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Abstract—Audio data is a highly rich form of information,
often containing patterns with unique acoustic signatures. In
pervasive sensing environments, because of the empowered smart
devices, we have witnessed an increasing research interest in
sound sensing to detect ambient environment, recognise users’
daily activities, and infer their health conditions. However, the
main challenge is that the real-world environment often contains
multiple sound sources, which can significantly compromise the
robustness of the above environment, event, and activity detection
applications. In this paper, we explore different approaches in
multi-sound classification, and propose a stacked classifier based
on the recent advance in deep learning. We evaluate our proposed
approach in a comprehensive set of experiments on both sound
effect and real-world datasets. The results have demonstrated
that our approach can robustly identify each sound category
among mixed acoustic signals, without the need of any a priori
knowledge about the number and signature of sounds in the
mixed signals.

Index Terms—Acoustic sensing, multi-sound classification, en-
semble classification, convolutional neural network

I. INTRODUCTION

Audio signal processing is attracting increasing attention as
it has demonstrated its potential in detecting a wide range
of events and activities. Audio sensing can contribute to
daily activity recognition by detecting the use of appliances
like coffee machine or microwave. It also helps to identify
environmental context by detecting ambient sound [18].

Significant progress has made in sound event classification,
as a large amount of research effort has been devoted to
extracting various types of features in both time and frequency
domains from audio signals and applying machine learning
techniques in recognising the category for each sound event.
The majority of existing work focuses on single sound event
classification, or monophonic detection in the terminology
of audio signal processing; i.e., classifying sound category
in a single source environment [16]. However, rarely does
a real-world environment contain only one sound source;
for example, an office environment might mix sounds from
keyboard typing, clearing throat, and door closing. To enable
robust audio sensing, we need an algorithm that can accurately
detect and classify each sound category from such mixed audio
data; i.e., polyphonic detection.

Polyphonic detection in unconstrained, real-world environ-
ment is a challenging task. First of all, mixed sounds can
drastically alter the acoustic signature, so features extracted
from mixed audio data do not match with features from

individual sound. A traditional approach in audio signal pro-
cessing is to separate sounds in the pre-processing stage; for
example, identifying instruments in music [10]. However, it
often requires pre-knowledge on the number of sounds being
mixed and their individual signatures; e.g., frequency band.
Recently, multi-label deep neural networks [1] and RNN [16]
have achieved promising results in multi-sound classification.
However, they require a large number of training data to learn
complex patterns in mixed sounds.

In this paper, we present a novel hierarchical architecture to
enable robust multi-sound classification with a priori knowl-
edge of the number and profile of each mixed sound. We apply
a state-of-the-art CNN pre-trained on AudioSet [9] to learn
acoustic features, a binary classifier to characterise each sound
category, and a stacked classifier to learn the outcome of each
binary classifier for multi-sound classification. To reduce the
burden of data collection and labelling, we will train our model
on publicly available sound effect datasets. With appropriate
data augmentations, these datasets have been demonstrated
as an acceptable alternative for real-world audio data [12],
[19]. Here, we will generate synthesised mixtures of sounds
from the sound effect datasets, use them to train our model,
and evaluate the trained model on the real-world dataset. This
helps to assess to what degree we can rely on the synthesised
sound data to recognise real-world audio recordings. To test
the generalisation and robustness of our model, we conduct
extensive experiments on systematically mixing similar and
distinct sound classes.

The rest of the paper is organised as follows. Section II
introduces the most relevant work in the literature and com-
pares and contrasts with our approach. Section III explores
different approaches in tackling multi-sound classification and
introduces our final design of the algorithm. Section IV
illustrates the evaluation methodology and analyse and discuss
the results. Section V summarises the paper and point to the
future directions.

II. RELATED WORK

Mobile audio sensing enables to infer a wide range of daily
activities, ambient conditions, and people’s affective states
and health conditions.

