
lable at ScienceDirect

Progress in Biophysics and Molecular Biology 107 (2011) 32e47
Contents lists avai
Progress in Biophysics and Molecular Biology

journal homepage: www.elsevier .com/locate/pbiomolbio
Original Research

OpenCMISS: A multi-physics & multi-scale computational infrastructure
for the VPH/Physiome project

Chris Bradley a,b,*, Andy Bowery c, Randall Britten a, Vincent Budelmann a, Oscar Camara d,e,
Richard Christie a, Andrew Cookson f, Alejandro F. Frangi d,e, Thiranja Babarenda Gamage a,
Thomas Heidlauf g, Sebastian Krittian c, David Ladd a, Caton Little a, Kumar Mithraratne a, Martyn Nash a,h,
David Nickerson a, Poul Nielsen a,h, Øyvind Nordbø i, Stig Omholt i, Ali Pashaei d,e, David Paterson b,
Vijayaraghavan Rajagopal a, Adam Reeve a, Oliver Röhrle g, Soroush Safaei a, Rafael Sebastián j,
Martin Steghöfer d,e, Tim Wu a, Ting Yu a, Heye Zhang k, Peter Hunter a

aAuckland Bioengineering Institute (ABI), The University of Auckland, New Zealand
bDepartment of Physiology, Anatomy and Genetics (DPAG), University of Oxford, United Kingdom
cComputing Laboratory, University of Oxford, United Kingdom
dCenter for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain
eNetworking Biomedical Research Center e Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
f Imaging Sciences & Biomedical Engineering Division, King’s College London, United Kingdom
g Stuttgart Research Centre for Simulation Technology, University of Stuttgart, Germany
hDepartment of Engineering Science, The University of Auckland, New Zealand
iCIGENE, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
jDepartment of Computer Science, Universitat de Valencia, Spain
k Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
a r t i c l e i n f o

Article history:
Available online 7 July 2011

Keywords:
Computational modelling software
Multi-scale
Multi-physics
Physiome project
* Corresponding author. Auckland Bioengineering Ins
land, Private Bag 92019, Auckland 1142, New Zealand
fax: þ64 9 3677157.

E-mail address: c.bradley@auckland.ac.nz (C. Brad

0079-6107/$ e see front matter � 2011 Elsevier Ltd.
doi:10.1016/j.pbiomolbio.2011.06.015
a b s t r a c t

The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML
(fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.
org). Freely available open source computational modelling software is also being developed to solve the
partial differential equations described by the models and to visualise results. The OpenCMISS code
(opencmiss.org), described here, has been developed by the authors over the last six years to replace the
CMISS code that has supported a number of organ system Physiome projects.

OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and
tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example,
the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and
embedded coronary flow, and the reactionediffusion equations that govern the propagation of electrical
waves through myocardial tissue need to be coupled with equations that describe the ion channel
currents that flow through the cardiac cell membranes.

In this paper we discuss the design principles and distributed memory architecture behind the
OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations
across common boundaries (such as fluid-structure coupling), or between spatial fields over the same
domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are
embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure
for combining models developed across the VPH/Physiome community.

� 2011 Elsevier Ltd. All rights reserved.
titute, The University of Auck-
. Tel.: þ64 9 3737599x89924;

ley).

All rights reserved.
1. Introduction

The last few decades have witnessed a remarkable increase in
the computational power that is available to scientists and engi-
neers. The increased power has enabled mathematical and
computer modelling of physical systems to advance from looking at

http://cellml.org/
http://fieldml.org/
http://models.physiome.org/
http://models.physiome.org/
http://opencmiss.org/
mailto:c.bradley@auckland.ac.nz
www.sciencedirect.com/science/journal/00796107
http://www.elsevier.com/locate/pbiomolbio
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.015
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.015
http://dx.doi.org/10.1016/j.pbiomolbio.2011.06.015

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 33
simple phenomenon in isolation to the analysis of complex coupled
multi-scale and multi-physics processes. The increase in model
complexity has driven a corresponding increase in the complexity
of the computer codes that solve the models. As modern scientific
modelling codes take a great deal of effort to develop, test, and
maintain, there has been an emerging trend towards collaborative
efforts to develop software libraries which can be used by many
groups. For the case of the finite element method a number of
libraries have been developed. Some of the libraries aim to be
general purpose e.g., libMesh (Kirk et al., 2006), deal.II (Bangerth
et al., 2007), FETK (Holst, 2001) and OOFEM (Patzák and Bittnar,
2001; Patzák et al., 2001). Other libraries are more specific to
a particular scientific area e.g., in the field of cardiac modelling
there are, to name a few, Continuity (www.continuity.ucsd.edu),
CARP (Vigmond et al., 2003) and Chaste (for Cancer and Cardiac
applications) (Pitt-Francis et al., 2009). The computational size of
complex coupled models have meant that the computational
libraries have increasingly used parallel processing to reduce the
run time of the simulations (Bordas et al., 2009).

The VPH/Physiome1 project is an international collaborative
effort to understand both the physiology and pathology of the
human body using quantitative, anatomically and biophysically
basedmodels that link clinical data at theorgan level (e.g., fromMRI)
to patient-specific molecular data. The complexity and range of
spatial and temporal scales involved in this project call for robust
data andmodelling standards. Thedevelopmentof such standards is
described briefly below. Model repositories and visualisation tools,
based on these standards, have also been established. The purpose
of this paper is to describe the development of a computational
software library, called OpenCMISS, which uses the models
described by the VPH/Physiome standards for solving coupled bio-
physically based equations that incorporate multiple spatial and
temporal scales.

We describe the design goals for the software and illustrate the
data structures with a geometrically simple example, relevant to
the cardiac physiome project, which couples biophysical equation
sets both within and across tissue regions, and in some cases
linking down to cell level ODE models.
2. Physiome standards

As the computational models inevitably become more complex,
it is increasingly difficult for anyone other than the author(s) of the
publication describing the model to decipher, code, and run the
model in order to reproduce the results claimed in a publication. It
can also be very difficult to then use this model as one component
of a more complex model.

To address these challenges several groups have developed
standards for encoding models over the past ten years. These
modelling standards typically use the eXtensible Markup Language
(XML) developed by the worldwide web consortium (w3c.org), as
well as a variety of other standards based on XML, such as MathML
for encoding mathematics, and various metadata standards.

Two XML-based model encoding standards are currently being
developed under the IUPS Physiome Project (Hunter and Nielsen,
2005; Hunter, 2004; Hunter and Borg, 2003) and the European
Virtual Physiological Human (VPH) project (vph-noe.eu). CellML
1 The Physiome Project was begun by the International Union of Physiological
Sciences (IUPS) in 1997 to provide an integrative model-based framework for
understanding human physiology. The Virtual Physiological Human (VPH) project
was initiated in 2006 by the European Commission with a focus on clinical appli-
cations of the physiome project. These two projects have nowmerged into the VPH/
Physiome project.
(cellml.org) is designed to encode lumped parameter biophysically
based systems of ordinary differential equations (ODEs) and
nonlinear algebraic equations e together called differential alge-
braic or DAE systems (Cuellar et al., 2003). FieldML (fieldml.org) is
designed to encode spatially and temporally varying field infor-
mation such as anatomical structure, the spatial distribution of
protein density or computed fields such as the electrical potential or
oxygen concentration throughout a tissue (Christie et al., 2009). A
third markup language called the ‘systems biology markup
language’ or SBML (sbml.org) has been developed by the systems
biology community. This has similar expressiveness to CellML but is
targeted more specifically to representing models of biochemical
and genetic networks.

CellML separates the syntax of a model (e.g., the mathematical
equations encoded in MathML) and the semantics (the biological
and biophysical meanings of the model components and parame-
ters) defined in the model metadata by reference to suitable
ontologies. This facilitates building complex models by importing
modular components defined in libraries. SBML is more closely tied
to the concepts of biochemical and genetic networks. FieldML deals
with the encoding of fields, such as geometry and stress, at multiple
spatial scales by allowing hierarchies of material coordinate
systems that preserve anatomical relationships (e.g., coronary
arteries embedded in a deforming myocardial tissue that is itself
part of a heart contained within a torso). These three standards are
supported by the US National Institutes of Health (NIH) and the
European Commission’s funding agency (currently operating under
Framework 7).

Model repositories are available for all three markup languages
e PMR2 (Physiome Model Repository 2, see models.cellml.org) for
CellML (Lloyd et al., 2008) and FieldML models and Biomodels
(biomodels.net) for SBML models. Various minimum information
standards are also available including MIRIAM (ebi.ac.uk/miriam)
and MIASE (ebi.ac.uk/compneur-srv/miase).

3. Background to CMISS

CMISS is an acronym for ‘Continuum Mechanics, Image anal-
ysis, System identification and Signal processing’. Code develop-
ment for CMISS began in Auckland in 1980 with the goal of
creating a bioengineering finite element code for solving multiple
coupled partial differential equations. The initial applications
were for the heart, primarily for electromechanics (Hunter and
Smaill, 1988; Hunter et al., 2003), but it rapidly expanded to
include other heart processes (Smith et al., 2004) and to support
applications in other organs such as the lungs, with coupling
between soft tissue mechanics, heat and moisture transport and
airway fluid mechanics (Tawhai et al., 2000, 2004). While finite
element methods provided the primary numerical technique, the
code was developed in the 1980s to include boundary element
methods (for electrical current flow in the thorax) and finite
difference equations based on curvilinear grids. The visual display
and graphical user interface aspects of the program were devel-
oped in parallel in a program called CMGUI (cmiss.org/cmgui)
(Christie et al., 2002).

Some of the unique features of CMISS (in comparison to
commercial finite element codes) that have been carried over into
OpenCMISS are: (i) the use of cubic Hermite basis functions to
preserve C1 or G1 continuity across element boundaries (Bradley
et al., 1997) where this is important for efficient field representa-
tion; (ii) the use of variable order basis functions (e.g., bicubic
Hermite by linear Lagrange); and (iii) the close relationship that is
preserved between the representation of tissue structure and the
organ anatomy, through the use of material structure fields defined
with respect to embedded material coordinates.

http://www.continuity.ucsd.edu/
http://w3c.org/
http://vph-noe.eu/
http://cellml.org/
http://fieldml.org/
http://sbml.org/
http://models.cellml.org/
http://biomodels.net/
http://ebi.ac.uk/miriam
http://ebi.ac.uk/compneur-srv/miase
http://cmiss.org/cmgui

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e4734
The CMISS code (including CMGUI) has been at the heart of
many multi-scale physiome projects over the past 20 years, but as
the VPH/Physiome modelling standards evolved it became clear
that a redevelopment of both programs was needed to take
advantage of both the new modelling standards and repositories,
and the increasing move (in the academic world at least) to freely
available open source software. The OpenCMISS project was
therefore begun in 2005 as an open source collaboration between
the University of Auckland in New Zealand and the University of
Oxford in the UK. This collaboration was extended last year to
include King’s College London, Universitat Pompeu Fabra, Barce-
lona, Spain, the Norwegian University of Life Sciences and the
University of Stuttgart, Germany. This year, the Shenzhen Institute
of Advanced Technology, in Shenzhen, China, has also joined.

