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In a recent Letter [Sanchis-Gual et al., Phys. Rev. Lett. 116, 141101 (2016)], we presented numerical
relativity simulations, solving the full Einstein–Maxwell–Klein-Gordon equations, of superradiantly
unstable Reissner-Nordström black holes (BHs), enclosed in a cavity. Low frequency, spherical
perturbations of a charged scalar field trigger this instability. The system’s evolution was followed into
the nonlinear regime, until it relaxed into an equilibrium configuration, found to be a hairy BH: a charged
horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical
frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we
find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory,
and promote a nonmonotonic behavior of the scalar field energy. Furthermore, we discuss in detail the
influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the
scalar field charge, the mass, and the position of the cavity’s boundary (mirror). We also investigate
the “explosive” nonlinear regime previously reported to be akin to a bosenova. A mode analysis shows that
the “explosions” can be interpreted as the decay into the BH of modes that exit the superradiant regime.
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I. INTRODUCTION

In an attempt to summarize the astonishing simplicity of
electrovacuum black holes (BHs), John Wheeler famously
coined the dictum: “black holes have no hair” [1]. This
catchy statement is, obviously, vague and needs to be
contextualized. In fact, it is useful to introduce the
following terminology, which clearly separates two differ-
ent interpretations of Wheeler’s statement.
The strong no-hair hypothesis, on the one hand, asserts

that stationary, regular (on and outside a horizon), BH
solutions described by parameters other than “charges”
associated with Gauss laws do not exist. This is a
commonly found interpretation in the current literature.
Unfortunately for the believers in such enormous simplic-
ity, decades of research considering different matter fields
showed that BHs can indeed have hair—see [2,3] for recent
reviews. The strong no-hair hypothesis has been falsified,
even if one requires physically reasonable matter (obeying
all energy conditions) and asymptotically flat spacetimes.
The weak no-hair hypothesis, on the other hand,

demands only that stationary, regular (on and outside a
horizon), BH solutions described by parameters other than
“charges” associated with Gauss laws cannot form

dynamically. This is certainly what the proponents of the
no-hair hypothesis had in mind (in the context of astro-
physics and asymptotically flat spacetimes). The status of
this version of the hypothesis is less definite. In particular,
in asymptotically flat spacetimes and to the best of our
knowledge, no stationary “hairy” BH solution has been
shown to form dynamically. Indeed, often, but not always,
the stationary solutions that have been found as counter-
examples to the strong no-hair hypothesis are unstable
against perturbations, and hence unlikely to form dynami-
cally (see an early discussion of this version of the
conjecture in [4]).
An interesting new angle concerning the weak no-hair

hypothesis arises in the context of an instability of the
paradigmatic BH solution of vacuum general relativity—
the Kerr solution [5]—which is triggered by fields that can,
potentially, form BH hair.
Bosonic fields scattering off Kerr BHs can extract energy

through the classical process of superradiance [6]. For
concreteness, let us focus on a scalar field. This occurs
when such a field, oscillating with frequency ω and with an
azimuthal quantum number m, fulfills the condition ω <
mΩH [7–12], where ΩH is the horizon angular velocity.
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By introducing a mass term for the scalar field, or a
mirrorlike boundary condition, superradiant modes can
become trapped, “mining” energy from the BH and
growing exponentially in time, thus triggering an instability
of the combined BH-scalar field system. Consequently, in
this setup, the bald Kerr BH is unstable and the scalar field
(which is not associated with a Gauss law) grows in time
outside the BH. This growth could, in principle, approach
an equilibrium configuration, in which the BH becomes
hairy, because stationary solutions describing Kerr BHs
with (this type of) scalar hair have been recently discovered
[13–15]. So, is the end point of the superradiant instability
triggered by a massive scalar field a hairy Kerr BH? In other
words, does a stationary, asymptotically flat hairy BH form
dynamically in this setup, thus falsifying the weak no-hair
hypothesis?
While the initial growth of the superradiant instability

described in the previous paragraph can be captured at the
linear level, a fully nonlinear approach is required to
address its saturation and end point. This is, however, a
remarkably challenging undertaking with current numerical
relativity (NR) technology [16,17]. Linear analysis studies
for Kerr BHs [11,18] have shown that the maximum growth
rate of the instability is so small that it may remain
indistinguishable from numerical errors when performing
nonlinear numerical simulations [16]. Whereas the first
nonlinear simulations of superradiant scattering of gravi-
tational waves off nearly extremal Kerr BHs have been
recently carried out [17], following the evolution of
the superradiant instability presents another level of
difficulty.
In view of the difficulties just described, is there a

technically simpler model that presents similar features to
the superradiant instability of the Kerr BH in the presence
of massive bosonic fields? Indeed, an analogous, but
technically simpler setup exists. A superradiant instability
appears in the case of a charged, i.e., Reissner-Nordström
(RN), BH. In this case, superradiance occurs when a
charged scalar field with frequency ω and charge q,
scattering off a charged BH with charge Q and horizon
electric potential ϕH, obeys the condition, ω < ωc ≡ qϕH
[19]. Unlike the Kerr case, mirrorlike boundary conditions
are necessary to trigger superradiance in the RN BH; i.e., a
mass term is not sufficient [20,21] (or necessary). Studies in
the linearized regime have shown that the growth time scale
of unstable modes in the RN case is significantly shorter
than for the Kerr BH and that those unstable modes may be
spherically symmetric [22–25]. These features suggest
taking charge as a surrogate for rotation and studying
the nonlinear growth of the superradiant instability in
the RN BH in a cavity, sometimes dubbed charged
BH bomb.
In a recent Letter [26], we reported NR simulations,

using the full Einstein equations, of the charged BH bomb.
We found that, indeed, the generic final state is a hairy BH:

a charged horizon, surrounded by a scalar field condensate
storing part of the charge and energy of the initial BH. This
condensate’s phase oscillates at the threshold frequency of
the superradiant instability, thus realizing dynamically
charged hairy BHs analogous to Kerr BHs with scalar hair
[13–15]. The former have recently been constructed as
stationary solutions, and a subset was shown to be
perturbatively stable [27]. Similar results for the super-
radiantly unstable RN–anti–de Sitter (AdS) BH were found
in [28], considering reflecting boundary conditions at the
AdS timelike boundary.
The purpose of this paper is to further the investigation of

