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Abstract 
The detection of bacteria cells and their viability in food, water and clinical samples is critical to bioscience 

research and biomedical practice. In this work, we present a microfluidic device encapsulating a coplanar 

waveguide for differentiation of live and heat-killed E.scherichiacoli cells suspended in culture media using 

microwave signals over the frequency range of 0.5 GHz–20 GHz. From small populations of ∼15 E. 

coli cells, both the transmitted (|S21|) and reflected (|S11|) microwave signals show a difference between live 

and dead populations, with the difference especially significant for |S21| below 10 GHz. Analysis based on an 

equivalent circuit suggests that the difference is due to a reduction of the cytoplasm conductance and 

permittivity upon cell death. The electrical measurement is confirmed by off-chip biochemical analysis: the 

conductivity of cell lysate from heat-killed E. coli is 8.22% lower than that from viable cells. Furthermore, 

protein diffusivity increases in the cytoplasm of dead cells, suggesting the loss of cytoplasmic compactness. 

These changes are results of intact cell membrane of live cells acting as a semipermeable barrier, within 

which ion concentration and macromolecule species are tightly regulated. On the other hand, the cell 

membrane of dead cells is compromised, allowing ions and molecules to leak out of the cytoplasm. The loss 

of cytoplasmic content as well as membrane integrity areis measurable by microwave impedance sensors. 

Since our approach allows detection of bacterial viability in the native growth environment, it is a promising 

strategy for rapid point-of-care diagnostics of microorganisms as well as sensing biological agents in 

bioterrorism and food safety threats. 

Keywords: Impedance sensing; Bacterial detection; Cell viability; Biosensor; Microfluidic device; Lab on 

a chip 

1 Introduction 

Detection of bacteria and their viability in food, water and clinical samples is critically important 

in fields such as bioscience research, medical diagnosis, food screening and environment monitoring [1]. 

Conventional methods for bacteria detection, albeit sensitive and specific, are often time-consuming, 

infrastructure dependent, and require skilled technicians [2]. For example, cell growth-induced turbidity in 
liquid culture or colony formation on solid culture areis inexpensive and relatively simple to operate, but 

both require extensive time to generate detectable signals [3,4]. Additionally, cultivation of bacteria is not 



always successful under lab conditions [5]. Fluorescence and colorimetric stains, such as SYTO 9 and 

propidium iodide (PI), provide viability results in a short time, with established protocols to inspect cell 

staining by optical microscopy, flow cytometry and microliter plate readers, etc. [6]. However, the labeling 

procedure is tedious and invasive [6–8]. In addition, the size of bacterial cells is at the detection limit of 

optical microscopy, making high-resolution imaging difficult [9]. Methods based on nucleic acid 

amplification are highly sensitive and specific by using target-specific primers to amplify DNA or RNA, 

however they are destructive and provide little information about cell viability [10,11]. 

Electrical sensing of cells, including bacteria, is attractive since it is label-free, easy to miniaturize, 

and offers the possibility of real-time results with high throughput [12,13]. Impedance sensing is one of the 

most popular methods, and has been implemented both for cells adhered to a substrate or in a 

suspension [14,15]. For example, Coulter counters have been widely adopted for cell counting and sizing in 

a suspension, based on impedance sensing across a pinhole in the kHz range [16,17]. Microfluidic Coulter 

counters have been demonstrated by several groups, allowing cell counting and sorting in a portable 

device [18–21]. Miniaturized impedance sensors using coplanar electrodes have been implemented for 

monitoring cell proliferation [22], spreading [23,24] and membrane integrity [25], which find applications 

in basic cell biology research [26] and drug screening [27]. Furthermore, impedance sensing has been used 

for cell viability detection, including real-time and long-term monitoring of epidermal cell viability [28], cell 

death induced by viral infection [29,30], chemical toxicity [31] and bacterial metabolism [32,33]. However, 

most of these impedance sensors are operated using discrete frequencies on the order of MHz or lower, 

where solution parasitics are severe and the signal is sensitive to the bulk ion concentration. Double layers 

on the surface of electrodes limit the voltage drop on target cells and reduce detection sensitivity [34]. The 

dielectric properties have also been found to depend on many parameters of the cells in this frequency range, 

so it is hard to attribute the signal change to a single biological parameter using discrete frequencies [35]. 

Another concern is cell damage by electroporation at such frequencies when the voltage is too high [36–39]. 

Cell sorting by dielectrophoresis followed with impedance sensing [40], albeit effective to separate live vs. 

dead cells, requires low-conductivity solutions to promote cell polarization, thus preventing cell detection in 

their native environment. 

