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ABSTRACT 
This paper presents the development of a web application 
that integrates a system of movie recommendations using the 
collaborative filtering algorithm with a component of real-
time recording and detection of emotions. So far, there were 
no implementations that combine recommendations and 
emotions, so this application proposes these two to work 
together to make our lives better regarding the movie-
watching experience. To recognize emotions, we created a 
component that examines facial expressions, which offers, as 
a result, one of the emotion types: happy, sad, neutral, anger, 
surprise. This component was later integrated into a movie 
recommendation application, which analyzes the user’s 
emotions in real-time while watching the presentation video. 
In the second part of the paper, we presented how we 
performed usability tests in order to improve the quality of 
the application. The results were promising, with a high 
degree of accuracy and usefulness coming from end-users, 
showing the future potential of this application, for instance 
adding new functionalities or recommendation algorithms. 
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INTRODUCTION 
The motivation to build a movie recommendation system 
comes from the fact that choosing a movie that suits one’s 
preferences is a time-consuming process. One solution 
would be to use a prediction algorithm that simplifies this 
process, and that takes into account the watched movies and 
how they were evaluated.  

In our case, we considered both the direct evaluation 
(through the movie ratings), but also the indirect one (by 
identifying the feelings of the user when watching the movie 
trailer).  

The process of emotion recognition is composed of the 
following steps (1) identifying the area of the face in the 
image, (2) extracting features, and (3) classifying in one of 
the available classes, represented by one of the emotions. 

The first real-time emotion recognition paper, which is also 
a source of inspiration for the component of the application 
responsible for recording, is Facial Emotion Recognition in 
Real-Time, a Stanford University piece of work [6]. 
 

 
Figure 1. The neural network architecture of the Facial Emotion 

Recognition application in Real-Time [6]. 
 

Figure 1 illustrates the architecture of the neural network 
used in this application. Having an image that contains one 
or more faces, the face area will be identified, it will be 
involved in a series of operations in the convolutional neural 
network. In the end, once the emotion is obtained, an 
emoticon will be applied over the defined area in the first 
step. Considering this paper as a state of art, we optimized 
this process of emotion recognition, choosing from a wide 
range of activation functions the one with the best result. For 
the six classes used (anger, fear, happiness, neutral, sadness, 
and surprise), the accuracy obtained is 57.1%. 
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Movie recommendation systems 
Netflix is a streaming service that offers a wide variety of 
award-winning movies, series, and documentaries [14]. But 
an important topic is the process of recommendation to users, 
especially when there is no data on the viewing history (cold 
start problem). Netflix has organized a competition called 
Netflix Prize to develop the best collaborative filtering 
algorithm to predict users’ ratings for movies based on other 
users’ previous ratings [15]. Thus, the generated movie 
recommendations will be suitable for the user’s profile, 
depending on his appreciation. The competition ended in 
2009 when BellKor’s team achieved the best score for 
RMSE (Root Mean Square Error), of 0.8567 and thus 
winning the grand prize worth $ 1 million [16]. Since then, 
based on this prediction algorithm, millions of users daily 
receive recommendations. Considering this type of 
algorithm, which is used for the Netflix platform, we have 
chosen the same one, collaborative filtering to make 
recommendations, providing the most five suitable movies 
for the user. Moreover, we have integrated with an emotion 
detection module which shows in real-time the predominant 
experienced emotion of the user while watching the trailer of 
the movie.  

TMDB (The Movie Database) is another movie 
recommendation system, which also provides to developers 
an API service for collecting and using data about existing 
movies [20]. The algorithm used to generate 
recommendations is based on collaborative filtering, which 
analyzes the list of favorite movies, their ratings, and 
compares it with lists of users with similar preferences. As 
regards the API that provides information about movies, 
actors, genres, and users, through endpoints and an 
authentication key, offers the possibility to extract the data 
you want to use in your application. As part of the database 
of the application, we have operated with a reduced set of 
movies choosing those which have the highest ratings, to 
improve the reliability of these suggestions. 

