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Abstract—Multichannel active noise control (ANC) systems
are commonly based on adaptive signal processing algorithms
that require high computational capacity, which constrains their
practical implementation. Graphics Processing Units (GPUs) are
well known for their potential for highly parallel data processing.
Therefore, GPUs seem to be a suitable platform for multichannel
scenarios. However, efficient use of parallel computation in the
adaptive filtering context is not straightforward due to the
feedback loops. This paper compares two GPU implementations
of a multichannel feedforward local ANC system working as a
real-time prototype. Both GPU implementations are based on
the filtered-x Least Mean Square algorithms; one is based on
the conventional filtered-x scheme and the other is based on the
modified filtered-x scheme. Details regarding the parallelization
of the algorithms are given. Finally, experimental results are
presented to compare the performance of both multichannel
ANC GPU implementations. The results show the usefulness of
many-core devices for developing versatile, scalable, and low-cost
multichannel ANC systems.

Index Terms—Active Noise Control, Graphics Processing Unit,
filtered-x Least Mean Square

I. INTRODUCTION

CTIVE noise control (ANC) [1], [2], [3] is a field
that combines digital signal processing techniques with
traditional acoustics. ANC systems are based on the principle
of destructive interference between a disturbance sound field
called primary noise and a secondary sound field that is
generated by controlled secondary sources called actuators.
The goal is to cancel, or at least minimize, the primary
noise signal. In order to cancel the primary noise, the ANC
system commonly uses adaptive algorithms [4] to generate the
secondary sound field from a reference signal that is correlated
with the primary noise. For this purpose, the noise signal is
monitored at a specific spatial point by a sensor called error
sensor. Therefore, cancellation is only achieved around that
error sensor with the spatial limit being approximately A/10,
where ) is the wavelength of the highest undesired frequency.
ANC systems can be extended to multichannel ANC systems
by employing multiple error sensors and multiple secondary
sources, thereby extending the control zone [5].
The filtered-x Least Mean Squares (FxLMS) algorithm [6]
and its multichannel version [5] are the most widely used

The authors are with the Institute of Telecommunications and Multimedia
Applications (iTEAM), Universitat Politecnica de Valéncia, Valéncia, Spain
(e-mail: {jorlogi, mferrer, mdediego, agonzal} @iteam.upv.es).

This work has been supported by European Union ERDF and Spanish
Government through TEC2012-38142-C04 project, and Generalitat Valenciana
through PROMETEO/2009/013 project.

adaptive filtering strategies applied to single or multiple-
channel adaptive noise cancellers for ANC applications. Two
of the best-known applications of the multichannel filtered-
x LMS algorithm are the control of noise inside enclosures
such as in cars [7], [8] and in flight cabin interiors [9]. These
multichannel systems require a high computational capacity
and an even greater capacity when massive control systems are
considered (a high number of channels, defining one channel
for each pair of error sensor - secondary source). Moreover,
the number of filtering operations increases significantly with
the number of channels. Thus, in practice the computational
cost is one of the main bottlenecks of these multichannel ANC
systems. On the other hand, Graphics Processing Units (GPUs)
are highly parallel programmable co-processors that provide
massive computation when the needed operations are properly
parallelized. Hence, GPUs seem suitable for multichannel
ANC applications where the processing of each channel could
be done in parallel. Therefore, in contrast to traditional imple-
mentations that are based on conventional hardware devices
such as Digital Signal Processors (DSPs) [10] and dedicated
hardware, this paper presents a multichannel ANC prototype
over a GPU platform.

Using the NVIDIA programming language CUDA (Com-
pute Unified Device Architecture) [11], GPUs are being
employed in most engineering fields that require intensive
computation. In [12], [13] some signal processing applications
take advantage of these opportunities. A general overview of
audio signal processing on the GPU is given in [14] and [15].
Moreover, there are many recent contributions that leverage
GPUs to accelerate acoustic and audio simulations or real-
time applications like: room acoustics [16], acoustics likeli-
hood computation [17], speech recognition [18], RIR (Room
Impulse Response) reshaping [19], beamforming [20], sound
localization [21] or wave-field synthesis [22]. Furthermore,
the filtering on GPU where real-time filtering of multiple
data is carried out concurrently has recently been introduced
in [23], [24]. However, very few publications [25], [26],
[27] deal with the GPU implementation of real-time acoustic
applications based on adaptive filtering. This is because the
data transactions among GPU, CPU, and the audio card are
critical for the real-time performance. Specifically, in [25], a
multichannel acoustic echo canceller on GPU was proposed.
In [26] and [27], a single-channel and a multichannel ANC
systems were implemented on a GPU.