Microwave impedance sensing mitigates most of the challenges heretofore mentioned. One of the 

main advantages is that ion conduction in physiological solutions diminishes [41–44] because ions are too 

slow to respond at gigahertz frequencies. This facilitates direct cell detection in their native growth 

environment and extraction of their electrical properties without preparing cells in a low conductive solution. 

Additionally, transparency of the cell membrane to microwave signals minimizes electroporation and allows 

interrogation of the cytoplasmic properties, providing complementary information to conventional 

measurements at radio frequencies. In the past few years, microwave impedance sensors have been 

implemented by several groups for the detection of biological cells [45–47] and proteins [48]. For instance, 

Nikolic-Jaric's group detected yeast and mammalian cells within microwave frequencies [45]. Blondy's 

group reported a biosensor design based on microwave impedance measurements to analyze the growth of 

different types of adherent cells [46]. Using microchip-based dielectric spectroscopy, Grenier's group 

characterized dielectric properties of different aqueous solutions [49], biological cell suspensions and a 

population of adherent cells [47,50–52], and related the measured parameters to cell proliferation and 

pathogenic states [53]. What's more, Moutier's group reported using dielectric spectroscopy to detect 

bacteria proliferation in their native culture environment at a frequency range of 1-–3 GHz [54]. Recently 

single -cell dielectric measurements up to 40 GHz hasve also been reported [52]. Furthermore, a model to 

extract the dielectric parameters has been proposed based on Maxwell's mixture equation [55]. However, 

most of these studies have limited sensing bandwidth and worked with relative large mammalian cells. In 

addition, measurement reproducibility was not always confirmed [52]. Many technical challenges are also 

present for microwave impedance sensing, including impedance match and calibration, circuit modeling and 

analysis, detection sensitivity in an aqueous environment, and selectivity. Here, we demonstrate for the first 

time the use of a microwave impedance sensor for reproducible detection of Escherichia coli (E. 

coli) viability in their native culture media in the frequency range of 0.5 GHz–20 GHz. The microwave 

coplanar waveguide (CPW) was designed with broadband impedance match and low loss, and integrated 

with a microfluidic channel for delivering culture media with and without cells [56]. By fitting the measured 

insertion loss |S21| and return loss |S11| to an equivalent circuit, cytoplasmic electrical properties were extracted 

for small populations of E. coli. The difference between live and dead E. coli was confirmed by off-chip 

measurements of cytoplasm conductivity, permittivity, protein diffusivity and membrane integrity. 



2 Material & Mmethods 

2.1 Bacteria culture and sample preparation 

E. coli strain PHL 628 was cultured overnight in lysogeny broth (LB, Sigma Aldrich, St. Louis, 

MO) containing 50 μg/mL kanamycin (Sigma Aldrich, St. Louis, MO) in a 37 °C shaking incubator. The E. 

colisuspension was then centrifuged and washed twice in fresh LB broth. Next E. coli was resuspended in 

fresh LB broth to an OD600 of 3.0 (2.4 × 109 cells/mL). Corresponding to this OD value, the number of E. 

coli cells in the detection zone was estimated to be ∼15. Samples with lower concentration of cells did not 

yield signals reproducibly greater than the background. 

To deliberately kill E. coli, the suspension was placed on a 150 °C hot plate until its temperature 

exceeded 75 °C for 5 s. Afterwards, the E. coli suspension was injected into the microfluidic channel through 

a syringe pump at a rate of 1 μL/min. E. coli viability was verified separately by the LIVE/DEAD FilmTracer 

fluorescent stain (Invitrogen, Carlsbad, CA). The stain was not used on E. coli that wereas subjected to 

electrical detection in order to keep the detection label-free. The percentage of viable E. coli cells in as-

cultured samples wereas found to be 89.57% ± 0.83%, and it dropped to 6.57 ± 1.65% in heat-treated 

samples. 