A. Hand-Crafted Feature Extraction



One of the most common approaches in audio signal
processing is to extract temporal and frequency domain
features. MFCC has been popularly used in speech detection.
Combining MFCC along non-speech data such as tone
and pitch, verbal and visual cues, Lee et al. have designed
a system to monitor face-to-face interaction in everyday,
real-world situations [13]. Rachuri et al. [20] have extracted
Perceptual Linear Predictive (PLP) coefficients and applied
GMM to classify emotional states of a speaker.

B. Deep Neural Networks
Lane et al. [11] propose a mobile audio sensing framework,

called DeepEar, on a coupled architecture of 4 deep neural
networks (DNNs), corresponding to 4 audio categories, in-
cluding ambient audio scene, speaker identification, emotion
recognition, and stress detection. Our approach is similar to
DeepEar in that we also build on top of a CNN for acoustic
feature learning. The main difference is that DeepEar dedi-
cates different CNNs for different types of sound detection,
while we design a hierarchical architecture to enable multiple
simultaneous sound event classification.

Laput et al. [12] present a real-time, sound-based activity
recognition system, called Ubicoustics. It is trained on a
collection of professional sound effect libraries that have
been traditionally used in the entertainment industry. To
tune the sound effect data towards audio samples to be
collected in real-world environments, the authors have
performed data augmentation including amplitude, reverb,
and mixing. Similarly, Salamon and Bello have designed
a set of deformations resulting augmentation, including
time stretching, pitch shifting, dynamic range compression,
and background noise [21]. These augmentations have
significantly improved the classification accuracies on a range
of environmental sound classification tasks, including air
conditioner, car horn, dog barking, and siren. Our approach
is similar to Ubicoustics in that we also use sound effect
dataset for training the model and we are also borrowing
state-of-the-art data augmentation techniques to enhance the
generalisation and applicability of sound effect dataset in
real-world sound classification. The major difference is that
we design a stacked classifier on top of this basic approach
to enable multi-sound classification.

C. Multi-Sound Separation
Sound source separation and classification under overlap-

ping conditions has been one of the most challenging tasks in
audio classification [2]. Tran and Li have used Jump Function
Kolmogorov (JFK) to separate sound signal into each wavelet
sub-band and then run binary SVM for classifying each sound
event [23]. Park et al. have used NMF [8] with spectral enve-
lope constraints to separate instrument sounds [17]. However,
it requires a priori knowledge on mixed sound events, which
can be impractical in real-world situations.

More recently, various deep learning techniques have been
applied to multi-sound event detection [7], [16]. Cakir et
al. propose multi-label convolutional recurrent neural net-

works [1], where CNN is used to extract higher level features
through multiple convolutional layers and pooling in frequency
domain, and then these features are fed to recurrent layers,
whose features are used to obtain event probabilities through
a feed-forward fully connected layer. Differently, our approach
first trains binary classifiers to learn profiles for each sound
category with the features produced from the CNN. Then it
trains a stacked ensemble for multi-sound classification with
mixed sound data by learning the correlations between binary
classifiers’ probability distributions and multi-sound labels.
The separation of single- and multi-sound training in different
learning processes can reduce the burden on collecting and
labelling multi-sound training data.

III. PROPOSED APPROACH

In this paper, we propose a novel stacked classifier to
automatically classify and distinguish individual acoustic
events from mixed audio data without any pre-knowledge
on how many events are mixed and what signature of each
sound exhibits (such as their frequency band). We build our
approach on the state-of-the-art CNN model – VGGish [9],
an adaption of the VGG architectures that have been built for
image classification [22]. In the following, we will illustrate
each step in the proposed approach.

A. Data Pre-Processing
The purpose of pre-processing is to segment sound into

uniform frames, filter frames with low amplitude levels and
remove noise in the frames. To conform to the VGGish
network, we follow their data pre-processing steps and use
their default parameters such as the amplitude level for
noise level. First of all, we standardise all the audio files
to the same format, by converting them to WAV files and
resampling them to 16 kHz mono; i.e., the monaural sound
where only one channel is used. Then we filter frames with
low amplitude level; i.e., -16 dBFS (Decibels relative to
Full Scale). To remove unwanted white noise in frames, we
first transform the acoustic signal onto the wavelet domain
using the DWT (Discrete Wavelet Transform) and apply
a universal threshold determination technique [3], [15] to
remove the noise. Then we transfer the signal back to the time
domain using an IDWT (Inverse Discrete Wavelet Transform).

