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Abstract

In this report, we examine the use of deep learning neural networks for the clas-
sification of hadronic decays. Through a series of two-dimensional, convolutional
neural network, we use Monte-Carlo simulated tau lepton decays to train a classi-
fication algorithm. We classify the decays into five main modes: letting “p” stand
for a charged pion, and “n” stand for a neutral pion, the five modes are as follows:
1p0n, 1p1n, 1pXn, 3p0n, and 3pXn.

1 Introduction

On July 4th, 2012 the discovery of the Higgs Boson from the combined experimental
efforts of ATLAS and CMS was announced to the world. While the discovery of this
particle resulted in an experimental confirmation of the Brout-Englert-Higgs mechanism
[1, 2], there are still many questions to be answered about the Higgs. It has been estab-
lished that the Higgs boson couples to the tau lepton to a precision of approximately 30%
[3]. With the large datasets collected by ATLAS, we will attempt to study this coupling
in greater detail. The research presented here focuses on detecting tau lepton decays in
the ATLAS detector, focusing on collisions producing visible tau lepton decays in the
barrel of the ATLAS detecter (|η| < 1.1) [4]. The life time of a tau lepton is quite short,
and as such these particles are not directly measured by the ATLAS detector; rather
their decay products are. The tau lepton has 5 main hadronic decay modes: 1p0n, 1p1n,
1pXn, 3p0n, and 3pXn, which are the focus of the study presented here. Through the use
of a series of two-dimensional convolutional neural network, and Monte-Carlo simulated
tau lepton decays, we have created a machine learning algorithm for use in detecting tau
leptons in the ATLAS detector.

Over the course of the Summer Student Programme at CERN, my main role in this
project was investigating the architecture of the neural network. This involved program-
ming in “sanity checks” to allow us to have a visual understanding of what the network
is producing after it has been trained, evaluating instances of “false-positives” - when the
network has improperly identified a decay - and learning how to remove unintentional
bias from the network, and overall striving to improve the accuracy of the network as a
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whole. This has involved extensive use of the Keras library [5], and extensive utilization
of hardware provide from TechLab [6].

2 The ATLAS Detector and Network Design

The ATLAS detector at CERN is a general purpose detector whose sole purpose is the
study of fundamental particle physics. Through the use of electromagnetic calorimetry,
full azimuthal angle coverage, and high detector granularity, the ATLAS detector seeks to
record data for the vast number of events that occur during collisions. This requires the
development of reconstruction algorithms, and working backwards through jet products
by physicists to determine that an event involved a tau lepton. This is done here by
implementing a series of two dimensional convolutional neural networks, to create an
algorithm for classifying the hadronic decays of tau leptons within the ATLAS detector.

Deep learning algorithms today employ convolutional neural networks for efficient
image recognition. A qualitative approach to a convolutional neural network, is that
each neuron reads in a “patch” of an image. By increasing or decreasing the patch-size,
the neuron is trained on small or large details. On average, by training the neurons
on smaller details, one can then take advantage of a concept known as “max pooling”,
in which one now groups together neurons, and creates a new “patch” of data, which
contains the maximum value contained with in each neuron in the group. This allows the
network to be trained on larger details as well, which helps improve the image recognition
capabilities of the network.

In the algorithm we employ, a different image is provided to the network corresponding
to the different layers of the calorimeter. A convolutional network is ran separately over
each of these images, and combined with max pooling. We then combine all of the two-
dimensional convolutions into a single one-dimensional neural network. Furthermore, the
track data is also provided to the neural network, allowing us to see how where the track
algorithm correlation with energy deposit in the calorimeter influences the network’s
decision. The track layer is already a one-dimensional layer, which then is concatenated
with the calorimeter layers of the network, providing the final structure of the network
trained as seen in Figure 1.

Figure 1: Schematic outline of the neural network employed in developing the classification
algorithm
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This approach allows us to see how the network correlates energy deposits between
different layers of the calorimeter when making classification decisions. This also allows
us to observe the networks capability for handling cases where the energy deposit between
layers are widely spread due to the trajectory of the particle, but again only focusing on
the barrel of the detector. The distribution of data provided to the network is discussed
in Table 1.

Sample Training Validation Testing

1p0n 321672 40209 40209
1p1n 745511 93189 93189
1pXn 318920 39865 39866
3p0n 246244 30780 70781
3pXn 132379 16547 16548

Table 1: The data provided to the network is divided into three segments. 80% of the data is
used to train the algorithm, 10% of the data is used in validation to prevent overtraining, and
10% is used in testing the accuracy of the final algorithm.
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Figure 2: Shown here are energy deposits in the calorimter. This is an instance in which
the energy deposits between layers have little correlation between them, but the neural network
successfully identified the decay as a 1p0n decay. The x axis represents η and the y axis represents
φ. The color represents the amount of energy deposited in the cell, according to the bar scale.

