
- 119 -

Exploring Solutions for the Development Methodology of
the Video Game DABABAT

Al-Doori Rami

Technical University of Cluj-

Napoca
Cluj-Napoca, Romania

Rami@uob.edu.iq

Bianca-Cerasela-Zelia Blaga

Technical University of Cluj-

Napoca
Cluj-Napoca, Romania

zelia.blaga@cs.utcluj.ro

Dorian Gorgan

Technical University of Cluj-

Napoca
Cluj-Napoca, Romania

dorian.gorgan@cs.utcluj.ro

ABSTRACT

This paper proposes an implementation of a multiplayer

war game using Unity Game Engine and explores all the

basic steps of development, starting from planning until

getting a product, and evaluating by usability heuristics.

The development steps contain a method to build a

functional avatar of tank module with a synchronized

movement of the turret and the gun.

Author Keywords

Blender 3D; Heuristics Evaluation; Tanks; Unity.

INTRODUCTION

A multiplayer game over a network is basically a video

game where more than one human player shares the same

game at the same time with a unique view. Each player is

able to see the same game but from different angles. All

players share some resources and each one has some items,

like weapons, characters etc. Some of these resources can

be altered by the actions of other players. For example, if

we take into consideration the health factor, for some

players it can be changed by a shooting event performed by

another player from the opposite team.

The main problem in an online multiplayer game is the

optimization of network messages between the players, in

other word data synchronization. Another problem is

related to the network communication layer, for example,

lack of service.

Dababat is an Arabic word that means tanks. Thus, the

game is a tank fight between two teams over the network. It

was inspired by another online game called World of Tanks

[1]. A lot of people do not have knowledge about armored

war vehicles and how they engage each other in battle.

Therefore, the game’s goal is to provide players with a

battle environment governed by the law of physics and

engaging rules which almost mimic the real world.

This paper is organized as follows: in section Related Work

we present the description of other similar projects and

evaluation methods. The next section contains the

development of the game in detail and everything to know

about it. We also have a section in which we present the

heuristics evaluation method for the game, with the last two

sections being the Results Analysis and Conclusions.

RELATED WORK

Games, in general, are a big subject to be explored due to

the variety of the types and genres that exist. Digital games

can be categorized according to the machine that runs the

game, to the number of the players involved or to the end

user’s age. Shooter games are one of the most popular

statistically. Most wargames are shooter type, and the target

ages range from 10 – 50 for both genders.

Mobile devices can be used as terminals for games, as most

of the current mobiles have the minimal requirements for it.

2D video games can work on most of today’s phones. The

development of a Tanks War Mobile Game based on

Android System can be seen here [4].

A Massively Multiplayer Online Game (MMOG) is

developed to evaluate and compare the peer-to-peer-based

MMOG systems with scalability in mind. The game

requires low network latency and creates frequent game

state updates [5].

Another performance evaluation tested for peer-to-peer

gaming overlays can be found here [6]. It consists of a 3D

first person shooter game that is designed to run in a

simulated network environment as well as on a real

network. Simulation with autonomous players (bots)

guarantees scalability, a controlled workload, and

reproducible results.

As for other evaluation methods, [7] shows the creation of

two heuristics, a specific and slandered one. The authors

conduct an evaluation on two separate groups, and after

that, matching between the two heuristics lists is done to

have a relation to base the results upon. In [8], the authors

used heuristics evaluation to detect playability problems in

a short time for mobile games and proved the method to be

efficient and effective.

The difficulties encountered by evaluators when they

conduct a formative evaluation of both usability and fun in

computer games for children is presented in [9]. It is also

shown the problems when determining with which set of

heuristics (usability vs. fun heuristics) identified problems

should be explained. In the next sections, we will talk about

the development requirements of a video game that we

worked on and how we tackled the topics of design,

implementation, and evaluation.

- 120 -

GAME DEVELOPMENT REQUIREMENTS

In order to create a game, we need a game engine that has

enough capabilities for a war game over the network.

Therefore, we chose Unity platform which is free and easy

to use.

Unity framework offers a store for assets where a lot of 3D

objects can be found. The code is written in C# and we can

edit it using Visual Studio which is one of the most

powerful IDEs that currently exist. Unity also supports 24

platforms including Oculus Rift, PlayStation 4 and Linux.

The multiplayer game depends on a communication layer

that the game engine provides. The developer must design

this layer efficiently without causing it to crash or overload.