In this work, we compare two different GPU implementa-
tions of a multichannel ANC prototype based on the FxXLMS
algorithm [28]. The Frequency-domain Partitioned Block LMS
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Fig. 1: Block diagrams of the multichannel ANC system based on the (a) FPBFXLMS and (b) FPBMFXLMS algorithms.

algorithm (FPBLMS) [28], [29] is implemented using two dif-
ferent filtering schemes: the conventional scheme and the mod-
ified filtered-x scheme. Throughout this paper, the FPBLMS
algorithm based on the conventional filtered-x scheme will be
referred to as FPBFXLMS, whereas the FPBLMS algorithm
based on the modified filtered-x scheme will be referred to as
FPBMFXLMS. The FPBFXLMS algorithm was discussed in
[26] and [27] for a single-channel and a multichannel ANC
system, respectively. A similar algorithm was introduced in
[30] for a single-channel ANC system. The FPBMFxLMS was
presented in [31] for a multichannel ANC system.

The use of the Frequency-domain Block-based filtered-x
LMS [32], [33], is motivated by the following reasons. It
allows a fast implementation because the parallel resources
of a GPU are better exploited when working with blocks
of samples instead of sample-by-sample. Moreover, most of
the common audio cards work with block data buffers. In a
second stage, and taking into account that the adaptive filters
could be larger than the block size, the adaptive filters are
partitioned [34], [35]; therefore, the delay is reduced and the
parallelization is improved by performing the adaptation of
each partition of the filters simultaneously. This leads to the
use of the FPBLMS algorithm with a suitable filtering scheme
for ANC.

It is well known that the modified scheme provides bet-
ter convergence performance than the conventional filtering
scheme [36], but it is more demanding from a computational
cost point of view. However, making use of the parallelism
of GPU computing, the proposed implementation of the
modified scheme can meaningfully deal with the increase
of computational burden. Therefore, this work discusses the
advantages and disadvantages of the GPU implementation for
both schemes.

This paper is organized as follows: section 2 outlines the two
algorithms. The ANC prototype is described in section 3, while
the GPU implementation is explained in section 4. Section 5
presents the experimental results, and section 6 presents the
conclusions.

II. DESCRIPTION OF THE ALGORITHMS

This section focuses on illustrating the FPBFxLMS and
FPBMFxLMS algorithms. The block diagram of the multi-
channel ANC system based on the two algorithms is depicted
in Fig. 1. A generic multichannel ANC system with I ref-
erence signals, J secondary sources, and K error sensors
(I:J:K) has been considered. In this work, samples are
processed by blocks of size B. L is the length of the adaptive
filters, and M is the length of the FIR filters that model the
estimated secondary paths. If L and M are higher than B, we
have to split up both the adaptive filters and the estimated sec-
ondary paths into F' and P partitions, respectively [4]. Thus,
the algorithm works simultaneously with all the partitions of
size B. Furthermore, the sub-index and super-index of the
following notation denote block iteration and the number of
the partition, respectively.

With regard to the estimation of the secondary path, there
are techniques that are based on the hypothesis that the
secondary path model does not have to be accurate and
can be represented by a delay (delayed-x LMS) [37]. These
techniques are used in applications with variable systems in
which rapid reaction is also of utmost interest. Since the
application of this paper is set in a listening room with a
fixed response, the secondary paths were previously modeled
by FIR filters with an accurate estimation.

A. The Frequency-domain Partitioned Block Filtered-x LMS
algorithm (FPBFxLMS)

The notation in Table I will be used to describe the
algorithms. According to the notation, the adaptive filter output
is calculated as follows

I F
Yin =D Wijl o Xin_fy1, (1
i=1 f=1

where Xi,, = FFT[xig,_1 Xig,|, Wij/ is the FFT of size
2B of the fth partition of the coefficients of the adaptive filter
wij at the nth block iteration, and o denotes the element-wise
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TABLE I: Notation of the description of the algorithms

1 Number of reference signals (reference sensors) J Number of secondary sources (actuators)

K Number of error signals (error sensors) B Block size

L Length of the adaptive filters F L/B, number of partitions of the adaptive filters

M Length of the FIR filters that model the estimated secondary P M /B, number of partitions of the estimated secondary paths
paths

x;(t) | 4th reference signal at time instant ¢ XiBp z;(Bn) z;(Bn—1) z;(Bn — B+ 1)]

y;(t) | jth actuator signal at time instant ¢ YJBn | lyj(Bn) y;(Bn—1) y;(Bn — B +1)]

ex(t) | kth microphone signal at time instant ¢ ekp, | lex(Bn) er(Bn—1) er(Bn — B+ 1)]

sjk M-length estimation of the secondary path that links the jth secondary source with the kth error sensor