4. Design goals

The first goal was that OpenCMISS would be a flexible library
rather than a large monolithic application. A library-based code
means that it is considerably easier to incorporate physiome and
bioengineering models into clinical or commercial applications as
a library that can be wrapped by a customised interface. The library
should be modular, extensible, and programmable. This allows for
the library itself to be customised and/or extended inwhatever way
is appropriate for the end application.

The second design goalwas generality. Previous experiencewith
the CMISS modelling environment indicated the importance of
developing code in as general a way as possible. Generalised data
structures, in which the data for diverse modelling problems are
expressed in a common format, allow for easier coupling between
different problems. This is especially true for unforeseen, coupled
problems that may arise from future applications. The goal of
generality does, however, often mean that there is some trade-off
with the computational performance of code. As the computa-
tional size of bioengineering models can be very large it is
extremely important that computational performance is carefully
considered. But it is our view that it is better to optimise a more
general code armed with the knowledge of exactly what the
problem is than to prematurely optimise a specific code which
could then limit the applicability of that code.

The third design goal was that OpenCMISS should be an inher-
ently parallel code and that the parallel environment should be as
general as possible. Parallel processing is required as the computa-
tional demands of solving models increases due to increased reso-
lution or complexity of the models. However, optimal parallel
processing strategies dependon theparticular problembeing solved.
Also the lifetime of modelling codes is often an order of magnitude
greater than the lifetime of the computer hardware, and it is notable
that the architecture of parallel machines has changed over the last
few decades from vector processors, to symmetric multiple proces-
sors (SMPs), to clusters of processors, to clusters of multiple core
processors, through to using General Purpose Graphical Processing
Units (GPGPUs). Code that assumes a particular parallel algorithm or
a particular parallel architecture may not be appropriate for a future
problem or future parallel hardware. For these reasons a design goal
of OpenCMISS was that the code uses a general n � p(n) � e(p)
hierarchical parallel environment where n is the number of
computational nodes, p(n) is the number of processing systems on
the computational node and e(p) is the number of processing
elements for each processing system. Examples of this hierarchy are:

a) multi-core or SMP n ¼ 1, p(n) > 1, e(p) ¼ 1
b) pure cluster n > 1, p(n) ¼ 1, e(p) ¼ 1
c) multi-core cluster n > 1, p(n) > 1, e(p) ¼ 1
d) multi-core cluster with GPUs n > 1, p(n) > 1, e(p) > 1
The fourth design goal was that OpenCMISS should be able to be
used, understood, and developed by novices and experts alike.
Modern bioengineering and physiome science requires a team of
scientists, graduate students, and post-doctoral researchers from
varied backgrounds, eachwith a different skill set. It is unrealistic to
expect that each member of the team will become an expert in
every area of modelling and computation. The design of Open-
CMISS thus abstracts and encapsulates model details in a number of
objects of hierarchical complexity. The hierarchy of these objects
allows complex details to be hidden from the users, if required, and
the object interface allows an expert to manipulate object param-
eters whilst the novice user makes use of sensible default param-
eter values for the common cases.

The final design goal, as mentioned earlier, was to incorporate
Application Programming Interfaces (APIs) for the physiome
markup languages CellML (Miller et al., 2010) and FieldML.

5. Software systems

OpenCMISS is written in Fortran 95/2003 with an object-based
approach for high level objects. It has bindings for Fortran and C
and uses SWIG (swig.org) interfaces for Cþþ and Python. It uses the
Mozilla trilicense (mozilla.org/MPL) that is being used for other
open source Physiome projects. Standard software engineering
practices are followed, including the use of a source code repository
on SourceForge (sourceforge.net/projects/opencmiss), Doxygen for
documentation, testing via a Buildbot system, validation against
analytic test cases, and a tracker system e all described further
below.

Note that although the main source code revision control
system for OpenCMISS is hosted on SourceForge using Subversion,
we are currently evaluating distributed version control systems
(DVCS’s) such as Git or Mercurial, with the possibility of migrating
from Subversion in the future. One perceived advantage of
distributed version control systems is the fit with a research-
oriented development model, allowing for code to be written for
research that is destined to eventually be released as open source,
but kept closed-source initially until the corresponding research
articles have been published. DVCS’s allow for version control and
collaboration during the closed phase, and when released as open
source, the original version history can be kept intact, or possibly
summarised.

Other SourceForge services used are:

� a wiki (sourceforge.net/apps/mediawiki/opencmiss/index.php?
title¼Main_Page)

� mailing lists (sourceforge.net/mail/?group_id¼201176)
� aweb-based source code revision viewer using Trac (sourceforge.
net/apps/trac/opencmiss)

Note that the source code revision viewer allows views of the
code revision history via a web browser, and also provides an RSS
feed of code changes. A mirror of the Trac revision viewer is also
available, and is hosted at the ABI (svnviewer.bioeng.auckland.ac.
nz/projects/opencmiss).

For project planning, the OpenCMISS project uses the Physiome
project issue tracker (tracker.physiomeproject.org). The Bugzilla
tracker system is used for managing both feature planning and bug
reporting. A draft version of the OpenCMISS development plan is
stored in the issue tracker database. The tracker allows tracker
items to have dependencies on other tracker items, and these can
be viewed by means of interactive web-based tree views and graph
views. This allows for dynamic planning, where the views of the
plan are updated instantly as each status is updated. Modifications
to plan are also instantly visible. Stakeholders have the option of

http://swig.org/
http://mozilla.org/MPL
http://sourceforge.net/projects/opencmiss
http://sourceforge.net/apps/mediawiki/opencmiss/index.php%3ftitle=Main_Page
http://sourceforge.net/apps/mediawiki/opencmiss/index.php%3ftitle=Main_Page
http://sourceforge.net/apps/mediawiki/opencmiss/index.php%3ftitle=Main_Page
http://sourceforge.net/mail/%3fgroup_id=201176
http://sourceforge.net/mail/%3fgroup_id=201176
http://sourceforge.net/apps/trac/opencmiss
http://sourceforge.net/apps/trac/opencmiss
http://svnviewer.bioeng.auckland.ac.nz/projects/opencmiss
http://svnviewer.bioeng.auckland.ac.nz/projects/opencmiss
http://tracker.physiomeproject.org

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 35
receiving status updates via customisable RSS feeds or by means of
customisable e-mail alerts.

The OpenCMISS project makes extensive use of example
programs. These examples serve a number of purposes including
demonstrating the capability of OpenCMISS, documenting how to
solve certain equations and as a means for testing and validating
the code. The set of examples is currently stored in the OpenCMISS
source repository, but this will most likely change in the near future
so that example models and their field descriptions are hosted as
part of a physiome model repository. OpenCMISS examples
undergo an extensive validation process in which example solu-
tions are compared with an analytic solution to the problem
(if available). The example solutions are checked for convergence
and tested in parallel. Once the example has demonstrated that it is
solving correctly it is then tested nightly against the current
code using a Buildbot testing system. The BuildBot automated
testing system for OpenCMISS (autotest.bioeng.auckland.ac.nz)
is a web-based system used for automated daily building, testing,
and documentation generation. BuildBot provides a web-based
configuration facility, and views of current and historical test
results. These results are also available via e-mail alerts and an RSS
feed.

The generated documentation is updated daily to match the
source code head revision. The Doxygen documentation system is
used to extract specially formatted comments from the source code
and also parses the source code structure and generates docu-
mentation targeted at developers using the OpenCMISS library, as
well as developers contributing to the OpenCMISS project (available
from cmiss.bioeng.auckland.ac.nz/OpenCMISS/doc/programmer).

A second Subversion system svn.physiomeproject.org/svn/
opencmissextras, hosted by the ABI, is used to assist developers
in setting up a development environment for OpenCMISS, mainly
by facilitating retrieval of compatible versions of the third-party
libraries and tools on which OpenCMISS depends.

Finally, the main OpenCMISS website (opencmiss.org) uses the
ModX content management system.

6. Open source libraries

OpenCMISS builds on a number of successful software projects
used in the modelling community. In accordance with an open
source design philosophy, OpenCMISS aims to use software
libraries that are, where possible, themselves open source. In cases
where a library is not open source, that library and its functionality
are considered optional so that it is possible to build a completely
open-sourced product.

For parallel computations in a heterogeneous multiprocessing
environment OpenCMISS uses the MPI standard (mpi-forum.org)
for distributed parallelisation and the OpenMP (openmp.org)
standard for shared memory parallelisation. OpenCMISS has been
tested with the MPICH2 (mcs.anl.gov/research/projects/mpich2),
Open MPI (open-mpi.org), MVAPICH (mvapich.cse.ohio-state.edu)
open source MPI libraries as well as vendor specific MPI libraries
from Intel and IBM. Recently, OpenCMISS developers have been
investigating parallel computations on GPGPUs using CUDA (nvidia.
com/object/cuda_home_new.html). However, as CUDA is a propri-
etary technology, developers have started to consider OpenCL
(khronos.org/opencl) for programming GPGPUs.

In order to calculate optimal mesh partitions, OpenCMISS uses
the parallel graph partitioning package ParMETIS (glaros.dtc.umn.
edu/gkhome/metis/parmetis/overview). The licensing options for
ParMETIS allow it to be used freely only for educational and
research purposes by non-profit institutions. For situations where
this copyright is too restrictive OpenCMISS also uses Scotch (gforge.
inria.fr/projects/scotch) for graph partitioning.
For numerical solvers, OpenCMISS makes use of a number of
third-party libraries. Particular use is made of libraries developed
through the US Department of Energy SciDAC (scidac.gov), TOPS
(scidac.gov/math/TOPS.html) and ACTS (acts.nersc.gov) projects.
For linear and nonlinear system solvers OpenCMISS uses PETSc
(mcs.anl.gov/petsc) for iterative Krylov sub-space linear system
solvers. In addition a number of direct linear solvers such as
MUMPS (graal.ens-lyon.fr/MUMPS), SuperLU_DIST (crd.lbl.gov/
wxiaoye/SuperLU) and PaStiX (gforge.inria.fr/projects/pastix) are
available in OpenCMISS through a PETSc interface. OpenCMISS also
uses

� SUNDIALS (computation.llnl.gov/casc/sundials/main.html) for
differentialealgebraic equations

� Hypre (computation.llnl.gov/casc/hypre/software.html) for
preconditioners

� TAO (mcs.anl.gov/research/projects/tao) for optimisation
� SLEPc (grycap.upv.es/slepc) for eigenproblems
� BLACS (netlib.org/blacs) and ScaLAPACK (netlib.org/scalapack)
for linear algebra

For input and output OpenCMISS uses the CellML (cellml.org)
and FieldML (fieldml.org) APIs. FieldMLwill ultimately use standard
libraries such HDF5 (hdfgroup.org/HDF5) and/or NetCDF (unidata.
ucar.edu/software/netcdf) for parallel I/O of large data sets.