Unity framework provides remote actions to manage

communications that are basically functions that can be

called at the server that provides the current game session.

The server can be either a dedicated one or there can be a

machine which acts as a server and client at the same time.

It does not matter what or where the server is. The remote

actions will be executed on that specific machine [2].

Figure 1 shows the illustration of remote actions.

Figure 1. A diagram of the directions that remote actions take

Creating 3D games leads to dealing with 3D objects. In this

case, customizing some objects to fit the requirements of

the developed video game is required. A special tool is thus

needed. Blender is a professional, free, and open-source 3D

computer graphics tool, where it is possible to modify Unity

Asset Store objects.

The designer uses Blender to create 3D objects from 2D

images. In general, most of the avatars we see in games are

started from a sketch on paper, then the 3D object is

modeled using special software like Blender, and it is

imported by a game engine to enable it to move around

according to the end user’s (player) commands [3].

DABABAT MULTIPLAYER GAME DEVELOPMENT

The planning phase precedes the system’s development

phase. In this case, the goal of planning was reaching a

level where the game provides the following:

1. Environment to act as the battlefield (map).

2. Tank Avatar to act as the player.

3. Shell object to be the projectile from the gun.

4. Dynamic and Well-organized network handler.

Each aspect mentioned above has been tackled carefully

during the development phase. This kind of game requires a

team to build it, and it also takes a lot of time and patience.

The minimal goals have been reached considering the time

which has been given for the development of this particular

genre of a video game, and the work has been done only by

one person. Table 1 lists the names of the developers and

the testers.

TABLE 1. The developer and the usability evaluators

Name Specialization and year of

study

Domain

Developer,

Evaluator

Artificial Vision and

Intelligence 1st year

master’s student

Software

Developer; medium

experience with

video games

Evaluator Artificial Vision and

Intelligence 1st year

master’s student

Researcher in the

image processing

group; medium

experience with

video games

The Battle Field

The plan for the game scenes or the maps was to make a

variety to choose from like:

• desert theme;

• city theme;

• green field theme.

But as mentioned before there was only enough time for

one map which is the desert theme as shown in Figure 2.

Figure 2. Desert Map

To make the theme more interesting for players, a river has

been added in the middle to separate the battlefield into two

halves. If any tank falls into the water, it will drown.

A terrain object has been used, as it provides the ability to

shape any kind of grounds and then add textures to it. The

whole object has been raised up to 15 measurement units,

- 121 -

which means the river depth will be 15 measurement units

below the surface of the map.

A series of mountains surround the map to act as a natural

border, so no tank can drive off the map. Some hills have

been added to separate the spawning points, so the players

cannot hit each other from a long distance. Also, a bridge

was installed at the far end of the river in case some of the

players wish to flank the other team.

Tank Avatar

This is the most important element of the game that

connects to all the other elements, as it took 60% of the

development time. Unity has its own Asset Store from

where the developer can get different types of useful

objects, for example, 3D models, particles effects,

animations etc. The main plan is to have 4 types of tanks:

• Heavy Tank (slow, well armored and good gun)

• Medium Tank (Faster, less armored and good gun)

• Light tank (fast, weak armored and bad gun)

• Tank Destroyer (slow, weak armored and great gun)

But with the time given, only the heavy tank has been

made. From the variety of tanks that we found on the Asset

Store, one of the most famous is the American heavy tank

(T29). It has been selected for our game, and Figure 3

illustrates the model of the tank.

 Figure 3. T29 Model [1][10]

After acquiring the tank’s 3D Model from the store, the

Blender application has been used to decompose it into 7

components. The tank will be reassembled in Unity. Figure

4 shows the tank after decomposition.

This procedure provides more flexibility to deal with the

tank movements and the gun aiming. Camouflage texture is

applied to the tank parts. Then two cameras and a fire effect

are added to the tank avatar.

The biggest challenge with the tank object was making the

gun follow the camera, so the player will be able to use the

mouse to move the camera’s view. For the sake of making

the game more realistic, it is not preferable to hook the gun

to the mouse movements, because real tank turrets can

never move as fast as the mouse does. The only solution

was making the turret follow the mouse with a slower

movement speed. The hull (body of the tank) moves

separately with the input buttons (W, A, S, and D) and this

does not affect the turret horizontal movements or the gun

vertical movements.

Figure 5 illustrates the diagram for the horizontal turret

movements’ algorithm. The same idea is applied to the

gun’s vertical movements.

