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Abstract

There is a great demand for graphical interfaces to perform statistical analysis by professionals who do not have

good knowledge of programming. Therefore, the main objective of this project was to create an application that

allows any user, regardless of their computational knowledge, to perform survival analyses. To this end, we have

used the R software and the RStudio development environment and its packages, namely the shiny package, to

develop an interactive web app that we called survapp. This application allows the use of different methodologies

for the analysis of survival data. The survapp contains the core survival analysis models and techniques, including

the Kaplan-Meier, log-rank test, Cox models, and parametric accelerated failure time models. The web application

implements decision trees and random forests for survival data. An analysis of competitive risks is also possible,

a particular case of multi-state models. A brief description of the mathematical background underlying survival

analysis, focusing on the main methods and models and the development of the shiny application, is presented in

this thesis. The Shiny app is available at the Shiny Apps repository: https://emanuel-vieira.shinyapps.io/survapp/.

The application can be a very useful tool.
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Chapter 1

Introduction

The R software is one of the most commonly used for statistical analysis, but its graphical interface is still not

user-friendly enough for those who do not have statistical and programming skills. The R software has a package

library with loads of functions implemented for all phases of a data analysis project. The most relevant R package

for this course and for the dissertation is the shiny one that allows R users to develop applications.

The main objective of the project was to create Survapp, an application that allows its users to carry out survival

data analysis.

In the development of Survapp, some shiny applications already developed were tested. Some of them are

MSM.app [24]. SmulTCan [20] and MEPHAS [30].

Survapp brings together a set of characteristics that are partly similar to existing applications, however, it stands

out with the use of supervised algorithms applied to survival data. I consider it to be a more user-friendly technology

that is accompanied by a statistical description that makes it stand out from other existing applications.
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Chapter 2

Basic concepts of Survival analysis

Survival analysis is an area of statistics where the objective is to analyze and model the data where the result is

the time until the occurrence of an event of interest. The Survival time refers to a variable which measures the time

from a particular starting time (e.g., time initiated the treatment) to a particular endpoint of interest (time-to-event).

The main goals of survival analysis are the following: estimating time-to-event for a group of individuals,

comparing time-to-event between two or more groups, or assessing the relationship of covariates to time-to-event.

These methods can also applied to data from different areas: social sciences (time for doing some task);

economics (time looking for employment) and engineering (time to a failure of some electronic component).

2.1 Censorship

The distinguishing feature of survival analysis is that it incorporates censoring. Censoring occurs when we have

some information about individual survival time, but we don’t know the time exactly.

The most frequent type of censorship is right censoring. In this type of censoring, the event of interest is not

observed until the end of the study. Usually occurs when an individual leaves the study before the event occurs, or

the study ends before the event has occurred. As an example, consider a clinical study in which the event of interest

is the death of an individual after having been diagnosed with a certain malignant tumor, if the individual is alive at

the end of the study, this is an observation censored right.

The lifetime of some subject is considered to be left censored if it is less than a censoring time. That is, the event

of interest has already occurred for the individual before the observed time (not easy to deal with). The observed

survival time is greater than or equal to true survival time.

Examples of left censoring: infection with a sexually-transmitted disease such as HIV/AIDS, onset of a pre-

symptomatic illness such as cancer, time at which teenagers begin to drink alcohol, The age at which children are

able to count from 1-10 at school. Some children are already able to count before joining School.

When the lifetime is only known to occur within an interval. Such interval censoring occurs when patients in a

2



clinical trial or longitudinal study have periodic follow-up and the patient’s event time is only known to fall in some

interval.

2.2 Mechanisms of censorship

• Type I Censoring

The event is observed only if it occurs prior to some specified time. Let tc be some (preassigned) fixed

number which we call the fixed censoring time. Instead of observing T1,…, Tn (random variables of interest)

we can only observe Y1,…, Yn where

Yi =

 Ti Ti ≤ tc

tc tc < Ti

• Generalized Type I Censoring

Also known as random Type I Censoring. When individuals enter the study at different times and the terminal

point of the study is predetermined by the investigator, so that the censoring times are known when an

individual is entered into the study.