B. Feature Extraction
To extract MFCC from each frame, we compute a

spectrogram using a magnitude of STFT (Short-Time Fourier
Transform) to each frame of the original time-domain signal.
STFT is configured with a window size of 25 ms, a hop of
10 ms, and a periodic Hanning window. This spectrogram is
mapped to a 64 Mel bins, covering the range of [125, 7500]
Hz, which produces a Mel spectrogram. The resulting
spectrogram is then stabilised by taking the logarithm.
We have added a small offset, i.e. 0.01, to avoid taking a
logarithm of zero. In the end, we extract audio features as a
log Mel spectrogram with a shape of 96×64 (96 frames of



10 ms each, with a range of 64 Mel bands) [9].

C. VGGish Convolutional Neural Network
As mentioned above, we reuse the pre-trained VGGish

model [9]. The VGGish is pre-trained on the AudioSet
dataset [4], which consists of over 1.7 million, 10-second
labelled audio clips over 632 audio event categories. The
network takes the input dimension of 96×64, has 4 groups
of convolutional and max pooling layers, and ends with
a 128-wide fully connected layer. The last layer acts as a
compact embedding layer, which can be added onto when
fine-tuning the CNN to a specific task.

D. Multi-Sound Classification
Before we arrive at our final design, we have attempted

various existing approaches for multi-sound classification.
1) Blind Sound Separation (BSS): BSS isolates acoustic

signals from multiple sources during the pre-processing stage
and then performs single sound classification on each sep-
arated signal. The main challenge is the need for a priori
knowledge on acoustic signals – whether they contain multiple
sounds, and if so what signature each sound has; i.e., their
frequency band.
To tackle this problem, we have designed an iterative algorithm
to explore and classify multiple sounds. We first take any
input acoustic signal for single sound classification. If the
classification output suggests multiple possible sounds; i.e.,
the uncertainty on the output confidences, then we apply
BSS to separate acoustic signals. For each separated signal,
we will perform the same single sound classification. This
process is repeated, until the averaged confidence on each
predicted dominated sound drops, suggesting that the further
separation will not improve the accuracies. For example, on
a 5-sound classification, if the output class distribution is
[0, 0.2, 0.2, 0.2, 0.4], we use the BSS to split the input audio
data into 2 acoustic signals, and classify each split signal. If the
output confidences on each signal are [0,0.5, 0.4, 0.1, 0] and
[0, 0, 0, 0.3,0.7], the averaged confidence will be 0.6, higher
than the original 0.5, implying that it is more likely that the
original audio data contains a mixture of sounds. Then we
further split both signals into 2 and perform single sound
classification on each. The iteration will stop only when the
averaged confidence starts to drop.

2) Multi-label Classification: Our next design is a naive
multi-label classifier immediately after the VGGish network,
which is a fully connected layer, consisting of both single
sounds and their combinations. For example, given a set of
20 sound categories of interest, to be able to recognise 1 or 2
simultaneous sounds, we set the size of the last output layer
to be 210; i.e., 20 for single sounds and 190 (=(20*19)/2)
for combinations of any two different sounds. As we can see,
this approach is not scalable. With the increasing number of
simultaneous sounds, the number of combinations increase by
a quadratic factor. Collecting sufficient training data for all
different combinations of sound is a daunting task.

