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ABSTRACT

This paper describes a possible implementation of procedural 
generation to obtain landmasses with realistic terrain featuring 
unique climates and vegetation. This implementation will be 
integrated within an application which allows the user to mod-
ify the different parameters and see in real time the applied 
modifications. In order to achieve the generation of an infi-
nite amount of realistic and diverse terrain, there are several 
challenges that need to be overcome: the generation of data 
that reflects reality, the placement of trees and other props in a 
controlled way, assuring a continuous and seamless placement 
of generated land and a consistent performance on the user’s 
device. Those challenges will be addressed through the imple-
mentation of different methods and algorithms addressing the 
use of noise and spacial transformations.
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INTRODUCTION

Since the start of its mainstream use in computer games in 
90’s, 3D graphics have become a staple in the industry due to 
the increasing accessibility of consumer GPUs and the evolu-
tion of console hardware. While in the beginning performance 
was stable and the models and textures employed were charac-
terized by low levels of detail, the progress made in the field of 
computer graphics led to an increase in available features, like 
lighting effects and models of higher vertex count and larger, 
more detailed textures. These, in turn, have led to an increase 
in the graphics workload and have consequently increased 
the strain on hardware requirements. For example while the 
sixth generation of consoles presented character models with 
a facial polygon count of just 1200, the eight generation of 
consoles were capable of a facial polygon count of 32000 [1]. 
This represents an increase in just facial detail of 2000% in a 
time period of 13 years.

In every project that extensively utilizes 3D graphics, whether
it’s a video game or a CGI-intensive film, the presence of a
3D artist or a team of them is crucial. Their responsibility is
to create various 3D models for specific scenes, ensuring the
accurate definition of shapes and textures, as well as placing
and adjusting light sources within a scene. The task of creating
3D models also encompasses the modeling of the environment
and terrain featured in a scene. The process of modeling,
texturing, and aligning pieces of terrain represents one of
the most demanding tasks for a 3D artist, primarily due to
the large size of the models involved and the imperative to
accurately place every detail. Attention to detail is crucial,
particularly when the terrain will be viewed up close, as minor
errors such as textures cutoff or sharp falloffs in the terrain can
compromise the viewer’s immersion. To alleviate the artist’s
workload and ensure generation within specific parameters,
one solution is the utilization of procedural terrain generation.

Procedural terrain generation has been a part of video game
media since its inception, being employed in various projects
such as the rogue-like dungeon crawler Angband and its deriva-
tives [2]. Its purpose is to facilitate the creation of unique and
infinitely diverse content. Procedural terrain generation has
been employed multiple times to provide users with a distinct
experience each time they interact with an application, while
also offering developers a means of automating content cre-
ation. However, the challenge lies in fine-tuning the generation
process to ensure that the generated content adheres to the re-
quired parameters and that the application’s performance is not
significantly impacted, when compared to a non-procedurally
generated version.

In this paper, we will present a method that enables the gen-
eration of realistic and diverse terrain by leveraging various
parameters and methods. This approach allows us to exert in-
fluence over the overall shape of the terrain and the placement
of objects within specific zones defined by unique climates.

RELATED WORKS

When it comes to procedural generation, the developer must
first grasp the process of generating the data and determine
if the chosen method can be seamlessly integrated into the
application.
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In the case of terrain generation there are several factors that
need to be taken into consideration:

• How varied should the terrain be?

• What rules of nature are followed?

• Does the terrain follow a logic different from realistic ter-
rain?

• How much data can be generated?

• Can the data be extended?

The implementation of a terrain generation technique is de-
scribed in [3]. The implemented technique is utilized within
a custom-built rendering engine, which can be expanded by
users proficient in programming to develop desktop applica-
tions with 3D rendering capabilities. Over the years, various
methods have been presented for procedurally generating con-
tent using different algorithms or component structures, each
offering a unique perspective on programmatically creating
data. [4] provides a comprehensive overview of several of
these methods, categorizing procedural generation into distinct
categories: Pseudo-Random Generators, Generative Grammar,
Spatial Algorithms, Simulation of Complex Systems, and Ar-
tificial Intelligence.

Perhaps the most well-known pseudo-random generator used
in procedural generation is the one developed by Ken Perlin
in 1981. As described in the transcript [5], he wished to find a
way of generating realistic textures through the creation of vi-
sual noise. This was made as a response to the "machine-like"
textures used in the film Tron (1981). While noise is usually
seen as a disturbance in the transmission of data signals, the
algorithm elaborated by Perlin generates noise in a structured
and controlled manner, while also keeping an aspect of ran-
domness in the results. Thus, through the use of Perlin Noise,
developers and artists are able to generate textures that give
off the appearance of depth.