SjkP FFT of size 2B of the pth partition of the acoustic path sjk

w1 Coefficients of the adaptive filter of length L that link the ¢th reference signal with the jth secondary source

WijT{ FFT of size 2B of the fth partition of the coefficients of the adaptive filter wij at the nth block iteration

product of two vectors. The valid samples of the adaptive filter
output yjp,, are the last B samples of IFFT{Y,}.

The filter coefficients are updated in the frequency domain
by calculating the correlations between the reference signals
(Xi,,) that are filtered through the estimated secondary paths
(SjkP), Vijk,, and the error signals, ekp,,. To this end, the
following operations are performed

P
Vijk, = Z Sjk? o Xip—pt1, 2
p=1
pijk! = Ek, o Vijk!", 3)
where
Ek‘n = FFT[OB ean]. (4)

The update of the coefficients of each partition of the ijth
adaptive filters is calculated as follows

K
Wijl (n) = Wijl(n—1) — p > FFT{[¢ijk’ 05}, (5)
k=1

where p is the step-size parameter, and the vector ¢ijk/
corresponds to the first B samples of the 2B-IFFT of the
corresponding partition frijk/

IFFT{@ijk’} = [@ijk!  Hijk’], (6)
f=nn—-1,...,n—F+1.

B. The Frequency-domain Partitioned Block Modified
Filtered-x LMS algorithm (FPBMFxLMS)

This section focuses on describing the FPBMFxLMS algo-
rithm. The adaptive filter output is calculated as in Eq. (1).

The signals Y j,, are used to estimate the undesired signals
in the frequency domain, obtaining Dk,. To this end, the
following operations are performed

J P
YFky=» > Yjn_pi108Sjk”, (7)
j=1p=1
Dk, = Ek,, — YFk,,. (8)

Moreover, the estimated error signals in the frequency
domain, Ek,,, are obtained from

noise
source 1

noise
source 2

INPUT BUFFERS

OUTPUT

BUFFERS
AUDIO
CARD

noise
source |

Fig. 2: Scheme of the multichannel ANC system.

P
Vijkn = Sjk? o Xiy_pi1, 9)
p=1
I J F
OUTk, =Y Y > Vijkn 110 Wijl,  (10)
i=1 j=1 f=1

where

Ek,, = Dk, + OUTk,,. (11

Finally, the update rule of the frequency-domain filter coeffi-
cients is given by Eq. (5), where ¢ijk?, and therefore fuijk'
(Eq. (3) and Eq. (6)) are calculated using the estimated error
signal Ek,, instead of the error signal Ek,,.

III. PROTOTYPE DESCRIPTION

The multichannel ANC prototype is depicted in Fig. 2. For
the hardware configuration, the GPU used is a GeForce GTX
580 with Fermi architecture. The CPU is an Intel Core i7 (3.07
GHz), and the audio card is a MOTU 241I/0. The MOTU
audio uses the ASIO (Audio Stream Input/Output) driver
to communicate with the CPU. The ASIO driver provides
input/output buffers that are used to collect/send the current
microphone and loudspeaker signals. The input buffers are
linked to the microphones and the output buffers are linked to
the loudspeakers. The operation of the prototype consists of
three tasks that are executed in each iteration:

1) Collect the K input-data buffers of size B from the

sensors and transfer them through the PCI-Express bus
to the GPU.
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Fig. 3: Block diagram of the GPU implementation of the FPBFXLMS and the FPBMFXLMS algorithms.

2) Carry out the corresponding algorithm on the GPU.

3) Save the output audio samples in the J output-data
buffers and send them back to the CPU to be reproduced
by the loudspeakers.

