
Proceedings of RoCHI 2021

- 36 -

Live It - Recommendation System based on Emotion
Detection

Diana Isabela Crainic
Faculty of Computer Science,

“Alexandru Ioan Cuza” University
General Berthelot, 16,

Iasi, Romania

diana.crainic@info.uaic.ro

Adrian Iftene

Faculty of Computer Science,
“Alexandru Ioan Cuza” University

General Berthelot, 16,

Iasi, Romania

adiftene@info.uaic.ro

ABSTRACT
This paper presents the development of a web application
that integrates a system of movie recommendations using the
collaborative filtering algorithm with a component of real-
time recording and detection of emotions. So far, there were
no implementations that combine recommendations and
emotions, so this application proposes these two to work
together to make our lives better regarding the movie-
watching experience. To recognize emotions, we created a
component that examines facial expressions, which offers, as
a result, one of the emotion types: happy, sad, neutral, anger,
surprise. This component was later integrated into a movie
recommendation application, which analyzes the user’s
emotions in real-time while watching the presentation video.
In the second part of the paper, we presented how we
performed usability tests in order to improve the quality of
the application. The results were promising, with a high
degree of accuracy and usefulness coming from end-users,
showing the future potential of this application, for instance
adding new functionalities or recommendation algorithms.

Author Keywords
Face recognition; emotions identification; recommendation
system.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces. H.3.2. Information Storage and Retrieval:
Information Storage.

General Terms
Human Factors; Design.

DOI: 10.37789/rochi.2021.1.1.7

INTRODUCTION
The motivation to build a movie recommendation system
comes from the fact that choosing a movie that suits one’s
preferences is a time-consuming process. One solution
would be to use a prediction algorithm that simplifies this
process, and that takes into account the watched movies and
how they were evaluated.

In our case, we considered both the direct evaluation
(through the movie ratings), but also the indirect one (by
identifying the feelings of the user when watching the movie
trailer).

The process of emotion recognition is composed of the
following steps (1) identifying the area of the face in the
image, (2) extracting features, and (3) classifying in one of
the available classes, represented by one of the emotions.

The first real-time emotion recognition paper, which is also
a source of inspiration for the component of the application
responsible for recording, is Facial Emotion Recognition in
Real-Time, a Stanford University piece of work [6].

Figure 1. The neural network architecture of the Facial Emotion

Recognition application in Real-Time [6].

Figure 1 illustrates the architecture of the neural network
used in this application. Having an image that contains one
or more faces, the face area will be identified, it will be
involved in a series of operations in the convolutional neural
network. In the end, once the emotion is obtained, an
emoticon will be applied over the defined area in the first
step. Considering this paper as a state of art, we optimized
this process of emotion recognition, choosing from a wide
range of activation functions the one with the best result. For
the six classes used (anger, fear, happiness, neutral, sadness,
and surprise), the accuracy obtained is 57.1%.

Proceedings of RoCHI 2021

- 37 -

Movie recommendation systems
Netflix is a streaming service that offers a wide variety of
award-winning movies, series, and documentaries [14]. But
an important topic is the process of recommendation to users,
especially when there is no data on the viewing history (cold
start problem). Netflix has organized a competition called
Netflix Prize to develop the best collaborative filtering
algorithm to predict users’ ratings for movies based on other
users’ previous ratings [15]. Thus, the generated movie
recommendations will be suitable for the user’s profile,
depending on his appreciation. The competition ended in
2009 when BellKor’s team achieved the best score for
RMSE (Root Mean Square Error), of 0.8567 and thus
winning the grand prize worth $ 1 million [16]. Since then,
based on this prediction algorithm, millions of users daily
receive recommendations. Considering this type of
algorithm, which is used for the Netflix platform, we have
chosen the same one, collaborative filtering to make
recommendations, providing the most five suitable movies
for the user. Moreover, we have integrated with an emotion
detection module which shows in real-time the predominant
experienced emotion of the user while watching the trailer of
the movie.