Generative Grammar refers to a theory introduced by linguist
Noam Chomsky in 1968, proposing that a limitless number of
grammatically correct phrases can be generated by employing
a set of rules and a dictionary. This theory has paved the way
for the development of various techniques for generating data,
allowing content to be generated by defining a set of actions
and their sequence. One notable method is the Lindenmayer
Systems or L-Systems. Inspired by the concepts proposed by
biologist Aristid Lindenmeyer in [6], L-Systems enable the
specification of a command sequence that defines the gener-
ation process. As it is exemplified in [7] where, through a
series of commands which denote actions like movement or
rotations, L-Systems can be used in defining the generation of
plants like ferns.”

To generate models and textures directly, developers can em-
ploy spatial algorithms that manipulate the workspace through
various operations. One notable method of generation is the
utilization of fractals. These, as defined by Benoît Mandelbrot
in [8], involve the concept of constructing intricate patterns by
iteratively adding a shape to itself at varying scales. Through
this method complex models and shapes can be obtained only

by using the same simple object. Models that employ fractals
present the property of self-similarity, which denotes that, the-
oretically, a shape can have an infinite amount of detail and
observing it at any scale will present similar appearances.

Another implementation of spatial algorithms is through the
use of grid subdivision. This represents the action of generat-
ing detail by continuously splitting a grid into smaller grids,
thus increasing the potential detail only in certain areas. This
is implemented in certain algorithms where the emphasis is
put on saving performance, like the Patch-Lod algorithm from
[9]. In this algorithm the mesh of the terrain has its surface
subdivided in smaller portions based on the the viewer’s dis-
tance. The closer the viewer is, the more detail is presented
on the mesh while farther sections have a reduced amount of
detail. An approach related to terrain synthesis from minimal-
detail user-provided height maps is described in [10]. The
article highlights the problems arising from insufficient detail
in user input, particularly abrupt changes in altitude and over-
simplified feature edges. It explain how the terrain synthesis
algorithm is employed to address these issues and generate a
level of detail that closely resembles realistic terrain models.

If the developer aims to closely replicate reality, utilizing al-
gorithms based on the simulation of complex systems can be
advantageous. The simulation of complex systems denotes al-
gorithms and methods whose processes of creation are inspired
by elements found in real life, be it natural phenomenon or
human responsibilities. For instance, one potential approach to
simulating complex systems involves the utilization of agents,
which represent components that interact with each other and
whose results influence the results of other agents. The pro-
gram described in [11] presents a possible use of agents in
creating a city with a logically elaborated infrastructure. Using
a map that denotes a piece of land, following certain regula-
tions, agents which resemble real life professions will create
the road infrastructure, improve it and place different areas
which will represent residential or business-oriented buildings.
Thus, after a certain amount of time the resulting map will
resemble that of an urban area.

While limited in the creation of graphics, AI had been used
before in the creation of proceduraly generated content, like in
the case of genetic algorithms. In [12], genetic algorithms have
been used in the creation of plant meshes. This is achieved by
observing the features of every plant and combining only the
features needed in order to obtain a new generation of plant
models whose appearance is steered in a certain direction.

IMPLEMENTATION

In this paper, several aspects discussed in the previous section
will be utilized, combined, and modified to create a landmass
that closely resembles those found in reality. Each individual
terrain segment, referred to as a "chunk," will exhibit a diverse
range of biomes and specific vegetation types. The applica-
tion presented herein was created using the Unity Engine for
the generation of the terrain and the bpy module of Blender
to generate tree models using the Sapling Tree Gen add-on.
As Unity provides a built-in real-time rendering engine and
various options for asynchronous communication, the devel-
oper’s efforts could be directed towards ensuring the proper
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functioning of every aspect of the procedural generator. The
Sapling Tree Gen add-on allows the 3D artist to generate in
Blender different kinds of tree meshes while also offering the
option to manipulate different aspects of the tree’s appearance:
number of branches, branch splitting distance, the shape of the
leaves etc. By utilizing the Python bpy module, developers
can interact with the Blender application through scripting
without the need to directly access the application itself.

The application will be separated in two different components.
the procedural generator created in Unity and a Python script
which communicates with the Blender application through the
API offered by the bpy module.