3) Hierarchical Classifier on Binary Classifiers: To tackle
the above problem, we design a hierarchical classifier that
is composed of binary classifiers for each type of acoustic
event. Each binary classifier is trained with only single sounds.
This ensures that they learn only the true profile of the given
sound category, and not dilute their representations with other
sounds. It also ensures that the binary models remain indepen-
dent from one another. The topology of each binary classifier
comprises of an input layer of 128 neurons (matching the CNN
embedding), 2 fully-connected hidden layers with 64 and 32
neurons respectively, and 2 output neurons for performing the
binary classification. A softmax layer is also added on the
last layer to ensure the output probability distribution always
summed to 1. In the end, we use a threshold on the output
probabilities of each binary classifier to decide whether this
sound exists in the input acoustic signal; that is,

ẑi =

{
1 if pi > θi

0 otherwise

where pi is the output probability on inferring the ith sound
category being present, θi is the threshold on confirming
its presence, and ẑ is the final output vector. We learn the
threshold on the validation set, by testing various settings and
choosing the threshold leading to the best accuracies.

4) A Stacked Classifier on Binary Classifiers: Here we
slightly change the above design with a stacked classifier
after binary classifiers. We add a fully-connected, multi-class,
artificial neural network. Its inputs come directly from the
output probabilities of each binary classifier, and therefore
has an input neuron count that equals the number of trained
classes. This is followed by a single hidden layer consisting
of 15 neurons, and then the last layer containing 20 neurons,
because these are the final predictions that our model makes,
and so there is one output encoded for each class. The
optimisation and activation functions are Broyden-Fletcher-
Goldfarb-Shanno solver for limited memory (L-BFGS) and
ReLu respectively. In the end, we reuse the above threshold-
based technique to determine whether a sound category is
present in the input signal.

At this point training, the training set contains samples of
not only single events, but also mixed events of 2 classes,
all the way up to 5. As the binary models have been trained
already, they are only used for a forward pass of the new
training data. The binary outputs propagate forward to another
classifier. When performing the last layer of the learning
algorithm, only the weights of the final multi-class classifier
are updated, while the weights that reside within the binary
models remain untouched. The intention of this approach
is to get the final classifier to learn the mapping from the
uncertain binary outputs, to the correct multi-sound labels.
Thus, it is able to find a non-linear function that represents
the discrepancies in profiles between single and mixed sounds.
This stacked classifier on binary classifier is our final design
of the algorithm, which is depicted in Figure 1.
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Fig. 1. A workflow of our proposed approach.

IV. EXPERIMENT AND EVALUATION

The main objective of our work here is to successfully
classify multiple sound categories in a mixed acoustic signal.
More specifically, we will address the following questions:
1) Training data – Are sound effect data a good alternative
for training a model to recognise real-world audio data? Are
they sufficient for multi-sound training?
2) Appropriate approaches – Which approaches in Sec-
tion III perform best in multi-sound classification?
3) Performance profile – To what degree will the performance
of the multi-sound classification approach be affected by the
similarity of sounds in an audio mixture?

A. Datasets

First of all, we choose to use sound effect libraries as
our source of training. The main reason is that the files
come well-segmented (tightly around the event), accurately
labelled, cleanly recorded, and are vast in variety. This has
been proven to be an effective method in previous studies [12],
[19]. The specific sound classes of interest consist of a car
(driving past), chair (scraping on ground), throat clear, coffee
machine, conversation, coughing, dishwasher, door knock,
door slam, drawer (open/closing), falling object, footsteps,
keyboard (typing), laughing, milk steamer, phone ringing,
photocopier, sink (draining/tap running), sneezing, and stirring
(spoon in cup). These classes are chosen because they are the
common activities in many pervasive sensing environments
such as smart homes and intelligent offices. Also we try to
cover a wide range of sounds with similar and distinct acoustic
signatures. For example, ‘keyboard typing’ and ‘footstep’ have
low Signal-to-Noise-Ratios (SNRs), and they will be useful
in assessing the robustness of our approach in distinguishing
such subtle sounds in their mixture. We download 1.5-hour
audio data for these 20 classes from FreeSound [5], a publicly
available, sound effect library.

To assess the performance of our approach in real-world
settings, we have recorded a small number of sound samples
in our school’s coffee area, which covers the same set of sound
categories and has a duration of 20 minutes in total.