the dynamics of the coupled BH-scalar field system in a
cavity, initiated in [26]. Whereas our Letter provided the
generic picture, here we will pay careful attention to the
variation of the hair growth process with the different
parameters in the setup, namely, the BH initial charge, the
initial scalar perturbation, the scalar field charge and mass,
as well as the radius of the mirror. Moreover, we consider
the effect of adding a (nonlinear) self-interaction term to the
scalar field. We shall also investigate in more detail the
behavior of the “explosive” regime, described in [26] to be
akin to a bosenova, following [29,30]. As we shall discuss,
a mode analysis renders a simple and clear interpretation of
the observed behavior, confirming the results found in [28],
for the asymptotically AdS case. To accomplish these
goals, we have performed a number of NR simulations,
which will be detailed below. The numerical techniques
and the code used are those already described in [31].
The paper is organized as follows: In Sec. II we present

the basic equations and discuss the initial data used in our
simulations. Section III briefly describes our numerical
approach. In Sec. IV we discuss our findings and describe
some properties of the solutions. Finally, in Sec. V we sum
up our concluding remarks. Appendix describes some
technical details. Throughout the paper Greek indices
run over spacetime indices (0 to 3), while Latin indices
run over space indices only (1 to 3). We use units in
which c ¼ G ¼ ℏ ¼ 4πϵ0 ¼ 1.

II. BASIC EQUATIONS

We shall investigate the dynamics of a complex scalar
field, with charge q and mass μ, around a RN BH, by
solving numerically the fully nonlinear Einstein–Maxwell–
Klein-Gordon (EMKG) equations, described by the action
S ¼ R

d4x
ffiffiffiffiffiffi−gp

L, where the Lagrangian density is

L ¼ R − FαβFαβ

16π
−
1

2
DαΦðDαΦÞ� − μ2

2
jΦj2 − V int; ð1Þ

where V int ¼ 1
4
λjΦj4 is a quartic self-interaction potential

with coupling λ. We have denoted by R the Ricci scalar,
Fαβ ≡∇αAβ −∇βAα, Aα is the electromagnetic potential,
Dα is the gauge covariant derivative, Dα ≡∇α þ iqAα, and
q and μ are the charge and the mass of the scalar field.

NICOLAS SANCHIS-GUAL et al. PHYSICAL REVIEW D 94, 044061 (2016)

044061-2



Varying the above action with respect to the metric
yields the Einstein equations, Gαβ ¼ 8πðTSF

αβ þ TEM
αβ Þ, with

the following energy-momentum tensors:

TSF
αβ ¼ 1

2
ðDαΦÞ�ðDβΦÞ þ

1

2
ðDαΦÞðDβΦÞ�

−
1

2
gαβðDσΦÞ�ðDσΦÞ −

μ2

2
gαβjΦΦ�j

−
1

4
λgαβjΦΦ�j2; ð2Þ

TEM
αβ ¼ 1

4π
FασFσ

β −
1

16π
gαβFσδFσδ: ð3Þ

Varying (1) with respect to the scalar field yields the Klein-
Gordon equation

∇α∇αΦþ iqAαð2∇αΦþ iqAαΦÞ
þ iqΦ∇αAα − μ2Φ − λjΦj2Φ ¼ 0: ð4Þ

Finally, varying the action with respect to the Maxwell
potential yields the Maxwell equations

∇αFαβ ¼ 2πiq½Φ�DβΦ − ΦðDβΦÞ�� ≔ 4πðjemÞβ: ð5Þ

We follow the convention that Φ is dimensionless and μ has
dimensions of ðlengthÞ−1.
In the following we present the explicit evolution

equations we solve in our simulations. While we mainly
include this information to make the paper self-contained,
we keep these sections as concise as possible and refer the
interested reader to [31] for further details. The equations
are presented for the particular case of spherical symmetry.

A. Spacetime and electromagnetic split

The 3þ 1 metric split takes the form

ds2 ¼ ð−α2 þ βrβrÞdt2 þ 2βrdtdrþ e4χ ½adr2 þ br2dΩ2�;
ð6Þ

where the lapse α, shift component βr, and the (spatial)
metric functions, χ, a, b depend only on t and r.
We use the following 3þ 1 decomposition of the vector

field Aα:

φ ≔ −nνAν; ð7Þ

ar ≔ ð3ÞAr ¼ γrμAμ; ð8Þ

where nμ is the 4-velocity of the Eulerian observer [32] and
γμν ¼ gμν þ nμnν is the metric on the spatial slices (first
fundamental form). This split defines the scalar and vector
electromagnetic potentials measured by Eulerian observers.
In our spherically symmetric setup, the electric field Eμ ¼

Fμνnν has only a radial component, and the magnetic field
Bμ ¼ ⋆Fμνnν vanishes. Spherical symmetry implies we
only have to consider the equations for the electric
potential, φ, for the radial component of the vector
potential, ar, and for the radial component of the electric
field, Er. The evolution equations for these fields and the
electric field take the form

∂tφ ¼ βr∂rφþ αKφ

−
α

ae4χ

�
∂rar þ ar

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

−
ar
ae4χ

∂rα; ð9Þ

∂tar ¼ βr∂rar þ ar∂rβ
r − αae4χEr − ∂rðαφÞ; ð10Þ

∂tEr ¼ βr∂rEr − Er∂rβ
r þ αKEr − 4απjre; ð11Þ

where K is the trace of the extrinsic curvature Kij (the
second fundamental form) and jre is the electric current
density measured by Eulerian observers.

B. Charged Klein-Gordon equation

To solve the Klein-Gordon equation we introduce two
first-order variables, defined as

Π ≔ nα∂αΦ ¼ 1

α
ð∂tΦ − βr∂rΦÞ; ð12Þ

Ψ ≔ ∂rΦ: ð13Þ

Therefore, using Eq. (4) we obtain the following system of
first-order equations:

∂tΦ ¼ βr∂rΦþ αΠ; ð14Þ

∂tΨ ¼ βr∂rΨþΨ∂rβ
r þ ∂rðαΠÞ; ð15Þ

∂tΠ ¼ βr∂rΠþ α

ae4χ

�
∂rΨ

þΨ

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

− α

�
μ2 þ λjΦj2 þ q2

�
a2r
ae4χ

− φ2

��
Φþ αKΠ

þ Ψ
ae4χ

∂rαþ 2iqα
�
arΨ
ae4χ

þ φΠ
�
: ð16Þ

C. Energy-momentum tensor

We define the gauge invariant versions of the variables Π
and Ψ as

~Π ≔ nμDμΦ� ¼ Π − iqφΦ; ð17Þ
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~Ψ ≔ γμrDμΦ ¼ Ψþ iqarΦ: ð18Þ