Terrain Data Generation

In order to generate the terrain, we need to obtain data based
on which we can differentiate the various terrain formations
and biomes. For that, we require a method in which we can
generate a set of values which would be suitable to denote and
influence the positions of the vertices constituting the terrain
mesh. One solution for this is the use of noise maps. By
utilising a controlled noise algorithm, like Perlin Noise, we
will be able to obtain values where the variation between them
will be smoother and the transition will allow for the definition
of coherent shapes. For the generation of the terrain we need
3 noise maps: a height map for defining the different heights
of the terrain and a temperature and humidity map for the
definition of biomes.

For each noise map we generate a set of vectors whose values
are pseudo-randomly generated based on a seed value. The ori-
gin of the vectors will define grids that are part of the map. For
every point in the map, there will be vectors in the direction of
the point with their origin in the corresponding grid corners.
After a function between the grid vectors and the point vectors
is applied, the values obtained will be interpolated in order
to mitigate possible sharp edges at the value formations. The
resulting noise map will be visually represented by different
dense worm-like formations as seen in Figure 1.a. The result-
ing noise map only vaguely resembles real life terrain. In order
to achieve a closer appearance to real landmass formations,
we need to employ the use of fractals. By adding up multiple
noise map layers of different scales, we obtain a noise map
with a cloud-like appearance to it, representing softer transi-
tions between different landmasses as observed in Figure 1.b.
For the application of fractals, there are several parameters
defined that influence the amount of detail added to the noise
map: octaves, representing the number of fractals, lacunarity,
which will represent the increase of frequency of every layer,
and persistence, used to define the detail contribution of every
layer.

While the height map uses the normal fractal noise genera-
tion, the temperature and humidity distributions should be
influenced by the generated height. In the case of the tem-
perature map, the values are directly influenced by the height
map, where for example temperatures will be reduced in areas
with high altitudes, correlated to the low temperatures nor-
mally found in mountainous regions. For the humidity map,
there will be several factors determining the humidity for both
high and low temperatures. With the noise maps obtained,

(a) Simple Perlin Noise (b) Fractal Perlin Noise

Figure 1: Difference between basic and fractal Perlin Noise

Figure 2: The generated chunk mesh with the height map
applied as texture

the placement of biomes on the terrain can be dictated by the
temperature and humidity maps.

Chunk Mesh Generation

In order to generate the necessary mesh for the terrain chunk
we need to start with a flat 3D plane with the size of the desired
chunk. To modify the height of the mesh vertices, we need
to use the values generated in the height map. By translating
the values of the height map into world space coordinates,
the height of the vertices will be modified to resemble the
formations found in the height map, as seen in Figure 2. In
the visual representation of the noise maps, high values will
be represented through shades of light gray to white, thus de-
noting mountain peaks, and lower values will be represented
through shades of dark grey to black, representing areas of
lower (negative) elevation. To allow the placement of textures,
vertices need to be connected through triangles with the neigh-
boring vertices in order to allow the definition of the UV map,
which is used in mapping textures to the mesh.

Prop Generation

When first considering the placement of props meant to rep-
resent vegetation, we need to first define a method through
which we can ensure a pseudo-random placement. In that
sense, we require a placement algorithm that doesn’t lead to
situations where props are placed close enough to clip through
each other or where there are large patches with or without too
much vegetation. Using a sampling algorithm, like Poisson
Disk Sampling, we can achieve a placement of props that can
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suitably occupy the needed space. The placement is deter-
ministic, since it is following a certain seed which is used
to generate the chunk, and offers a decent complexity that
doesn’t impact the process of terrain generation.

The Poisson Disk Sampling Algorithm follows the main rule
of not allowing the placement of samples whose distance to
the nearest neighbors is lower than a value R. By following
the version of the algorithm presented in [13], every correct
new sample will be placed in a list of active samples. After
randomly selecting an active sample from the list a candidate
will be placed in the area denoted by the interval [R,2R] around
the selected sample. For every candidate sample, the algorithm
checks if the candidate’s distance to every neighboring sample
is at least R. If not, then it is eliminated. If, after a certain
number of tries, no new sample can be placed around the
selected one, then the selected one is eliminated from the
active sample list. This algorithm will continue as long as the
active samples list is not empty. After finishing, the resulting
map of samples will have it’s space maximized and every
sample will be situated at consistent distances from each other,
as seen in Figure 3.