7. Multi-physics modelling

The major features in OpenCMISS for dealing with coupled
multi-physics models include a flexible system for describing
multiple physical models and complex problem workflows,
methods for coupling different physical systems together and the
ability to handle different spatial and temporal scales using FieldML
concepts and CellML models.

In order to provide a general and reusable framework Open-
CMISS holds each different set of physical equations (and the data
for those equations) in a separate object within the code base. For
example, if a coupled system of fluid and solidmechanics was being
considered, the equations for the fluid part would be in a separate
object to the solid part. Each set of physical equations can then be
considered and constructed independently. OpenCMISS further
abstracts the coupling process by separating the sets of equations
from the solver libraries that perform numerical and computational
operations on those equations. The coupled set of equations which
can be used with a solver is formed by adding in each individual set
of equations and any necessary coupling equations (see below) to
the solver equations. This system for coupling equations has the
advantages that each physical set of equations can be considered
independently, without the complexity of the final coupled equa-
tions, and that the solvers can consider just the numerical equa-
tions independently of the actual source of the equations. As
coupled systems often require a number of different computational
operations, OpenCMISS allows for a flexible system to describe the
problem workflow in terms of the solvers of the coupled systems.

Coupling of different physical models can occur in a number of
ways. Different physicalmodels can be coupled in the same regionof
interest (e.g., a coupled systemof partial differential equations) or in
different regions of interest (e.g., a fluidesolid interaction system in
which the fluid is in one region and the solid in another). Coupling
can also occur between the solvers in a problem workflow (e.g.,
iterating between two solvers until convergence is reached).

OpenCMISS couples physics in the same region by using
a consistent FieldML description of each physical problem and
allowing for coupled equations through the sharing of commonfield
variables. Because the data about each problem is stored using the

http://autotest.bioeng.auckland.ac.nz/
http://cmiss.bioeng.auckland.ac.nz/OpenCMISS/doc/programmer
http://svn.physiomeproject.org/svn/opencmissextras
http://svn.physiomeproject.org/svn/opencmissextras
http://opencmiss.org
http://mpi-forum.org
http://openmp.org
http://mcs.anl.gov/research/projects/mpich2
http://open-mpi.org
http://mvapich.cse.ohio-state.edu
http://nvidia.com/object/cuda_home_new.html
http://nvidia.com/object/cuda_home_new.html
http://khronos.org/opencl
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://gforge.inria.fr/projects/scotch
http://gforge.inria.fr/projects/scotch
http://scidac.gov
http://scidac.gov/math/TOPS.html
http://acts.nersc.gov
http://mcs.anl.gov/petsc
http://graal.ens-lyon.fr/MUMPS
http://crd.lbl.gov/%7Fxiaoye/SuperLU
http://crd.lbl.gov/%7Fxiaoye/SuperLU
http://gforge.inria.fr/projects/pastix
http://computation.llnl.gov/casc/sundials/main.html
http://computation.llnl.gov/casc/hypre/software.html
http://mcs.anl.gov/research/projects/tao
http://grycap.upv.es/slepc
http://netlib.org/blacs
http://netlib.org/scalapack
http://cellml.org
http://fieldml.org
http://hdfgroup.org/HDF5
http://unidata.ucar.edu/software/netcdf
http://unidata.ucar.edu/software/netcdf

Fig. 1. A geometrically simple example to illustrate the use of regions, coordinate
systems and meshes for solving a coupled multi-physics, multi-scale problem in
OpenCMISS.

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e4736
same data structures, the individual equations for each problem can
be formulated using variables from different problems as easily as
they can be formulated using variables from their problem.

In OpenCMISS coupling between different regions can be accom-
plished using a number of different methods to relate the equations.
Thesemethods impose compatibility conditions between thefields in
each region. The conditions are termed interface conditions in
OpenCMISS. The simplest interface/compatibilitycondition is to allow
the degrees-of-freedom (DOFs) of the equations in one region to be
linearly related to the DOFs in another set of equations in another
region. This linearcouplingallows for the interfaceconditionbetween
theequations to be imposeddirectly at eachDOFpoint. InOpenCMISS
this is known as a strong interface condition in the sense that it holds
at a number of points on the interface. This strong interface condition
allows for a coupled set of equations that govern the combined
physics to be formed through row and column manipulations of the
individual sets of equations. As inter-region coupling involves
different regions, the strong interface condition is defined by using
explicit interfaces. These interfaces ensure that information is passed
between regions in a controlled manner.

Other inter-region coupling methods allow for the interface
conditions to be imposed in an integral sense. Examples of these
methods supported by OpenCMISS include Lagrange, augmented
Lagrange, and penalty methods. Interface conditions from these
methods are termed weak interface conditions in that the
compatibility condition does not necessarily hold at any particular
point in the interface, but rather that the condition holds in the
average or integral sense (Nordsletten et al., 2010).

The final key feature for multi-scale, multi-physics problems in
OpenCMISS is the use of CellML and FieldML. CellML models allow
for the physics at a small spatial scale to be abstracted and viewed
as a single point model within another model at a larger spatial
scale. OpenCMISS also allows for CellML models to be evaluated
and integrated at a different temporal scale than other models.
Further spatial and temporal scales can be incorporated into
OpenCMISS problems using hierarchical field concepts from
FieldML which allow data to be viewed at different levels.

8. OpenCMISS data structures

We illustrate the key FieldML data structures and workflows
implemented in OpenCMISS with a geometrically simple example
that couples six systems of equations, each representing a different
physical process. The example couples the equations from these
physical processes, bothwithin and across their spatial domains and
across spatial scales. It provides a simple data structure prototype
for the anatomically based electromechanical heartmodelling in the
cardiac physiome project. The physical regions are shown in Fig. 1.

The key OpenCMISS/FieldML concepts of regions, meshes,
decomposed domains, fields, equation sets, equations, problems,
control loops, solvers, solver equations, and distributed vectors
and matrices will be discussed below with reference to this
example.

The physical processes are described briefly below. Note that the
equations are givenhere in their ‘strong’partial differential equation
(PDE) form to highlight the fields needed for their representation in
OpenCMISS. The equations solved within OpenCMISS are ‘weak’ or
integral equation versions of these PDEs in keeping with the stan-
dard finite element Galerkin approach. The references quoted for
each equation set give further details including, in most cases, the
weak form of the equations.

1. Large deformation soft tissuemechanics onmesh 1 of region 1.
Finite elasticity theory (Malvern, 1969; Nash and Hunter, 2000;
Oden, 2006) with incompressible, inhomogeneous, nonlinear,
anisotropic material properties, gives the following governing
equations, based on conservation of linear momentum and
conservation of mass:

vtrv þ ðv �wÞ$Vxv ¼ Vx$sþ f (1)

where r is material density, n is the material velocity vector, s is the
Cauchy stress tensor, f is the force per unit mass, andw¼ n orw¼ 0
for the Lagrangian or Eulerian forms of the equations, respectively.
Note that the Cauchy stress tensor s is related to the 2nd
Piola-Kirchhoff stress tensor T by s¼J�1FTFT, where F is the defor-
mation gradient tensor and J ¼ detF. An additional constraint
equation is required to solve Eq. (1). The constraint equation that
enforces incompressibility is J ¼ detF ¼ 1. Further details are given
in Nash and Hunter (Nash and Hunter, 2000). Note also that T is the
most appropriate form of stress tensor for defining material prop-
erties (being the energy conjugate of the Green-Lagrange strain
tensor) and is defined as a function of the strain energy functionW
and tissue pressure p by

T ¼ 1
2

�
vW
vE

þ vW
vET

�
� pC�1 þ Tactive (2)

where E is the Green-Lagrange strain tensor and C�1¼(FTF)�1 is the
inverse of the right Cauchy strain tensor (and is the contravariant
metric tensor for the deformed state of the tissue). This constitutive
relation is specified in a CellML model, where for soft tissues W is
a nonlinear function of the components of E and defines an
anisotropic stressestrain relation. For problems in which an
actively contracting material is deforming (e.g., a contracting heart)
the stress tensor is modified by introducing an active stress term.
The active stress comes stress Tactive (expressed here as a 2nd Piola-
Kirchhoff stress) comes from a CellML encoded model (Hunter
et al., 1998; Niederer et al., 2006) in which fibre strain, obtained
from the deformation field, is used in a nonlinear integral equation
model to update the active stress on the fibre direction.

Typical boundary conditions for large deformation mechanics
problems include specifying an appropriate combination of
displacements and normal Cauchy stress on a boundary surface. For
further details see Nash and Hunter (Nash and Hunter, 2000). Initial
conditions must also be specified for the time-dependent formu-
lation given in Eq. (1). For details of the initial conditions see
Nordsletten et al. (Nordsletten et al., 2010).

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 37
The dependent variable fields are the material displacement
vector u and, if the tissue is treated as incompressible, the scalar
tissue pressure field p (effectively a Lagrange multiplier associated
with the incompressibility constraint).

For further details on the formulation of the finite elasticity (and
coupled fluid flow) equations in OpenCMISS see Nordsletten et al.
(Nordsletten et al., 2011).

2. 3D fluid flow on mesh 2 of region 2. The 3D NaviereStokes
equations (Batchelor, 2000; Currie, 2002; Nordsletten et al.,
2011) are

vtrv þ ðv �wÞ$Vxv ¼ �Vxpþ 2Vx$mDþ f ; (3)
Vx$v ¼ 0 (4)

Where D is the Eulerian strain rate tensor and w is the mesh
velocity. The dependent variable field components are the fluid
velocity vector v and the hydrostatic pressure field p.

Typical boundary conditions for 3D fluid flow include a Dirichlet
specification of the fluid velocity at inlet and outlets, specification
of zero tangential velocity at walls, Dirichlet specification of fluid
pressure at inlets and outlets or of zero pressure for free surface
flows. Typical initial conditions are the specification of the fluid
velocity in the domain. For further information see Nordsletten
et al. (Nordsletten et al., 2010, 2011).

Typical interface conditions for fluidesolid interaction are that
the fluid velocity is equal to the rate of change of displacement of
the solid and that there is continuity of traction at the fluidesolid
interface (Nordsletten et al., 2011).

3. 1D fluid flow on mesh 3 of region 1. The one-dimensional
approximation (1D) of the 3D NaviereStokes equations
(Smith et al., 2000, 2002) describe flow within blood vessels
that are embedded within the deforming soft tissue.

vV
vt

þ ð2a� 1ÞVvV
vx

þ 2ða� 1ÞV
2

R
vR
vx

þ 1
r

vP
vx

¼ �2
a

a� 1
V
R2

(5)

vR
vt

þ V
vR
vx

þ R
2
vV
vx

¼ 0 (6)

P ¼ 2
3
Eh0
R0

R2

R20
� 1

!
þ external wall stress term (7)

where a is a parameter defining the assumed velocity profile across
the blood vessel of radius R. R0 is the radius at zero pressure P,
where the wall thickness is h0.

Typical boundary conditions for 1D fluid flow include specifi-
cation of Dirichlet conditions on the fluid velocity or pressure at the
beginning and/or end of the network of vessels. Typical interface
conditions for coupled 1D fluid flow in deforming elastic tissue is
that the net pressure in the blood vessel is balanced by the external
stress acting on the blood vessel wall.