TMDB (The Movie Database) is another movie
recommendation system, which also provides to developers
an API service for collecting and using data about existing
movies [20]. The algorithm used to generate
recommendations is based on collaborative filtering, which
analyzes the list of favorite movies, their ratings, and
compares it with lists of users with similar preferences. As
regards the API that provides information about movies,
actors, genres, and users, through endpoints and an
authentication key, offers the possibility to extract the data
you want to use in your application. As part of the database
of the application, we have operated with a reduced set of
movies choosing those which have the highest ratings, to
improve the reliability of these suggestions.

Recognition of Emotions
Emotions can be considered a mechanism that facilitates
interactions between human beings. Therefore,
understanding them can be a complex process that requires a
lot of resources. An emotion can be identified by a variety of
methods such as tone of voice, body language, or even
through an electroencephalogram. But the simplest and most
practical method is to examine facial expressions [8].

Over time, it has been proven that there are seven types of
emotions that can be identified in all nationalities: happiness,
sadness, surprise, anger, neutral, disgust, fear [9].

Recognizing emotions based on images can be considered a
difficult process for several reasons: it is tedious to collect
enough images to train the model, and the classification of
emotions will depend on input data received: static or
dynamic images - transition to a new emotion, brightness,
clarity, position of the subject, etc.

MODEL CONSTRUCTION
In the context of emotion recognition, our model was
developed through a convolutional neural network. The
motivation for choosing a model based on deep learning is
supported by the results provided by this type of network in
Computer Vision problems, which use large collections of
two-dimensional data, such as images or even videos. A
video, as a sequence of images, provides new information
about the action, therefore allows for deeper situational
understanding. For example, we can track an obstacle
through a sequence of images and understand its behavior to
predict the next move. We can track a human pose, and
understand the action taken with action classification [15].

In the scenario in which we want to identify the facial
expression, we will use the classification algorithm, as it will
produce a probability of belonging to a certain type of
emotion (happiness, sadness, surprise, anger, or neutral).

Having at our disposal a database with images depicting
people who transmit a certain emotion, among those
mentioned above, we aim to build a classification filter to
obtain the percentage that a certain image fits into one of the
classes. To achieve this, the filter must be able to predict
what is unique to the emoticon, take from the image and
make a correlation with the images in the collection [10] (see
Figure 2).

Figure 2. Image classification [1].

Difficulties in identifying objects can occur for various
reasons: lighting conditions, variation in space of the region
of interest, scaling, deformation, uneven background, or
occlusions. In the context of learning problems, the essential
goal is to minimize the cost of loss function by optimizing
the weights of the network, in order to finally obtain an
expected accuracy.

Proceedings of RoCHI 2021

- 38 -

Figure 3. Diagram of the used convolutional neural network.

Fixing the right hyperparameters plays an important role in
neural network architectures, having a direct impact on
training the model. This can be a difficult process, as there
are numerous possibilities to change these configuration
parameters.

Figure 3 illustrates the architecture of the convolutional
neural network we used. The network consists of seven
components, of which the first four are responsible for the
convolution operation, the next two for flattening, and the
last one is represented by the Softmax function.

The first four blocks of the model are composed of two
convolutional layers, between them being made Batch
Normalization, and at the end, the Max Pooling and Dropout
operations are applied. The activation function used in the
case of convolutional layers is ELU (Exponential Linear
Unit) [5].

Batch normalization is a technique for deep learning neural
networks that standardizes input data in a single layer for
each subset. This approach results in stabilizing the learning
process and substantially reducing the number of epochs
required to train the network. The Max Pooling process aims
to extract the highest value from the area of interest, more
precisely the portion that contains the information with the
highest degree of importance. Dropout operation reduces the
importance of a certain set of neurons in the process of
training the neural network.