The matter source terms for the scalar field read

ESF ≔ nαnβTSF
αβ ¼ 1

2

�
j ~Πj2 þ j ~Ψj2

ae4χ

�

þ 1

2
μ2jΦj2 þ 1

4
λjΦj4; ð19Þ

jSFr ¼ −γαrnβTSF
αβ ¼ −

1

2
ð ~Π� ~Ψþ ~Ψ� ~ΠÞ; ð20Þ

SSFa ≔ ðTr
rÞSF ¼

1

2

�
j ~Πj2 þ j ~Ψj2

ae4χ

�

−
1

2
μ2jΦj2 − 1

4
λjΦj4; ð21Þ

SSFb ≔ ðTθ
θÞSF ¼

1

2

�
j ~Πj2 − j ~Ψj2

ae4χ

�

−
1

2
μ2jΦj2 − 1

4
λjΦj4; ð22Þ

and for the electric field

Eem ¼ 1

8π
ae4χðErÞ2; ð23Þ

Sema ¼ −
1

8π
ae4χðErÞ2; ð24Þ

Semb ¼ 1

8π
ae4χðErÞ2: ð25Þ

The momentum density jemr vanishes because there is no
magnetic field in spherical symmetry.

D. Initial data

As in our Letter [26], we choose the initial data for the
scalar field to be a Gaussian distribution, of the form

Φ ¼ A0e−ðr−r0Þ
2=σ2 ; ð26Þ

where A0 is the initial amplitude of the pulse, r0 is the
center of the Gaussian, and σ is its width. This scalar field
will always be contained within a cavity, whose boundary
we call “the mirror.”
The auxiliary first order quantities are initialized as

follows:

Πðt ¼ 0; rÞ ¼ 0; ð27Þ

Ψðt ¼ 0; rÞ ¼ −2
ðr − r0Þ

σ2
A0e−ðr−r0Þ

2=σ2 : ð28Þ

As the geometrical initial data, we choose a conformally
flat metric with a ¼ b ¼ 1 together with a time symmetry

condition Kij ¼ 0. This describes a time slice of a RN BH,
in isotropic coordinates, if the 3-metric is written as

dl2 ¼ ψ4ðdr2 þ r2dΩ2Þ; ð29Þ

and the conformal factor is given by

ψ ¼
��

1þM
2r

�
2

−
Q2

4r2

�
1=2

; ð30Þ

where M is the BH mass and Q its charge.
At t ¼ 0, we choose a “precollapsed” lapse

α ¼ ψ−2; ð31Þ

and a vanishing shift βr ¼ 0. Initially, the electric field is
given by

Er ¼ Q
r2ψ6

: ð32Þ

The mirrorlike boundary conditions are

ΦðrmÞ ¼ ΨðrmÞ ¼ ΠðrmÞ ¼ 0;

∂rΦðrmÞ ¼ ∂rΨðrmÞ ¼ ∂rΠðrmÞ ¼ 0: ð33Þ

To summarize, the model (background plus field proper-
ties) to be studied contains five parameters,

M;Q; rm; μ; q: ð34Þ

In the following we take M ¼ 1 for all the simulations,
which fixes the energy scale of the problem, but will vary
the value of Q, focusing on the sample

Q ¼ f0; 0.3; 0.5; 0.7; 0.9gM: ð35Þ

The mirror shall be considered at three different positions,
with radial coordinates

rm ¼ f9; 14.2; 19gM; ð36Þ

in order to study its influence in the evolution of the
superradiant instability. For the scalar field mass we shall
consider both a massless and a massive field,

μM ¼ f0; 0.1g; ð37Þ

and we consider seven models with different values of the
scalar field charge qM, namely,

qM ¼ f0.8; 1; 1.2; 2; 5; 10; 20; 40g: ð38Þ

The initial data for the scalar field cloud introduce three
other parameters, as described above. For all models,
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except those in Sec. IV C 4, we choose A0 ¼ 3 × 10−4,
σ ¼ ffiffiffi

2
p

. In Sec. IV C 4 we also consider A0 ¼ 2.1 × 10−5,
σ ¼ 0.01 and A0 ¼ 2.0 × 10−4, σ ¼ 1.8. The center of the
Gaussian is r0 ¼ 7M, when we set the mirror at rm ¼
14.2M and rm ¼ 19M; on the other hand, r0 ¼ 5M for
rm ¼ 9M. In all simulations below, with the exception of
Sec. IV C 5, we take the self-interaction coupling λ ¼ 0. In
Sec. IV C 5 we consider the values

λ ¼ f0; 1.5; 5.0; 7.5g × 104: ð39Þ

A schematic representation of the unperturbed and per-
turbed RN BH in a cavity is exhibited in Fig. 1.

III. NUMERICS

The time update of the different systems of evolution
equations we have to solve in our code (Einstein, Klein-
Gordon, and Maxwell) is done using the same type of
techniques we have extensively used in previous work (see,
in particular, [31,33,34]). We refer the interested reader to
those references for full details on the particular numerical
techniques implemented in the code. Here, we simply
mention that the evolution equations are integrated using
the second-order partially implicit Runge Kutta (PIRK)
method developed by [35,36]. This method allows one to
handle the singular terms that appear in the evolution
equations due to our choice of curvilinear coordinates. The
derivatives in the spacetime evolution are computed using a
fourth-order centered finite difference approximation on a
log grid except for advection terms for which we adopt a
fourth-order upwind scheme. We also use fourth-order
Kreiss-Oliger dissipation to avoid high frequency noise
appearing near the outer boundary. In this work we are also
evolving the electric field explicitly and the electric
potentials implicitly.

IV. RESULTS

A. Initial setup, convergence, and constraint violations

The EMKG system admits as a solution the RN BH with
Arnowitt-Deser-Misner mass M and charge Q, together
with a vanishing scalar field. We perturb the RN BH by
surrounding it with a charged scalar field cloud whose
initial form is given by Eq. (26)—see Fig. 1, bottom panel.
The superradiant instability, which leads to the growth of
the scalar field outside the horizon, and the loss of energy/
charge by the BH, is triggered if the scalar cloud oscil-
lations include modes with frequency w < wc ≡ qϕH,
where ϕH is the electric potential at the horizon. The
trapping of the superradiant modes, which is fundamental
for the instability, is guaranteed by imposing reflecting
boundary conditions for the scalar field at the spherical
mirror, located at r ¼ rm.
In the numerical simulations performed to follow the

development of the instability, we have used a logarithmic
radial grid that extends from the origin to r ¼ 104M and
uses a maximum resolution close to the origin of
Δr ¼ 0.025M. In order to test the convergence of the code
we performed three simulations with different resolutions
Δr ¼ f0.025; 0.0125; 0.00625g M. In [26] (see supple-
mental material therein) we have already shown the
rescaled evolution of the L2 norm of the Hamiltonian
constraint for a particular choice of the scalar field charge,
qM ¼ 40, and mirror position rm ¼ 14.2M, obtaining
the expected second-order convergence of our PIRK
time-evolution scheme. We note that the same result is