Two important parameters of the audio card are the sampling
rate (fs) and the block size (B). The block size describes the
number of transferred discrete-time samples per iteration and
thereby determines the latency of the algorithm. The latency
which is defined as B/ fs, is the time spent to fill up the input-
data buffers. We will refer to the latency throughout the paper
as the buffering time (¢4, ). The choice of the parameters B
and f; is critical for the performance of the system because
there are two conditions that must be satisfied:

o The real-time condition. The application can work in
real time if the following condition is satisfied: )0 <
tyus s, Where tpro. is the execution delay measured from
the moment the input-data buffer is sent to the GPU
until the output-data buffer comes back to the CPU. This
includes transfer delays between the CPU and the GPU
and the data processing delay of the GPU.

o The causality condition. The algorithm needs to satisfy
the condition #y,,f ¢ +7, < 7, in order to perform properly

[38], where 7, is the maximum delay of the secondary
paths that joins the actuators with the error sensors, and
Tn, 1s the minimum delay of the paths that joins the noise
source with the error sensors. This condition guarantees
the causality of the system.
Causality is not a constraint when excitation is sinusoidal
because of the deterministic nature of the signal, but causality
has to be considered important in broadband control. In this
paper, the multichannel ANC prototype is mounted in a
listening room where both real-time and causality conditions
are fulfilled by choosing the suitable distances and parameters.
If the location of the noise source and the cancellation area
do not offer the possibility to fulfill the causality conditions,
the algorithm has to work with a lower block size, and
consequently with a lower tp,ff, in order to satisfy the
causality condition.

With regards to the choice of the parameters, the audio
card offers three sampling rates: 44.1, 44.8, and 96 kHz. We
have chosen f; = 44.1 kHz, which is the lowest rate, but it
is a fairly high rate for the sounds involved. For the block
size, the audio card offers values between B = 16 and 2048;
however, because of the real-time condition, we have used
values between B = 256 and 2048.
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Fig. 4: Two different schemes of an element-wise multiplication for the case F=3.

It should be noted that the signal processing task is carried
out by the GPU, while the CPU controls the data transfer
between the input/output buffers and the GPU.

IV. GPU IMPLEMENTATION

This section describes the main issues involved in the GPU
implementation of the real-time multichannel ANC prototype.
The implementation is comprised of three steps: the output
signal generation, the error signal calculation, and the update
of the adaptive filters. Both algorithms generate the ANC
outputs by filtering the reference signal through the adaptive
filter, and they both update the adaptive filters using the
error signals and the reference signal filtered through the
estimated secondary paths. The main difference between the
two algorithms is the error signal that is used to update the
filters. The FPBFXLMS algorithm uses the signal picked up by
the microphones as the error signal, while the FPBMFxLMS
algorithm computes an estimate of the error signal. These three
steps are implemented as follows:

S1 ANC output generation. This step is common to both
algorithms and aims to calculate the ANC output signals
y;(t). The operations of this step correspond to Eq. (1).
The implementation and the CUDA kernels involved in
it are shown in Fig. 3(a) and explained in section IV-A.

S2 Error signal calculation. This step is different for each
implementation. While the conventional scheme uses
Eq. (4) directly, the modified scheme calculates an esti-
mate of the error signal (see Fig. 3(b)). The corresponding
description is shown in Eq. (7)-(11).

S3 Filter updates. The update of the adaptive filter coef-
ficients involve the implementation of Eq. (3)-(6). The
details regarding the different steps and kernels are illus-
trated by Fig. 3(c) and section IV-A.

All the CUDA Kernels used in this work are explained in
detail in the following subsection.

A. CUDA Kernels

Five optimized kernels were developed to achieve the
most efficient performance of the algorithm. Moreover, the

optimized NVIDIA FFT library (CUFFT) [11] was used to

simultaneously carry out multiple one-dimensional FFTs.

K1 This kernel performs an element-wise multiplication of
two matrices. There is a particular case in which the input
matrix X; is element-wise multiplied with the adaptive
filter matrix W ;. In this case, there are two possible
schemes for the multiplication, which are depicted in
Fig. 4:

1) The elements of the fth column are ordered in the
same position in both matrices (scheme °‘A’).

2) The elements of the fth column are not ordered in
the same position in the two matrices (scheme ‘B’).

Scheme ‘A’ shows the direct implementation, where the
input-data matrix is ordered so that the elements of the
fth column of the ith plane of matrix X; are element-
wise multiplied by elements of the fth column of the ijth
plane of matrix W;;. This scheme has the disadvantage
that all columns except one of the ith plane of matrix
X,; are moved at each iteration, so it involves a copy of
2B(F — 1) elements in GPU memory at each iteration.
The copied data is represented in grey, and the current
input buffer is marked by an arrow. Scheme ‘B’ shows an
optimized multiplication, where the current input buffer
is placed in the corresponding column avoiding GPU
memory transactions. Therefore, in order to achieve the
same final result in both schemes, we have to redefine
the thread memory access of the GPU for multiplying
the corresponding elements of the two matrices.