The dependent variable fields are the scalar fluid velocity V (an
average over the vessel cross-section) and the hydrostatic pressure
field p.

4. Porous flow on mesh 1 of region 1. The Darcy porous flow
equation for poro-elastic problems (Coussy, 2004) is

VX$
�
JF�1KF�TVXp

�
¼ 0 (8)

where VX denotes the gradient operator with respect to the unde-
formed configuration. The additional dependent variable field
component for this equationset is theDarcypressurep. In this strongly
coupled poro-elastic model, the equations for the fluid pressure and
solid displacements are assembled together. The fluid pressure is
solved using Darcy’s law (with deformation effects accounted for via
F), and the solid displacement is solved using themomentum balance
equations in (1). The constitutive relation for the integrated tissue
representation provides the coupling from the fluid pressure to the
deformation and is given by Chapelle (Chapelle et al., 2010)

T ¼ vWMR

vE
þ
"
Ksð J�1Þ�ðp�p0Þ Jþ

1
2
ðp�p0Þ2

M
f 0

f 2
J

#
C�1 (9)

where WMR is the Mooney-Rivlin strain energy function, Ks is the
bulkmodulus, po is a reference fluid pressure,M is the Biotmodulus
and f is a function of J that provides compatibility with incom-
pressible conditions. In Chapelle (Chapelle et al., 2010) the solid and
fluid equations are coupled by iteratively solving each equation in
turn. Due to the design of OpenCMISS, we are able to strongly
couple the equations for finite elasticity and fluid pressure and
build them into a single set of solver equations in order to solve this
multi-physics problem simultaneously.

Typical boundary conditions for porous flow are to set the
pressure on the boundary as a Dirichlet condition. A Neumann
boundary condition can also be set for pressure as means to specify
fluid velocity.

5. Wavefront propagation (eikonal) equation on submesh 1 of
region 1, determines the evolution of the activation wavefront
throughout the myocardium. Two different eikonal formula-
tions for cardiac activation have been proposed by Keener
(Keener, 1991) and Colli Franzone (Colli Franzone et al., 1990).
Eikonal equations have been solved using a finite element
method (Tomlinson et al., 2003) and the Fast Marching Method
(FMM) (Chinchapatnam et al., 2007; Sethian, 1996; Sethian and
Vladimirsky, 2000). A variation of the standard cardiac elec-
trophysiological activation model suitable for use with the
FMM is the HamiltoneJacobi equation of eikonal equation form
given by

V4TTTV4T � 1 ¼ 0 (10)

where 4 is the activation time and T is the anisotropy tensor
defined as T ¼ AF, where A is the orthogonal matrix representing
the unit vectors along the local myofibril coordinate system and F is
a diagonal matrix whose diagonal elements are equal to the
components of the conduction velocities along the local myofibril
coordinate axes. The HamiltoneJacobi eikonal equation is used to
determine the position of the propagating activation wavefront
throughout the myocardium. It assumes a rather simple model for
cellular activation but is computationally efficient. It is also some-
times used as a first approximation for the wavefront position and
followed by the more biophysically accurate monodomain equa-
tions described below.

Typical initial conditions for the HamiltoneJacobi equation are
a specification of an associated state field as inactivated.

The dependent variable field is a state variable from which the
activation time 4 is derived.

6. Electrical activity in the deforming soft tissue on mesh/sub-
mesh 1. The spread of electrical activity through tissue is, in
general, governed by the bidomain equations which relate the
spread of electric potential in the intra- and extra-cellular
spaces. Under the assumption that the conductivity anisot-
ropies are equal in the intra- and extra-cellular spaces the
bidomain equations reduce to the monodomain equation

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e4738
(Keener and Sneyd, 1998; Pullan et al., 2005). The monodomain
equation is given by.

V$ðsVVmÞ ¼ Am

�
Cm

vVm

vt
þ Iion

�
� Is (11)

Where s is the conductivity tensor, Is is the stimulation current and
Vm is the transmembrane voltage. The capacitive current CmðvVm=vtÞ
is associatedwith themembranecapacitanceCm,Am is the cell surface
to volume ratio and the total ion channel current Iion is given by

Iion ¼ INa þ IKr
þ IKs

þ IK1
þ ICa þ Icl þ :: (12)

Operator splitting techniques (Qu and Garfinkel, 1999; Sundnes
et al., 2005) are often used to transform the monodomain equation
into two parts. The first part is a set of nonlinear ordinary differ-
ential equations (ODEs) which relate the rate of change of the
transmembrane voltage to the ionic currents. The second part is
a parabolic equation that governs the reactionediffusion of trans-
membrane voltage. The set of nonlinear ODEs which model the
ionic currents in the cell are described by CellML models.

Typical initial conditions for the monodomain equation are that
the transmembrane voltage is at the resting potential and that the
state variables for the CellML ionic models are at their steady states.
Typical boundary conditions for the monodomain equation are
a Neumann condition on the transmembrane potential so that
there is no normal current flux from the domain.

The monodomain equation interacts with other equations
through the cell model describing the transmembrane current. This
cell model can also be used to provide an active stress for coupling
to equations of large deformation elasticity, or be used to provide
an ionic source term for, say, equations that model the diffusion of
ion concentration.

The dependent variable field is the transmembrane voltage Vm.
An additional dependent field is also required to describe the state
variables associated with the CellML models for the ionic current.

Note that the first two problems are defined on their own
distinct regions (Region 1 for the soft tissue and Region 2 for the
fluid) with separate meshes (Mesh 1 and Mesh 2, respectively) and
are coupled with a fluid-structure Interface region that sets up the
appropriate boundary coupling conditions. The third set of 1D flow
equations is solved onMesh 3 that is embedded within the material
coordinate system of Mesh 1. The final three sets of porous flow
equations, eikonal equations, and monodomain equations are all
solved on Mesh 1 in Region 1, or its higher spatial resolution sub-
meshes, and are coupled to the equations of large deformation
elasticity via the deformation gradient field.

9. Regions, meshes and domain decomposition

A region provides a name space and container for the various
objects that are required to describe a physical problem, including
fields, the meshes, and other domains they are defined on, and the
coordinate system for geometric fields. In the example of Fig. 1,
Region 1 represents the myocardium and Region 2 the left and right
ventricles. A third Interface region allows for the coupling of the first
two regions. Finally, these three regions are themselves embedded
in a World Region.

A mesh is an OpenCMISS object that includes the topology of
the computational mesh (elements and global node numbers)
together with the basis functions needed for interpolation of
nodal parameters. OpenCMISS is flexible in allowing different
forms of interpolation throughout the mesh. Most standard
basis families and orders are implemented including linear,
quadratic, and cubic Lagrange bases, cubic Hermite bases and
linear, quadratic, and cubic simplex bases. Tensor product basis
functions may also be used to allow for different polynomial
forms in each interpolation direction e.g., cubic Hermite e linear
Lagrange basis functions. OpenCMISS also allows for a different
basis function in each element of the mesh e.g. simplex triangular
bases may be used in one part of the mesh, bilinear Lagrange
bases in another part, and bicubic Hermite bases in yet another
part. OpenCMISS also allows for different numerical quadrature
schemes to be used for each basis function. The different quad-
rature schemes can be used to allow different numbers of Gauss,
or integration, points in each interpolation direction in order to
permit optimisations involving higher (or lower) order poly-
nomials. Care, however, must be taken to ensure that the Gauss
quadrature scheme is consistent when doing integrations
involving a number of different basis functions.

OpenCMISS uses domain decomposition methods (Mathew,
2008; Smith et al., 1996; Toselli and Widlund, 2005) as the main
mechanism for distributed parallelism. The decomposition of
meshes in Region 1 onto domains that correspond to computational
nodes, is illustrated in Fig. 2. Note that a computational node could
be a single CPU in a distributed memory cluster or a multiprocessor
shared memory node in a cluster. A similar domain decomposition
exists for Region 2.

When choosing a decomposition (or mesh partitioning) for
a mesh it is important that computational aspects are considered. It
is desirable that each domain has roughly the same computational
work load as other domains as this will ensure good computational
load balance when running a parallel simulation. A second aspect is
that the boundary between domains be as small as possible in order
to minimise the amount of communication between the compu-
tational domains. To achieve an optimum mesh decomposition,
OpenCMISS uses a parallel graph partitioning library (see earlier
under Open source libraries). If required, a user can also specify
a decomposition for a mesh.

Once a mesh has been decomposed into a number of compu-
tational domains, OpenCMISS performs two operations in order to
abstract or hide the distributed nature of the problem. The first
operation involves computing “ghost” nodes and elements. When
using a numerical method in an element or at a node on a decom-
posed mesh, information is often required from neighbouring
elements and nodes. If the node or element is at the boundary of
a computational domain, then the neighbouring node or element
could be held on a neighbouring computational domain. To avoid
having to communicate neighbouring information, a local copy of
the information is held on each computational domain. This is
achieved by expanding the domain obtained from the partitioning
library by one extra layer of elements around the boundary of the
domain to provide a degree of overlap between the domains. The
elements in the extra layer are known as ghost elements. All nodes
in the ghost elements that are not already in the computational
domain are also added to the domain as ghost nodes.

The second operation is renumbering. For each distributed
numbering scheme (e.g. nodes, elements) OpenCMISS computes
a new local numbering scheme that is mapped to the “global”mesh
numbering scheme. This renumbering ensures that each scheme
now starts at 1 in each computational domain and continues
contiguously until the number of items (including ghosts) is
reached. In order to allow further optimisations, OpenCMISS also
computes which of the numbers are internal to the domain (i.e. not
ghosted in any other computational domain), which numbers are
on the boundary of the domain (and thus ghosted in other
computational domains) and which numbers are ghosts (in this
domain). By convention internal and boundary numbers are first in
the numbering scheme, and ghosts are placed at the end. This
renumbering ensures that a programmer working with local
numbers can view each computational domain as just a smaller

Fig. 2. The meshes and their domain decompositions for Region 1. The meshes shown here are designed to illustrate OpenCMISS concepts used in the heart physiomemodels shown
in the top right corner. Note that ‘ghost elements’ (see text) are shown by the dotted areas in the domain decomposition.

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 39
version of the bigger problem, simplifying the programming for the
distributed problem.

10. Fields

In OpenCMISS fields are the central mechanism for describing
the physical problem and for storing any information required for
this description. The extensive use of fields for data storage in
OpenCMISS is one of the fundamental linkages to the ideas and
concepts of FieldML. OpenCMISS fields have a hierarchy in that
a particular OpenCMISS field contains a number of field variables
and each field variable may contain any number of field variable
components. An OpenCMISS field variable can thus be thought of as
a conventional scalar, vector, or tensor field.