FIG. 1. Schematic representation of the RN BH with mass M
and charge Q in a cavity with boundary at r ¼ rm, where mirror
boundary conditions for the scalar field are imposed. Top panel:
The unperturbed setup. In this case the cavity is irrelevant since
neither the gravitational nor the electromagnetic field have special
boundary conditions at the cavity’s boundary. Bottom panel: The
perturbed setup, setting a Gaussian scalar cloud around the BH.
The scalar field obeys reflective boundary conditions at the
cavity’s boundary (hence called mirror).
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achieved irrespective of the combination of parameters
considered.
We remark that in our setup, the initial data do not satisfy

the constraints. Nevertheless, as discussed in detail in the
supplemental material in [26], this fact does not introduce
significant errors in the simulations.

B. System’s evolution: General picture

We solve numerically the EMKG system using the
initial data given by Eqs. (26)–(33) and let the super-
radiant instability grow. As in [26] we analyze the results
of the simulations by extracting a time series for the
scalar field amplitude at an observation point located at
one fixed radii, here taken to be at robs ¼ 5M (a different

value from that used in [26]). Typical behaviors are
shown in Fig. 2. To identify the frequencies at which the
scalar field oscillates we perform a fast Fourier transform
after a given number of time steps and obtain the
corresponding power spectrum.
The time evolution of the scalar field amplitude

exhibited in Fig. 2 shows two distinct phases. During
the first phase—the superradiant growth phase—the
amplitude of the oscillations of the scalar field grow
exponentially (at the observation point), which is the
expected behavior due to the superradiant instability, well
known from the linear theory analysis [22–24]. During a
second phase—the saturation and equilibrium phase—
the exponential growth of the scalar field stops and an
equilibrium between the scalar field and the BH is
attained, during which the amplitude of the scalar field
remains constant and the real and imaginary parts of the
scalar field oscillate with a single frequency and with
opposite phases (i.e., when one is at a maximum of the
magnitude of the amplitude, the other one has a vanish-
ing amplitude—Fig. 2, second and fourth rows). These
plots show the power spectra obtained from the Fourier
transforms of the time series.
The true nature of this final equilibrium state is revealed

by computing also the critical frequency ωfin
c ≡ qϕfin

H , from
the horizon electric potential of the final BH. The latter
is computed at the apparent horizon (AH) of the final BH
as [37]

ϕH ¼ αφ − βrarjr¼rAH : ð40Þ
We obtain precisely the same value as that of the final
frequency of the scalar field—see Table I, fourth and fifth
columns. The condition ω ¼ ωc is thus fulfilled, implying
these configurations are hairy BHs that exist at the thresh-
old of the superradiant instability. These solutions were first
discussed for rotating BHs bifurcating from the Kerr
solution in [13], and for charged BHs in a cavity bifurcating
from the RN solution in [27]. In particular, the latter paper
established that solutions with no nodes in the scalar field
profile (like the ones obtained here) are stable against radial
perturbations. This provides strong evidence that the
equilibrium state obtained herein is the end point of the
evolution.
To summarize: a RN BH, perturbed by a charged scalar

field confined within a cavity around the BH, containing
low frequency modes, such that w < qΦH, is unstable.
During a first phase, the BH transfers part of its energy and
charge into the scalar field, and the scalar field grows
exponentially while the horizon electric potential, ϕH, of
the BH decreases. In a second phase this growth stops when
a single mode of the scalar field remains, with precisely the
critical frequency of the BH, qΦfinal

H . This is the general
picture observed in all simulations. Now we shall discuss
how this general picture is sensitive to the different
parameters of the system.

FIG. 2. First (top) panel: Time evolution of the scalar field real
part, extracted at robs ¼ 5M, for qM ¼ 10, Q ¼ 0.9M,
μM ¼ 0.1, and for rm ¼ 14.2M. Second panel: Detail of the
time evolution of the scalar field real (blue solid line) and
imaginary (red dashed line) parts. Third and bottom panels:
Same as first and second rows, but for qM ¼ 20.
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C. System’s evolution: Detailed description

The most relevant dynamics of our system concerns the
energy and charge transfers between the BH and the scalar
field. The energy in the scalar field can be computed by the
(spatial) volume integral

ESF ¼
Z

rm

rAH

ESFdV; ð41Þ

where ESF is the projection of the energy-momentum tensor
of the scalar field along the normal direction to the t ¼
constant surfaces [38]; cf. Eq. (19). In Fig. 3 we plot the
evolution of this scalar field energy for different values of
the BH initial charge, Q (and also of the scalar field charge
q). The first important feature, manifest on the bottom
panel, is that for the vanishing BH charge the scalar field
energy does not grow. In other words, there is no

superradiant instability of uncharged BHs. The second
important trend is that for a fixed scalar field charge, the
instability is stronger—both in terms of a shorter time scale
and in terms of a larger energy transfer into the scalar field
—for larger Q (top and middle panels). Finally, observe
that even if both the scalar field and the BH are charged, but
if there are no superradiant modes in the scalar field cloud,
there is no growth of the scalar field. This is seen in one of
the examples in the bottom panel, for which the choice of
parameters (q and Q), leads to ωSF > ωc.
Having clarified the essential trends when varying the

BH charge, we fix this charge to a large value Q ¼ 0.9 to
make the superradiant instability strong and focus on the
variation of the scalar field charge and the mirror radius. We
have evolved 8 × 3 ¼ 24 different models to study the
variation of these parameters corresponding to the values
shown in Eqs. (38) and (36). A summary of the physical
quantities obtained in these evolutions is shown in Table I.

TABLE I. Summary of physical quantities for the runs with different values of qM and rm ¼ 9M (top table), rm ¼ 14.2M (middle
table), and rm ¼ 19M (bottom table). Each model (first column) a–h corresponds to the values in Eq. (38), which are shown in the
second column; (third column) e-folding time during the growth phase; (fourth and fifth columns) final oscillation frequency of the
scalar field phase and final critical frequency; (sixth to eighth columns) initial and final scalar field energy, and their ratio; (ninth to
eleventh columns) final BH irreducible mass and ratio of the final to initial BH and scalar field charge.