The generation of models for the different vegetation props
will be achieved by using a Python script which uses the bpy
module to communicate with the 3D modelling application
Blender. After initially cleaning the scene of the default com-
ponents, based on the type of model requested, the script will
search for data related to said model and, if it finds it, the
script will send it to the Sapling Tree add-on in order to gener-
ate the mesh. The data in question represents the parameters
used in the add-on function and the textures that will be ap-
plied to the trunk and, optionally, leaves. After applying the
corresponding textures to the model, the script will save the
prop model as a fbx file, ready to instantiated in the scene.
To ensure that every biome that allows props offers diversity,
we shall generate multiple versions of every prop that will be
randomly chosen to be placed in the location of a generated
chunk sample. Through the use of multi-threading, where the
generation script will be called in separated threads, the time
necessary to generate a large number of props will be reduced.
For every valid prop placement sample, as in a sample situated
in a biome that allows props, we shall use the Unity coroutine
system to asynchronously check if the necessary model has
been generated. If it has, then it will be placed in the corre-
sponding world position coordinates, coordinates which are
calculated during the terrain mesh generation. Through this
combination, we shall obtain a large series of 3D models of
plants and trees that will be placed on the terrain chunk, their
appearance resembling that of unique plants fitting for every
biome, as seen in Figure 4.

By combining the data obtained in the previous paragraphs,
the resulting terrain chunk will be represented by a deformed
plane mesh, every deformation representing a different terrain
formation, like mountains, as seen in Figure 5. Every biome
will be represented by a specific colour, which is applied based
on the values of the temperature and humidity map, and every
prop instantiated in the scene will have it’s model unique to
the placed biome.

Figure 3: Sample map generated with R=15

Figure 4: Tree model generated by Sapling Tree Gen

Figure 5: Terrain chunk. Every prop is highlighted by an
orange outline
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Figure 6: Different LOD meshes applied in the Endless Terrain

Endless Terrain Generation

The next step in the generation process is the placement and
generation of different chunks in order give off the illusion of
an infinite, continuous world. Initially, a set of chunks situated
in a certain range from the center of the coordinate system will
be generated. By keeping track of the position of those chunks,
the coordinates can be applied to the grid vectors used in the
noise generation phase. This ensures that the noise generated
is continuous between adjacent chunks. Because it is techno-
logically impossible to generate an infinite amount of chunks
at once, there needs to be condition which will guarantee that
chunks would be generated only on certain events. This is
achieved by keeping track of a reference object, designated
viewer, which will act as a representative for the user inter-
acting with the application. Said object is capable of being
moved using the WASD keys. At every frame, the location of
the viewer will be checked. If the viewer travelled a certain
distance in a direction then new chunks will be generated.

To ensure that performance isn’t severely affected by the large
number of meshes that are generated in the scene, the hiding
of far away objects and the use of LODs or Levels Of Detail
is applied. For every prop and chunk that is considered too
far away for the viewer to properly see, their meshes will be
hidden and made visible again once the user gets within a
certain minimum distance. For the terrain chunks that are in
certain proximity tiers to the viewer, there will be different
levels of detail applied to the meshes. Every chunk will have
several meshes based on a varying level of detail. Those
meshes will be switched around based on the viewer’s position
to the chunks. During the generation of a LOD mesh, based
on the level value, consecutive vertices will be ignored, thus
ensuring that the meshes will still keep the same overall shape
but with less vertices present for the render engine to compute.
The different levels of detail applied to the meshes can be
observed in Figure 6.

While the generated noise values are continuous between
chunks, the vertices that make up the chunks are not guar-
anteed to align properly. This will cause the apparition of

(a) Single chunk interpolation ef-
fect

(b) Multiple chunk interpolation ef-
fect

Figure 7: Difference between different interpolation methods

seams in the terrain. This is due to the fact that the inter-
polation used for the height map values in the single chunk
generation is based on the maximum and minimum height
values. These values won’t be consistent between multiple
chunks. For the sake of chunk connectivity, during the endless
generation phase, a different interpolation method will be used,
based on the maximum height between all chunks. This will
ensure that the height of the vertices will follow the same range
of values. The comparison between the two interpolations can
be observed in Figure 7.

