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Abstract Body temperature monitoring provides healthcarers with key clinical 
information about the physiological status of patients. Temperature readings 
are taken periodically to detect febrile episodes and consequently implement 
the appropriate medical countermeasures. However, fever is often difficult to 
assess at early stages, or remains undetected until the next reading, probably a 
few hours later. The objective of this paper is to develop a statistical model to 
forecast fever before a temperature threshold is exceeded to improve the 
therapeutic approach to the subjects involved. To this end, temperature series 
of nine patients admitted to a general Internal Medicine ward were obtained 
with a continuous monitoring holter device, collecting measurements of 
peripheral and core temperature once per minute. These series were used to 
develop different statistical models that could quantify the probability of 
having a fever spike in the following 60 minutes. A validation series was 
collected to assess the accuracy of the models. Finally, the results were 
compared with the analysis of some series by experienced clinicians. Two 
different models were developed: a logistic regression model and a linear 
discrimination analysis model. Both of them exhibited a fever peak forecasting 
accuracy above 84%. When compared with experts assessment, both models 
identified 35 out of 36 fever spikes (97.2%). The models proposed are highly 
accurate in forecasting the appearance of fever spikes within a short period of 
time in patients with suspected or confirmed febrile related illnesses. 
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1 Introduction 

Body temperature is universally considered a crucial vital constant, and is 
systematically recorded and analyzed in every admitted patient. Its clinical 
usefulness is unquestionable. However, clinical thermometry is heavily 
hampered by several conceptual problems: 1) body temperature is considered 
a “constant”, and as such, measured at low frequency (e.g. three times a day, or 
on every shift). This concept is arguably an offspring from the classical humour 
theory (and temperature would be the equivalent to the “heat” element). 2) We 
tend to assume that the body has a single temperature, which is kept constant 
through a cybernetic mechanism regulated by the hypothalamic thermostat. 3) 
Fever parallels the course of (mainly) infectious diseases. 4) There is a “normal 
limit” of temperature, above which the patient should be considered febrile. 

Each of these assumptions is hardly tenable. Instead, body temperature is 
an ever–moving, fine–tuned equilibrium between heat production and heat 
dissipation. The concept of a central hypothalamic centre is being substituted 
by a network of afferent and efferent overlapping loops [1]. One of the central 
thermoregulating mechanisms is a tight control of the amount of blood being 
circulated through cutaneous capillaries vs. the amount of blood being short-
circuited through deeper arterio–venous shunts. The balance between these 
two arms is under control of the autonomic system, and regulates the amount 
of heat being transferred to the environment. Thus, the gradient between 
central and peripheral temperature displays the “heat–conserving” or “heat–
dissipating” mode of the body at each moment. 

Furthermore, building a fever is not an immediate process. It is a 
painstaking, metabolically demanding process that requires several steps from 
the initial production of lipopolysaccharides and other pyrogenic substances 
by infectious organisms, through macrophages activation, interleukin 
liberation and activation of the afferent and efferent thermoregulating loops 
before body temperature rises. This may take time, as proved by the fact that 
bacterial blood counts are high in the pre–febrile state [2,3]. 

Finally, while clinical decisions must be made and thus we need some kind 
of threshold, it is probably naive to assume there is a pre-fixed “red line” 
separating febrile from afebrile patients. Where to put that clinical threshold 
varies depending on the patient and the context, and is arguably a typical 
example of clinical judgement. Obviously, admitting the blurred limits of 
temperature does not question the existence of fever. Fever is an indisputable 
clinical phenomenon that, while originally a defence mechanism, may be a trial 
for frail or unstable patients. 

Being able to predict the development of fever in a specific time–lapse may 
have important consequences. It may allow obtaining blood cultures when the 
bacterial count is peaking, thus increasing the diagnostic yield. It may also 
prompt preventive or therapeutic measures to avoid or curtail the febrile 
episode in patients in which a fever may be especially undesirable [4]. In this 
context, the term fever may have two different meanings: 

– A core temperature above a predefined threshold (e.g. 38°C). 
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– A temperature profile that a set of qualified clinicians would consider 
clinically relevant, and/or at which they would decide to obtain blood 
cultures. 