Model qM τ=M Mωfin
SF Mωfin

c Eini
SF=M Efin

SF=M Efin
SF=E

ini
SF Mfin

irr =M Qfin
BH=Q Qfin

SF=Q

1a 0.8 3.3 × 1002 0.376 0.377 1.66 × 10−05 1.29 × 10−01 7.77 × 1003 0.721 60% 40%
1b 1.0 2.4 × 1002 0.405 0.405 1.67 × 10−05 1.33 × 10−01 7.96 × 1003 0.723 48% 52%
1c 1.2 2.0 × 1002 0.435 0.436 1.69 × 10−05 1.29 × 10−01 7.63 × 1003 0.732 41% 59%
1d 2.0 1.3 × 1002 0.546 0.546 1.81 × 10−05 1.01 × 10−01 5.58 × 1003 0.766 24% 76%
1e 5.0 6.5 × 1001 0.928 0.928 2.79 × 10−05 5.29 × 10−02 1.90 × 1003 0.838 8.0% 92%
1f 10.0 4.3 × 1001 1.513 1.514 6.27 × 10−05 3.11 × 10−02 4.96 × 1002 0.870 3.0% 97%
1g 20.0 3.3 × 1001 2.607 2.608 2.02 × 10−04 1.84 × 10−02 9.11 × 1001 0.881 2.0% 98%
1h 40.0 2.0 × 1001 4.676 4.676 7.59 × 10−04 1.15 × 10−02 1.52 × 1001 0.900 0.6% 99.4%

Model qM τ=M Mωfin
SF Mωfin

c Eini
SF=M Efin

SF=M Efin
SF=E

ini
SF Mfin

irr =M Qfin
BH=Q Qfin

SF=Q

2a 0.8 4.8 × 1002 0.277 0.278 3.00 × 10−05 1.32 × 10−01 4.40 × 1003 0.728 45% 55%
2b 1.0 3.7 × 1002 0.296 0.297 3.01 × 10−05 1.22 × 10−01 4.05 × 1003 0.742 36% 64%
2c 1.2 3.4 × 1002 0.315 0.316 3.04 × 10−05 1.11 × 10−01 3.65 × 1003 0.764 31% 69%
2d 2.0 2.1 × 1002 0.389 0.390 3.17 × 10−05 8.02 × 10−02 2.53 × 1003 0.815 18% 82%
2e 5.0 1.1 × 1002 0.642 0.642 4.31 × 10−05 3.93 × 10−02 9.12 × 1002 0.875 6.0% 94%
2f 10.0 7.1 × 1001 1.030 1.031 8.37 × 10−05 2.25 × 10−02 2.69 × 1002 0.903 2.0% 98%
2g 20.0 4.8 × 1001 1.756 1.756 3.13 × 10−04 1.31 × 10−02 4.19 × 1001 0.924 1.0% 99%
2h 40.0 2.9 × 1001 3.130 3.129 8.95 × 10−04 8.02 × 10−03 8.96 × 1000 0.942 0.1% 99.9%

Model qM τ=M Mωfin
SF Mωfin

c Eini
SF=M Efin

SF=M Efin
SF=E

ini
SF Mfin

irr =M Qfin
BH=Q Qfin

SF=Q

3a 0.8 6.3 × 1002 0.231 0.232 2.99 × 10−05 1.19 × 10−01 3.98 × 1003 0.773 40.5% 59.5%
3b 1.0 4.8 × 1002 0.244 0.244 3.01 × 10−05 1.10 × 10−01 3.65 × 1003 0.777 31% 69%
3c 1.2 4.2 × 1002 0.257 0.259 3.04 × 10−05 9.87 × 10−02 3.25 × 1003 0.796 26% 74%
3d 2.0 2.7 × 1002 0.313 0.314 3.17 × 10−05 6.89 × 10−02 2.17 × 1003 0.846 15% 85%
3e 5.0 1.6 × 1002 0.506 0.507 4.31 × 10−05 3.27 × 10−02 7.59 × 1002 0.902 5.0% 95%
3f 10.0 1.1 × 1002 0.802 0.802 8.37 × 10−05 1.84 × 10−02 2.20 × 1002 0.927 2.0% 98%
3g 20.0 7.4 × 1001 1.355 1.355 2.46 × 10−04 1.06 × 10−02 4.30 × 1001 0.935 0.9% 99.1%
3h 40.0 5.0 × 1001 2.402 2.401 8.95 × 10−04 6.41 × 10−03 7.16 × 1000 0.950 0.02% 99.98%
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For each model studied, Table I shows the following: the
e-folding time (third column) obtained as the best fit of the
form jΦj ∼ et=τ during the growth phase; the final scalar
field frequency obtained from a fast Fourier transform and
the final critical frequency, obtained from (40); the initial
and final scalar field energy, obtained from (41), as well as
their ratio; the final BH irreducible mass, computed in
terms of the AH area AAH, [39], on each time slice, as

MAH ¼
ffiffiffiffiffiffiffiffi
AH

16π

r
; ð42Þ

and the final scalar field and BH charge, the former being
obtained from a formula similar to (41) replacing ESF by
the charge density, and the latter, QBH, evaluated at the AH
as [32]

QBH ¼ ðr2e6χ
ffiffiffiffiffiffiffiffi
ab2

p
ErÞjAH: ð43Þ

In the following subsections we describe various trends
that can be observed from the results in Table I.

1. Entropy growth

As a first observation we note that, for the initial RN BH,
the irreducible mass is Mini

irr ≃ 0.718M. Inspection of
Table I shows that the final BH has a larger Mirr, for all
cases. This confirms that the evolution abides with the area
law and, in this respect, charged superradiance can be
regarded as a classical process in BH physics. It can also be
concluded that the final irreducible mass grows with the
scalar field charge. This is a consequence of two factors:
(i) scalar fields with a larger charge are more efficient in

FIG. 4. Time evolution of the scalar field energy and charge and
the BH charge, displayed in logarithmic scale, for the following:
(top panels) rm ¼ 9M; (middle panels) rm ¼ 14.2M; (bottom
panels) rm ¼ 19M. The inset zooms in the early phase of the
evolution for clarity.

FIG. 3. Time evolution of the scalar field energy, displayed in
logarithmic scale, for rm ¼ 14.2M, different values of the initial
BH charge Q and (top panel), qM ¼ 5; (middle panel) qM ¼ 40;
(bottom panel) different values of the scalar field charge q.
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discharging the BH, transferring its charge to the scalar
field; (ii) by contrast, the scalar field energy grows less, in
terms of the final-to-initial energy ratio, with increasing
scalar field charge.