B. Effectiveness of Sound Effect Data for Training
Our first experiment is to validate the chosen CNN model

as a reliable model for sound classification. First of all, we
evaluate the CNN model with one-hot encoding on the sound
effect dataset. The network learns acoustic patterns rather
successfully, achieving the training, validation, and testing set
as 97%, 90%, and 86%.

Secondly we will assess whether sound effect dataset is
good enough for training a model to recognise real-world
collected sounds. To do so, we use the sound effect dataset
for training and validation, and test on the real-world dataset.
As sound effect data are much cleaner and purer than real-
world audio recordings, we apply the state-of-the-art data
augmentation techniques to transform sound effect data [12],
[21]. This also allows for increasing the training data. The data
augmentation being attempted are listed below: (1) volume
changing: increase and decrease volume by 5 and 10 dB; (2)
pitch shifting: shift pitch by four values (in semitones): -6,
-3, 3 and 6, where 6 is the largest value that we can shift
the pitch while still being able to retain the original sound
signature; and (3) background noise: introduce two amounts
of white noise: sampling from a random normal distribution,
and scaling it by a factor of 2.

Fig. 2. Accuracies of single acoustic event recognition on the real-world
dataset.

Figure 2 reports the results on testing the real-world dataset.
Both training and validation accuracies are high, but the testing
accuracy is low, i.e., 63%. One reason behind this is that there
is much difference between the real-world sound data and the
sound effect data. Due to this disparity, the training data do not
truly represent the complexity of the problem, and therefore



the model could only generalise to a minor extent. The use of
augmented data is the preventative action taken to tackle this
issue and has probably helped with sensitivity to the noise in
the real recordings, but has proven to be not quite enough to
create a truly generalisable model.
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Fig. 3. Confusion matrix of recognising single-sound classification on the
real-world dataset.

Figure 3 presents a confusion matrix of classifying single
sounds on the real-world dataset. The model can recognise
most of the sound events quite well, especially on car, stirring,
and phone ringing, but it gets confused between sounds that
share acoustic signatures. For example, the worst case here
is to detect the ‘sink’ event from ‘milk steamer’, both of
which involving high frequency sounds of fluid interacting
with metal. In summary, we conclude that sound effect data
with data augmentation techniques can be a good candidate
for training a model to recognise sound classes on real-
world recordings, but the accuracies need to be improved to
distinguish highly similar sound classes.

C. Comparison of Approaches

Section III presents various approaches for multi-sound
classification. As we are dealing with multiple simultaneous
sounds, we use a common metric – F1-score to equally balance
precision and recall [1], [14]. To understand their performance
on separating sound categories and choose the best approach,
we run a small scale experiment. We generate a collection of
mixed audio files. Mixing is conducted by randomly selecting
two audio files in different sound categories, syncing their
duration and then overlaying their signals. In the end, we
generate 4.4 hours of mixture audio data from the sound effect
dataset. We run each of the approaches on this dataset and
calculate their F1-scores, presented in Figure 4.

To configure the BSS-based approach, we attempt two tech-
niques: LPF/HPF (high/low pass filter) and ICA. LPF/HPF
can be effective for separating sounds that dominate different
frequency bands. For example, a simultaneous mixture of
a dishwasher and a milk steamer would result in only the
dishwasher being left from using the LPF, and only milk
steamer from using the HPF. By first transforming the data into
the frequency domain with Fast Fourier Transform (FFT), we
then set any desired frequencies to zero (i.e. all low frequencies
for HPF, and vice versa), and then return the signal to the time
domain by performing an inverse FFT.

We adopt FastICA [6] – another most common and preferred
form of BSS. From a multi-channel signal, it can use two
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Fig. 4. F1-scores of multi-sound classification on the randomly mixed dataset.
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BSS-LPF/HPF – BSS approach configured with low/high pass filter in Section
III-D.1, CNN-ML – Multi-label classifier after CNN in Section III-D.2, CNN-
BC – Binary classifiers after CNN in Section III-D.3, and CNN-SC – a stacked
classifier in Section III-D.4.

different mixes of the same multi-class event to distinguish
between the sources. When performing ICA, we assume that
the sources are statistically independent. To enforce that, we
will need to first centre and whiten the data; that is, performing
linear transformation to make the components uncorrelated
and their variances equal unity.