The purpose of the process is to prevent overfitting (learning
by heart), i.e., overloading the network with additional
connections between neurons. Thus, omitting certain
randomly selected neurons can help generalize the model,
namely the ability to adapt to new data that has not been
processed.

Blocks five and six are responsible for the Flatten, a Dense
layer with the function of ELU activation, Batch
normalization, and Dropout operations. Flattening
transforms a two-dimensional array of features into a vector
which in turn represents input data for the next layer. Dense
adds to the neural network this layer that is fully connected,
which means that each neuron receives input data from the
previous layer. The last block is responsible for performing
the Dense operation on the model using the Softmax

activation function, also specifying the number of classes
that are used, in the number of five.

The model thus created is also configured with
hyperparameters, the next procedure being training, and
validation based on the input data specific to each operation.

Image collection
In the process of creating and training the model, five classes
were used, more exactly five types of emotions: happiness,
sadness, surprise, anger, and neutral. Emotions of disgust
and fear have been omitted, as these 2 emotions are very
similar in terms of facial mimicry to existing ones: angry,
respectively surprise.

Each of the five emotions mentioned had a collection of
black and white photos, with reduced size of 48 x 48 pixels,
men or women, of various ages and nationalities. This set of
data was taken from Kaggle and consists of two parts, the
first for the training process and the second for the validation
process [12].

Figure 4 shows some examples of photos from the data
collection for happiness and anger.

Figure 4. Kaggle images examples of happiness and anger.

Figure 5 shows the distribution of the number of photos in
the data collection for training, the predominant type of
emotion being happiness, followed by a relatively equal
number for sadness and neutral, and emotions of anger and
surprise having a smaller number of photos. The total
number of images in the collection is 24,282.

Proceedings of RoCHI 2021

- 39 -

Figure 5. Distribution by class of data used for training.

The distribution of photos in the test data collection was
similar to that in the training image collection, but this time
the total was significantly lower.

RESULTS
According to Table 1, it is observed that for batch size = 16,
from the point of view of the accuracy metric, we obtained a
higher value in comparison to 8 or 32. These experiments
were performed for the ELU activation function and the
number of epochs was set to 10.

Batch size Accuracy Error Duration

8 45.66 % 1.2824 ~ 3h

16 58.28 % 1.0503 ~ 3h

32 50.78 % 1.2078 ~ 3h

Table 1. Results for different batch sizes (10 epochs).

Once the values of the batch size = 16 and number of epochs
= 10 parameters were fixed, we performed a series of
experiments whose results are summarized in the following
table for five types of activation functions, to compare their
performance.

Function Accuracy Error Duration

ELU 58.28 % 1.0503 ~ 3h

RELU 53.73 % 1.1261 ~ 3h

Leaky RELU 41.52 % 1.3468 ~ 3h

Swish 45.81 % 1.2942 ~ 3h

Mish 32.78 % 1.5278 ~ 3h

Table 2. Results for different activation functions.

In Table 3 the ELU activation function that obtained the best
score is tested for a larger number of epochs (25) and variable
batch size: 16, 32, respectively 64.

Batch size Accuracy Error Duration

16 64.27 % 0.8968 ~5h

32 64.70 % 0.8958 ~ 5.5h

64 64.14 % 0.8965 ~ 5h

Table 3. Results for different batch sizes (25 epochs).

According to table 3, we deduce that the ELU function for a
batch size = 32 and the number of epochs = 25 obtains the
highest percentage for the accuracy metric, i.e., 64.7%.

Discussion
Training the model with different configurations starting
with epochs number, activation function, ending with batch
size, has led to the best result regarding classification
accuracy. Compared to other similar scientific papers, the
resulting accuracy percentage is comparable.

Thus, in the paper [6], the authors mention the obtaining of
an accuracy percentage of 57.1%, using 6 classes of feelings
(with one class more than we used). And in the work [7] the
authors obtained an accuracy of 65%, in the context of using
the same number of classes of emotion.