Recognition of Emotions 
Emotions can be considered a mechanism that facilitates 
interactions between human beings. Therefore, 
understanding them can be a complex process that requires a 
lot of resources. An emotion can be identified by a variety of 
methods such as tone of voice, body language, or even 
through an electroencephalogram. But the simplest and most 
practical method is to examine facial expressions [8]. 

Over time, it has been proven that there are seven types of 
emotions that can be identified in all nationalities: happiness, 
sadness, surprise, anger, neutral, disgust, fear [9]. 

Recognizing emotions based on images can be considered a 
difficult process for several reasons: it is tedious to collect 
enough images to train the model, and the classification of 
emotions will depend on input data received: static or 
dynamic images - transition to a new emotion, brightness, 
clarity, position of the subject, etc. 

MODEL CONSTRUCTION 
In the context of emotion recognition, our model was 
developed through a convolutional neural network. The 
motivation for choosing a model based on deep learning is 
supported by the results provided by this type of network in 
Computer Vision problems, which use large collections of 
two-dimensional data, such as images or even videos. A 
video, as a sequence of images, provides new information 
about the action, therefore allows for deeper situational 
understanding. For example, we can track an obstacle 
through a sequence of images and understand its behavior to 
predict the next move. We can track a human pose, and 
understand the action taken with action classification [15]. 

In the scenario in which we want to identify the facial 
expression, we will use the classification algorithm, as it will 
produce a probability of belonging to a certain type of 
emotion (happiness, sadness, surprise, anger, or neutral).  

Having at our disposal a database with images depicting 
people who transmit a certain emotion, among those 
mentioned above, we aim to build a classification filter to 
obtain the percentage that a certain image fits into one of the 
classes. To achieve this, the filter must be able to predict 
what is unique to the emoticon, take from the image and 
make a correlation with the images in the collection [10] (see 
Figure 2). 
 

 
Figure 2. Image classification [1]. 

 

Difficulties in identifying objects can occur for various 
reasons: lighting conditions, variation in space of the region 
of interest, scaling, deformation, uneven background, or 
occlusions. In the context of learning problems, the essential 
goal is to minimize the cost of loss function by optimizing 
the weights of the network, in order to finally obtain an 
expected accuracy.  
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Figure 3. Diagram of the used convolutional neural network. 
 

Fixing the right hyperparameters plays an important role in 
neural network architectures, having a direct impact on 
training the model. This can be a difficult process, as there 
are numerous possibilities to change these configuration 
parameters. 

Figure 3 illustrates the architecture of the convolutional 
neural network we used. The network consists of seven 
components, of which the first four are responsible for the 
convolution operation, the next two for flattening, and the 
last one is represented by the Softmax function. 

The first four blocks of the model are composed of two 
convolutional layers, between them being made Batch 
Normalization, and at the end, the Max Pooling and Dropout 
operations are applied. The activation function used in the 
case of convolutional layers is ELU (Exponential Linear 
Unit) [5]. 

Batch normalization is a technique for deep learning neural 
networks that standardizes input data in a single layer for 
each subset. This approach results in stabilizing the learning 
process and substantially reducing the number of epochs 
required to train the network. The Max Pooling process aims 
to extract the highest value from the area of interest, more 
precisely the portion that contains the information with the 
highest degree of importance. Dropout operation reduces the 
importance of a certain set of neurons in the process of 
training the neural network.  

The purpose of the process is to prevent overfitting (learning 
by heart), i.e., overloading the network with additional 
connections between neurons. Thus, omitting certain 
randomly selected neurons can help generalize the model, 
namely the ability to adapt to new data that has not been 
processed. 