In accordance with mathematical and FieldML definitions,
a field is defined over a domain. In order to allow for distributed
problems, the conceptual domain for a field variable is the entire
mesh, but the actual domain is the decomposed computational
domain. In OpenCMISS each field variable component is allowed to
use a different form of interpolation (i.e., a different set of basis
functions in each element of the computational domain) from other
field variable components. In addition OpenCMISS allows each
component to have different forms of Degree-Of-Freedom (DOF)
structure from other components. The DOFs in each component
may have the following structures:

� constant structure (i.e., one DOF for the component).
� by element structure (one or more DOFs for each element).
� by node structure (one or more DOFs for each node).
� by Gauss point structure (one or more DOFs for each Gauss or
integration point).

� by data point structure (one or more DOFs for each data point).

For each field variable OpenCMISS combines the DOFs for each
component as a vector of DOFs. This information is then stored in
a distributed vector class (see distributed matrices and vectors) so
that the data for each field variable on a computational node are
just those that are required for that computational domain. The
data in each distributed vector for a field variable is referred to as
a parameter set. OpenCMISS allows for multiple parameter sets to
be stored for a field variable. Examples of useful parameter sets
include the previous values of a field for problems with a time
variation, the set of increments to be applied to field variable DOF
values, or the set of nonlinear residuals at each DOF.

For the complete coupled multi-physics problem described, the
fields, field variables, and their components are listed in Table 1.
Note that some of the fields carry anatomical information, some
carry tissue material parameters, and some are dependent variable
fields that require the solution of partial differential equations for
their evaluation.
11. Equation sets and equations

An equation set is the OpenCMISS object that is used to model
a particular physical problem. It is the container object for all the
necessary information required to describe the physical equations
in a region (which may contain any number of equation sets). The
main objects that an equation set contains are all the necessary
fields (from the same region) required for the problem description
and the mathematical equations that result from applying some
solution method (e.g., the finite element method) to the physical
problem. The equation set fields can be from the following general
field classes: equation description field, geometric field, fibre field,
materials field, independent field, analytic field, dependent field, and
source field.

Another OpenCMISS object is an equation which contains the
matrices and vectors that result from a numerical method being
applied to the governing equations of an equation set. The equation
matrices and vectors are built using the field variables of an
equation set. OpenCMISS abstracts equations into a general form
that allows for linear and nonlinear equations, as well as static,
quasistatic, and dynamic temporal equations. The general form
involves linear matrices Ai, mass M, damping C and stiffness K
matrices of the dynamic sub-system, a nonlinear residual vector
g(u), a source vector s and a RHS vector b. These are used to form
the following discrete equations:

X
i

Aiui þM€uþ C _uþ Kuþ gðuÞ þ s ¼ b (13)

Each matrix or vector is incorporated into the general equation
by mapping a field variable onto the matrix or vector. For example,
if the governing equation involved a dynamic component, a corre-
sponding field variable u would be mapped to the dynamic

Table 1
OpenCMISS fields, field variables and their components defined for the regions of Fig. 1. Note that the dependent field also includes derived fields, the equation set field is used
for additional parameters or data required to describe the equations, and the analytic field is used for analytic solutions that are used for model verification and convergence
checks.

Fields Field variables Field variable components

Region 1 Region 2 Interface region

Mesh 1 Submesh 1 Mesh 3 Mesh 2 Mesh 4

Geometric coordinates X X1, X2, X3 X1, X2, X3 X1, X2, X3 X1, X2, X3

embedded coordinates x x1, x2, x3 x1, x2, x3
Fibre fibre angles y y1, y2, y3 y1, y2, y3
Material material parameters c c1, c2, etc. Am, Cm, si r, m r, m
Source gravitational force g g
Dependent Displacements u (& p) u1, u2, u3, p

fluid state v, p v1, p v1, v2, v3, p
Darcy pressure p
membrane voltage Vm

activation state & time s, 4
Lagrange multiplier l

Analytic Not used
Independent Mesh velocity w w1, w2, w3 w1, w2, w3

Equation set Not used
CellML State Vm, m, n, etc.

Intermediate INa, IK, etc.
Parameters gNa, gK etc.
Model Model index

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e4740
matrices and, if the governing equation involved a nonlinear
component, a field variablewould bemapped to the residual vector.

The equation sets, equations, field variables, and solution
matrices and vectors for the coupled equations of Fig. 1 are shown
in Table 2.

In order to allow for optimisations it is possible to map
a particular field variable to any number of matrices and vectors. As
an example of this, the NaviereStokes equations contain linear and
nonlinear (convective acceleration) parts. OpenCMISS permits the
same field variable to be mapped to the residual vector and to the
linear and dynamic matrices. Integrations that compute the
dynamic and linear matrices can then be performed once and
stored in those matrices. When the residual vector and Jacobian
matrix for the nonlinear part are computed, the linear components
can then be incorporated via a computationally efficient matrix
vector product, in the case of the residual, or by direct addition of
the matrices, in the case of the Jacobian, without the need for
further integration. All equations in OpenCMISS use a general
distributed matrix and vector class to allow for distributed solu-
tions (see below).

12. Problems and control loops

Problems are the object for the computational steps required to
solve a particular coupled model. Similar to regions, problems
allow for a name space and serve as a container object for the
various objects in a problems workflow.

A control loop is the object in OpenCMISS that allows for control
over the workflow in a problem. There are currently four main
types of control loop in OpenCMISS. These are simple e the work
Table 2
The equation sets, equations, dependent field variable components, regions, meshes and
matrices are involved in the equations, C indicates a damping matrix, K indicates a stiffne
b indicates a right hand side vector.

Equation set Equations Field variable components

1 Finite elasticity u1, u2, u3, p
2 3D NaviereStokes v1, v2, v3, p
3 1D NaviereStokes v1, p
4 Porous Darcy flow p
5 Eikonal s
6 Monodomain Vm
within the control “loop” is executed once; fixed e the work within
the control loop is executed with a fixed number of times; time e

the work within the control loop is executed from a start time to
a stop time using a (possibly variable) time step; conditional e the
work within the control loop is executed until a specified condition
is met. There are also additional types of control loop for specialised
work control. For example, in finite elasticity problems a load
increment loop is often required for computational stability to solve
the deformation problems in a sequence of small deformations
rather than one large deformation.

A particular control loop in OpenCMISS can either contain any
number of additional nested sub-loops, or any number of solvers, or
even another problem. The workflow then proceeds by executing
the first (or root) control loop and, recursively, any sub-loops. Work
operations within a control loop with no sub-loops are performed
by a number of “solvers” (see next section) each in turn. Compli-
cated workflows for particular problems can be achieved by having
a problem customisable pre- and post- control loop routine as well
as a problem customisable pre- and post- solve routines.

As an example of a workflow, consider the control loop and
solver structure shown in Fig. 3. For this hypothetical workflow we
solve the eikonal equations using the fastmarchingmethod in order
to provide an initial activation sequence for a coupled elasticity,
porous flow, NaviereStokes flow, monodomain problem. We can
thus set up a simple loop as a sub-loop of the root control loop. This
control loop has one fastmarchingmethod solver (Solver 1 in Fig. 3).
To solve the remaining coupled problem a time loop is introduced as
a sub-loop of the root control loop. This time loop has a “coarse”
time step in order to illustrate the ability to solve at different
temporal resolutions. Since the coupled problem involves finite
equations matrices and vectors involved in the coupled problem. A indicates linear
ss matrix, g(u) indicates a non linear residual vector, s indicates a source vector and

Region Mesh Equation vectors and matrices

1 1 g(u), s, b
2 2 C, K, g(u), s, b
1 3 C, K, g(u), s, b
1 1 A, K, g(u), s, b
1 1-sub None (Fast marching)
1 1-sub C, K, b

Fig. 3. A hypothetical example of control loops and solvers for the coupled problem of Fig. 1.

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 41
elasticity, we can improve the nonlinear convergence behaviour by
introducing a load step loop as a sub-loop of the coarse time loop. In
order to illustrate weak iterative coupling we introduce a while
convergence loop as a sub-loop of the load step loop. In order to
have a different time step for the monodomain solution compared
to the over-all problemwe introduce a simple loop and a time loop
as sub-loops of the convergence while loop. For the simple loop we
introduce two non-linear dynamic solvers. The first solver in this
loop (Solver 2) solves the combined finite elasticity, porous flow,
and 3D NaviereStokes equations. Since we are solving a combined
system of equations there is strong (non-iterative) coupling
between the equations. The second solver in this loop (Solver 3)
solves the 1D NaviereStokes equation on the deformed geometry
computed by Solver 3. For the fine time loopwe use, say, a Gudunov
operator splitting method to split the monodomain into two parts.
The first part introduces a CellML integration solver (Solver 4)
and the second part introduces a linear dynamic solver (Solver 5).
The iterative solution of the elasticity/porous/3D NaviereStokes
problemwith the 1D NaviereStokes problem and the monodomain
problem demonstrates weak iterative coupling.

It should be noted that the ability to construct complicated
problem workflows with control loops does not necessarily mean
that those workflows will be numerically stable or have desirable
numerical properties. There are often important considerations as
to the order of solvers, stability of the schemes, and restrictions on
the various numerical and solver parameters such as the size of the
time step, error, tolerances, etc. Various numerical analysis tech-
niques such as stability and error analysis (Butcher, 2008; Higham,
2002) are often required to investigate the behaviour of algorithms.
This is particularly true for complex, coupled systems of equations.
13. Solvers and solver equations

Solvers are the OpenCMISS objects that perform computational
work. Solvers are specific to a particular numerical problem orwork
item and are independent of their data source or equations. As
certain solvers are better at solving particular problems than other
solvers, OpenCMISS aims to support a number of different numer-
ical solver libraries. The main classes of solver libraries in Open-
CMISS include linear solvers (both iterative and direct), non-linear
solvers (Newton methods, BroydeneFletchereGoldfarbeShanno
(BFGS), sequential quadratic programming (SQP)), dynamic solvers
(theta based allowing for different schemes, implicit and explicit,
various time polynomial order and degree), differentialealgebraic
equation (DAE) solvers (including a number of different integra-
tors), eigenproblem solvers, optimisation solvers, state iteration
solvers, and CellML model evaluation solvers.

For those solvers that require equations, OpenCMISS allows for
a number of solver matrices and vectors. As with the equations
from equations sets, solver equations can be classified according
to their linearity and temporal nature. Solver equations are
formed by adding either equations sets (possibly from different
regions) or interface conditions to the solver equations object.
Once the adding process has finished OpenCMISS can then form
a combined set of equations by looking at the field variables
involved and the types of matrices and vectors in the individual
equations sets and interface conditions. This flexible approach to
the generation of solver equations allows for multiple physical
systems in either the same or different regions to be coupled
easily.
14. Integration with CellML

CellML is used to enable OpenCMISS users to define, at run-time,
custommathematical models that form parts of a larger model. For
example, CellML is used to define cellular electrophysiological
models for cardiac electrical models, and to define constitutive
relationships for use in finite elasticity modelling. CellML models
are also being used to define kinetic models of ion transport
proteins that are spatially distributed in a geometric model, and

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e4742
used to provide boundary fluxes in a reactionediffusion model.
CellML support in OpenCMISS is based on the concept of linking
field variable components directly to variables in CellML models.
This allows for the variable in a CellML model to define the val-
ue of each degree-of-freedom in a field variable component.
Furthermore, a different CellML model can be used at each degree-
of-freedom. This flexibility allows CellML models to be easily
plugged into any of the problem types in OpenCMISS with no need
for problem specific implementation. The result is a very flexible
plug-and-play system for defining custom mathematical models to
be incorporated into the standard bioengineering models sup-
ported by OpenCMISS. We have defined the ‘CellML Environment’
type to be the container managing CellML models in OpenCMISS.
A given OpenCMISS application is able to use multiple CellML
environments, and the preliminary best practice would be to have
a CellML environment for each spatial scale in the model requiring
CellML. For example, in a cardiac electromechanics model one
would have one environment for the cell model(s) and one for the
tissue mechanical constitutive relationships.