2.2 Microfluidic device and experimental setup 

The microfluidic device included a poly-dimethyl-siloxane (PDMS, Dow Corning Corporation, 

Midland, MI) cover clamped on a gold CPW at a 90-degree angle (Fig. 1(ab)) and (b)). The PDMS cover is 

5-mm wide, 8-mm long, and 4-mm thick with a molded channel 20-μm deep. PDMS microchannels were 

fabricated following the standard soft lithography protocol. First SU8 was patterned on a silicon wafer for 

microchannels with 20 μm height. Then a 10:1 mixture of silicone elastomer base and curing agent was 

poured onto the mold, degassed and cured at 60 °C overnight. Finally, the PDMS devices were cut out and 

inlet and outlet ports were punched before attachment to the substrate. The CPW was patterned in 2-μm-

thick gold on a 635-μm-thick quartz substrate by Applied Thin-Film Products Co. (www.thinfilm.com) using 

a proprietary process. The center and ground electrodes of the CPW are 40-μm and 100-μm wide, 

respectively, with a 10-μm spacing in between. We used a custom designed clamp to hold the PDMS 

microfluidic channel and the substrate together. Since PDMS is compliable, it conforms well to the quartz 

substrate. In addition, the pressure to drive fluid flow is low, thus no leak was observed during measurements. 

Reversibly attaching and removing PDMS cover is important in our protocol as we need to clean the substrate 

and reuse the CPW chip. 



 

Figure. 1 (a) A schematic of the device based on a CPW sandwiched between a quartz substrate and a 

PDMS cover. (b) A micrograph of the device observed under the optical microscope. The three black 

bands are the electrodes. Dash lines on the sides trace side walls of a transparent microfluidic channel. (c) 

A photograph showing the experimental setup, containing the test devices connected to a PNA and 

mounted on an optical microscope. Samples were injected into the device through a syringe pump. The 

inset shows a zoomed-in picture of the device under test (DUT) interrogated by two microwave 

manipulators on the microscope stage. 

  

  

The electrical setup is similar to that for traditional impedance/dielectric spectroscopy 

measurement, except it uses a thin-film coplanar waveguide (CPW) patterned on a quartz substrate in 

conjunction with wafer probes (Model ACP40, Cascade Microtech, North St Paul, MN, USA) to improve 

sensitivity and impedance matching, and a microwave network analyzer (PNA Model 5230A, Agilent 

Technologies, Santa Clara, CA, USA)) in conjunction with 2-port measurements to expand bandwidth and 

dynamic range (Fig. 1 (c)). The scattering (S) parameters |S21| and |S11| measured on the PNA (0.5 – –

20 GHz) in terms of reflection and insertion losses were evaluated. The dielectric constant/conductivity from 

different cellular compartments wereas extracted from circuit models. The CPW-microchannel assembly 

was mounted on an inverted microscope to confirm E. coli injection and rinsing during the electrical 

measurement. 

2.3 Electrical measurements on chip 

For each experiment, the microwave background signal was first established by flowing E. coli-

free LB broth into the microfluidic channel at 1 μL/min. The background scattering parameters were 

measured every 5 min, until they stabilized (change of |S11| and |S21| < 0.001 ± 0.001 dB within 30 min). 

Thereafter, the E. coli suspension was flowed into the microfluidic channel at 1 μL/min for approximately 



30 min. Subsequently, microwave measurements were started and repeated ten times in 5-min intervals. 

Measurements were considered valid only when the measured scattering parameters were stable within 

0.01 dB among the ten10 consecutive measurements. The average scattering parameters measured on E. 
coli suspension, after subtracting the previously established background scattering parameters measured 

on E. coli-free LB broth, were deemed E. coli signals and were analyzed in the following sections. To 

validate the measurement and analysis, measurements were repeated on three live E. coli populations and 

three dead E. coli populations independently. To confirm bacterial concentration does not change 

significantly during the measurement period, E. coli has been cultured in sucroseLB broth solution and 

measured the OD600 before and after 3 hours(experimental time less than 3 hrs), the OD600 value did not 

change. 

2.4 Equivalent circuit model 

Fig. 2(a) shows a schematic model, Fig. 2(c) shows an equivalent circuit model with three sets of 

CPW transmission lines under infinitely thick air, PDMS, and LB broth, respectively. The characteristic 

impedance and electrical length of the first two sets of CPW are Z0, θ0, and Z1, θ1 respectively. The shunt 

resistor R01 accounts for power dissipation due to impedance mismatch between the first and second sets of 

CPW. 

 

Figure 2(a) A schematic-circuit model. 2 (a) A schematic-circuit model. (b) A single shelled spherical 

particle model used to represent a single E. coli cell. (c) The equivalent-circuit model. 