Haar-Cascade classifier
In this process of recognizing emotions, we also used a Haar-
Cascade classifier [21] filter provided by the OpenCV
library, through which people’s faces were identified. More
specifically, the real-time recording of people is decomposed
into frames, for each image is applied a black and white filter,
over which several operations are then applied through the
detectMultiScale function and thus the face area is detected
and cut.

If the face has been identified, the function will result in a set
of rectangular coordinates (x, y, w, h) that will represent the
searched area and thus the region of interest of the face can
be found. Having the model that was created based on the
data collection and through the region of interest just
calculated, a series of operations are performed, and a list of
probabilities is obtained for each class. The defining emotion
for the current frame will be the class with the highest value.

Once the emotion has been calculated and obtained for the
image received at the input, the application will display one
of the emoticons from Figure 6 to describe the user’s facial
expression when viewing the video presentation of the
chosen movie.

Figure 6. Representative emoticons for Happiness, Sadness,
Surprise, Anger, and Neutral [2].

Proceedings of RoCHI 2021

- 40 -

Integration with the recommendation application
The usefulness of this component in the recommendation
system appears when watching the trailer of the movie both
to recognize and show the emotions experienced by the user,
and to identify the predominant emotion experienced by him.

The emotion recognition component is a Django API
application that provides an endpoint to the external so that
it can be used later. The second application is represented by
the Angular client, the visual interface of the
recommendation system is the one that will call the endpoint
of the Django application, thus communicating through
HTTP requests. Once the client sends a request, it starts
recording and identifying the emotions, and the currently
identified emotion will be sent in response.

One of the five emoticons from Figure 6 will be displayed on
the frontend, depending on the identified emotion. Also, the
predominant emotion will be calculated in real-time, to
identify the user’s interest in the trailer of the movie.

RECOMMENDATION APPLICATION
The movie recommendation application is made in the model
of a microservices architecture, orchestrated by an API
Gateway [3], [11]. The microservice-based architectural
style is a way to develop an application as a suite of small,
autonomous services that communicate through various
mechanisms, often using an HTTP resource API. These
services are built around a single functionality of the system
and can be delivered independently. They can also be
developed with different technology infrastructures and have
their own database [9].

The application consists of four microservices:

(1) User management microservice;

(2) The microservice responsible for movies;

(3) Movie evaluation microservice;

(4) Prediction microservice.

They communicate with each other and are managed by the
API Gateway, which serves as an intermediate level between
the client application and each microservice.

User management microservice
The user management microservice is responsible for
creating an account for a new user and authenticating it. The
database of this microservice contains information related to
the user entity, which is identified by the properties: id,
account name, email, password, as well as a role, predefined
as a generic user.

In a user registration scenario, the expected data is the
username, email address, and password. Those mentioned
above were verified and validated so that the account is
successfully created. The chosen password is passed through
a cryptographic function (SHA256) and the result is saved in
the database.

Movie microservice
The microservice responsible for movies and the details
about them, such as the actors and the genres, has as a
database scheme several tables, both for specific information
and for creating relationships. The movie-specific table
contains the properties: id, title, director, the country where
the movie was produced, release year, ratings from user
scores on the TMDB movie page, description, YouTube link
to the movie presentation, the link to the poster, and the ids
of the movies similar to the current one. The source of all this
data (movies, actors, genres) comes from the API provided
by TMDB [20].

Evaluation microservice
The movie evaluation microservice is designated for
authenticated users in the application who want to give a
rating from 1-10 to the watched movies. An authenticated
user can rate movies, edit a rating, or delete it. Based on
these ratings and depending on the preferences of other users,
further movie recommendations will be provided.

The database of this microservice was populated with data
from Kaggle [13], with movies, users, and the rating values
which were translated in the 1-10 range. Thus, the set of
training data necessary for the machine learning model was
created.