• Type II Censoring

The study continues until the failure of the first r individuals, where r is some predetermined integer (r < n).

All subjects are put on test at the same time, and the test is terminated when r of the n subjects have “failed”.

2.3 Truncation

When planning a study, it is of interest to design it to verify the event of interest. Thus, only individuals to

whom the event of interest has occurred or will occur are included in the study. This mechanism, which consists of

excluding individuals who are not relevant to the study in question, is called truncation.

2.4 Probability density function

Let T be a non-negative random variable representing the lifetime of a individual of a given homogeneous

population. For the sake of simplicity in the following sections we will assume that T is continuous.

The probability of the failure time occurring at exactly time t, f(t).

f(t) = lim
∆t→0

P (t ≤ T < t+∆t)

∆t

The probability of the failure time (CDF) occur before or exactly at time t, F (t).

3



F (t) = P (T ≤ t) =

∫ t

0
f(u) du

2.5 Survival function

The main goal of survival analysis is to estimate and compare survival experiences of different groups. Survival

experience is described by the cumulative survival function.

S(t) = P (T > t) = 1− F (t)

2.6 Hazard function

The hazard function is the probability that if you survive to t, you will experience the event in the next instant.

h(t) = lim
∆t→0

P (t ≤ T < t+∆t|T ≥ t)

∆t

Hazard from density and survival:

h(t) =
f(t)

S(t)

In some cases it can be more interesting to present the cumulative hazard.

For continuous time

H(t) =

∫ t

0
h(u)du

For discrete time

H(t) =
∑
ti≤t

h(ti)

4



Chapter 3

Nonparametric estimation

The advantage of non-parametric estimation is that it is very flexible, as no assumptions are made about the

distribution. The main disadvantage is that it is not easy to incorporate covariates.

3.1 The Kaplan-Meier estimator

In the presence of complete data, without censored observations in a sample of dimension n, the most natural

estimator for survival is the empirical estimator, given by the survival function at time t is estimated by the proportion

of individuals with failure times greater than t.

Ŝ(t) =
Number of observations > t

n
, t ≥ 0

Kaplan and Meier (1958) [14], obtained a nonparametric estimate of the survival function , when we are in

the presence of a censored sample. This estimator it is called the Kaplan-Meier (K-M) estimator or product-limit

estimator, which is the generalization of the empirical estimator for censored data.

Ŝ(t) =
∏

j:ti≤t

(1− di
ni

)

Where t1 < t2 < ... < tk are the observed event times, dj the number of events at time tj , nj the number

of individuals in risk at time tj , dj/nj the proportion that failed at the event time tj and 1− dj/nj the proportion

surviving the event time tj .

S(t) represents estimated survival probability at time t: P (T > t). Graphical representation of the estimator

highlights all important aspects of the sampling distribution of survival time. The Kaplan-Meier estimate does not

control for covariates or time-dependent variables.

The Greenwood variance estimate for a Kaplan-Meier curve is defined as:

5



V ar(Ŝ(t)) ≈
[
Ŝ(t)

]2 k∑
j=1

dj
nj(nj − dj)

, for t(k) ≤ t < t(k+1)

The confidence interval for the value of the survival function at a given time t can be obtained assuming that

the estimator of the function at the instant t has a normal distribution with mean value S(t) and estimated variance

V ar(Ŝ(t)). A confidence interval of 100(1− α)% is given per:

[
Ŝ(t)− zα

2

√
V ar(Ŝ(t)), Ŝ(t) + zα

2

√
V ar(Ŝ(t))

]
where zα

2
represents the probability quantile 1− α

2 of the centered and reduced normal distribution, that is, of the

distribution N(0, 1). In the case of the Kaplan-Meier estimator, where the standard deviation is SD{Ŝ(t)} ≈