In BSS-based approaches, we apply both LPF/HPF and ICA
during the pre-processing stage. The resulted separations are
then classified using the base CNN, where we add one fully
connected layer of 20 neurons (responding to the number of
sound categories of interest) after the VGGish network for
single sound classification.

For the multi-label sound classifier introduced in Sec-
tion III-2, named CNN-ML, we add one fully connected layer
of 210 neurons (responding to the number of sound categories
and their combinations). The basic binary classifier approach
in Section III-3, named CNN-BC, and the stacked classifier
approach in Section III-4, named CNN-SC, will follow the
same architecture.

The comparison results are reported in Figure 4. The
BSS approaches achieve nearly 50% in classifying a 2-sound
mixture. When we look closer at the classification results,
it turns out that BSS is better at classifying the dominant
sound out of the mixed signal. For example, in the mixture of
‘milk steamer’ and ‘footsteps’, the BSS approaches can always
recognise ‘milk steamer’, as it has much higher sound intensity
and therefore dominates in the mixed signal. The BSS-based
approaches, especially configured with ICA, has worked worse
than expected, as when we tested it on a small number of
samples, it worked quite well at separating sound classes. By
examining the results, we find that the dropped accuracies of
ICA in this randomised mixture experiment is due to the fact
that the channels for the ICA mixes are too similar to each
other, which makes them inseparable. The most effective way
of using ICA is to have recordings of simultaneous sounds
from two different locations. In this way, there exists one
dominant sound in one recording. However, in our model, all
the audio data are transformed to contain only one channel,
so ICA is not effective in distinguishing similar sounds.

CNN-ML performs worst, due to a large class set to learn.
Even though the network is trained to distinguish the patterns



of these 210 classes, they are not independent of each other.
There exists significant overlapping between different combi-
nations that share the same single sound. Such overlapping
causes a lot of uncertainty in classification. To understand this

TABLE I
F1-SCORES OF MULTI-SOUND CLASSIFICATION OF CNN-ML ON A

SMALLER CLASS SET

Sound Class F1-score
23 Classes (20 single sound classes + 3 mixes between
similar sounds in ‘keyboard’, ‘footstep’, and ‘photo-
copier’)

71%

23 Classes (20 single sound classes + 3 mixes between
distinct sounds in ‘milk steamer’, ‘phone ringing’, and
‘clear throat’)

89%

26 Classes (20 single sound classes + 6 mixes between
the above similar and distinct sounds)

84%

problem deeper, we run another set of experiments on CNN-
ML, where we reduce the number of combination classes.
That is, we systematically choose three similar and distinct
sound categories respectively based on their sound profiles,
and mix within and between them, which leads to the results
in Table I. CNN-ML can well classify distinct sounds in a
mixed signal, with 60% on ‘milk steamer’ and ‘phone ringing’,
84% on ‘milk steamer’ and ‘clear throat’, and 90% on ‘phone
ringing’ and ‘clear throat’. By closely examining the results,
on the lowest performance 60%, 1% of the time it only
recognises ‘phone ringing’ and the remaining 39% of the time
it only recognises ‘milk steamer’. Again this is due to the
fact that milk steamer has a dominating sound. On the similar
mixture, CNN-ML fails to recognise ‘keyboard + footsteps’
and ‘keyboard + photocopier’. For the former case, it only
recognises keyboard, while it confuses with photocopier alone
and any other mixture with photocopier.

TABLE II
CLUSTERING SOUND CATEGORIES

Cluster 1 Chair, CoffeeMachine, Dishwasher, DoorKnock,
DoorSlam, Drawer, Keyboard

Cluster 2 Coughing, FallingObject, Keyboard, PhoneRinging,
Dishwasher, FootSteps, Laughing, Stirring

Cluster 3 Car, Converstation, DoorKnock, Photocopier, Sneezing,
ClearThroat, Sink, Milksteamer

Fig. 5. F1-scores of distinct multi-sound classification.