2. Impact of the mirror radius and scalar field charge

The first consequence of varying the mirror radius is a
variation in the time scale of the process (for all other
parameters fixed): the larger the mirror radius, the larger the
e-folding time. This is an intuitive behavior, as the recurrent
scattering that leads to the exponential pileup of the
superradiant modes takes longer in a larger cavity. This
behavior had already been noticed in linear studies [22].
Such a trend is more easily visualized in Fig. 4, where the
time evolution of the scalar field is exhibited for the various
values of q and for the three values of the mirror radius.
Another clear trend when increasing the mirror radius is

that the critical frequency at which equilibrium is achieved
is smaller. Naively this is associated with a larger wave-
length of the dominant superradiant mode, which is
allowed in a larger cavity. A smaller critical frequency
implies a smaller horizon electric potential and thus a larger
charge to energy ratio transfer to the scalar field. This is in
agreement with what can be observed from the table.
Concerning the charge, the relevant information is in the
last two columns of Table I: for the same q, a larger radius
implies a larger (smaller) fraction of charge in the scalar
field (BH). Note that the corresponding panels of Fig. 4
show a perfect charge exchange between the BH and the
scalar field. Concerning the energy transfer, inspection of
the sixth to eighth columns of Table I shows that increasing
the mirror radius leads to a smaller energy growth of the
scalar cloud. This inverse correlation between charge
transfer and energy transfer had already been observed
in [26] and also occurs when varying q. Increasing the
scalar field charge (likewise increasing the mirror radius)
leads to a higher charge transfer to the scalar field but lower
energy growth of the scalar field cloud. In terms of the
strength of the instability, however, measured by the e-
folding time, increasing the scalar field charge leads to the
opposite trend to that of increasing the mirror radius: a
larger scalar field charge leads to a faster growth of the
instability.

3. Impact of scalar field mass

In our simulations presented in [26] we chose to discuss
a massive scalar field, as it seems far-fetched to consider a
massless, but charged, scalar field (all charged particles are
massive, in the Standard Model of particle physics). Still,
for the sake of completeness, we here discuss the effect of
the mass, by comparing simulations of a massive
(μM ¼ 0.1) and a massless scalar field, and by focusing
on a particular feature of the field distribution in the
equilibrium state.

In Fig. 5 we plot the scalar field magnitude, at two
different time slices, for the evolution of the massive and the
massless scalar field. As can be observed from the various
panels, at the first time slice plotted, t ¼ 50M, the scalar
field distribution is “bumpy,” with several maxima and
minima, and possibly with nodes. In the final time slice,
however, t ¼ 2000M, corresponding to a late time at which
equilibrium has been attained, there are no nodes. Moreover,
whereas for the massless case the scalar field magnitude
profile is monotonically decreasing from the horizon to the
mirror, for the massive case there is a maximum.
Charged hairy BHs in a cavity at the threshold of the

superradiant instability were constructed in [27], for the

FIG. 5. Scalar field magnitude at two different time slices, for
two different values of the scalar field mass, in terms of the radial
coordinate, for qM ¼ 20 and rm ¼ 9M (top panel), rm ¼ 14.2M
(central panel), rm ¼ 19M (bottom panel). The vertical line
marks the location of the AH at the final time.
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model (1) with μ ¼ 0. Therein it was established that,
amongst the different families of such hairy BHs, with
different numbers of nodes for the scalar field magnitude
between the horizon and the mirror, only the nodeless
solutions are stable against perturbations (and hence could
be the true end point of the instability process). This is
exactly what we find for our hairy BHs—the scalar field
magnitude is nodeless when equilibrium is reached. We
remark that the stationary solutions in [27] were obtained
for a massless scalar field; consequently the scalar field
magnitude for the stable solutions was monotonically
decreasing from the BH to the mirror, in agreement with
what is found dynamically in our simulations and exhibited
in Fig. 5.

4. Impact of the initial cloud parameters

In Fig. 6 we investigate the dependence of the evolution
on the initial scalar perturbation. We compare three

different perturbations. The black solid line corresponds
to the default Gaussian, used in all other simulations
presented in this paper (A0 ¼ 3 × 10−4, σ ¼ ffiffiffi

2
p

); the green
dashed line corresponds to a scalar perturbation with a
lower amplitude but slightly more spread (A0¼2.0×10−4,
σ ¼ 1.8); finally the red dotted line corresponds to a
much lower amplitude perturbation and is very narrow
(A0¼2.1×10−5, σ ¼ 0.01). The corresponding Gaussians
are plotted, for comparison, in the top panel of Fig. 6. The

FIG. 6. The three different Gaussians used as initial data (top
panel). The corresponding time evolutions, for three different
values of qM (bottom panels).

FIG. 7. Time evolutions of the scalar field energy for different
values of the quartic self-coupling and qM ¼ 5, 10, 20 (top,
middle, and bottom panels).
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bottom panel shows the corresponding time evolutions of
the scalar field energy, using the same color convention,
from which one can extract three observations. First,
smaller perturbation amplitudes lead to a longer super-
radiant growth phase. Second, the final scalar field energy
is insensitive to the initial perturbation. Third, the scalar
field energy overshoot (see Sec. IV D for a discussion of
this overshooting behavior) observed in the qM ¼ 10, 20
cases is larger for larger perturbations. These features can
be interpreted as the need to attain a certain threshold in the
scalar cloud energy for the saturation phase to kick in.
Naturally this threshold takes longer, when starting with a
smaller perturbation. Still, the final hairy BH obtained is
essentially insensitive to the perturbation parameters, as
long as the perturbation approximation remains valid.