This kernel launches a three-dimensional grid of three-
dimensional blocks of threads. The dimensions of the
blocks are (x,y,z)' threads, and the dimensions of the grid
are (F/x, 2B/y, 1J/z) blocks. The kernel uses each thread
to process each sample; thus, each thread will perform a
complex multiplication between elements of each matrix.
This kernel is launched to simultaneously reduce the F
columns of each plane to a single one. The kernel is
depicted in Fig. 5(a). It uses a three-dimensional grid

K2

Ix,y,z are selected according to the restrictions of the CUDA architecture
of the device. In our case, this is the Fermi device [11]
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Fig. 5: Representations of (a) the CUDA kernel 2 and (b) the CUDA Kernel 3.

of blocks, where the dimension of the blocks is (1, y, z),
and the dimension of the grid is (1, 2B/y, n/z). The kernel
launches 2B - n threads in total. Each thread carries out F
sums. The result is a 28 xn matrix where each element of
the 2 B-dimension columns contains the reduction sum of
each row. Note that n is the number of planes of 28 x F
elements of the matrix involved.

This kernel performs a sum of m planes with the same
sub-index. An example of the performance of the kernel
is depicted in Fig. 5(b), where the matrix g that has IJK
planes results in a matrix with I.J planes. Therefore, in
this case, a sum of K planes (m = K) with the same ij
sub-indexes is performed.

This kernel launches 2B - P threads divided into a grid of
P blocks, where each block has 2B threads. Each thread
performs the sum of m elements.

This kernel has the same thread configuration as Kernel
1, but each thread performs a sum instead of a multipli-
cation.

This kernel is launched like Kernel 1. The difference in
this case is that the kth plane of the error matrix (Ek)
used in the dot product is a column vector instead of a
matrix. Therefore, each column vector of the ijkth plane
of matrix Vijk is element-wise multiplied by the same
column vector Ek.

Fig. 6: Photograph of the ANC prototype using a 1:2:2
configuration.

V. RESULTS

Several experiments were performed to validate the ANC
systems and to compare the two algorithms. The experiments
were carried out using the prototype described in section
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III. Different configurations of the ANC system (I:J:K) were
considered. As an example, Fig. 6 shows a picture of the
multichannel ANC system with the 1:2:2 configuration. Some
other arrangements were also used to test the performance
of other configurations, like 1:1:1 or 1:4:4. It should be
highlighted that the prototype is capable of dealing with
massive systems with high numbers of I, J and K, reaching
more than 600 processed channels in the best case.

The performance of the ANC system was evaluated from
different points of view. First, section V-A is devoted to
validating the ANC performance. For this purpose, the atten-
uation of the reference signal achieved by the ANC system at
the error sensors was measured. A convergence performance
comparison between the FPBMFXLMS and the FPBFXLMS
for different types of reference signals is shown in section V-B.
The computational complexity of the GPU implementation of
both algorithms is detailed in section V-C, and, finally, some
computing results of the FPBMFxLMS algorithm are analyzed
in section V-D

With regard to the computing results, a previous analysis
of the distribution of threads in a block and blocks in a grid
is necessary for each specific case in order to achieve good
performance [27]. This previous analysis consists of testing

the processing delay of the algorithm by changing both the
dimensions of the blocks of threads and the grid of blocks to
find the fastest configuration for each different case.

A. Residual Noise level

The 1:2:2 configuration of the ANC system was considered
in this set of experiments. The following parameters were
chosen: B = 2048, L = M = 4096, and two different types
of reference signal. The reference signals were:

1) band-limited white noise.

2) a periodic noise that emulates an engine signal com-
posed of six harmonics between 100Hz and 200Hz with
an effective fundamental frequency of 20 Hz.

Fig. 7 shows the power spectral density of the average signals
measured at both error sensors by using the described algo-
rithms. A similar performance is observed in both algorithms
with noise reductions that depend on the type of reference
signal. If we consider the band pass filtered white noise, an
attenuation between 20-30 dB is achieved depending on the
frequency (see Fig. 7(a)). Fig. 7(b) illustrates the results for
periodic noise. It can be easily observed that a reduction of
around 45 dB is achieved at each harmonic.
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Fig. 9: Learning curves of the FPBMFXLMS and FPBFXLMS algorithms for different B size and a single tone reference.

B. Convergence performance

This section compares the convergence performance of the
FPBMFXLMS and the FPBFXLMS algorithms. The same set
of parameters used in the previous section was chosen. The
learning curves of both algorithms were obtained using the
following equation:

Aln] = 10log;, <%> , (12)
with
Pyln] = aPy[n — 1] + (1 — a)pa[n],
P.[n] = aP.n — 1]+ (1 — a)p.[n]. (13)
and
K
paln] = 3 &,
k=1
K
peln] = eiln] (14)

where K is the number of error sensors.

