minS [0,3,0], [0,2,0], [0,2,1,0] 3 156 41 18 170
RSDVRP-minL [0,2,1,0], [0,2,3,0], [0,2,0] 3 164 56 18 210
RSDVRP-minD [0,3,0], [0,2,0], [0,2,1,0] 3 156 41 18 170

Table 5: Results of Robust Models of MinT with ΓT , Simple Examples

Example 1 Example 2 Example 3
CVRP, SDVRP CVRP, SDVRP SDVRP

ΓT Route TT Route TT Route TT

1 [0,2,1,3,0] 33 [0,3,1,2,0] 26 [0,2,0], [0,3,1,2,0], [0,2,1,3,0] 63
2 [0,3,1,2,0] 38 [0,2,1,3,0] 31 [0,3,0], [0,3,1,2,0], [0,2,1,3,0] 74
3 [0,3,1,2,0] 42 [0,2,1,3,0] 35 [0,2,0], [0,3,1,2,0], [0,2,1,3,0] 80
4 [0,3,1,2,0] 45 [0,2,1,3,0] 38 [0,2,0], [0,3,1,2,0], [0,2,1,3,0] 86

Table 6: Results of Robust CVRP Models of MinD with ΓQ, Simple Examples

Example 1 Example 2 Example 3

ΓQ Route DA Route DA Route DA

1 [0,3,2,1,0] 153 [0,2,1,3,0] 127 [0,1,0], [0,2,0], [0,3,0] 594
2 [0,3,2,1,0] 176 [0,2,1,3,0] 140 [0,1,0], [0,2,0], [0,3,0] 603
3 [0,3,2,1,0] 183 [0,2,1,3,0] 148 [0,1,0], [0,2,0], [0,3,0] 610
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Table 7: Results of Example A− n32− k5

Nominal Model

Model TV TT SUM MAX DA

CVRP-minV 5 2113 7254 542 87513
CVRP-minT 5 795 3085 207 35562
CVRP-minS 5 973 2312 142 29408
CVRP-minL 5 942 2536 144 32153
CVRP-minD 5 950 2410 138 28463

SDVRP-minT 5 886 3735 263 44024
SDVRP-minS 5 959 2325 145 29622
SDVRP-minL 5 1040 2478 144 30895
SDVRP-minD 5 1040 2478 144 30895

Robust Model, Full Uncertainty

Model TV TT SUM MAX DA

RCVRP-minV 5 2522 7743 566 104271
RCVRP-minT 5 1154 3969 239 51720
RCVRP-minS 5 1295 3237 211 44558
RCVRP-minL 5 1290 3468 192 45149
RCVRP-minD 5 1311 3623 213 42902

RSDVRP-minT 5 1217 3707 226 48005
RSDVRP-minS 5 1330 3210 191 44351
RSDVRP-minL 5 1358 3679 204 47985
RSDVRP-minD 5 1354 3544 205 43189
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Table 8: Results of Example A− n44− k7

Nominal Model

Model TV TT SUM MAX DA

CVRP-minV 6 2614 9131 512 107424
CVRP-minT 6 970 3862 208 53915
CVRP-minS 6 1272 2814 155 38074
CVRP-minL 6 1119 3037 123 40376
CVRP-minD 6 1107 2822 148 34198

SDVRP-minT 6 1009 3764 199 49064
SDVRP-minS 6 1118 2944 180 39282
SDVRP-minL 6 1118 2944 180 39282
SDVRP-minD 6 1121 2924 144 36959

Robust Model, Full Uncertainty

Model TV TT SUM MAX DA

RCVRP-minV 7 3065 10144 580 137494
RCVRP-minT 7 1451 4968 253 66387
RCVRP-minS 7 1643 3793 187 54005
RCVRP-minL 7 1838 4184 204 59997
RCVRP-minD 7 1769 3944 189 51895

RSDVRP-minT 7 1482 5571 306 73005
RSDVRP-minS 7 1735 3934 206 52893
RSDVRP-minL 7 1917 4783 205 56648
RSDVRP-minD 7 1727 4112 198 51121
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Table 9: Results of Example E − n101− k8

Nominal Model

Model TV TT SUM MAX DA

CVRP-minV 8 2260 14751 360 204559
CVRP-minT 8 1031 6604 186 102722
CVRP-minS 8 1166 4436 134 66359
CVRP-minL 8 1154 5333 121 80143
CVRP-minD 8 1166 4436 134 66359

SDVRP-minT 8 1014 7294 223 101344
SDVRP-minS 8 1159 4970 153 68897
SDVRP-minL 8 1138 5843 133 79541
SDVRP-minD 8 1178 5112 146 67931

Robust Model, Full Uncertainty

Model TV TT SUM MAX DA

RCVRP-minV 8 3278 20644 476 324160
RCVRP-minT 8 1717 11090 258 177772
RCVRP-minS 8 1830 8378 233 131630
RCVRP-minL 8 1897 10296 199 164603
RCVRP-minD 8 1914 8623 229 128447

RSDVRP-minT 8 1766 11826 356 181360
RSDVRP-minS 8 1792 9249 254 132370
RSDVRP-minL 8 1886 9998 236 144022
RSDVRP-minD 8 1882 9783 275 130069
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We presented different robust CVRP and SDVRP models depending on different objectives and the
source of uncertain factors (e.g., travel time and demand) to mitigate the impact of the uncertainty
and eventually to achieve enhanced resilience in the aftermath of disasters. From the examples
presented in this report, we can see that the SDVRP can provide more flexible solutions when
the demands from nodes are relatively large. The SDVRP model also avoids the arcs with large
uncertain travel time selected in the optimal solution by allowing the visitation of nodes multiple
times from different arcs. The small-sized problems can be solved by the solvers such as Gurobi
in conjunction with Julia and Jump. For large-scale problems, we presented two-stages heuristic
methods combining the insertion algorithm and tabu search to solve the VRP models.
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