Figure 5. Turret movements’ diagram

To make the tank avatar feel realistic, some effects have

been added to it:

• track sounds;

Figure 4 Model decomposition

- 122 -

• shell fire sound;

• muzzle fire flash;

• burning fire after the tank been destroyed;

• bubbles if the tank drowns in the river.

Everyone knows that guns have a recoil when they fire, so

logically the big gun of the tank has to have some of its

own and that is why we have used animations to make that

effect to the gun. Basically, we designed the gun to be

shorter for a little when it fires and it slowly returns back to

its normal size just to make it feel more real as illustrated in

figure 6.

Unity provides a great tool to do this kind of work by

recording the movements and playing them from the C#

code as needed, which in this case is the fire event.

Figure 6. Recoil animation

Shell Object

Shells are what the tank fires toward enemies. In this game,

the shell is an independent object, which is described by a

position, and has velocity and mass, and can affect other

objects physically by the laws of the game engine.

Figure 7. Shell object

Basically, the shell is a small ball which contains an

explosion effect. It can be created from a point and travels

toward another point, then hits whatever unfortunate thing

in the way. Figure 7 shows the explosion effect connected

to the shell object. To make the projectile feel real, some

effects have been added to the shell:

• big explosion sounds;

• explosion particle effect on impact.

Tank Properties and Damage Handler

Each tank in the game has a data structure for the properties

which contain the following:

• driving speed: integer

• tank turning speed: integer;

• turret turning speed: integer;

• gun vertical movement speed: integer;

• shell velocity: integer;

• health: integer;

• gun damage range: list[integer].

These properties will change the performance of the tank.

When adding new tanks in the future, we should recalibrate

the properties to fit the tank’s descriptions and balance the

gameplay to be as fair as possible.

The gun damage range is a one-dimensional array of

integers. Each element represents how much health the

shell can take from the other tank in case of a direct hit.

These values should be proportional to the gun caliber.

When a tank fires a shell, a random number function will be

invoked to get one of the elements from gun damage range

array and this value will be subtracted from the health of

the other tank in case the shell touches the other tank. In

this game the array for the T29 gun damage range is [100,

200, 300, 400, 500] and the health property has been set to

1000. This means that it is possible to destroy a tank in 2

shots if you are lucky, or 10 shots if you miss your attacks.

This mechanism made the gameplay much more enjoyable.

Network Handler

When everything is set (map, avatar, and shell) the only

thing left to do is decide what to propagate over the

communication layer. As mentioned before, Unity provides

a tool to handle network operations, but this tool comes

with more options than we actually need.

We had to create a custom network management class only

to satisfy the game requirements. We used the existing

network manager object and overridden functions to create

a well-organized graphical interface to act as the game

lobby as shown in Figure 8.

The interface requires the player to introduce the desired

name and to select a team (red or blue). The team color

represents the location on the map, where the player will

spawn. The terminal can act as a server over some specific

port or it can join another server in the game.

The network handler needs spawning locations to locate the

players when the game starts, otherwise, the player will

appear at the point (0, 0, 0) out of the map. Several

spawning locations have been added to the game at the

corners of the map above the terrain surface.

- 123 -

The following items can be spawned by the network

handler:

• tank avatar;

• shell object.

The tank avatar uses the spawning locations when the game

starts but the shell object will be spawned at the end of the

gun.

We need to propagate the following data over the network:

1. game state (the number of players in the teams,

who is still alive and who is dead, and what is the

current health for each player and their names);

2. tanks locations on the map;

3. shell locations (contains the life cycle of the shell

starting from the moment when it has been fired

until it hits something and explodes or goes

outside the map, after 5 seconds it will be disposed

of automatically);

4. turret movements, so the players are able to see

where the other tanks’ turret is facing;

5. gun movements, so the players can see where the

other tanks are aiming at.

The most important part of networking is not to overload

the communication layer. Thus, a set of priorities have been

established upon the network manager as follows:

1. the shell object movements have the highest

priority because it is too fast and other tanks

should be aware of the current location of the

shell;

2. the tank movements;

3. the turret and gun movements;

4. the game’s state;

5. the particle effect activation (this is a Boolean

value that represents the state of the corresponding

tank is the following cases:

• Hit point = 0 and the tank is not drowning;

activate the fire effect.

• if the tank is drowning; activate the bubble

particle effect.

Game Status Information

In this part of the project, several things need to be taken

care of, like what information the player needs to know.