  

  

The third set of CPW was under the E. coli suspension and its dielectric properties were calculated 

using Maxwell's mixture theory [55]. TheWith a microchannel height is limited toof 20 μm, at the top of the 

channel, the electric field decreased by 80%. This was confirmed by electromagnetic field distribution in the 

cross section of the fluidic channel through HFSS (Fig. S1). For simplicity E. coli were modeled as single-

shelled spherical particles, as shown in Fig. 2 (b) with fractional volume φ and radius R. φ was estimated to 

be 0.05 and R was 1 μm. The membrane thickness d (4 nm) was much smaller than R, and the geometrical 

factor γ = (R + d)/R = 1.004. The E. coli cells were modeled as spheres in this study instead of rods or 

cylinders. This is to reduce computational burden, especially in a context where the measurement accuracy 



is limited. The difference in capacitance or resistance moving from a spherical to a cylindrical or rod shape 

would be smaller than an order of magnitude, below the experimental noise level. Under these 

simplifications, a Debye model was assumed for the general complex relative permittivity: 

 

(1) 

where x in the subscript was replaced by m for the medium, i (internal) for the cytosol and mem for 

the membrane. The letter s in the subscript referred to static (low frequency) parameters and ∞ referred to 

high frequency parameters. The mixture permittivity and conductivity were computed as in [55] and entered 

in the third CPW definition in a circuit simulator environment (Advanced design system (ADS), Keysight, 

Santa Rosa, CA, USA). 

2.5 Off-chip measurement of lysate permittivity and conductivity 

of live and dead E. coli 

Overnight liquid culture of E. coli was first washed and adjusted to OD600 = 3.0 as described above. 

The E. coli suspension was then split in two. To prepare dead E. coli, the suspension was subjected to heat 

treatment to deliberately kill the E. coli, then washed two times with a low conductive solution that contains 

8.5% sucrose (Sigma-Aldrich, St. Louis, MO) and 0.05% dextrose (Sigma-Aldrich, St. Louis, MO). Live E. 

coli were directly washed with the sucrose solution for two times. Afterwards both live and dead E. 
colisamples were lysed with a sonicator probe (Sonic Dismembrator, Fisher Scientific, Waltham, MA, USA). 

Subsequently, lysate conductivity was measured by a conductivity probe (CON + 6 meter (94 Hz), 

OAKTON Instruments, Vernon Hills, IL, USA). For permittivity measurements, the dielectric probe (Model 

85070 E, Agilent Technologies, Santa Clara, CA, USA) was connected with a network analyzer (Model 

E5080A, Agilent Technologies, Santa Clara, CA, USA) through an Agilent Electronic Calibration module 

(Ecal, Model N4691-60006, Agilent Technologies, Santa Clara, CA, USA). The Ecal was also connected to 

a computer running the 85070E software, before the measurement calibration was performed. By immersing 

the dielectric probe in the lysate, the real and imaginary parts of permittivity were directly measured between 

the frequency ranges of 500 MHz – –20 GHz. 

2.6 Diffusivity of green fluorescence protein (GFP) in the 

cytoplasm 

Fluorescence recovery after photobleaching (FRAP) was carried out on a Nikon A1Rsi confocal 

microscope (Nikon, Melville, NY, USA). E. coli strain PHL 628 was transformed with the pAraGFP plasmid 

to express GFP in the cytosol and the expression was induced by arabinose [57]. The induced E. coli were 

either used directly or subjected to the heat treatment as described above. A drop of E. coli suspension was 

pipetted on an agar-coated coverslip and used for the FRAP measurement. A 405 nm laser pulse sufficient 

to bleach about half of the E. coli was applied for ∼ 0.1 second0.1 s. Then the remaining unbleached GFP 

was allowed to diffuse and equalize over the entire E. coli, and fluorescence intensity was imaged at 50 

frames per second. The videos of the photobleaching and subsequent fluorescence recovery were 

characterized by measuring the intensity in the bleached portion. GFP diffusivity was extracted by using 

both the FRAP function in the Nikon AR software, as well as an exponential fit in Origin (Originlab 

Corporation, Wellesley Hills, MA, USA). 

2.7 Membrane pore size measurements in heat-treated E. coli 

E. coli was first killed by heating as described above in Section 2.1. Then a size-exclusion assay 

was carried out by incubating heat-killed E. coli with an anti-ds DNA antibody (ab27156, Abcam, San 

Francisco, CA, USA) conjugated with streptavidin (ab102921, Abcam, San Francisco, CA, USA). After 

centrifuging and washing unbound antibodies, the bacteria were incubated with several sizes of biotin-gold 

nanoparticles (CGB5K-10, CGB5K-20, CGB5K-30, Cytodiagnostics, Burlington, ON, Canada). 