The movie evaluation microservice communicates with all
the other microservices: the user management service for
displaying the ratings, the one responsible for movies with
the aim of showing them, and the one for predictions that
provide recommendations based on the ratings.

Prediction microservice
The Prediction microservice is responsible for providing
movie recommendations to users who have rated at least one
movie. The algorithm chosen to create the model is
collaborative filtering, which is based on other users’
common movie preferences.

The first step was to collect the data, which are in fact those
used in the movie rating microservice, the columns of the
table being represented by the evaluated movie id, the user
id, and the rating given.

The column chosen to be predicted is the value of the rating,
which will represent the score in this movie recommendation
context. The next step is the training one, at which time must
be specified depending on the size of the given file, in this
case, the period being 600 seconds. The evaluation of the
model consists of a test for predicting the score (rating)
according to the specified parameters (user id and movie id).
And in the final step, of generating the code, an output file
will be generated, which represents the model, as well as two
projects, which will be used later in the application.

API Gateway
API Gateway is a concept and also a model developed in
parallel with microservices. It started from the architectural

Proceedings of RoCHI 2021

- 41 -

design model Facade and thus allows the aggregation of
functionalities from several microservices. This API
Gateway has access to all the microservices endpoints and
serves as a bridge between the client and the microservices.
The client will send requests in a certain format, API
Gateway will interpret them, make calls to microservices,
retrieve information, aggregate it and return it to the client.

Recommendation system
A recommendation system provides suggestions to users
through a filtering process based on their preferences and
history. User information, which is perceived as input data,
reflects previous uses, along with assigned ratings. Thus, the
system analyzes preferences and provides predictions based
on user choices. These systems are used in a variety of fields
such as movies, music, news, books, or scientific articles
[18], [19].

The algorithm used for our recommendation system for
providing predictions is matrix factorization [17]. Through
it, can be identified the relationships between entities: user
and movie. Having the ratings given by users, it is possible
to predict how a user will evaluate a certain movie.

The recommendation methods used by the matrix
factorization algorithm fall into two broad categories: (1)
collaborative filtering and (2) content-based filtering. The
type used in this application is collaborative filtering.

Collaborative filtering uses the similarity between users’
preferred options to make subsequent predictions based on
similar preferences of other users. Thus, this resulting model
offers recommendations to user A based on the interests of a
similar user B. If two users have watched the same movie, a
similar relationship is established between them. Thus, if one
of them watched and appreciated a certain movie, it will be
recommended to the second user if this movie has not already
been viewed and appreciated.

The recommendation system has as training data a feedback
matrix in which each row is represented by a user, and each
column a movie. Movie feedback is divided into two types:
(1) explicit and (2) implicit.

The method used by the ML .NET library is the explicit one,
in which the users specify the degree of appreciation for a
certain movie, giving specific ratings.

Once the model is generated, movie recommendations for a
specific user are generated as follows: scroll through the list
of movies that have not already been rated by the user,
consume the model to extract the predicted score for the
current movie, and add it to a dictionary, <Movie, Movie
Rating>. This dictionary is then sorted in descending order
by the value of the rating to have at the beginning of the
movies most likely to be appreciated by the user. Finally, the
first 5 movies whose prediction values have the highest score
will be displayed in the visual interface.

Among the advantages of using this method is the high
possibility to discover new movies of interest to users, a wide
variety of movies and in addition, it is not necessary a large
amount of information about the user, but only a minimal
selection of popular movies. Regarding the disadvantages, a
problem would be the fact that when a new movie appears, it
will not be recommended to users, until after subsequent
retraining of the model.

On the other hand, content-based filtering uses the
characteristics of a product to recommend products similar
to what the user liked, based on his previous evaluations.
Once a user has watched a movie, and there is a movie like
it in the database (in terms of genres, actors, and release
year), it will be recommended. An advantage of this
approach is that movies from the same area of interest as the
user will be recommended. As for disadvantages, this
method requires a lot of knowledge in the field, as well as
limiting the recommendations to the evaluated movies.