Fig. 8 illustrates the performance of the algorithms. The
highest step size p that ensures the stability for each case was
chosen. Using filtered white noise as the disturbance signal, the
step-size parameter was set to . = 1.5-107° and i, = 2.8-
10~° for the conventional filtered-x scheme and the modified
filtered-x scheme, respectively. The step-size parameter was
set to jto = 3.5-1077 and pi,, = 7.3 - 1077 for the periodic
noise, respectively.

As Fig. 8 shows, the FPBMFxLMS provides faster con-
vergence speed than the FPBFXLMS but similar steady-state
behavior. Specifically, for the case of the filtered white noise,
the modified scheme converges 1.2 seconds before the con-
ventional scheme, which corresponds to a 15% reduction in
the convergence time. A larger difference is observed when
periodic noise is considered. The FPBMFXLMS converges
almost 2.25 seconds before FPBMFxLMS, which corresponds
to a 47% reduction in the convergence time. Therefore, it can
be concluded that the FPBMFxXLMS significantly outperforms
the FPBFXLMS in terms of convergence speed. Also, note that

TABLE II: Processing time and total number of multipli-
cations, additions, and FFTs per iteration of the GPU im-
plementation of (1) the FPBFXLMS algorithm and (2) the
FPBMFxXLMS algorithm for L = M and different ANC
configurations.

I:J:K configuration
Ll [ 122 1:4:4
Multiplications 8L 24L 80L
(1) | Additions 3L 10L 36L
FFTs 5 9 17
| Time (ms) 0.55 0.78 1.58
Multiplications 121 40L 144L
(2) | Additions 9.5L 33L 124L
FFTs 5 9 17
| Time (ms) 0.68 0.96 2.05
My, /M 1.5 1.6 1.8
Am /A 3.16 3.3 3.45
tm/t 1.24 1.23 1.30

both algorithms converge faster for the periodic noise signal
than for the filtered random noise signal.

Another important property of the adaptive algorithms is the
stability limit. In the literature, there are some contributions
made to study the convergence behavior of the Block filtered-
x LMS algorithm (BFXLMS). The maximum g parameter that
leads to the fastest convergence rate was derived in [39] and
is

(15)

1

where A4, is the maximum eigenvalue of the filtered input
signal autocorrelation matrix R, defined as R, = E[VVT].
Therefore, the convergence performance of the algorithm
depends on the statistics of the input signal, the acoustic
paths, and the block length B. For the same reference signal,
the step-size parameter p depends on B, so the maximum
value increases by reducing the size of B, and, consequently,
the convergence speed is improved by reducing B. However,
the size of B is also limited by the real-time condition
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tproc < B/ [fs; therefore, there is a minimum value of B
for each configuration that assures the real-time condition and
maximum convergence speed.

Fig. 9 illustrates the convergence behavior of both algo-
rithms using a single tone of 200 Hz as the reference signal and
varying the size of B between 256 and 2048. As expected, it
shows that the algorithms converge faster with a smaller block
size, B. As these results show, the maximum g is more or less
doubled when B is halved. This fact can be explained from
Eq. (15), where, for the same reference signal, the maximum
is doubled by reducing the size of B by half. The difference
in convergence time between B = 2048 and B = 256 is
around 2.5 seconds in the conventional scheme and 1 second
in the modified scheme (using f; = 44,100 Hz). Finally,
Fig. 9 shows that in order to achieve a certain convergence
speed, the modified scheme can use a larger block size than
the conventional scheme. This means the adaptive controller
has more time for processing without violating the real-time
condition, and, therefore, more channels can be handled while
maintaining a given convergence speed.

C. Computational complexity

Table II compares the computing time and the computa-
tional complexity in terms of multiplications, additions, and
FFTs per iteration of the GPU implementation of the two
algorithms (FPBMFxLMS and FPBFXLMS) for different con-
figurations. Since we use a value of M = L, the computational
complexity only depends on L.

First, table II shows that the computational complexity for
both algorithms increases significatively with the number of
channels. In the modified scheme, when the ANC configu-
ration changes from 1:1:1 to 1:4:4 (16 secondary pahts) the
number of multiplications increases by a factor of 12, the
additions by a factor of 13, and the FFTs by a factor of
3.45 while the time delay increases only by a factor of 3.
Taking into account that the complexity increases with the
number of channels, we can conclude that the computational
complexity is a bottleneck of massive multichannel ANC
systems. Therefore, if the operations of each channel are
properly parallelized, an implementation over GPU could be
a viable and meaningful solution.