Subsequently, the E. colicells were stained with Alexa-fluor-546 labeled streptavidin and washed before 

viewing on agar pads mounted on coverslips by fluorescence microscopy. 

2.8 Statistics 



All experiments were repeated at least 3 times. Statistical analyses were performed using JMP 10 

(SAS Institute, Cary NC, USA). Two-tailed Student's tt-tests were performed to detect significant differences 

between groups. An α level of 0.05 was used to determine significance between groups. 

3 Results 

3.1 S-parameter measurements from live and dead E. coli 

The S-parameters, including the return loss |S11| and insertion loss |S21|, were measured from E. coli-
free media and E. coli suspensions, respectively. Afterwards, differences in return loss (Δ|S11|) and insertion 

loss (Δ|S21|) of the E. coli suspension from the cell-free media were calculated. The results for live and 

dead E. coli are shown in Fig. 3 (a, b)(a) and (b). The number of E. coli cells within the detection zone 

was ∼15, estimated from the cell concentration and volume between the electrode gap. It is observed that 

although Δ|S11| demonstrates different averages between live and dead E. coli, the difference is insignificant 

due to run-to-run variations (nn = 3). On the other hand, Δ|S21| shows a significant difference between live 

and dead E. coli, especially in the frequency range below 10 GHz (nn = 3). The insertion loss Δ|S21| value 

also was comparable to previous studies CPW insertion loss measurement results [58,59]. Interestingly, 

heat-killed E. coli yields similar signals to the background for both |S11| and |S21|, while signals from live 

bacteria deviate from the background, especially for the insertion loss. This observation suggests that E. 
coli viability can be distinguished by simply comparing the S-parameters of thea E. coli sample to those 

of athe E. coli-free solution, a simple enough procedure potentially operable at the point of need. 

 



Figure. 3 Differences from the background signals in (a) return loss (Δ|S11|) and (b) insertion loss (Δ |S21|) 

with live and dead E. coli bacteria. The dots are experimentally measured averages and error bars are 

standard deviations from 3 independent experiments. The dash lines are from circuit modeling. * iIndicates 

significant differences between live and dead cell signals with p < 0.05 by Student's tp < 0.05 by 

Student's t-test. (c, d) The measured (dots and error bars, nn = 3) and simulated (dash lines) magnitudes 

and phases of |S11| and Δ|S21| of LB media. 

  

  

3.2 Circuit model and extraction of conductivity and permittivity 

of single E. coli cells 

The equivalent circuit of Fig. 2 (c) was implemented in Keysight ADS circuit simulator initially 

with estimated parameter values. Then, then the SS-parameters simulated by using the equivalent circuit 

were compared with the measured raw spectra and the parameter values iteratively adjusted for the optimum 

fit between simulated and measured parameters. The device parameters, solution parameters and cell 

parameters were deembeded stepwise. The dash lines in Fig. 3 (c, (c) and (d) illustrate the optimized fit 

for SS-parameters of LB media without bacteria, while the individual data points in Fig. 3 (c, (c) and (d) are 

from experimental measurements. The accuracy between measurement data and simulation data is > 99.50%. 

A gradient optimizer was used to minimize the least-squares error function defined by the difference between 

the measured and modeled drifts with respect to the reference scattering parameters within 0.01 dB, which 

matches the current vector network analyzer accuracy. The dash line Fig. 3 (a, b) representss in Fig. 3(a) and 

(b) represent the difference of fitting LB media with and without whole bacterial cells in the device. With 

the current parameters extraction approach the membrane capacitance value is of the order of hundreds of 

fF at low frequency which is in agreement with literature values and is rapidly shorted by GHz range signals. 

The extracted model parameters from on chip measurements are visible in Table 1 and point at 

smaller electrical impedance for the live bacteria than for the dead ones. This happens mainly through the 

detected decrease in conductivity of the dead bacteria suspension and results in increase of energy dissipation 

(more negative |S21|). A somehow higher permittivity value can also be invoked to reproduce the reduced 

impedance and more positive |S11| in live cells, although the variability in the detected return loss response 

impairs extraction of the permittivity parameter. It should be noticed that the membrane parameters 

contribute little to the observed S-parameter difference from bacteria viability and cannot be extracted with 

great accuracy, because the low fractional volume makes their contribution to the mixture properties 

negligible in the present frequency range. Large differences in the model parameters result in small variation 

of the curves because the membrane volume is very small. 