Our group has already described the usefulness of a holter device that 
allows continuous monitoring of central and peripheral temperatures to 
identify fever spikes. Some of them were overlooked by conventional 
measurements [5], therefore suggesting one advantage of performing a 
continuous surveillance of temperature. In addition, this device can measure 
both central and surface temperatures at the same time, which in turn allows 
to approximate to cutaneous blood flow regulation, a key factor in the 
appearance of fever. 

We have already demonstrated that complexity analysis of temperature 
curves reflects the severity of patients admitted to the critical care unit and it is 
a prognostic marker [6]. In this setting, complexity analysis may provide 
important information about the processes governing the regulation of body 
temperature during fever. 

Based on these previous studies, we hypothesized that it could be possible 
to forecast the appearance of fever spikes in patients diagnosed or suspected 
to suffer an infection with the use of a holter device that monitors both central 
and skin surface temperatures. Therefore, the present study had three 
successive objectives: 

1. To develop a model that, through the real–time recording and analysis ofthe 
co–evolution of central and peripheral temperature of a patient, would be 
able to foresee and alert clinicians on the development of fever in the 
following 60 minutes. 

2. To validate the results of such model on a different sample of patients. 

3. To compare the results of such model with the clinical judgement of a set of 
qualified physicians. 

2 Methods 

Two modelling schemes were addressed: linear discrimination analysis (LDA) 
and logistic regression (LR). The variables were characterized with a 
univariate or a bivariate analysis in order to choose the most appropriate 
construction techniques for the models. All explanatory variables chosen were 
quantitative, whereas the independent variable was qualitative (Fever peak 
anticipated or not). The variables can have different means and medians under 
these schemes. 
Although some variables may not follow the normal distribution, LDA can be 
applied anyway if model adjustment is proven to be correct [12]. LR is not 
affected by this requirement. 

The presence of multicollinearity among the explanatory variables has to 
be evaluated in order to remove those variables that could cause redundancy. 
Three tests were performed consecutively to check for multicollinearity in the 
method proposed: 
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1. The correlation matrix, where a high correlation is detected if the 
coefficients Rij satisfy |Rij| ≥ 0.7. 

2. The inverse correlation matrix, where a high correlation was said to 

bepresent when  
3. The method of Belsley, Kuh and Welsch [10]. In this test, index conditioning 

(IC) is computed from the eigenvalues λ of the correlation matrix as 

IC = , where IC values greater than 10 indicate multicollinearity 
problems. 

In our case, the results of multicollinearity analyses showed that there was 
a significant relation among the explanatory variables. To solve this problem, 
we chose a method of gradual variable elimination [11]. The models were 
optimised by selecting the variables in their significance order. The resulting 
models were finally validated to assess their predictive accuracy as described 
in Section 4. 

2.1 Model variables 

A fever peak is considered to occur when central temperature is higher than 
38°C, with at least one measurement lower than 37.5°C in the previous 30 min. 
In accordance with this definition, a dichotomic output variable termed 
“Signal” was defined, with points in the 60 minutes prior to this peak assigned 
a value of 1, and the rest of the points being 0. An example of the behaviour of 
the Signal variable is depicted in Fig. 1. During the next 120 minutes after a 
peak, no further peaks can be forecast to avoid redundant information about 
the subject status. Namely, the models are not retriggerable. 

The input variables for the development of the predictive models were: 

– Central temperature (Tc): measurement of temperature in the external 
auditory canal (EAC). It was assumed that this temperature is a surrogate 
of the body’s internal temperature (core), although some differences may 
exist. Theoretically, Tc is a key factor for fever forecasting, as a temperature 
held above 37°C for some minutes is very likely to be related with a fever 
spike. 

– Peripheral temperature (Tp): measurement of skin temperature on the 
anterior surface of the forearm. Skin temperature is highly dependent on 
environmental temperature, and it is not the same throughout the body 
surface, but it is useful for measuring the gradient with Tc and make an 
approach to heat loss, a key factor in thermoregulation and fever. 
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Fig. 1 Signal variable behaviour. Points in the 60 minutes before a fever spike take the value of 1, 
otherwise the value assigned is 0. 