Table II also shows that the modified scheme exhibits
higher computational complexity due to the estimation of the
error signals (€k,) (see Fig. 3). Moreover, the number of
multiplications and additions also significantly increases but
not the number of FFTs. Furthermore, if we define the ratio
M,,,/M as the number of multiplications of the FPBMFxLMS
algorithm divided by the number of multiplications of the
FPBFXLMS, and the same for additions (A,,/A) and time
delay (t,,/t), it is shown that the ratios of both multiplications
and additions are larger than the ratio of delays. This result
further confirms that the GPU implementation is a good solu-
tion for multichannel ANC systems. Specifically, the increase
of computational complexity of the modified scheme can be
overcome by using a GPU implementation.

D. Prototype computing performance

It is well known that the zone of high attenuation achieved
by an ANC system can be extended by adding more sensors
and loudspeakers. However, as noted in the previous section,
the computational cost can become extremely large.

In this section, we will study the computational constraints
of the multichannel ANC prototype using the FPBMFXLMS
algorithm. For this purpose, Fig. 10 shows the maximum
number of channels that the ANC system can handle without
violating the real-time condition for L=M=4096, different B
values, and in two cases (Fig. 10(a) one reference signal, and
Fig. 10(b) four reference signals). This maximum number of
channels is calculated by fixing the number of error sensors
and finding the maximum number of actuators (J) that the
system can handle without violating the real-time condition.
When the maximum J value for each value of K is found, the
maximum number of physical channels that are processed for
each value of K is J - K. For example, in Fig. 10(a), when
K = 180, the maximum number of actuators that can be used
without violating the real-time condition is J = 3; therefore,
the maximum number of processed channels is 540. However,
for K = 181, the maximum number of actuators is J = 2
because the real-time condition is violated with J = 3. Thus,
the maximum number of processed channels is 362 (J = 2)
when K = 181. For this reason, the shape of the curves jumps
with the increase of error sensors.
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The following considerations are highlighted in the simula-
tion results depicted in Fig. 10:

o The maximum number of actuators for each value of K
is calculated by taking into account that it has to satisfy
the real-time condition: ... < B/ fs. Therefore, if B
increases, there is more time for processing and thus more
channels can be handled.

o Two systems with different /:J:K configurations could
have the same number of physical channels but different
computational costs. For example, both the 1:1:2 and
1:2:1 configurations have 2 physical channels, but the
second configuration has a higher computational cost
because it has two adaptive filters instead of one. An
increase in the number of adaptive filters involves many
more operations than an increase in the number of error
sensor signals, with I.J being the number of adaptive
filters. Therefore, when K is low and J is high, the
maximum number of channels is limited by the delay
of processing the adaptive filters (see Fig. 10 when K is
low).

o« When K increases, J has to decrease in order to satisfy
the real-time condition, and, consequently, the number of
adaptive filters decreases and the curves of the number
of processed channels grow quickly reaching the max-
imums. The maximum of the curves is reached when
neither K nor J is much bigger than the other.

e On the other hand, when J is small and K is large,
even though the number of adaptive filters is low, the
system is limited by the error signal handling (see Fig. 3).
Moreover, for low values of B or configurations with
more than one reference signal, the decrease in processed
channels with the increase of K is not so significant. This
is because the system is able to process fewer sensors in
real time than when I = 1 and B = 2048; therefore, since
K is moderate, the decrease in the number of processed
channels is also moderate.

o Two systems with the same .J K configuration but a differ-
ent number of reference signals have the same number of
processed physical channels but different computational
costs. For instance, if four reference signals instead of one

are handled, the maximum number of processed channels
are reduced because each channel is used four times
instead of one (one time for each reference signal). On
the other hand, due to the parallelization of the operations
of each reference signal, even though the channels are
used four times, the number of processed channels is not
decreased by four.

Once the maximum number of processed channels has
been analyzed for each value of K, the number of complex
multiplications (CM) involved in both the products and the
FFTs for the J K configurations derived in Fig. 10 is depicted
in Fig. 11. It can be observed that the number of CM
performed is not constant for the different configurations. This
is because the GPU implementation is affected by the JK
configuration. The most remarkable aspect of Fig. 11 is that the
JK configurations with more CM are those with low values
of K and high values of J. As explained above, the number
of adaptive filters depends on both the I and .J variables;
therefore, if J grows, more CM are performed because there
are more adaptive filters to cope with. Consequently, this is
accentuated when [ = 4.