5. Impact of the scalar field self-interactions

We now tackle the effect of adding a quartic self-
interaction to the scalar field, by taking λ ≠ 0 in the model
described by action (1). In Fig. 7 we show the time
evolution of the scalar field energy for three nonzero
values of the quartic self-coupling together with the case
with no self-interactions, for three different values of qM.
The overall trends revealed by inspection of Fig. 7 is as

follows. Increasing the self-coupling leads to a slower
growth of the scalar field energy outside the horizon. But
the final state corresponds to a hairy BH with more energy
in the scalar field. Moreover, the self-interactions promote
more energy exchange between the BH and the scalar field
outside the horizon; i.e., the evolution is never monotonic,
even for small qM values. This is likely associated with the
mode conversion allowed by the self-interactions, a sug-
gestion supported by the mode analysis discussed below, in
Sec. IV D 1.
As in all previous cases, the increase in the ability to

transfer energy from the BH into the scalar field is

accompanied by a decrease in the ability to transfer charge
from the BH to the scalar field. This is illustrated in Fig. 8
for the simulations with qM ¼ 20.
Interestingly, the larger scalar field energy obtained for

larger self-couplings is not associated with a larger scalar
field amplitude outside the horizon. This can be concluded
from Fig. 9, where the oscillations of the (real part of the)
scalar field are shown for qM ¼ 20. It can be observed that
these oscillations are larger for smaller self-coupling. This
result is confirmed in Fig. 10, where the magnitude of the
final scalar field profile is shown as a function of the radial
coordinate. Figure 10 clarifies, moreover, that the scalar
field spatial gradients become larger when increasing the
self-coupling. Thus, the larger gradients, rather than a
larger scalar field magnitude, yield the larger scalar field
energy outside the horizon, for larger self-coupling.
As we saw before, the presence of a mass term leads to

an extremum in the scalar field magnitude radial profile (as

FIG. 8. Time evolution of the electric charge in the scalar field
outside the horizon, for different values of the quartic self-
coupling and qM ¼ 20.

FIG. 9. Time series for the (real part of the) scalar field for
different values of the quartic self-coupling (same color coding as
in Fig. 8) and qM ¼ 20.

FIG. 10. Magnitude of the scalar field, in terms of the radial
coordinate, for the final BH configuration, for different values of
the quartic self-coupling and qM ¼ 20.
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opposed to a monotonic function for the massless case;
cf. Sec. IV C 3), and hence a larger radial second derivative
of that magnitude. The self-interactions term, from Fig. 10,
tends to further increase this second derivative, in the
neighborhood of the extremum.

D. Bosenova and mode analysis

Analysis of Fig. 4 reveals a qualitative difference in the
evolution of the scalar field energy between low and high
scalar field charge simulations. Whereas the former exhib-
its an essentially monotonic growth, the latter displays a
more turbulent evolution before the equilibrium phase,
wherein the energy extraction overshoots the equilibrium
value and some energy is returned to the BH. This behavior
is detailed in Fig. 11 (top panel) for qM ¼ 20 and for the
three different positions of the mirror. Figure 11 shows
strong oscillations in the scalar field energy contained
outside the horizon, before the system relaxes into an
equilibrium configuration. Observe also that when the
mirror is set closer to the BH, the relaxation is faster.
During the oscillations observed in Fig. 11, some of the

energy in the scalar field is pushed back into the BH, before
being extracted again, in a process that can last several
cycles. In [26], it was suggested that this process resembles
the bosenova explosion, described in [29,30]. Such an
explosion, resulting from the nonlinear interactions of the
scalar field, would push the energy of a test, but nonlinear,
scalar field on the Kerr background, back into the BH. A
simpler explanation, moreover not needing to invoke
nonlinear effects, was put forward in [28], by studying
the growth of the superradiant instability in charged AdS

BHs, a setup with analogous physics to the one studied
herein. These authors argued that oscillations such as the
ones observed in Fig. 11 result from modes that become
nonsuperradiant, as the horizon electric potential (and
hence the critical frequency) decreases, and consequently
fall back into the BH. In order to test this hypothesis in our
setup, we have performed the mode analysis shown in
Fig. 12. These figures show that for q just above the
instability threshold (the smallest q value, qM ¼ 0.8),
the system only has a single superradiant mode, and the
evolution consists of a very smooth transition to the
stationary equilibrium state, in agreement with the low q
curves in Fig. 4. For larger q (qM ¼ 5 and 20), one

FIG. 12. Mode analysis for (top panel) qM ¼ 0.8, (central
panel) qM ¼ 5, (bottom panel) qM ¼ 20. For all three cases
μM ¼ 0.1 and rm ¼ 14.2M.

FIG. 11. Top panel: Details of the oscillations of the energy
density during the “explosive” phase, for the qM ¼ 20 models
and three different positions of the mirror. The extracted energy
overshoots the final equilibrium value, and strong oscillations
follow. Bottom panel: Variation of the scalar field energy density
for three models for which the mode analysis is performed in
Fig. 12.

NICOLAS SANCHIS-GUAL et al. PHYSICAL REVIEW D 94, 044061 (2016)

044061-12



observes more than one initially superradiant mode grow-
ing, since they are in the superradiant range, but decay
before the end state is reached, as they exit the superradiant
window. This qualitatively explains the oscillations seen in
Fig. 11. In this case, the only mode that does not decay is
the fundamental mode, which matches the critical fre-
quency as the system relaxes into the hairy BH solution.

1. Mode analysis with λ ≠ 0

The mode analysis of the previous subsection suggests
that despite the nonlinear nature of the process leading to

FIG. 14. Illustration of the formation of a hairy BH for
qM ¼ 20, λ ¼ 0. The left panels show the time series until a
certain time, and the right (two-dimensional) panels show the
corresponding snapshot, at that time, of the normalized scalar
field profile magnitude (cf. color bar). The inner white circle
denotes the BH region, bounded by the apparent horizon.

FIG. 13. Mode analysis for the model with self-interactions,
with λ ¼ 7.5 × 104 and (top panel) qM ¼ 5, (central panel)
qM ¼ 10, (bottom panel) qM ¼ 20. For all three cases μM ¼
0.1 and rm ¼ 9M.
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the hairy BH formation, different scalar field modes evolve
in an essentially independent way and, moreover, in the
way predicted by the linear (test field) theory. A natural
question is how the scalar field self-interactions affect such
evolution. To address this question we plot in Fig. 13 a
mode analysis for the evolution with λ ¼ 7.5 × 104 and
qM ¼ 5, 10, 20. Some differences with respect to the cases
without self-interactions shown in Fig. 12 are notorious. A
first difference is that the dominant mode, which ends up
defining the final BH hair, is essentially unchanged during
the evolution. In particular the growth phase, expected from
linear theory, is suppressed. The reason is that for the
(large) values of λ (and small mass μ) considered, the self-
interacting (quartic) term is almost of the order of the
(quadratic) mass term from the very beginning and hence
the linear approximation never holds. A second difference
is that the remaining modes, which end up decaying into
the BH, are now more turbulent. It is plausible that this is a
manifestation of mode conversion, promoted by the self-
interactions. Of course, such mode conversion can also
occur, even without the manifest scalar self-coupling, due
to the implicit self-coupling induced via the coupling to
gravity. Nonetheless, our findings are that, for the setups
and parameters considered herein, the effect is clearer in the
presence of a nonvanishing self-interaction term.