The first step is to import required CellML models into the
environment. After importing models into the environment, the
user is able to flag variables from the CellML models to be used by
fields outside the CellML environment in which they are defined.
CellML model variables are flagged as ‘known’ if their value will be
controlled by a field outside the CellML environment, or as ‘wanted’
if the variable value computed by the CellML model will be used
outside the CellML environment. State variables and the variable of
integration are automatically flagged as wanted and known,
respectively. Once all required variables have been flagged, the
CellML environment has enough information to instantiate each of
the CellML models into computable objects. Currently each model
will have a simulate-able object generated on each of the compu-
tation nodes used in the simulation.

Having been instantiated, the CellML environment is able to
define three fields: the state field, consisting of the state variables
for each CellML model in the environment; the intermediate field,
containing all non-state variables flagged as wanted from all CellML
models in the environment; and the parameters field, containing all
the variables flagged as known from all the CellML models in the
environment. The user is nowable to initialise these fields using the
generic field methods defined in OpenCMISS (e.g., to set spatially
varying cell model parameters not defined or required elsewhere in
the model). Furthermore, the user is able to define mappings
between the fields within the CellML environment(s) and fields
from outside the environment. These mappings will ensure that,
whenever the relevant CellML model is to be evaluated and/or
integrated, the field values will be transferred in the appropriate
direction (known variables in the CellML model will have their
value updated from the mapped source field prior to the evalua-
tion; fields mapped to wanted variables will be updated following
the evaluation of the CellML model).

The final step in this process is to create an equation set within
a defined problem and add the necessary CellML environments.
Once the appropriate solver for that problem has been defined, the
CellML models contained within these environments are able to
be evaluated and/or integrated as appropriate during a general
OpenCMISS problem solution.

Currently, the variable flagging and field mappings described
above are required to be set up by the user. The plan is that, once
FieldML and CellML become more integrated and use common
metadata standards, the complete FieldML description of themodel
will include all this information and such mappings would be
performed automatically by OpenCMISS. The ability of the user to
override or extend such automatic mappings would be preserved in
such future developments.
15. Distributed matrices and vectors

It is important for a distributed computational platform to have
good memory scalability as well as good CPU scalability. In order to
achieve a good decrease in the memory usage as the number of
computational nodes increases, it is important that each compu-
tational node only stores that data which is relevant to that node.
Indeed, for certain computer architectures, such as symmetric
multiple processors or multi-core machines, it is extremely ineffi-
cient to store data not required for the computational node as this
has the effect of reducing the total amount of memory available by
a factor related to the additional data times the number of
processors. It is also important for generality reasons that all data
be able to be communicated, and for programmability reasons that
the types of data objects that are communicated in a distributed
environment is minimised. For these reasons OpenCMISS uses only
a distributed matrix and vector class as the primary data objects.

In addition to its internal distributed data storage requirements,
OpenCMISS also needs to communicate data to other (mainly
distributed solver) libraries. In order to allow for multiple current
libraries or other future libraries to be used with OpenCMISS, it is
important to encapsulate the data requirements of these libraries
within the OpenCMISS distributed matrix and vector classes. This
allows for solverequations tobe formulated independentof theactual
solver that may be used to solve a particular numerical problem.

Both the distributed matrix and distributed vector classes in
OpenCMISS distribute the rows of the matrix or vector amongst the
computational nodes. Each distributedmatrix and vector store only
the local rows (including ghosts) and columns. In order to allow for
data communication each computational node has methods to
change the local data values held in the distributedmatrix or vector.
If a computational node changes the value of a local entry that may
be ghosted on other computational domains, then communication
must take place so that the other computational nodes can be
updated with the new value. OpenCMISS provides a number of
routines for the distributed data transfer. The first routine starts the
data transfer and returns, the second routine tests whether or not
the data transfer has finished or not and returns, and the final
routine finishes the data transfer and returns only when the
transfer is complete. By using a staged approach to transfer, it is
possible to start the transfer and then do additional computations
whilst the data transfer is taking place.

16. Example solutions

To provide an illustration of the framework described above we
show solutions from three coupled problems. The first is a poro-
elastic problem on a cube, the second is an HamiltoneJacobi
eikonal solution on a geometrically simple deforming ventricle, and
the third is amonodomain solution on a square 2D domain, coupled
to a CellML electrophysiological model.

16.1. Poro-elastic model

In this example model the fluid pressure and solid displacement
equations are coupled together with a volume coupling approach.
The equations are defined on the same region and are interde-
pendent. The fluid pressure is solved using Darcy’s relation on the
deformed geometry and the solid displacement is solved using the
momentum balance equation. The constitutive law used for the
combined material is from Chapelle (Chapelle et al., 2010) as
detailed above.

The coupled equations are solved on a 10mm� 10mm� 10mm
block of myocardiumwith quadratic Lagrange interpolation for the
displacement field and linear Lagrange interpolation for the fluid

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 43
pressure field. The displacement in the surface normal directions is
fixed for the x ¼ 0, y ¼ 0 and z ¼ 0 faces, and the face at x ¼ 10 mm
in the initial configuration is fixed at x ¼ 12 mm. The fluid pressure
is constrained to be 0 kPa on the x ¼ 10 mm face and 1 kPa at the
x ¼ 0 mm face. The other faces had zero flux boundary conditions
applied. Fig. 4 shows the deformed cube with swelling towards the
x ¼ 0 mm end due to the increased fluid pressure.

16.2. Electro-elastic model

In the heart there is a well ordered interplay between cellular
electrophysiology and cellular force development. Complex feed-
back mechanisms support this interplay, which can be modelled by
coupling anatomical, electrophysiological, deformation and force
development models.

As an example of OpenCMISS capability, we present a pipeline to
solve the problem of electromechanics in the heart by systems of
coupled differential equations. Information is passed forward from
the electrophysiology to the active stress and finite elasticity solver,
which updates the mesh at each time step. In this example we did
not consider ionic cell kinetics for the electrophysiology models,
and therefore mechano-electrical feedback was not taken into
account by the HamiltoneJacobi equation (HJE) solver used in these
simulations. As a function of the target application, the different
modules of the pipeline can solve the problem of cardiac electro-
mechanics by iteratively updating shared variables or by solving
them together as a tightly coupled system of equations.

The left ventricular model consisted of 64 tri-cubic hexahedral
elements. It was stimulated at time t ¼ 10 ms at the endocardium
between the apex and the base to trigger depolarisation as shown
in Fig. 5(a), where colours correspond to the local activation time
produced by the depolarisation wavefront. Dirichlet boundary
conditions were applied at all the points of the base to fix move-
ment in z-axis direction. In addition, one point at the epicardium of
the base was fixed in all three directions and a point diametrically
opposite was fixed in the y-axis and z-axis directions.

Fig. 5 shows the left ventricular geometry at different time
points from 50 ms to 550 ms. For this example we ran the Hamil-
toneJacobi equation solver, and afterwards we used the activation
times as an input to the finite elasticity solver.
Fig. 4. 3D rendering of the deformed cube with fluid pressure plotted on the surface,
with pressure increasing from blue to red. The undeformed geometry is indicated by
the white lines. An extension of 1.2 in the x direction has been applied.
16.3. Monodomain with the Noble 98 cell model

To illustrate the use of CellML in an OpenCMISS model simula-
tion we consider solving the monodomain equation (Eq. (6)) on
a domain in which the ionic current sources are defined by a Noble
98 cellular model (Noble et al., 1998) that has been described in
CellML (Nickerson and Hunter, 2006) and published on the CellML
model repository (models.cellml.org/exposure/a40c4434423c/
noble_varghese_kohl_noble_1998_b.cellml/view). The Noble 98
model describes the ionic currents in a guinea-pig ventricular cell.
A schematic of the model is shown in Fig. 6.

As an exercise to demonstrate the way in which OpenCMISS can
model the complex processes that occur at the smaller cellular
spatial scale, whilst allowing for variations in those processes at
a larger tissue spatial scale, consider the following two dimensional
model. The domain in this model is a unit square discretised into
a uniform grid of 26 � 26 nodes with a Noble 98 CellML model at
each node. The fast sodium channel conductance, gNa, is defined by
a field so that it varies in a radial manner from 100% of its normal
value at the lower left corner of the domain to 300% of its normal
value in the upper right corner of the domain as shown in Fig. 7(a).
The monodomain equation is then solved through time after
starting the simulation by stimulating those nodes on the bottom
edge of the domain from the lower left hand corner until half way
to the lower right hand corner. A plot of the transmembrane voltage
immediately after the stimulation pulse is shown in Fig. 7(b).

The effect of the increased fast sodium channel conductance can
be seen in Fig. 7. Fig. 7(c) shows the control transmembrane voltage
distribution after simulation for a fixed time period with the
homogeneous gNa distribution. By contrast, Fig. 7(d) shows that the
activation wave for heterogeneous gNa case has progressed further
across the domain after the same time period indicating that the
activation wave speed had increased.

The OpenCMISS framework for this simulation consists of
a single region which contains a high spatial resolution mesh. An
equations set for the monodomain equation is formed using
a geometric field, an optional fibre field, a materials field containing
components for the transmembrane area (Am in Eq. (6)), the
transmembrane capacitance (Cm) and the conductivities (si), and
a dependent field with a component for transmembrane voltage
(Vm). To incorporate the Noble 98 ionic current models a CellML
environment is defined on the region and a Nobel 98 CellML model
is imported into the environment from a file on disk. Note that
additional CellML models can be imported into the CellML envi-
ronment if required. To allow for the spatial variation in the fast
sodium channel conductance and the stimulation current the
CellML variables “fast_sodium_current/g_Na” and “membrane/
IStim” are set “as known” to indicate that OpenCMISS will define
these values outside CellML via a field. If it was required to return
any values from the CellML models (for example to return the
CellML intermediate sodium current variable in order to under-
stand how the sodium current field changes throughout time) then
additional CellML variables could be set as ‘wanted’.