USABILITY TESTS
In the context of testing the application, we created a Google
Forms form with several questions addressed to real users of
the Live It application, to use the opinions to introduce
further improvements.

Methodology
The test of interaction with the application contains an
introduction in which its role is presented, and it is composed
of seven questions, with a free answer or single choice.
Before answering this test, the subject followed a series of
scenarios in the application, each session lasted an average
of ten minutes, and the steps were explained as follows:

Step Description

1 Registration page: creating an account

2 Login page: user authentication

3 Movie page: View movie information

4 Movie page: give ratings

5
Movie page: search for a movie or browse the
page list

6 Trailer page: watching it

7 Trailer page: recording and detecting emotions

8 Trailer page: view similar movies

Table 4. Usability tests – steps description.

Participants
For evaluation, we collaborated with 8 people, aged between
18 and 55 years, remotely in their homes. The group was
diverse, consisting of both technical and non-technical
people, experienced in computer use, young people, adults,

Proceedings of RoCHI 2021

- 42 -

with different frequencies of watching movies to simulate a
real use audience.

As part of the study, the first two questions asked were
related to the participants’ experience in watching movies.
The first refers to the frequency of watching movies, 50%
answered that they watch 2-3 times a week, the rest being
either in the group of four times a week (25%), or once a
week (25%). The second question is related to the length of
the process of searching for a movie that is to the liking of
the subject. In proportion of 25% answered that it takes them
a lot of time, and 62.5% answered that it takes a medium
amount of time.

Results
The next section of the questionnaire included questions
about each person’s experience with the Live It application.
According to the observations, the percentage of participants
who considered it to be useful is high (see Figure 7).

Figure 7. Results regarding the usability of the application.

Therefore, the degree of usefulness of the recommender
algorithm is high, so they received suggestions of movies to
their liking, without spending much time in this search
process.

In the next section, the users of the application had to give a
grade from 1 to 5, where 5 was the maximum grade, in
connection with various aspects related to the application: (1)
ease of use, (2) response time of application, (3) framing the
elements on the screen, (4) design. These results are shown
in Figure 8.

Figure 8. Results regarding various aspects of the application.

In the end, we asked the participants to offer some
suggestions for improving the application. The first
suggestion mentioned is to provide a link for watching the
entire movie. Adding this option would create a relationship
between the movie and a list of streaming services, which
usually require paying a subscription. Therefore, the user
will be able to choose the desired provider. A second
proposal was to offer the possibility to add a new movie to
the application. This can be implemented in a future version
of the application but will require specifying all the details
related to the desired movie, this information is extracted
using the API provided by TMDB, only if it already exists in
the API database.

CONCLUSION
The Live It application aims to simplify the search process
for a movie that will be to the user’s liking. Through this
interactive and friendly mode, the application provides
features such as: view available movies along with details
about them, give ratings, watch the trailer along with
recording and recognizing real-time emotions of the viewer,
offer recommendations based on evaluated movies, but also
similar movies.

The development potential for this application is represented
by the recommendation system, which can be extended by
adding new functionalities or recommendation algorithms.
Some examples would be the creation of a forum where users
can initiate discussions about movies, the ability to add
comments along with the given rating, comments that can be
seen later by other users. Also, another alternative is the
evaluation of movies based on several criteria such as actors,
genres, or director and thus the design of new algorithms,
which can bring value to recommendations.

ACKNOWLEDGMENTS
This work was supported by project REVERT (taRgeted
thErapy for adVanced colorEctal canceR paTients), Grant
Agreement number: 848098, H2020-SC1-BHC-2018-2020/
H2020-SC1-2019-Two-Stage-RTD.

REFERENCES
1. Amini, A., and Soleimany, A. Introduction to Deep

Learning. MIT’s official introductory course on deep
learning methods with applications, Massachusetts
Institute of Technology, (2020).