V. CONCLUSIONS

In this paper we have extended and complemented the
results presented in a recent Letter [26] on the nonlinear
development of the superradiant instability for a RN BH in
a cavity. Following the development of this instability, we
have shown it leads to the dynamical formation of a hairy
RN BH, of the type studied in [27] as stationary solutions.
This falsifies the weak version of the no-hair hypothesis,
albeit not for a truly asymptotically flat spacetime. In
Fig. 14 we provide an illustration of the dynamical
formation of the hairy BH.
We have examined the sensitivity of the hair growth

process to the BH charge, to the mirror radius, to the scalar
charge and mass, to the parameters of the initial scalar
perturbation, and to the introduction of a scalar self-cou-
pling. In a nutshell, the energy extraction ismore efficient for
lower scalar field charge, for larger BH charge, and for
smaller mirror radius. The trend with the charge extraction is
opposite: it is less efficient for lower charge coupling, for
larger BH charge, and for a smaller mirror radius.
Concerning the existence, or not, of scalar field mass we
have confirmed that this leads to a qualitative difference in
the final scalar field magnitude profile, which is monoton-
ically decreasing, from the horizon to the mirror, for
massless scalar fields, but has a maximum for massive
scalar fields. Introducing a scalar field quartic self-coupling,
the final scalar field magnitude profile acquires larger spatial
gradients, which justifies the larger energy transferred from
the BH to the scalar field, despite the lower amplitude of the

final scalar field profile, as compared to the non-self-
interacting case. We have also observed that the final hairy
BH is essentially insensitive to varying the initial perturba-
tion, even though the details of the evolution depend on it.
We have clarified the oscillating behavior for the scalar

field energy outside the horizon which is observed for the
larger scalar field charges. A mode analysis reveals that
various modes contribute to the superradiant growth in the
early states of the process. However, a single mode remains
at the end, in equilibrium with the BH; thus the other modes
became nonsuperradiant and decay back into the BH before
equilibrium is attained. This is in contrast with the smaller q
simulations, for which a single mode is superradiantly
growing from the early stages of the process, and hence the
equilibrium phase is achieved essentially monotonically.
This analysis confirms the observations in [28], for our
setup. Such mode analysis lends support to the linear
approximation and even to the use of an adiabatic approxi-
mation, such as in [40], for taking into account the
backreaction. Indeed, individual modes evolve essentially
independently, exchanging their energy with the horizon.
When turning on self-interactions, however, the picture
changes. For sufficiently large self-coupling, the regime
predicted by the linear theory is essentially unobserved, and
each mode, except the dominant one, fluctuates noticeably
until it completely decays. Not surprisingly, therefore,
turning on self-interactions limits the validity of a linear
approximation.
Finally, we remark that the hairy BHs we have dynami-

cally shown to form in this paper can be interpreted as a
bound state of a RN BH and a charged scalar soliton in a
cavity. This latter class of solutions was recently studied in
detail in [41]. It was shown in this work that, amongst these
solitonic solutions, some are unstable. An interesting
question is, thus, what is the development of the instability
for such unstable solitons, and in particular, if they evolve
into a hairy BH. The technology described herein can be
used to tackle this question. We hope to report on it in the
near future.
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APPENDIX: SOURCE TERMS

In this Appendix the source terms included in the explicit
or partially implicit operators are detailed.
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First, a, b, X ¼ ψ−1=2, α, βr, Φ, and Er are evolved
explicitly; i.e., all the source terms of the evolution
equations of these variables are included in the L1 operator
of the second-order PIRK method.
Second, Aa and K are evolved partially implicitly, using

updated values of α, a, and b. More precisely, the
corresponding L2 and L3 operators associated with the
evolution equations for Aa and K read

L2ðAaÞ ¼ −
�
∇r∇rα −

1

3
∇2α

�
þ α

�
Rr
r −

1

3
R

�
; ðA1Þ

L3ðAaÞ ¼ βr∂rAa þ αKAa − 16παðSa − SbÞ; ðA2Þ

L2ðKÞ ¼ −∇2α; ðA3Þ

L3ðKÞ ¼ βr∂rK þ α

�
A2
a þ 2A2

b þ
1

3
K2

�

þ 4παðρþ Sa þ 2SbÞ: ðA4Þ

Next, Δ̂r, Ψ, Π, φ, and ar are evolved partially implicitly,
using the updated values of α, a, b, βr, ψ , Aa, K, Φ, and Er.
Specifically, the corresponding L2 and L3 operators asso-
ciated with the evolution equation for Δ̂r, Ψ, Π, φ, and ar
are given by

L2ðΔ̂rÞ ¼
1

a
∂2
rβ

r þ 2

b
∂r

�
βr

r

�
þ σ

3a
∂rð∇̂mβ

mÞ

−
2

a
ðAa∂rαþ α∂rAaÞ −

4α

rb
ðAa − AbÞ

þ ξα

a

�
∂rAa −

2

3
∂rK þ 6Aa∂rχ

þðAa − AbÞ
�
2

r
þ ∂rb

b

��
; ðA5Þ

L3ðΔ̂rÞ ¼ βr∂rΔ̂r − Δ̂r∂rβ
r þ 2σ

3
Δ̂r∇̂mβ

m

þ 2αAaΔ̂r − 8πjr
ξα

a
; ðA6Þ

L2ðΨÞ ¼ ∂rðαΠÞ; ðA7Þ

L3ðΨÞ ¼ βr∂rΨþΨ∂rβ
r; ðA8Þ

L2ðΠÞ ¼
α

ae4χ

�
∂rΨþΨ

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

þ Ψ
ae4χ

∂rα − α

�
μ2 þ λjΦj2 þ q2

�
a2r
ae4χ

��
Φ

þ 2iqα

�
arΨ
ae4χ

þ φΠ
�
; ðA9Þ

L3ðΠÞ ¼ βr∂rΠþ αKΠ; ðA10Þ

L2ðφÞ ¼ −
α

ae4χ

�
∂rar þ ar

�
2

r
−
∂ra
2a

þ ∂rb
b

þ 2∂rχ

��

−
ar
ae4χ

∂rα; ðA11Þ

L3ðφÞ ¼ βr∂rφþ αKφ; ðA12Þ

L2ðarÞ ¼ ar∂rβ
r − ∂rðαφÞ; ðA13Þ

L3ðarÞ ¼ βr∂rar − αae4χEr: ðA14Þ

Finally, Br is evolved partially implicitly, using the updated
values of Δ̂r, i.e., L2ðBrÞ ¼ 3

4
∂tΔ̂r and L3ðBrÞ ¼ 0.
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