– Gradient between Tc and Tp (Gcp): the difference between each 
measurement of Tc and Tp. From a pathophysiological perspective, fever is 
preceded by a rise in this gradient, as an indicator of cutaneous 
vasoconstriction to keep the body warm. 

– Gradient mean (𝐺̅cp): the average value of Gcp during the last 60 minutes. 

– Correlation coefficient between Tc and Tp (𝐶̅ cp): the mean of the 
correlation coefficient between Tc and Tp in the last 60 minutes. 

– Correlation coefficient between Tc and Grad (𝐶̅cGcp): the mean of the 
correlation coefficient between Tc and the gradient in the last 60 minutes. 

– Correlation gradient (GC): the difference between 𝐶̅cp at time n and 𝐶̅cp at 

time n − 30. This value was estimated because a sharp fall in 𝐶̅cp was often 
found in the minutes preceding a fever peak. 

– Approximate Entropy (ApEn) of Tc, Tp and Gcp (ATc, ATp, AGcp). ApEn evaluates 
the predictability of a time series, measuring to what extent a certain 
pattern predicts the ensuing points. Measures of ApEn of Tc, Tp and Gcp were 
considered to provide information about changes in sharp regulation of 
body temperature at the first stages of fever. Details about ApEn and 
related statistics may be found elsewhere [8]. In this work, ApEn was 
calculated with N = 120, m = 1 and r = 0.2∗SD. 

– Cross–ApEn of Tc and Tp (CA): Cross–ApEn is a parameter related with 
ApEn that evaluates the synchrony of two different time series. Here, N = 
120, m = 1 and r = 0.2∗SD. 

3 Experiments 

3.1 Training experimental set 

These temperature time series were collected among patients admitted to the 
Internal Medicine ward of a teaching hospital in Mostoles, Madrid, from 2008 
to 2010. The sample included 62 patients who had had a temperature 
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measurement above 38°C the day before they were monitored. They were also 
required to be over 18 and under 85 years of age and to have been admitted 
for less than a week. Central and peripheral temperatures were recorded with 
two sensors placed in the external auditory canal (Mon–a–Therm Tympanic 
Temperature Probe, Covidien) for central temperature and in the cubital 
aspect of the forearm (Mon–a–Therm Skin Temperature Probe, Covidien) for 
peripheral temperature, and stored every minute for 24h using a temperature 
Holter device (TherCom, Innovatec) described elsewhere [7]. The results of 
different analyses performed on those series have been published in [5]. 
Written informed consent was obtained from each participant before 
recruitment and monitorization. 

Since analyses of entropy derived techniques require perfectly 
accomplished time series, temperature recordings from patients in the sample 
described above were reviewed, and eventually 9 series (for a total of 8325 
temperature readings) were chosen for the development of predictive models: 
6 men and 3 women, with a median age of 56 years (range 32 to 81). They 
were considered specifically suitable for this purpose since they had no signal 
losses or disconnections. 

3.2 Validation experimental set 

The validation series were collected in the same manner as for the training set. 
A total of 14 patients were recruited between May and July 2013, following the 
same criteria, and they were monitored with the same devices and sensors. 
Temperature recordings were reviewed and 8 of them were considered 
suitable to be analyzed with the predictive models for validation, for a total of 
7486 temperature readings. This set included 6 men and 2 women, with a 
median age of 59 years (range 31 to 63). Written informed consent was 
obtained from each subject. 

Accuracy of each model was evaluated by comparison of the predicted 
value of the variable “Signal” with its real value for each point in the whole 
sample. A contingency table was built with these results, and global accuracy 
was calculated as the total percentage of correct forecasts. Models with the 
highest global accuracy were chosen. 

3.3 Experts validation 

Five specialists in Internal Medicine of our hospital were chosen to evaluate 
some of the temperature series used for the development of the predictive 
models. Three of them work in a general Internal Medicine ward and two of 
them in an Infectious Diseases ward. All of them had more than ten years of 
clinical experience. 