Blocks five and six are responsible for the Flatten, a Dense 
layer with the function of ELU activation, Batch 
normalization, and Dropout operations. Flattening 
transforms a two-dimensional array of features into a vector 
which in turn represents input data for the next layer. Dense 
adds to the neural network this layer that is fully connected, 
which means that each neuron receives input data from the 
previous layer. The last block is responsible for performing 
the Dense operation on the model using the Softmax 

activation function, also specifying the number of classes 
that are used, in the number of five. 

The model thus created is also configured with 
hyperparameters, the next procedure being training, and 
validation based on the input data specific to each operation. 

Image collection 
In the process of creating and training the model, five classes 
were used, more exactly five types of emotions: happiness, 
sadness, surprise, anger, and neutral. Emotions of disgust 
and fear have been omitted, as these 2 emotions are very 
similar in terms of facial mimicry to existing ones: angry, 
respectively surprise. 

Each of the five emotions mentioned had a collection of 
black and white photos, with reduced size of 48 x 48 pixels, 
men or women, of various ages and nationalities. This set of 
data was taken from Kaggle and consists of two parts, the 
first for the training process and the second for the validation 
process [12].  

Figure 4 shows some examples of photos from the data 
collection for happiness and anger. 
 

 

 

Figure 4. Kaggle images examples of happiness and anger.   
 

Figure 5 shows the distribution of the number of photos in 
the data collection for training, the predominant type of 
emotion being happiness, followed by a relatively equal 
number for sadness and neutral, and emotions of anger and 
surprise having a smaller number of photos. The total 
number of images in the collection is 24,282. 
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Figure 5. Distribution by class of data used for training. 
 

The distribution of photos in the test data collection was 
similar to that in the training image collection, but this time 
the total was significantly lower. 

RESULTS 
According to Table 1, it is observed that for batch size = 16, 
from the point of view of the accuracy metric, we obtained a 
higher value in comparison to 8 or 32. These experiments 
were performed for the ELU activation function and the 
number of epochs was set to 10. 

 
 

Batch size Accuracy Error Duration 

8 45.66 % 1.2824 ~ 3h 

16 58.28 % 1.0503 ~ 3h 

32 50.78 % 1.2078 ~ 3h 

Table 1. Results for different batch sizes (10 epochs). 

Once the values of the batch size = 16 and number of epochs 
= 10 parameters were fixed, we performed a series of 
experiments whose results are summarized in the following 
table for five types of activation functions, to compare their 
performance. 

 

Function Accuracy Error Duration 

ELU 58.28 % 1.0503 ~ 3h 

RELU 53.73 % 1.1261 ~ 3h 

Leaky RELU 41.52 % 1.3468 ~ 3h 

Swish 45.81 % 1.2942 ~ 3h 

Mish 32.78 % 1.5278 ~ 3h 

Table 2. Results for different activation functions. 

In Table 3 the ELU activation function that obtained the best 
score is tested for a larger number of epochs (25) and variable 
batch size: 16, 32, respectively 64. 

 

Batch size Accuracy Error Duration 

16 64.27 % 0.8968 ~5h 

32 64.70 % 0.8958 ~ 5.5h 

64 64.14 % 0.8965 ~ 5h 

Table 3. Results for different batch sizes (25 epochs). 

According to table 3, we deduce that the ELU function for a 
batch size = 32 and the number of epochs = 25 obtains the 
highest percentage for the accuracy metric, i.e., 64.7%. 

Discussion 
Training the model with different configurations starting 
with epochs number, activation function, ending with batch 
size, has led to the best result regarding classification 
accuracy. Compared to other similar scientific papers, the 
resulting accuracy percentage is comparable.  

Thus, in the paper [6], the authors mention the obtaining of 
an accuracy percentage of 57.1%, using 6 classes of feelings 
(with one class more than we used). And in the work [7] the 
authors obtained an accuracy of 65%, in the context of using 
the same number of classes of emotion.  