According to our observations, the following list has been

created:

- current health;

- gun reload time;

- time left to complete reload;

- the player’s name;

- the names of the other players;

- the remaining health for other players;

- the number of players in the player’s team;

- the number of players who died in the player’s team;

- the number of players on the other team;

- the number of players who died in the other team;

- instructions about how to use the game.

It is more convenient to have the other player info above

their tanks like the health bar and the player’s name. The

rest of the information is displayed on the screen in a way

that will not affect the gameplay as seen in figure 9.

Figure 8. Game lobby

- 124 -

Figure 9. Game view shows the info provided to the user

Camera Handler

The game has three cameras. The main camera which views

the game lobby is positioned in front of the waterfall which

is the most beautiful scenery on the map. When the tank

object has been spawned, it takes the view from the lobby

camera and sets it to one of the two cameras which belong

to it. The player can switch using the mouse’s right click

between the following cameras:

• commander view camera as shown in Figure 10;

• outside view camera as shown in Figure 11.

Figure 10. Commander view in sniper mode

Figure 11. Outside view

USABILITY HEURISTICS FOR EVALUATION

When the game development phase is finished, we end up

with a working copy of the game that is ready for testing.

Usability heuristics methods have been used for testing

because they are fast and do not require many resources. In

order to perform such a method, we have to create some

suitable heuristics for the project which can be detected by

the testers. The testers have been informed about the game

in general and the goals of the project.

TABLE 2. The mapping between game heuristics and Nielsen’s
heuristics

Game Heuristics Nielsen’s Heuristics

ID Definition ID Definition

H1 OS Compatibility N4

Consistency and standards

H6 Consistency

H2 Clarity N2

Match between system and the real

world

H3 Metaphors

H10 Reality

H4 Simplicity N8 Aesthetic and minimalist design

H5 Feedback N1 Visibility of system status

H7 Error prevention N5 Error prevention

H8 Help and documentation N10 Help and documentation

H9 Network Efficiency N7 Flexibility and efficiency of use

H11 Enjoyment N3 User control and freedom

Matching has been performed between the heuristics we

created and the standard Nielsen’s Heuristics, so the game

heuristics will be as the following:

H1: OS Compatibility - the game should be easy to install

and compatible, without additional software support. If

needed, the package should contain the extra software

support.

H2: Clarity - the interface should be easy to understand,

using clear graphic elements, text, and language.

H3: Metaphors - use appropriate metaphors, making the

possible actions easy to understand, through images and

familiar objects.

H4: Simplicity - provide the necessary information in order

to complete a task.

H5: Feedback - keep users informed on the games’

progress, indicating both the global and the detailed state of

the system. The application should deliver appropriate

feedback on users’ actions.

H6: Consistency - consistent in using language and

concepts. The forms of data entry and visualization of the

results should be consistent.

H7: Error prevention - prevent users from performing

actions that could lead to errors and should avoid

confusions that could lead to mistakes.

- 125 -

H8: Help and documentation - provide an easy to find, easy

to understand, and complete online documentation. It

should provide contextual help and glossary of terms for

novice users [7].

H9: Network Efficiency - the end user must not feel any

slow motion in the game or glitching.

H10: Reality - the end user must feel the laws of physics

applied in the game the same way in real life, as well as the

objects inside the game, have to behave as they are in real

life.

H11: Enjoyment - the end user must have fun while playing

the game.

Each game heuristics matches one of the Nielsen’s

Heuristics by meaning and goal as shown in Table 2. For

conducting an experiment, we have two testers: the first

will have the Game Heuristics and the second will have

Nielsen’s Heuristics and both of them have tested and

evaluated the game according to the heuristics they been

given. Each tester wrote a description of the problems that

they have identified while testing as shown in Table 3.

TABLE 3. Number of usability problems identified by testers

Tester 1 using Game Heuristics Tester 2 using Nielsen’s Heuristics

ID Number of problems ID Number of problems

H1 0 N4

2

H6 3

H2 0 N2

2

 H3 0

H10 1

H4 1 N8 1

H5 0 N1 0

H7 0 N5 0

H8 0 N10 1

H9 2 N7 1

H11 2 N3 3

Total 9 Total 10

As a result, Nielsen’s Heuristics tester detected the

problems in the system in a more general point of view, but

the Game Heuristics tester has described the problem

specifically.