The survey included 30 temperature series, with 6 of them repeated twice. 
The physicians were requested to mark the points where they considered a 
fever 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
 

 

Fig. 2 Temperature series example for central temperature (Tc). Circles represent the fever peaks 
detected by the medical specialists. 

peak to begin on the graphics. It was considered that an agreement existed 
when three or more physicians marked the same point. Fig. 2 depicts an 
example of a body temperature record, with circles indicating the beginning of 
fever spikes as considered by the experts. 

These experts identified 42 fever peaks in the 30 series that they analyzed, 
based on the criteria previously established (agreement between three or 
more of them). A total of 6 of these peaks could not be used for comparison 
with the predictive models because they occurred less than 120 minutes after 
the previous one, and those time windows had been excluded from the 
predictive models, as previously explained. 

4 Results 

Threshold values were set at 0.880 for the LDA model and 0.160 for the LR 
model, since they yielded the highest accuracy. Fig. 3 show the receiver 
operator characteristic (ROC) for the LDA and RL with the area under curve 
(AUC). The AUC for both models are very near to 1, and are considered very 
good models to predict. Values above the threshold were considered as 
predictive of a fever spike occurring in the next 60 minutes. With the cutoff 
values previously defined, the LDA model correctly classified 84.76% of the 
training set, and the LR model, a 84.58%. Among points with a value of “0” for 
Signal, classification was correct in 84.61% of the cases for the LR (6165 out of 
7286) and in 84.77% of the cases for the LDA (6176 out of 7286). Among 
points with a value of “1”, the LR model correctly classified 876 points out of 
1039 (84.58%) and the LDA model 880 out of 1039 (84.7%) (see Table 1). 
Mean anticipation time to a fever peak was 82 minutes for the LDA model (SD 
44 minutes) and 84 minutes for the LR model (SD 44 minutes). 

As for the validation set, the RL model correctly classified 6695 of 7486 
points (global accuracy of 89.43%). The LDA correctly classified 6684 mea- 
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Specificity 

Fig. 3 ROC curve for LDA and RL with the area under curve (AUC). The LDA curve appears in solid 
line, and the RL in dash line. 

Table 1 Accuracy of LDA and LR models over the training experimental set. 

     Forecast   

    LDA   RL  

   0 1 Total 0 1 Total 

 
Count 

0 
1 

6176 

159 
1110 

880 
7286 
1039 

6165 

163 
1121 

876 
7286 
1039 

Observed 
% 

0 
1 

84.77 
15.30 

15.23 
84.70 

100 
100 

84.61 
15.69 

15.39 
84.58 

100 
100 

 Global accuracy  84.76%   84.58% 

surements (global accuracy of 89.29%). Among points with a value of “0” for 
Signal, classification was correct in 92.06% of the cases for the LR (6457 out of 
7014) and in 91.93% of the cases for the LDA (6448 out of 7014). Among 
points with a value of “1”, the LR model correctly classified 238 points out of 
472 (50.42%) and the LDA model 236 out of 472 (50%). Both the LDA and the 
LR models identified 35 out of the remaining 36 peaks, for a 97.2% sensitivity. 
In the two series where no fever spikes were identified by doctors, the models 
performed properly, and no false positives took place. Mean anticipation time 
to a fever peak was 49 minutes for the LDA model (SD 30.17 minutes) and 
51.42 minutes for the LR model (SD 30.35 minutes). An example of the 
performance of the LDA predictive model on one series is shown in Fig. 4. 

The hypotheses of each model were checked using the statistical software 
SPSS 22 of IBM Enterprise. The LDA model performed correctly, according to 
the Wilks’ Lambda test (p = 0.000), and all the explanatory variables were 
useful to discriminate between the minutes before a fever spike and the rest of 
the series, according to the Wilks’ Lambda test (p < 0.05 in all cases). The 
normality of explanatory variables was assumed because the number of obser- 
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Fig. 4 Performance of the LDA predictive model. The red line represents the value of the variable 
“Signal”, calculated by this model. In this case, the model forecast a fever spike 15 minutes before it 
appeared, with a core body temperature measurement of 36.9°C. 

vations was very high (greater than 8000). Covariance arrays were different 
according to test box (p = 0.000), which may adversely affect the estimation of 
parameters as previously stated [9]. The LR model also performed correctly 
according to the Hosmer and Lemeshow test (p–value = 0.699), and the 
explanatory variables were also useful for the model according to the Wald test 
(p–value < 0.05 for each variable). 