Table 1 Dimension and Electrical Properties of Different Celectrical properties of different components. 

alt-text: Table 1  

Sub-circuit Parameter Symbol E. coli 

   

Live Dead 

Cell Ccytoplasm Static (DC) value of the dielectric constant ɛis18079ɛis 180 79 

Optical (infinite frequency) value of the 

dielectric constant 

ɛi∞2016ɛi∞ 20 16 

Relaxation time τi [ps] 13 7.7 

Static conductivity σis [S/m] 1.5 1.4 



Sub-circuit Parameter Symbol E. coli 

   

Live Dead 

Cell Mmembrane Static (DC) value of the dielectric constant ɛmems 13 

Optical (infinite frequency) value of the 

dielectric constant 

ɛmem∞ 5 

Relaxation time τmem [s] 1 × 10-14−14 

Static conductivity σmems [S/m] 1 × 10-−5 

Medium Static (DC) value of the dielectric constant ɛms 79 

Optical (infinite frequency) value of the 

dielectric constant 

ɛm∞ 11 

Relaxation time τm [ps] 9.9 

Static conductivity σms [S/m] 1 

Mixture Fractional Volumeφ0.05Geometric factor –

(R + d)/Rvolume 

φ 0.05 

Geometric factor −(R + d)/R γ 1.004 

CPW: 

metal + air 

Char. Impedance Z0 [Ω] 47 

Length @ 3 GHz θ0 [°] 7.4 

Parasitics R01 [Ω] 868 

CPW: PDMS Char. Impedance Z1 [Ω] 32 

Length @ 3 GHz θ1 [°] 3.6 

3.3 Conductivity and dielectric permittivity of E. coli lysate 

To verify the prediction from the circuit model, both live and dead E. coli at OD = 3.0 were lysed 

and the lysate conductivity and permittivity were measured using commercial probes. The lysate from live E. 
colihas significant higher conductivity (11.93 ± 0.20 μS/cm) compared with that from dead E. 

coli(10.92 ± 0.27 μS/cm). Converting the conductivity to ions contributed by single E. coli cells, the 

cytoplasmic ion concentration is estimated to be equivalent to 67.36 ± 1.13 mM and 61.65 ± 1.52 mM of 

potassium chloride in live and heat-killed E. coli, respectively. Such ion concentrations are lower than the 

reported cytoplasmic ion concentration of 300 mM [60]. It should be noted that the circuit model predicts 

6.67% change of cytoplasmic conductivity, from 1.5 S/m in live E. coli to 1.4 S/m in dead E. coli. The 

measured lysate conductivity drop of 8.22% is comparable with in situ cell measurements. In comparison, 

the conductivity of LB medium was measured to be 1.04 ± 0.05 S/m in this work, lower than the predicted 



cytoplasmic conductivity of live E. coli. Thus, the dead cells are expected to loss ions to the medium, leading 

to a drop of the cytoplasmic conductivity. 

On the other hand, little difference was observed of the lysate dielectric permittivity between live 

and dead E. coli in the frequency range of 0.5 – –20 GHz (Fig. 4). This is likely a result of cytoplasmic 

components being greatly diluted in the lysate: the volume fraction of cells is less than 0.2% in the culture 

suspension,while water has a great permittivity compared to biomolecules, masking contribution from the 

cellular components. We thus inspected properties of the cytoplasmic compartment in alternative means, as 

described below. 

 
Figure 4The ɛ. 4 The ɛ″ or imaginary part of permittivity of live and dead E. coli lysate over the frequency 

range of 500 MHz – –20 GHz measured by a dielectric probe. 

  

  

3.4 Diffusion of green fluorescence protein (GFP) in the cytoplasm 

To evaluate compactness of the cytoplasm, fluorescence recovery after photobleaching (FRAP) was 

used to estimate the diffusivity of intracellular GFP. The rationale behind this test is that dielectric property 

is greatly influenced by the makeup and organization of polar molecules instead of ion concentration in the 

microwave frequency range [41,42]. At the same time, cytoplasmic crowdedness, macromolecule 

composition and organization are influenced by the metabolic state of the cells [61] and are reflected by 

molecular diffusivity. Fig. 5 (a)(a) demonstrates the dynamic change of GFP fluorescence intensity before, 

during and after photobleaching within a typical E. coli cell. The extracted diffusivity of 

GFP areis summarized in Fig. 5 (b), where individual measurements are shown as dots with the average and 

standard deviation of each group overlaid on top. The diffusivity values are found to have a narrower 

distribution for live E. coli, which is understandable considering homeostasis in live organisms. The 

diffusivity for dead E. coli is slightly shifted toward greater values, while the differences between the two 

groups are not significant. Greater average of the GFP diffusivity in dead E. coli suggests less crowded 

cytoplasmic environment, likely due to the leakage of macromolecules and relaxation of the cell wall. Such 

a biochemical change could contribute to the difference of permittivity between the cytoplasm of live and 

dead cells, which further leads to the |S11| difference. 