Haar-Cascade classifier 
In this process of recognizing emotions, we also used a Haar-
Cascade classifier [21] filter provided by the OpenCV 
library, through which people’s faces were identified. More 
specifically, the real-time recording of people is decomposed 
into frames, for each image is applied a black and white filter, 
over which several operations are then applied through the 
detectMultiScale function and thus the face area is detected 
and cut. 

If the face has been identified, the function will result in a set 
of rectangular coordinates (x, y, w, h) that will represent the 
searched area and thus the region of interest of the face can 
be found. Having the model that was created based on the 
data collection and through the region of interest just 
calculated, a series of operations are performed, and a list of 
probabilities is obtained for each class. The defining emotion 
for the current frame will be the class with the highest value. 

Once the emotion has been calculated and obtained for the 
image received at the input, the application will display one 
of the emoticons from Figure 6 to describe the user’s facial 
expression when viewing the video presentation of the 
chosen movie. 
 

 

Figure 6. Representative emoticons for Happiness, Sadness, 
Surprise, Anger, and Neutral [2]. 
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Integration with the recommendation application 
The usefulness of this component in the recommendation 
system appears when watching the trailer of the movie both 
to recognize and show the emotions experienced by the user, 
and to identify the predominant emotion experienced by him. 

The emotion recognition component is a Django API 
application that provides an endpoint to the external so that 
it can be used later. The second application is represented by 
the Angular client, the visual interface of the 
recommendation system is the one that will call the endpoint 
of the Django application, thus communicating through 
HTTP requests. Once the client sends a request, it starts 
recording and identifying the emotions, and the currently 
identified emotion will be sent in response. 

One of the five emoticons from Figure 6 will be displayed on 
the frontend, depending on the identified emotion. Also, the 
predominant emotion will be calculated in real-time, to 
identify the user’s interest in the trailer of the movie. 

RECOMMENDATION APPLICATION 
The movie recommendation application is made in the model 
of a microservices architecture, orchestrated by an API 
Gateway [3], [11]. The microservice-based architectural 
style is a way to develop an application as a suite of small, 
autonomous services that communicate through various 
mechanisms, often using an HTTP resource API. These 
services are built around a single functionality of the system 
and can be delivered independently. They can also be 
developed with different technology infrastructures and have 
their own database [9].  

The application consists of four microservices: 

(1) User management microservice; 

(2) The microservice responsible for movies; 

(3) Movie evaluation microservice; 

(4) Prediction microservice. 

They communicate with each other and are managed by the 
API Gateway, which serves as an intermediate level between 
the client application and each microservice. 

User management microservice 
The user management microservice is responsible for 
creating an account for a new user and authenticating it. The 
database of this microservice contains information related to 
the user entity, which is identified by the properties: id, 
account name, email, password, as well as a role, predefined 
as a generic user. 

In a user registration scenario, the expected data is the 
username, email address, and password. Those mentioned 
above were verified and validated so that the account is 
successfully created. The chosen password is passed through 
a cryptographic function (SHA256) and the result is saved in 
the database. 

Movie microservice 
The microservice responsible for movies and the details 
about them, such as the actors and the genres, has as a 
database scheme several tables, both for specific information 
and for creating relationships. The movie-specific table 
contains the properties: id, title, director, the country where 
the movie was produced, release year, ratings from user 
scores on the TMDB movie page, description, YouTube link 
to the movie presentation, the link to the poster, and the ids 
of the movies similar to the current one. The source of all this 
data (movies, actors, genres) comes from the API provided 
by TMDB [20]. 

Evaluation microservice 
The movie evaluation microservice is designated for 
authenticated users in the application who want to give a 
rating from 1-10 to the watched movies. An authenticated 
user can rate movies, edit a rating, or delete it. Based on 
these ratings and depending on the preferences of other users, 
further movie recommendations will be provided. 

The database of this microservice was populated with data 
from Kaggle [13], with movies, users, and the rating values 
which were translated in the 1-10 range. Thus, the set of 
training data necessary for the machine learning model was 
created. 