Once the known or wanted status of each CellML variable has
been set, the CellML model is ready to be generated. Upon finishing
the creation of the CellML environment in a region OpenCMISS
invokes the code generation service of the CellML API. This service
automatically generates a C or Fortran function/subroutine from
the MathML description of the CellML model. The function or
subroutine has a standard interface that allows for the variables
that have been set as, known, or, wanted, to be passed in or out. All
other CellML variables that are not, known, or, wanted, are set as
constants in the function or subroutine with their value defined by
the CellML model. After the code is generated it is automatically
compiled and dynamically linked into the OpenCMISS library.

http://models.cellml.org/exposure/a40c4434423c/noble_varghese_kohl_noble_1998_b.cellml/view
http://models.cellml.org/exposure/a40c4434423c/noble_varghese_kohl_noble_1998_b.cellml/view

Fig. 5. A geometrically simple left ventricle example to illustrate the application of OpenCMISS in coupling the HamiltoneJacobi equation (HJE) and finite elasticity solvers in
OpenCMISS. (a) Isochrones corresponding to the local activation times of each element obtained from the HJE solver. Blue colour corresponds to 0 ms and red colour to 216 ms. (b)
Deformation of the mesh at different time points colour coded by the electrical wavefront propagation.

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e4744
After the CellML environment has been established, the
mapping from OpenCMISS field variable components to CellML,
field variable components can be set. For themonodomain problem
in question there are two mappings required. The first mapping is
from the OpenCMISS dependent field component representing the
spatially varying transmembrane voltage, Vm, to the CellML state
field variable component for Vm. The secondmapping is the reverse
of the first mapping. The definition of the field mappings in
OpenCMISS sets the number of instances of CellML models in the
OpenCMISS library as a CellMLmodel is defined for each degree-of-
freedom (DOF) in the mapped OpenCMISS field.
Fig. 6. A schematic diagram of the ion channels i
After the field mappings have defined the DOF (or field) struc-
ture, OpenCMISS is able to set up CellML fields using the mapped
structures. The CellML fields describe the spatial variation of the
free CellML variables in the CellML models. The first CellML field is
the models field. This is an integer field which allows the Open-
CMISS user to specify which imported model index to use at each
DOF (OpenCMISS allows for the CellMLmodel to vary spatially). The
remaining CellML fields are the state field, the parameters field, and
the intermediate field. These fields each have one field variable that
contains as many components as there are free variables in the
CellML model. For example the Noble 98 model defines 24 state
n the cell membrane of the Noble 98 model.

Fig. 7. (a) A plot of the fast sodium channel conductance, gNa throughout the monodomain solution domain. The conductance varies in a radial fashion from 100% of its normal value
of 3.855 � 10�5 mS mm�2 (blue) to 300% of its normal value (red). (b) A plot of the transmembrane voltage immediately after the stimulation pulse has finished. The following two
plots show transmembrane voltage after a fixed time period for (c) a control simulation with a uniform gNa distribution at its normal value, and (d) a simulation in which gNa has
been altered to the distribution shown in (a). The transmembrane voltage, Vm, in (b)e(d) varies from �95 mV (blue) to þ50 mV (red).

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 45
variables, so the CellML state field variable has 24 components. The
OpenCMISS simulation defines two parameters as known (gNa and
IStim), so the CellML parameters field has two components. No
CellML intermediate variables were set as wanted, so the CellML
intermediate field variable does not contain any field variable
components.

The OpenCMISS problem workflow for this monodomain
simulation sets up a root time control loop. In order to solve Eq. (6)
an operator splitting approach is used. For Godunov type splitting
(other splitting schemes are also defined) two solvers are defined in
the time loop. The first solver is an ODE integration solver to
integrate the CellML ODEs, and the second solver is a linear
dynamic solver to solve the parabolic monodomain equation. The
problem solution then proceeds by stepping through the time
control loop. At each time step the CellML integration solver is
invoked first. For this solver the OpenCMISS field to CellML field
mappings are used to copy the transmembrane voltage component
from the dependent field to the transmembrane voltage compo-
nent of the CellML state field. The solver then integrates the CellML
model ODEs from the current time step to a point in the future as
determined by the splitting scheme. The OpenCMISS CellML inte-
grator works by using a user selectable integration scheme to
repeatedly call the appropriate dynamically linked CellML routine.
Note that the ODE integration time steps can be smaller than the
root control time loop steps in order to correctly capture processes
that occur on a faster time scale than that of the main problem.
Once the integration has finished, the CellML to OpenCMISS field
maps are used to copy the transmembrane voltage component
from the CellML state field to the OpenCMISS dependent field. The
second, dynamic, solver is then invoked to solve the parabolic
monodomain equation for the entire domain.

Note that the above ODE integration solver operates on each of
the individual CellML models at each dependent field DOF. This
process is ideally suited for parallelisation as each CellML model is
independent and thus can be integrated in parallel. Further
research is currently being undertaken to develop a framework
that can take CellML models selected from a model repository
and/or file and automatically generate CUDA or OpenCL code that
can integrate these CellML models on a GPGPU (Kirk and Hwu,
2010).

17. Discussion and outlook

OpenCMISS is an international open source software project to
provide a computational environment for multi-physics, multi-
scale physiological modelling in the VPH/Physiome project. It
builds on 30 years of experience with the CMISS code, but adds
more general data structures, copes with awider range of computer
architectures (distributed memory, GPGPUs, etc) and takes advan-
tage of the markup language environments (CellML and FieldML)
developed by the VPH/Physiome project over the last 10 years.

In this paper, we have described the OpenCMISS data objects
(regions, meshes, decomposed domains, fields, equation sets, equations,
problems, control loops, solvers, solver equations) in the context of
a geometrically simple multi-region example that couples several
physical processes within a single region (large deformation soft
tissue mechanics, porous flow, eikonal wave propagation, and mon-
odomain reactionediffusion equations that incorporate cell electro-
physiology) with 1D flow through embedded blood vessels within
that region, and physical processes in an adjacent region (3D flow in
the ventricles).

Although the examples here are motivated by the Heart Physi-
ome project, the FieldML and CellML based data structures are
designed to handle any coupled system of partial differential
equations. Processes at the tissue level, described by continuous
FieldML fields, are coupled to cellular processes described by the
CellML modelling framework.

Despite the successful implementation of a large number of
coupled physical processes, OpenCMISS still requires a large
amount of further development. The current focus for OpenCMISS
development is on optimisation of the code and improved perfor-
mance and scaling with processor node code, for both memory
footprint and solution time. OpenCMISS has also just started to use
GPGPUs to accelerate codes. Initial results are promising and
OpenCMISS’s field based/CellML approach, in which the data
parallel vector of field DOFs together with a computational kernel
defined by a CellML model, seems to fit well with GPGPU archi-
tectures. An important, and often overlooked, part of parallel
performance improvement is to increase parallel IO performance.
Currently, the FieldML API used for the input and output of field
parameters in OpenCMISS is strictly serial. Work is currently
underway to integrate HDF5, or other parallel IO libraries, with the
FieldML API. This would then allow for the total solution of large,
realistic problems to be profiled and optimised.

Another area of development for OpenCMISS and FieldML is the
extension of the data structures to cope with more complicated
mesh structures. It is planned to allow for and/or extend hierar-
chical, embedded and adaptive meshes. Hierarchical meshes (and
fields) are based on the concept of having multiple levels of
(increasing) mesh refinement. A coarse mesh (or element) at one
level can be refined to give a finermesh at another level. The second
mesh level can then also be refined etc. in a hierarchical manner to
give further levels. A hierarchical mesh is important for solving
problems like coupled electromechanics in the same region/mesh

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e4746
as the electrical activation problem requires a much higher reso-
lution mesh than the large deformation mechanics problem. Hier-
archical meshes may also be useful for other solution methods e.g.,
multi-grid (Briggs et al., 2000). Embedded meshes and, more
generally, embedded fields occur when the values of a field are
interpreted with respect to another field. An example of an
embedded field is the when the geometric field of coronary arteries
are embedded within the (deforming) geometric field of the
myocardium. Adaptive meshes are meshes which can be auto-
matically refined so that larger numbers of field degrees-of-
freedom are incorporated around areas of large field gradients. It
is also planned to investigate the use of dynamic data structures
such as oct trees for use in parallel load balancing with hierarchical
or adaptive meshes.

Along with FieldML and CellML the authors are investigating
other markup languages for use with OpenCMISS. One promising
language is the Simulation Experiment Description Markup
Language or SED-ML (sed-ml.org) (Köhn and Le Novère, 2008). It
may be possible to use SED-ML to describe workflows which can
then be implemented using OpenCMISS problems, control loops
and solvers. Some of the ideas in Taverna (www.taverna.org.uk)
(Hull et al., 2006) may also be useful in this regard.

The final area of future development for OpenCMISS is to
develop suitable graphical user interfaces (GUIs). Whilst Open-
CMISS is primarily a library without a specific GUI, wewish tomake
the use of the library much easier to use for mesh creation and
visualisation of computational results. This GUI may be specific to
a particular application or it may be more along the lines of
a general environment for VPH/Physiome problems. Work has
begun to link together CMGUI and/or GIMIAS (www.gimias.org)
(Larrabide et al., 2009) with OpenCMISS.

Please see also related communications in this issue by Bordas
et al. (Bordas et al., 2011) and Qu et al. (Qu et al., 2011).
Acknowledgements

C. Bradley, D. Paterson and P. Hunter acknowledge the support of
the Wellcome Trust for the Cardiac Physiome Project. Work
partially funded by the European Commission under the euHeart’s
Integrated Project (FP7-ICT-2007-224485) and by the Spanish
Ministry of Science and Innovation under the cvREMOD CENIT
Project (CEN20091044). A. Frangi holds an ICREA-Academia Prize
from the Institucio Catalana de Recerca i Estudis Avancats (ICREA).
V. Rajagopal acknowledges the support of a RSNZ Marsden Fast
Start Grant.
References

Bangerth, W., Hartmann, R., Kanschat, G., 2007. deal.IIda general-purpose object-
oriented finite element library. ACM Trans. Math. Software 33, 24/1e24/27.

Batchelor, G.K., 2000. An Introduction to Fluid Dynamics. Cambridge University
Press, Cambridge.

Bordas, R., Carpentieri, B., Fotia, G., Maggio, F., Nobes, R., Pitt-Francis, J., Southern, J.,
2009. Simulation of cardiac electrophysiology on next-generation high-
performance computers. Philos. Transact A Math. Phys. Eng. Sci. 367,
1951e1969.

Bordas, R., Gillow, K., Lou, Q., Efimov, I.R., Gavaghan, D., Kohl, P., Grau, V.,
Rodriguez, B., 2011. CBG: rabbit-specific ventricular model of cardiac electro-
physiological function including specialized conduction system. Prog. Biophys.
Mol. Biol. 107, 90e100.

Bradley, C.P., Pullan, A.J., Hunter, P.J., 1997. Geometric modeling of the human torso
using cubic hermite elements. Ann. Biomed. Eng. 25, 96e111.

Briggs, W.L., Henson, V.E., McCormick, S.F., 2000. A Multigrid Tutorial. Society for
Industrial and Applied Mathematics, Philadelphia, PA, pp. xii, 193 p.

Butcher, J.C., 2008. Numerical Methods for Ordinary Differential Equations. John
Wiley & Sons, West Sussex.