 

Figure. 5 Measurements of GFP diffusivity in E. coli by fluorescence recovery after photobleaching 

(FRAP). (a) Representative images showing fluorescence intensity change within one E. coli cell 

(indicated by the white arrow) before and after photobleaching, which was used for the extraction of GFP 

diffusivity. Scale bar = 1 μm. (i) before photobleaching; (ii, iii) during photobleaching; (ivv, –vi) 

fluorescence recovery. (b) GFP diffusivity in live and dead E. coli measured from at least 10 cells of each 

type. 

  

  

4 Discussion 

Dielectric properties of different cell compartments can be characterized at different frequencies. 

At lower frequencies from kHz to MHz where β-dispersion occurs, membrane polarization is 

characterized [62]. At frequencies in the GHz range, γ-dispersion is obvious and electrical properties of the 

cytoplasm are measured. Therefore, compared to sensing at discrete frequencies, broadband electrical 

detection can yield a wealth of information. As shown in our study, in the frequency range of 0.5 GHz-–

20 GHz, membrane and cytoplasmic properties are extracted simultaneously. 

Previously, we showed the identification of single live and dead mammalian cells based on 

impedance detection in the microwave frequency range [56,63–65]. Translating the sensing technique to 

bacterial detection presents additional challenges, in particular smaller volume fraction occupied by the 

target cells at the detection zone. This is achieved by stabilizing the background signal until drift is at the 

0.001 dB per 30-minute level. In addition, repeated and sequential measurements with and without E. 

coli allow minute background drift to be subtracted. We demonstrate that insertion loss |S21| signals are 

different between 15 of live vs. dead E. coli cells in the frequency range of 0.5 GHz – –20 GHz, and the 

difference in on the order of 0.01 dB. In comparison, |S21| difference between single live and dead mammalian 

cells areis on the order of 0.1 dB [64]. Considering that, the volume of mammalian cells is about two to three 

orders of magnitude greater than that of E. coli, the order of magnitude change in S-parameters is reasonable. 

What's more, dead E. coliyields similar |S11| and |S21| signals to the background, while signals from live 

bacteria deviate from the background (Fig. 3 a, b(a) and (b)). Such a ‘digital’ response allows easy detection 

of live microorganisms without standard curves or calibration samples. This is especially significant in 

resource limited settings where simple procedure and fast detection speed is essential. The other factor that 



benefits point-of-need analysis is the capability to perform measurements in the culture media that has a high 

conductivity. This is made possible since ion conduction in physiological solutions diminishes [41–44] at 

gigahertz frequencies. Characterizing cells in their native growth environment saves sample preparation 

which is often prohibitive at the point of need. It also minimizes perturbation of the cell physiology upon 

exposure to a different solution. 

To understand the source of the S-parameter difference between live and dead E. coli, circuit 

modeling was carried out. Enforcing frequency dependent permittivity and conductivity allows accurate 

parameter extraction for both the device and the biosample under test over a broader frequency range than 

by frequency independent models [56]. Frequency independent models do not allow to match the ɛɛ″ non-

monotone behavior around 2 GHz (they result in a linear fit as opposed to the knee-shaped curve in Fig. S2) 

and therefore result in more inaccurate parameter extraction in the transition region, where the membrane 

capacitance is largely (but not completely) bypassed by the microwave signal. It should be noticed that the 

theoretical mixture model matches the broadband measurement of the cell-free media obtained using a 

commercial dielectric probe between 0.5 and 20 GHz (Fig. S2). Further strives to take into account the rod-

shaped bacteria configuration and finite boundaries for the suspension medium could result in even more 

accurate parameter extraction, but entail significantly increased computational efforts. 

Extracted parameters from the model suggest contributions from both cytoplasmic conductivity and 

permittivity. The cytoplasmic conductivity drop is understandable as dead E. coli cells eventually equilibrate 

their cytoplasmic ion species with the environment. It has been reported previously that K+, Mg2+ and 

Ca2+efflux from cells during apoptosis [66] or heat induced cell death [67]. Additionally, total concentration 

of cytoplasmic ions in E. coli has been found to be as high as ∼ 300 mM [60], while the ion concentration 

in LB media is lower. In particular, K+ concentration in the cytoplasm and LB media differs the most. Thus, 

the conductivity decrease after cell death is most likely due to efflux of K+ from the cytoplasm. 