The movie evaluation microservice communicates with all 
the other microservices: the user management service for 
displaying the ratings, the one responsible for movies with 
the aim of showing them, and the one for predictions that 
provide recommendations based on the ratings. 

Prediction microservice 
The Prediction microservice is responsible for providing 
movie recommendations to users who have rated at least one 
movie. The algorithm chosen to create the model is 
collaborative filtering, which is based on other users’ 
common movie preferences. 

The first step was to collect the data, which are in fact those 
used in the movie rating microservice, the columns of the 
table being represented by the evaluated movie id, the user 
id, and the rating given. 

The column chosen to be predicted is the value of the rating, 
which will represent the score in this movie recommendation 
context. The next step is the training one, at which time must 
be specified depending on the size of the given file, in this 
case, the period being 600 seconds. The evaluation of the 
model consists of a test for predicting the score (rating) 
according to the specified parameters (user id and movie id). 
And in the final step, of generating the code, an output file 
will be generated, which represents the model, as well as two 
projects, which will be used later in the application. 

API Gateway  
API Gateway is a concept and also a model developed in 
parallel with microservices. It started from the architectural 
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design model Facade and thus allows the aggregation of 
functionalities from several microservices. This API 
Gateway has access to all the microservices endpoints and 
serves as a bridge between the client and the microservices. 
The client will send requests in a certain format, API 
Gateway will interpret them, make calls to microservices, 
retrieve information, aggregate it and return it to the client. 

Recommendation system 
A recommendation system provides suggestions to users 
through a filtering process based on their preferences and 
history. User information, which is perceived as input data, 
reflects previous uses, along with assigned ratings. Thus, the 
system analyzes preferences and provides predictions based 
on user choices. These systems are used in a variety of fields 
such as movies, music, news, books, or scientific articles 
[18], [19].  

The algorithm used for our recommendation system for 
providing predictions is matrix factorization [17]. Through 
it, can be identified the relationships between entities: user 
and movie. Having the ratings given by users, it is possible 
to predict how a user will evaluate a certain movie. 

The recommendation methods used by the matrix 
factorization algorithm fall into two broad categories: (1) 
collaborative filtering and (2) content-based filtering. The 
type used in this application is collaborative filtering.  

Collaborative filtering uses the similarity between users’ 
preferred options to make subsequent predictions based on 
similar preferences of other users. Thus, this resulting model 
offers recommendations to user A based on the interests of a 
similar user B. If two users have watched the same movie, a 
similar relationship is established between them. Thus, if one 
of them watched and appreciated a certain movie, it will be 
recommended to the second user if this movie has not already 
been viewed and appreciated. 

The recommendation system has as training data a feedback 
matrix in which each row is represented by a user, and each 
column a movie. Movie feedback is divided into two types: 
(1) explicit and (2) implicit. 

The method used by the ML .NET library is the explicit one, 
in which the users specify the degree of appreciation for a 
certain movie, giving specific ratings. 

Once the model is generated, movie recommendations for a 
specific user are generated as follows: scroll through the list 
of movies that have not already been rated by the user, 
consume the model to extract the predicted score for the 
current movie, and add it to a dictionary, <Movie, Movie 
Rating>. This dictionary is then sorted in descending order 
by the value of the rating to have at the beginning of the 
movies most likely to be appreciated by the user. Finally, the 
first 5 movies whose prediction values have the highest score 
will be displayed in the visual interface. 

Among the advantages of using this method is the high 
possibility to discover new movies of interest to users, a wide 
variety of movies and in addition, it is not necessary a large 
amount of information about the user, but only a minimal 
selection of popular movies. Regarding the disadvantages, a 
problem would be the fact that when a new movie appears, it 
will not be recommended to users, until after subsequent 
retraining of the model.  