2. Apple Emoji Faces, Emoji Pictures,
https://emojiisland.com/pages/free-download-emoji-
icons-png (2021)

3. Baboi, M., Iftene, A., and Gîfu, D. Dynamic
Microservices to Create Scalable and Fault Tolerance
Architecture. In 23rd International Conference on
Knowledge-Based and Intelligent Information &
Engineering Systems, Procedia Computer Science, 159
(2019), 1035-1044.

Proceedings of RoCHI 2021

- 43 -

4. Ciubotariu, C.C., Hrișca, M.V., Gliga, M., Darabană, D.,
Trandabăț, D., and Iftene, A. Minions at SemEval-2016
Task 4: or how to build a sentiment analyzer using off-
the-shelf resources? Proceedings of the 10th
International Workshop on Semantic Evaluation
(SemEval-2016), ACL, (2016), 247-250.

5. Clevert, D.A., Unterthiner, T. and Hochreiter, S. Fast
and Accurate Deep Network Learning by Exponential
Linear Units (ELUs). 4th International Conference on
Learning Representations ICLR (Poster) (2016).

6. Duncan, D., Shine, G., and English, C. Facial Emotion
Recognition in Real Time. Report Stanford University
(2016), 1-7.

7. El Ali, A., Wallbaum, T., Wasmann, M., Heuten, W.,
and Boll, S. Face2Emoji: Using Facial Emotional,
Expressions to Filter Emojis, In 2017 CHI Conference
Extended Abstracts (2017).

8. Ekman, P. Universals and cultural differences in facial
expressions of emotion. Nebraska, USA: Lincoln
University of Nebraska Press (1971).

9. Fowler, M. Microservices.
https://martinfowler.com/articles/microservices.html
(2014)

10. Goodfellow, I., Bengio, Y., and Courville, A. Deep
Learning, MIT Press, (2016).

11. Iftene, A., Gîfu, D., Miron, A. R., and Dudu, M. Ș. A
Real-Time System for Credibility on Twitter. In
Proceedings of The 12th Language Resources and
Evaluation Conference (LREC 2020), Marseille, France,
(2020) 6168-6175.

12. Kaggle - Face expression recognition dataset
https://www.kaggle.com/jonathanoheix/face-expression-
recognition-dataset, (2018).

13. Kaggle - Large Movie Dataset
https://www.kaggle.com/chaitanyahivlekar/large-movie-
dataset (2021).

14. Machine Learning & Deep Learning,
https://www.thinkautonomous.ai/blog/?p=computer-
vision-from-image-to-video-analysis (2021)

15. Netflix, https://www.netflix.com/ro-en/ (2021).

16. Netflix Prize, https://www.netflixprize.com/rules.html
(2021).

17. Rendle, S., Krichene, W., Zhang, L., and Anderson, J.
Neural Collaborative Filtering vs. Matrix Factorization
Revisited. Fourteenth ACM Conference on
Recommender Systems (2020), 240–248.
doi:10.1145/3383313.3412488.

18. Ricci, F., Rokach, L., and Shapira, R. Introduction to
Recommender Systems Handbook. Recommender
Systems Handbook, Springer, (2011), 1-35.

19. Șerban, C., Alboaie, L., and Iftene, A. Image and user
profile-based recommendation system. In Workshop on
Social Media and the Web of Linked Data (RUMOUR
2015) at EUROLAN 2015 Summer School on Linguistic
Linked Open Data. Springer International Publishing
Switzerland. EUROLAN 2015, CCIS 588, (2016), 1-16,
doi: 10.1007/978-3-319-32942-0_5.

20. TMBD, https://www.themoviedb.org/ (2021).

21. Viola, P., and Jones, M. J. Rapid Object Detection using
a Boosted Cascade of Simple Features. Proceedings of
the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR
(2001), 511- 518.