Another problem related to continuity that needs to be cor-
rected is the presence of seams caused by the texture colours.
Due to the fact that every chunk is generated separately, the
values of the normal vectors are also treated as separate, which
will lead to light influences that will create subtle but notice-
able seams at the edges of the terrain chunks. This is corrected
by recalculating the normal vectors for every vertex during the
chunk generation phase. Every vertex will be placed into 2
categories: marginal vertices and inner vertices. The triangles
that contain only inner vertices will compute the normal value
for the triangle, which will be added to the normal value of
every vertex. In the case of triangles which contain marginal
vertices, the calculated normal value will be added only to the
inner vertices. Through this method, every marginal vertex
will have the same normal value, which would lead to the
disappearance of the seams caused by different light interpre-
tations.

RESULTS

By applying all the previous methods and algorithms, the
application is capable of generating an infinite amount of
terrain chunks, each one with different landmass formations,
different concentrations of biomes and a different placement
of specific props. The chunks are capable to be placed next
to each other, in order to create the illusion of one continuous
mesh, that will be continually generated based on how much
the viewer travels in a certain direction.

For the purpose of performance testing, the application had
been tested on a Asus laptop with the following specifications:

• Intel Core 2.20 Ghz CPU

• 8GB RAM memory

• NVIDIA GeForce GTX 1050TI GPU.

• Windows 10 OS
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Figure 8: Profiler results when running both the application
and the prop model generation

Since the generation of terrain chunks is limited to only a cer-
tain size and the entire data is generated on the go, the impact
that comes from the chunk generation is minimal at best. On
the other hand, due to the fact that the generation of props is
tied to an outside application and that the communication is
done through an API, the placement of props will cause the
most amount of performance hits.

Several tests were conducted to evaluate the performance of
the endless terrain generation phase. The focus was on mea-
suring the loading time of data and the overall performance
in terms of Frames Per Second (FPS). The tests considered
variations in the sample radius and the generation of prop mod-
els. The Profiler tool provided by Unity was utilized to collect
the necessary data for analysis. The Profiler will track the
overall performance in FPS of the application and the sources
that cause fluctuations: script activity, the physics engine, the
rendering etc.The results can be observed in the following
table:

Nr Show
Props
(bool)

Generate
new
Props
(bool)

Sampling
Radius

Start
time
(sec)

Average
FPS

1 False False - <1 50-60
2 True False 40 7 50
3 True True 40 3 20-30
4 True False 20 13 45
5 True False 10 30 30-45

By observing the values found in the table, we can deduce that
the action of generating all the necessary prop models has a
significant impact on the overall performance of the applica-
tion, causing a decrease of at least 20 FPS when compared to
the case where no new models are generated. The impact of
the generation activity is presented in the profiler screenshot
found in Figure 8, where it can be observed multiple spikes
in FPS loss, resulting in an overall reduced and slow perfor-
mance. These issues are caused by the CPU resources being
consumed by the threads used to execute the prop generation
scripts.

When the model generation is disabled, the use of props still
has a certain impact on the performance. By decreasing the
sampling radius, the number of instantiated props will increase,
which in turn will lead to a denser concentration of props
that need to be rendered. In addition, the application will
require a larger amount of time to start, due to the high amount

Figure 9: Profiler results when running the application with a
minimum sample distance of 20

Figure 10: Profiler results when generating only the terrain
chunks

of coroutines that the engine needs to switch between. The
impact of this is shown in Figure 9. When stationary, the
performance remains consistently at 60 FPS, but when the
viewer is in motion, the visibility of the props is updated,
causing slight fluctuations between 50 and 60 FPS.

The application is at it’s peak when not showing any props,
the endless generation being capable of holding an almost
consistent 60 FPS. What needs to be noted though, is the
fact that there are slight spikes in performance caused by
the generation of new chunks, as shown in Figure 10. In
the overview tab, one can observe that the majority of the
performance impact occurs during the update of chunk values.
This can be attributed to the generation of new chunks and the
alteration in detail levels of the existing chunks.

CONCLUSIONS

The application described in this paper allows the generation
of an infinite amount of unique terrain chunks. By utilis-
ing a combination of noise and sampling algorithms, multi-
threading techniques and asynchronous communication, the
resulting performance of the terrain generation tool is quite
decent, being able to keep an almost consistent value of 60
FPS. What does bring down the application is the generation
of vegetation props which would require a rework. Due to
the dependence to an outside application API and the use of
threads, the number of FPS drops significantly since the CPU
is pushed to it’s limits.
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Overall, the solution presented in this paper puts into perspec-
tive the idea of efficient terrain modelling while also allowing
for the posibility of creating complex ecosystems with unique
temperature and humidity distributions.
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