On the other hand, content-based filtering uses the 
characteristics of a product to recommend products similar 
to what the user liked, based on his previous evaluations. 
Once a user has watched a movie, and there is a movie like 
it in the database (in terms of genres, actors, and release 
year), it will be recommended. An advantage of this 
approach is that movies from the same area of interest as the 
user will be recommended. As for disadvantages, this 
method requires a lot of knowledge in the field, as well as 
limiting the recommendations to the evaluated movies. 

USABILITY TESTS 
In the context of testing the application, we created a Google 
Forms form with several questions addressed to real users of 
the Live It application, to use the opinions to introduce 
further improvements. 

Methodology 
The test of interaction with the application contains an 
introduction in which its role is presented, and it is composed 
of seven questions, with a free answer or single choice. 
Before answering this test, the subject followed a series of 
scenarios in the application, each session lasted an average 
of ten minutes, and the steps were explained as follows: 
 

Step Description 

1 Registration page: creating an account 

2 Login page: user authentication 

3 Movie page: View movie information 

4 Movie page: give ratings 

5 
Movie page: search for a movie or browse the 
page list 

6 Trailer page: watching it 

7 Trailer page: recording and detecting emotions 

8 Trailer page: view similar movies 

Table 4. Usability tests – steps description. 

Participants 
For evaluation, we collaborated with 8 people, aged between 
18 and 55 years, remotely in their homes. The group was 
diverse, consisting of both technical and non-technical 
people, experienced in computer use, young people, adults, 
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with different frequencies of watching movies to simulate a 
real use audience. 

As part of the study, the first two questions asked were 
related to the participants’ experience in watching movies. 
The first refers to the frequency of watching movies, 50% 
answered that they watch 2-3 times a week, the rest being 
either in the group of four times a week (25%), or once a 
week (25%). The second question is related to the length of 
the process of searching for a movie that is to the liking of 
the subject. In proportion of 25% answered that it takes them 
a lot of time, and 62.5% answered that it takes a medium 
amount of time. 

Results 
The next section of the questionnaire included questions 
about each person’s experience with the Live It application. 
According to the observations, the percentage of participants 
who considered it to be useful is high (see Figure 7).  

 

Figure 7. Results regarding the usability of the application. 

Therefore, the degree of usefulness of the recommender 
algorithm is high, so they received suggestions of movies to 
their liking, without spending much time in this search 
process. 

In the next section, the users of the application had to give a 
grade from 1 to 5, where 5 was the maximum grade, in 
connection with various aspects related to the application: (1) 
ease of use, (2) response time of application, (3) framing the 
elements on the screen, (4) design. These results are shown 
in Figure 8. 
 

 
Figure 8. Results regarding various aspects of the application. 

 

In the end, we asked the participants to offer some 
suggestions for improving the application. The first 
suggestion mentioned is to provide a link for watching the 
entire movie. Adding this option would create a relationship 
between the movie and a list of streaming services, which 
usually require paying a subscription. Therefore, the user 
will be able to choose the desired provider. A second 
proposal was to offer the possibility to add a new movie to 
the application. This can be implemented in a future version 
of the application but will require specifying all the details 
related to the desired movie, this information is extracted 
using the API provided by TMDB, only if it already exists in 
the API database. 

CONCLUSION 
The Live It application aims to simplify the search process 
for a movie that will be to the user’s liking. Through this 
interactive and friendly mode, the application provides 
features such as: view available movies along with details 
about them, give ratings, watch the trailer along with 
recording and recognizing real-time emotions of the viewer, 
offer recommendations based on evaluated movies, but also 
similar movies.  

The development potential for this application is represented 
by the recommendation system, which can be extended by 
adding new functionalities or recommendation algorithms. 
Some examples would be the creation of a forum where users 
can initiate discussions about movies, the ability to add 
comments along with the given rating, comments that can be 
seen later by other users. Also, another alternative is the 
evaluation of movies based on several criteria such as actors, 
genres, or director and thus the design of new algorithms, 
which can bring value to recommendations. 
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