Chapelle, D., Gerbeau, J.-F., Sainte-Marie, J., Vignon-Clementel, I.E., 2010.
A poroelastic model valid in large strains with applications to perfusion cardiac
modeling. Comput. Mech. 46, 91e101.
Chinchapatnam, P.P., Rhode, K.S., King, A., Gao, G., Ma, Y., Schaeffter, T., Hawkes, D.,
Razavi, R.S., Hill, D.L., Arridge, S., Sermesant, M., 2007. Anisotropic wave prop-
agation and apparent conductivity estimation in a fast electrophysiological
model: application to XMR interventional imaging. Med. Image Comput.
Comput. Assist. Interv. 10, 575e583.

Christie, G.R., Blackett, S.A., Hunter, P.J., Bullivant, D.P., 2002. Modeling and visual-
ising the heart. Comput. Vis. Sci. 4, 227e235.

Christie, G.R., Nielsen, P.M., Blackett, S.A., Bradley, C.P., Hunter, P.J., 2009. FieldML:
concepts and implementation. Philos. Transact A Math. Phys. Eng. Sci. 367,
1869e1884.

Colli Franzone, P., Guerri, L., Tentoni, S., 1990. Mathematical modeling of the exci-
tation process in myocardial tissue: influence of fiber rotation on wavefront
propagation and potential field. Math. Biosci. 101, 155e235.

Coussy, O., 2004. Poromechanics. John Wiley & Sons, West Sussex.
Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.,

2003. An overview of CellML 1.1, a biological model description language.
SIMULATION: Trans. Soc. for Model. Simulation Int. 79, 740e747.

Currie, I.G., 2002. Fundamental Mechanics of Fluids. Marcel Dekker, New York,
pp. xiv, 525 p.

Higham, N.J., 2002. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia.

Holst, M., 2001. Adaptive numerical treatment of elliptic systems on manifolds. Adv.
Comput. Math. 15, 139e191.

Hull, D., Wolstencroft, K., Stevens, R., Goble, C., Pocock, M., Li, P., Oinn, T., 2006.
Taverna: a tool fro building and running workflows of services. Nucleic Acids
Res. 34, 729e732.

Hunter, P., Nielsen, P., 2005. A strategy for integrative computational physiology.
Physiology (Bethesda) 20, 316e325.

Hunter, P., Smaill, B., 1988. The analysis of cardiac function: a continuum approach.
Prog. Biophys. Mol. Biol. 52, 101e164.

Hunter, P.J., 2004. The IUPS physiome project: a framework for computational
physiology. Prog. Biophys. Mol. Biol. 85, 551e569.

Hunter, P.J., Borg, T.K., 2003. Integration from proteins to organs: the Physiome
project. Nat. Rev. Mol. Cell Biol. 4, 237e243.

Hunter, P.J., McCulloch, A.D., ter Keurs, H.E., 1998. Modelling the mechanical
properties of cardiac muscle. Prog. Biophys. Mol. Biol. 69, 289e331.

Hunter, P.J., Pullan, A.J., Smaill, B.H., 2003. Modeling total heart function. Annu. Rev.
Biomed. Eng. 5, 147e177.

Keener, J.P., 1991. An eikonal-curvature equation for action potential propagation in
myocardium. J. Math. Biol. 29, 629e651.

Keener, J.P., Sneyd, J., 1998. Mathematical Physiology. Springer, New York.
Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F., 2006. libMesh: a Cþþ library for

parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22,
237e254.

Kirk, D.B., Hwu, W.W., 2010. Programming Massively Parallel Processors. Morgan
Kaufmann Publishers, Burlington.

Köhn, D., Le Novère, N., 2008. SED-ML e an XML format for the implementation of
the MIASE guidelines. Computational Methods Syst. Biol. 5307, 176e190.

Larrabide, I., Omedas, P., Martelli, Y., Planes, X., Nieber, M., Moya, J.A., Butakoff, C.,
Sebastián, R., Camara, O., De Craene, M., Bijnens, B.H., Frangi, A.F., 2009. GIMIAS:
an open source framework for efficient development of research tools and
clinical prototypes. In: Ayache, N., Delingette, H., Sermesant, M. (Eds.), Func-
tional Imaging and Modeling of the Heart: Proceedings of the 5th International
Conference, vol. 5528. SpringerLink, Nice, France, pp. 417e426.

Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F., 2008. The CellML model reposi-
tory. Bioinformatics 24, 2122e2123.

Malvern, L.E., 1969. Introduction to the Mechanics of a Continuous Medium.
Prentice-Hall, Englewood Cliffs, N.J., pp. xii, 713 p.

Mathew, T.P.A., 2008. Domain decomposition methods for the numerical solution of
partial differential equations. In: Lecture Notes in Computational Science and
Engineering. Springer, Berlin, pp. xiii, 764 p.

Miller, A.K., Marsh, J., Reeve, A., Garny, A., Britten, R., Halstead, M., Cooper, J.,
Nickerson, D.P., Nielsen, P.F., 2010. An overview of the CellML API and its
implementation. BMC Bioinform. 11, 178.

Nash, M.P., Hunter, P.J., 2000. Computational mechanics of the heart e from tissue
structure to ventricular function. J. Elast. 61, 113e141.

Nickerson, D.P., Hunter, P.J., 2006. The Noble cardiac ventricular electrophysiology
models in CellML. Prog. Biophys. Mol. Biol. 90, 346e359.

Niederer, S.A., Hunter, P.J., Smith, N.P., 2006. A quantitative analysis of cardiac
myocyte relaxation: a simulation study. Biophys. J. 90, 1697e1722.

Noble, D., Varghese, A., Kohl, P., Noble, P., 1998. Improved guinea-pig ventricular cell
model incorporating a diadic space, IKr and IKs, and length- and tension-
dependent processes. Can. J. Cardiol. 14, 123e134.

Nordsletten, D., Kay, D., Smith, N., 2010. A non-conforming monolithic finite
element method for problems of coupled mechanics. J. Comp. Physiol. 229,
7571e7593.

Nordsletten, D.A., Niederer, S.A., Nash, M.P., Hunter, P.J., Smith, N.P., 2011. Coupling
multi-physics models to cardiac mechanics. Prog. Biophys. Mol. Biol. 104, 77e88.

Oden, J.T., 2006. Finite Elements of Nonlinear Continua. Dover Publications.
Patzák, B., Bittnar, Z., 2001. Design of object oriented finite element code. Adv. Eng.

Software 32, 759e767.
Patzák, B., Rypl, D., Bittnar, Z., 2001. Parallel explicit finite element dynamics with

nonlocal constitutive models. Comput. Struct. 79, 2287e2297.
Pitt-Francis, J., Pathmanathan, J., Bernabeu, M.O., Bordas, R., Cooper, J., Fletcher, A.G.,

Mirams, G.R., Murray, P., Osbourne, J.M., Walter, A., Chapman, S.D., Garney, A.,

http://sed-ml.org
http://www.taverna.org.uk
http://www.gimias.org

C. Bradley et al. / Progress in Biophysics and Molecular Biology 107 (2011) 32e47 47
van Leeuwen, I.M.M., Maini, B., Rodriguez, B., Waters, S.L., Whiteley, J.P.,
Byrne, H.M., Gavaghan, D.J., 2009. Chaste: a test-driven approach to software
development for biological modelling. Comput. Phys. Commun.180, 2452e2471.

Pullan, A.J., Cheng, L.K., Buist, M.L., 2005. Mathematically Modelling the Electrical
Activity of the Heart: From Cell to Body Surface and Back Again. World Scientific
Publishing.

Qu, Z., Garfinkel, A., 1999. An advanced algorithm for solving partial differential
equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46, 1166e1168.

Qu, Z., Garfinkel, A., Weiss, J.A., Nivalal, M., 2011. Multi-scale modeling in biology:
how to bridge the gaps between scales? Prog. Biophys. Mol. Biol. 107, 21e31.

Sethian, J.A., 1996. A fast marching level set method for monotonically advancing
fronts. Proc. Natl. Acad. Sci. U S A 93, 1591e1595.

Sethian, J.A., Vladimirsky, A., 2000. Fast methods for the Eikonal and related
HamiltoneJacobi equations on unstructured meshes. Proc. Natl. Acad. Sci. U S A
97, 5699e5703.

Smith, B.F., Bjørstad, P.E., Gropp, W., 1996. Domain Decomposition: Parallel Multi-
level Methods for Elliptic Partial Differential Equations. Cambridge University
Press, Cambridge; New York, pp. xii, 224 p.

Smith, N.P., Nickerson, D.P., Crampin, E.J., Hunter, P.J., 2004. Multiscale computa-
tional modelling of the heart. Acta Numerica 13, 371e431.
Smith, N.P., Pullan, A.J., Hunter, P.J., 2000. Generation of an anatomically based
geometric coronary model. Ann. Biomed. Eng. 28, 14e25.

Smith, N.P., Pullan, A.J., Hunter, P.J., 2002. An anatomically based model of transient
coronary blood flow in the heart. SIAM J. Appl. Math. 62, 990e1018.

Sundnes, J., Lines, G.T., Tveito, A., 2005. An operator splitting method for solving the
bidomain equations coupled to a volume conductor model for the torso. Math.
Biosci. 194, 233e248.

Tawhai, M., Pullan, A.J., Hunter, P.J., 2000. Generation of an anatomically based three-
dimensional model of the conducting airways. Ann. Biomed. Eng. 28, 793e802.

Tawhai, M.H., Hunter, P., Tschirren, J., Reinhardt, J., McLennan, G., Hoffman, E.A.,
2004. CT-based geometry analysis and finite element models of the human and
ovine bronchial tree. J. Appl. Phys. 97, 2310e2321.

Tomlinson, K.A., Hunter, P.J., Pullan, A.J., 2003. A finite element method for an
eikonal equation model of myocardial excitationwavefront propagation. SIAM J.
Appl. Math. 63, 324e350.

Toselli, A., Widlund, O.B., 2005. Domain decomposition methodsealgorithms
and theory. In: Springer Series in Computational Mathematics. Springer,
Berlin, pp. xv, 450 p.

Vigmond, E.J., Hughes,M., Plank, G., Leon, L.J., 2003. Computational tools formodeling
electrical activity in cardiac tissue. J. Electrocardiol. 36 (Suppl.), 69e74.

	 OpenCMISS: A multi-physics & multi-scale computational infrastructure for the VPH/Physiome project
	1 Introduction
	2 Physiome standards
	3 Background to CMISS
	4 Design goals
	5 Software systems
	6 Open source libraries
	7 Multi-physics modelling
	8 OpenCMISS data structures
	9 Regions, meshes and domain decomposition
	10 Fields
	11 Equation sets and equations
	12 Problems and control loops
	13 Solvers and solver equations
	14 Integration with CellML
	15 Distributed matrices and vectors
	16 Example solutions
	16.1 Poro-elastic model
	16.2 Electro-elastic model
	16.3 Monodomain with the Noble 98 cell model

	17 Discussion and outlook
	 Acknowledgements
	 References