Measurements of the E. coli lysate conductivity, which decreases by ∼8.22% after E. coli death, provide 

direct evidence to support the modeling prediction of cytoplasmic conductivity drop upon heat-induced E. 

coli death, although washing cells in salt free solutions prior to lysis could contribute to some of the ion loss 

in dead cells as well. It should be noted that the extracted parameters reflect the sample preparation 

procedures. In fact, Grenier's group reported increase of the cytoplasmic conductivity of dead mammalian 

cells [68], due to greater ion concentration in the media than in the cytosol. Our result is not contradictory; 

instead both results demonstrate that cytoplasmic conductivity is indeed measurable by microwave dielectric 

sensing. 

The E. coli lysate permittivity shows little difference between live and dead E. coli, since cell 

components are greatly dilute in the lysate and water molecules are the main contributor to the permittivity 

of a dilute solution. Alternatively, we examined the ‘crowdedness’ in the cytoplasm in situ, which shed 

insights about the hydration environment, molecular polarizability and concentration of organic components. 

In the microwave range, dispersion from ion movement is greatly dampened, while permittivity is greatly 

controlled by molecular polarization. Through in situ measurements, we found the diffusivity of GFP in live 

and heat-killed E. coli was 0.76 ± 0.45 μm2/s and 1.17 ± 1.07 μm2/s (Fig. 5), respectively, on the same order 

as values reported in the literature [69]. The increase of mean GFP diffusivity in dead E. coli indicates that 

cytoplasm of dead E. coli is less compact, which could result from leakage of macromolecules or swelling 

of cells. In fact, 10 nm gold nanoparticles were found to easily penetrate the membrane of heat-killed dead E. 

coli (Fig. S3). Thus organic molecules < 10 nm in diameter could diffuse out easily. Organic molecules, such 

as amino acids have been found to have high static dielectric constants [70]. The loss of these molecules 

reduces the cytoplasmic permittivity, as the circuit model predicts. Guallar’ group presented a molecular 

mechanical model to predict the dielectric constant of prokaryotic cytosol of E. coli, containing proteins, 

metabolites and monatomic ions [71]. Based on the simulation results, the cytosolic dielectric constant 

changes with its composition and increases significantly with protein concentration. Thus, reduction of the 

cytoplasmic permittivity upon cell death could also be a result of protein loss. It should be noted that although 

the model predicts a greater change of the static dielectric constant than conductivity upon E. coli death, the 

energy dissipation term (|S21|) better distinguish the E. coli vitality than the energy storage term (|S11|). This 

is likely a result of S-parameter being more sensitive to the conductivity change in the waveguide 

configuration used here [64]. Although membrane integrity also differs between live and dead E. coli, the 

small volume fraction occupied by the membrane limits accurate extraction of the membrane capacitance 

change, or significant contribution of the membrane electrical parameters to impedance measurements in the 

microwave range. 



Impedance measurements in the microwave range well complement those in lower frequencies by 

providing electrical characteristics of different cellular compartment. In the frequency range of megahertz 

or lower, the membrane capacitance dominates overall cell impedance, thus cell size and membrane integrity 

is measured [72,73]. Microwave signals easily penetrate the membrane, allowing intracellular properties to 

be probed [56]. To confirm that electrical difference observed in Fig. 2 is due to intracellular contributions, 

we included membrane capacitance in the circuit model. However, the simulated S-parameters are 

insensitive to the membrane capacitance, despite an expected change from pore formation: dead E. coli (Fig. 

S3) presentspores on the order of 10 nm but not the live ones. Combining these frequencies, a broadband 

measurement can potentially reveal much richer information than exiting approaches of narrowband 

detection. 

5 Conclusions 

This work demonstrates that microwave impedance measurements in the frequency range of 0.5 -–

20 GHz have the sensitivity to discriminate live and dead E. coli from a small number of cells. The S-

parameters from dead E. coli are identical those from cell-free media, but live E. coli yield measurable 

difference from the media. Through circuit modeling, electrical measurement of the lysate and other 

biophysical analysis, the S-parameter differences are attributed to decreases of cytoplasmic conductivity and 

permittivity upon cell death. Since the measurements are performed with whole cells in their native growth 

environment, our approach is promising for rapid detection of microorganisms and could benefit various 

applications such as diagnostics, bioterrorism defense and food safety monitoring. 
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