Several LDA and LR models were developed and compared. The most 
accurate versions were: 

D = −56.759+ 1.557 ∗ Tc − 0.385 ∗ Gcp − 0.834 ∗ 𝐶̅cp − 0.344 ∗ 𝐶̅cGcp + 

 +0.374 ∗ GC + 0.658 ∗ ATc + 0.422 ∗ AGcp (1) 

for the LDA case, and: 

 𝐿𝑛 (
𝑝𝑖

1−𝑝𝑖
) = 𝑓(𝑥) (2) 

where 

f(x) = −169.373 + 4.529 ∗ Tc − 1.035 ∗ Gcp − 2.058 ∗ 𝐶̅cp − 0.721 ∗ 𝐶̅cGcp + 

 +0.815 ∗ GC + 1.621 ∗ ATc + 1.158 ∗ ATp (3) 

for the LR model. 

5 Discussion 

Model development was based on each temperature recording, and predictive 
accuracy was estimated on the prediction made for the dependent variable 
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(Signal) at each point. Following this criteria, both models display very high 
global accuracy rates (above 84% for the original series and above 89% for the 
validation series). When these results are assessed in detail, the predictive 
accuracy was high for points with values of “0” (those that were more than 60 
minutes before a fever peak) and “1” (those that are in the 60 minutes 
previous to a fever peak) for the dependent variable in the original series, 
whereas in the validation series accuracy rates for points with a value of “1” 
was around 50%, which could be considered as a very low sensitivity. This is 
due to the interpretation of the results taking into account each temperature 
measurement as an individual point. Conversely, if each fever peak is assessed 
as a whole, both models were able to forecast all fever peaks in the original 
series and the validation series, with those low sensitivity rates indicating that 
sometimes the fever was anticipated by 10 or 20 minutes. The same problem 
could be considered regarding incorrect prediction of “0” values (what could 
be interpreted as false positives). Since the prediction range was limited to 60 
minutes before a Tc measurement above 38°C, values of “1” that were more 
than 60 minutes apart from a fever peak were considered as a false positive in 
the contingency table. 

6 Conclusion 

We described a method to forecast fever in this paper. It is based on statistical 
modelling using core and peripheral body temperature data, and related 
parameters. The main finding of our study is that both models introduced were 
highly accurate in forecasting the appearance of fever spikes, with accuracy 
rates above 84%. 

Nevertheless, some caveats must be mentioned. First of all, we realize that 
the definitions we have applied are some way arbitrary. We think this is a 
common problem when measuring body temperature, and it has not been 
solved by now. The very definition of fever as a rise in central temperature 
above 38°C could be a misunderstanding. We accepted it as the threshold of 
fever, regardless of the time of the day, the use of antipyretic drugs or the 
clinical status, and it was compulsory to follow this criterion to standardize the 
results. 

Secondly, the models require a highly reliable time–series, as the 
measurements of complexity parameters are highly dependent on the 
temporal evolution of the signal. Thus, any disconnection of the sensors could 
make a period of about two hours useless for further analysis. Unfortunately, 
we faced this problem too often during the sample collection, and some series 
were removed from the final analysis because they were considered 
unsuitable. 
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For these reasons, we decided to perform a process of validation by 
experts. As explained above, in this stage we compared the detection of fever 
peaks by experts with the predictions of the models, considering each fever 
peak as a whole. With this criteria, both models identified 35 out of 36 fever 
peaks defined by experts, and no false positive was observed. Although in our 
opinion these results are much more significant from a clinical perspective, we 
strongly believe that the most important criteria to evaluate the usefulness of 
the models would be their clinical application to particular fields, which should 
be elucidated in the future. 
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