D. Similarity-driven Mixture
Now we will focus on the final approach CNN-SC to see

if it can accurately classify any number of sounds in a mixed

acoustic signal. In order to see if the similarity between sound
class has an impact on the performance of the proposed
approach, we will systematically mix the sound. We first
cluster audio data based on their distances as shown in Table II;
i.e., calculating the Euclidean distance between their extracted
MFCC features.

Fig. 6. Accuracies of multi-sound classification on the mixed datasets of
similar sound profiles.

Then we can test similar and distinct mixes. To do this,
we create new polyphonic files using random selections from
each of the clusters, and then only from different clusters. For
each number of sound mixture, we generate 1.1 hour audio
data of sound effect and real-world data respectively. For the
similar mixture, we generate 5.5-hour audio data covering any
number of mixture from 1 sound up to 5 sounds. For the
distinct mixture, we generate 3.3-hour audio data covering 1-
, 2-, and 3-sound mixtures, equal to the number of clusters.
Figure 5 and Figure 6 reports the F1-scores of CNN-SC, which
are categorised on each number of mixture.

We test and compare the original sound effect test set with
the real-world test set. In Figure 5, we report the accuracies
for sounds that contain events from different clusters. From
the results, we can see that the F1-score does drop when
increasing the number of mixed events, however the decrease
is not significant. For this test we could only mix up to
three activities, as there are only three different clusters, so
more tests are needed to see if the accuracy is sustainable



with even more complex mixes. Also there is small difference
between the test sets, and the real-world recordings are roughly
10% lower on average. This is due to irregularities that come
with recordings of real life situations; that is, the strong
background noise and high variation in the audio intensity
(due to movement in the location of the sound source).

In Figures 6, the rate of degradation does not drastically
change when continuing from 3 all the way to 5 mixed events.
This indicates that the proposed approach is very robust in
dealing with simultaneous activities, even to a high order. It
can also be seen that some of the clusters are still classified
rather accurately (with the exception of cluster 3), even though
they are mixes of similar sound classes. This means that
our model remains competent even with ‘hard-to-separate’
mixtures, by finding the unique patterns of the singular events
that contribute to the polyphonic sounds.

The results also suggest that the majority of F1-scores
decreases when the number of mixed activities increases (with
few exceptions, simply caused by the randomly selected files
sometimes being easier to distinguish than others). It becomes
harder to identify all of the sources, when individual events
overlap each other. However, the decrease in performance is
not significant, only dropping an average of 6.75% from single
to mixed 5 sounds. Our approach, with the use of sound effect
data for training only, has achieved comparable accuracies
with one recent work [16] that has achieved 65.5% F1-scores
when recognising mixed sound from only 10 sound classes by
training a RNN on the real-world dataset.

V. CONCLUSION AND FUTURE WORK

In this paper we explore different approaches for multi-
sound classification and propose a novel stacked architecture
that outperforms the other alternatives. The evaluation results
are promising in that the model performance never drops by
a significant amount when going from 1 to 5 mixed events of
similar and distinct sound categories. The robustness in multi-
sound classification can have a significant implication in many
pervasive sensing applications, given that the wide popularity
of audio sensing in mobile devices.

The main limitation of our current work is that we have
not evaluated on a large-scale real-world audio dataset, which
will be our next step. The current experiment methodology
allows us to draw a comprehensive performance profile of
the proposed approach, by mixing sounds under different
conditions. However, in our experiment, we are aware that
the real-world audio recordings present quite different acoustic
signatures. Investigating additional features to supplement the
MFCC will be an interesting direction to explore. Secondly,
we only use synthesised sound effect dataset for training,
which is beneficial in reducing the reliance on real-world audio
data collection and annotation. However, the performance is
limited, again due to the difference between synthesised and
real-world data. In the future, we will look into more data
augmentation techniques to see how to reduce the difference.
Also we will assess how much real-world data are needed in
training to improve the classification accuracies.
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