As shown in Figure 2, the algorithm is quite capable of handling cases where the
energy deposits between layers are widely spread, which is an ideal feature of an algorithm
being used to classify decay modes from images. As these decay modes involve charged
particles, it is unlikely that the particle will travel straight through the detector without
its trajectory being deflected due to the magnetic field. Using information such as the η
and φ of the cells, we looked for location bias within the network, as to whether certain
locations were more likely to result in a successful classification.

Our overall goal is to maximize the off-diagonal of the confusion matrix shown below
in Figure 3; in the matrix, each column has a value of 100 when summed, as the values
within the column represent probabilities. Values along the off-diagonal of the matrix
represent the efficiency of the network correctly classifying a given decay mode. Values
outside of the off-diagonal represent how often the network incorrectly identifies a given
decay mode as another decay mode.
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3 Investigation of the Network Performance

Through the use of the confusion matrices, ROC curves, and individual decay mode
scores, we have investigated the performance of the network, as seen in Figure 3.
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Figure 3: The figures shown above provide insight into the performance of the classification
algorithm. Figure (a) shows the confusion matrix, which provides insight into how the algorithm
is classifying or misclassifying particular decay modes. Figure (b) shows the ROC curve, where
it is comparing efficiency to the Pantau algorithm, the current baseline for ATLAS. Finally,
Figure (c) shows the algorithm scores for 1p0n for true 1p0n and 1p1n decay modes.

The confusion matrix provides us with a broad overview of the network performance
as a whole. The ROC curve provides us with the accuracy of the classification algorithm
for specific types of decay modes, and allows us to Pantau, the tau lepton classification
algorithm currently used in ATLAS. Finally, the plot of the algorithm scores provides us
insight into how the algorithm occasionally fails to correctly classify the decay mode, and
provides an avenue for further investigation.

To ensure that the network was unbiased, my work focused on performing multiple
different analyses of the network. One such analysis was the plotting of the difference in
the η and φ components between calorimeter layers, and observing how these differences
might possibly influence the classification algorithm’s accuracy. Shown in Figure 4 below
are the differences in the φ and η components between the second and first layer of the
calorimeter.
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Figure 4: Shown here is a histogram of the difference in the location of the maximal energy
deposit in the η and φ components of the first and second layers of the calorimeter. We look at
the cases where the network correctly classified the event as a 1p0n as “true positive” and where
it incorrectly identified the event as a 1p1n as “false positive”.

As the shape for our “false positive” and “true positive” classifications are quite
similar, we concluded that differences in the φ and η components were not influencing
that accuracy of the classification algorithm.

Further investigation of this classification problem has led us to try “RGB” and “RGB-
like” neural networks. These networks give us the capability of adding an ersatz depth
to the network, thus allowing us to more directly teach the network the importance of
the correlation between layers. The culmination of my project the construction of the
“RGB-like” network. In the RGB-like network a convolutional network is ran and pooled
over each layer of the calorimeter. These networks are then concatenated and further
convolution is ran, and the network is then converted to a 1 dimensional dense network.

(a) The loss function of the network versus
the number of epochs ran.
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Figure 5: As seen in Figure (a), the result of the “RGB-like” network leveling out at a higher
value for the loss function than the previous architecture directly results in the off diagonal of
the confusion matrix being less than it was before, as shown in Figure (b).

This network, while showing promise for being able to learn quickly, currently appears
to level out much sooner than previous network architectures resulting in a lower level of
accuracy than previously as shown in Figure 5.
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4 Conclusion

Through the use of neural networks and the development of classification algorithms,
a better resolutions of tau lepton decay products within the ATLAS detector barrel can
be achieved. This will ultimately lead to a better precision on the coupling of the Higgs
boson to the tau lepton, and allow further study of this particle. The convolutional neural
network described is quite promising in this endeavor. It is outperforming the current
ATLAS algorithm for tau leptons decaying in the barrel. Furthermore, it can be extend
to reject QCD jets and estimate the 4-vector of the decay products. It will be crucial
to understand how well it performs on data from the ATLAS detector itself though, and
if the simulation reproduces the behavior on data accurately. This work is a first step
towards a complete redesign of the reconstruction of hardonic tau leptons at ATLAS.
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