RESULTS ANALYSIS

Now we have enough data to prioritize the modifications on

the game and fix the problems accordingly, so we sorted all

the problems that have been detected by the testers starting

from the highest problematics in the tester point of view.

Table 4 illustrates the problems.

The two evaluation methods almost have similar results

regarding the situation of this project and the available

resources. Both testers got to the same main problems and

described them independently.

TABLE 4. Results analysis

Description Value

Problems detected by both testers 70%

Problems detected only by using Game Heuristics 10%

Problems detected only by using Nielsen’s Heuristics 20%

The following problems came up while testing:

a) Watching out for the mass parameter of the objects

when applying physics’ laws to the game, because

they can push each other away.

b) When creating a network game, it is recommended to

start with the player’s avatar before developing the

network class.

c) Carefully deciding what to propagate over the network

so the communication layer is not overloaded.

d) Setting a priority for the data needed to be sent over

the network and acting accordingly, for example (the

shell location while it been fired and travel through air

to the target have a high priority over the current

tanks’ locations because they are slower).

e) The camera object within each client has it is own

point of view, so if we have a 3D text, it should

always face the right direction that is toward the

current player.

f) The particle system (effects) cannot be transferred via

the network, so synchronizing some Boolean values to

activate them to be visible to the other clients is a

good and a fast way to do it.

g) Using layers and tags to distinguish between objects in

the scene like plyers and trees in case of a collision

has been invoked.

CONCLUSIONS

Using a heuristics evaluation method is very effective in

detecting problems with usability. It is important for a game

to be easy to use and bug-free, so it can interact with

humans as it supposed to do. Defining special heuristics for

the game that we developed helped to produce a better

feedback on the technical level and made it easier for the

developer to make changes. The work would have been

better if the project’s team consisted of more than 5 people.

This would also help with addressing each problem to the

person responsible for it.

ACKNOWLEDGMENTS

The authors would like to thank the team behind the online

game World of Tanks [10] for being the inspiration behind

this project and to all the participants involved in the

experiments that the present study required.

- 126 -

None of this would have been possible without the support

from the Computer Science Department form the Technical

University of Cluj-Napoca, Romania.

REFERENCES
[1] Wargaming Cyprus Corporate Registry WARGAMING

GROUP LIMITED Archived October 11, 2016,

worldoftanks.eu

[2] Anis Zarrad “Game Engine Solutions” INTECH 2018

[3] Tihomir Dovramadjiev Technical University of Varna, MTF,

Department - Industrial “SPECIALISED

ARCHITECTURAL FEATURES IN BLENDER 3D”

Volume VI, 2016, Number 4: TECHNICAL STUDIES

[4] Yi Ping SHI , College of Electrical & Electronic Engineering,

Shanghai University of Engineering Science, Shanghai,

China “The Development of Tanks War Mobile Game based

on Android System” MATEC Web of Conferences 63

6301035 MMME 2016

[5] Tonio Triebel , Benjamin Guthier, Richard Süselbeck, Gregor

Schiele,Wolfgang Effelsberg “Peer-to-peer Infrastructures for

Games”DBLP January 2008

[6] Max Lehn, Tonio Triebel, Christof Lengm, Alejandro

Buchmann, Wolfgang Effelsberg, “Performance Evaluation

of Peer-to-Peer Gaming Overlays” IEEE Xplore September

2010

[7] Rusu C., Roncagliolo S., Figueroa A., Rusu V., Gorgan D. ,

Evaluating the Usability and the Communicability of Grid

Computing Applications. The Fifth International Conference

on Advances in Computer-Human Interactions. ACHI 2012,

pp.204-207, (2012).

[8] Sarmad Soomro, Wan Fatimah Wan Ahmad, Suziah

Sulaiman Department of Computer & Information Science,

University Teknologi PETRONAS ”Evaluation of Mobile

Games with Playability Heuristic Evaluation System Sarmad

Soomro1” 978-1-4799-0059-6/13/$31.00 ©2014 IEEE

[9] Wolmet Barendregt, Mathilde M. Bekker & Mathilde

Speerstra Faculty of Industrial Design, TU Eindhoven

“Empirical evaluation of usability and fun in computer games

for children” Human-Computer Interaction - INTERACT'03

M. Rauterberg et al. (Eds.) Published by IOS Press, (c) IFIP,

2003, pp. 705-708

[10] TurboSquid, Inc. 935 Gravier St., Suite 1600, New Orleans,

LA 70112, https://free3d.com/3d-model/t29-heavy-tank-

83399.html