The maximum number of channels that can be handled
in real time by the GPU is shown in Fig. 10. In order
to compare the computational capabilities of the GPU with
other hardware platforms, an ANC system based on a CPU
i7 was also implemented using one core and a sequential
execution. The maximum number of channels allowed by the
CPU implementation was theoretically and practically studied.
Moreover, the GPU and CPU evaluation results were also
compared with a theoretical processing machine that was
limited to perform 1-107, 2-107, or 4-107 CM per buffering
time. The results of this comparison are illustrated in Fig. 12
for the case when I = 1 and B = 2048. In this case, the
buffering time is B/f, = 2,048/44,100 = 0.0464 seconds.
For example, the curve labeled as 'CM=1e7’ in Fig. 12
represents the maximum number of channels for each value
of K that a given machine would process if this machine
is able to carry out 1 - 107 CM every 46.4 milliseconds.
Finally, the theoretical maximum performance of our CPU was
found by calculating the maximum number of CM that this
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CPU could handle in a real-time execution. A CM involves
4 floating point multiplications and 2 floating point additions.
The floating point multiplications are performed by our CPU
in 5 clock cycles, whereas the floating point additions are
performed in 3 clock cycles (see annex 3 of [40]). Therefore, a
CM involves 26 clock cycles. The CPU operates at 3.07GHz,
which means that our CPU could make 3.07 - 10°/26 CM
per second and (3.07 - 10%/26) - 0.0464 CM per buffering
time. This is represented in the figure with the curve labeled
as ’theoretical CPU’. Since our CPU also performs memory
transactions and flow control instructions, the practical CPU
implementation handles fewer channels than the ’theoretical
CPU’. Furthermore, the theoretical processing machines that
process 1 - 107, 2 - 107, or 4 - 10" CM per buffering time
would also have to perform memory transactions and flow
control instructions in addition to the complex multiplications.
Therefore, in practice, these three curves would be lower.

Fig. 12 illustrates that the GPU implementation outperforms
the CPU implementation and shows the number of CM that
a processing machine would have to carry out each buffering
time to outperform the GPU implementation. Moreover, the
maximum benefit of the GPU is obtained when low values of
K and high values of J are used. Therefore, the GPU reaches
4-107 CM per buffering time. This can be explained by the
fact that an increase in the value of K involves an increase in
the time required to handle the error signals in the frequency
domain.

VI. CONCLUSIONS

This work has analyzed the suitability of GPUs for the
real-time implementation of multichannel adaptive systems
(specifically for ANC systems based on the FxXLMS algo-
rithm). We have compared two different schemes of the
FxLMS algorithm, one that is based on the conventional
filtered-x scheme (FPBFXLMS) and another that is based on
the modified filtered-x scheme (FPBMFxXLMS). To fit the
hardware/GPU requirements, the algorithms have been imple-
mented in the frequency domain, working with blocks of data
and partitioning the adaptive filters. As a result, a prototype of

a multichannel sound-control application has been successfully
implemented on a GPU using CUDA language and exploiting
the benefits of the parallelization of the multiple channels
involved. In order to obtain the most efficient implementation,
we have used the NVIDIA CUDA avoiding memory copies
in the GPU and analyzing certain CUDA aspects such as the
number of threads per block and the distribution of threads
within the blocks.

This work also shows that the FPBMFXLMS algorithm
converges faster than the FPBFXLMS algorithm, but that the
computational complexity of the FPBFXLMS increases signif-
icantly, especially for massive multichannel systems. Never-
theless, by taking advantage of the parallelization capabilities
of the GPU, this increase in computational cost did not lead
to a great increase in the processing delay. Therefore, the use
of a GPU platform can help to overcome the disadvantage
of the modified scheme in a real-time ANC system. As a
conclusion, the same convergence behavior of the conventional
scheme can be obtained with the modified scheme by using
a larger block size. This provides more time for processing
and, therefore, also provide the possibility to extend the
zone of high attenuation by adding more microphones and
loudspeakers.

Finally, we also studied the computational limits of the
ANC system in order to obtain a massive multichannel system
that provides a large area of high attenuation by using more
sensors. This work demonstrates that the GPU is a meaningful
and versatile solution for massive multichannel ANC systems,
which can provide, slightly more than 600 processed channels
in real time. Moreover, it is important to note that more
channels could be processed by using a different audio card
with a lower frequency sampling, by decimating, or by using
newer GPUs with more computational capacity.
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