Ŝ(t)
√∑k

j=1
dj

nj(nj−dj)
a confidence interval of 100(1− α)% is given by:

ŜKM (t)− zα
2
ŜKM (t)

√√√√ k∑
j=1

dj
nj(nj − dj

, ŜKM (t) + zα
2
ŜKM (t)

√√√√ k∑
j=1

dj
nj(nj − dj)



3.2 Estimator for cumulative hazard function

The estimator proposed by Kaplan and Meier (1958) is the most used estimator for the non-parametric

estimation of the survival function. Often, it is also important to estimate the cumulative hazard function. A natural

estimator of H(t) = − log Ŝ(t), where Ŝ(t) is the Kaplan and Meier estimator.

3.2.1 The Nelson-Aalen estimator

An alternative estimator, suggested by Nelson [19] and studied by Aalen [1], is another option that is becoming

increasingly common.

Let t(1) < ... < t(r) be the distinct moments of death in a sample of dimension n (r ≤ n), d(i) the number

of deaths occurred in t(i) and n(i) the number of individuals at risk in t(i). The Nelson-Aalen estimator is defined

by:

ĤNA(t) =
∑

i:t(i)≤ t

di
ni

3.2.2 The Flemming-Harrington estimator

The Fleming- Harrington estimator [9] is obtained through the Nelson-Aalen estimator.

6



ŜFH(t) = exp(−
∑
i:ti≤t

[1− di
ni

])

3.3 The stratified Kaplan-Meier estimator

The strategy used, based on the Kaplan-Meier estimator, to compare the different curves corresponding to the

various groups, is stratification. This stratification consists of dividing the total set of observations into distinct groups,

according to the covariates of interest, and estimating the survival functions separately for each of the groups.

3.3.1 Tests to compare survival curves

The graphical representation of the Kaplan-Meier curves of survival functions, already allows to perceive that

there are differences in the survival curves, in the respective groups. To assess whether there is a significant

difference between the several curves, hypothesis tests must be used.

The hypotheses to be tested are:

H0 : S1(t) = S2(t) vs H1 : S1(t) 6= S2(t)

a) The Log-Rank or Mantel-Haenszel and Gehan-Wilcoxon estimator

When the purpose of the analysis is to compare survival curves, it is necessary to determine whether there are

statistically significant differences between the curves of two or more groups of individuals. It is possible to test the

null hypothesis of no difference between survival curves of the two (or more) groups.

The log-rank test [17] is the most used nonparametric test and appropriate to use when the data are right

skewed and censored. This test is the one with most power to test differences that fit the proportional hazards

model so works well as a set-up for subsequent Cox regression. Gives equal weight to early and late failures. The

Gehan-Wilcoxon estimator [10] weights strata by their size and is more sensitive to differences at earlier time points.

The survdiff function of the R survival package tests whether there are statistically significant differences between

the curves of each group of individuals. A formula expression as for other survival models, of the form Surv(time,

status) predictors, can be used to implement two tests to compare survival functions. A scalar parameter named

rho controls the type of test with default to the log-rank or Mantel-Haenszel test. In R, it is also possible to use the

Peto & Peto modification of the Gehan-Wilcoxon test by using the argument rho =1.

The function returns the number of subjects in each group, the weighted observed number of events in each

group, the weighted expected number of events in each group, the Chi-square statistic for a test of equality and the

variance matrix of the test.
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3.4 Clusters of survival curves

When there are variables with a high number of levels, therefore a high number of survival curves, it may be

relevant to understand if the curves can be grouped into clusters. Some authors have proposed different methods

that can be used to compare estimates of nonparametric multi-sample functions. The null hypothesis is that all

curves have identical functions, H0 : F1 = ... = FJ with j = {1, ..., J} as population [27].

If the null hypothesis is rejected, there is no available procedures that make it possible to determine groups

between the curves, that is, to assess whether the levels 1, ..., J can be grouped into K groups (G1, ..., GK) with

K < J , so that Fi = Fj for all i, j ∈ Gk, for each k = 1, ...,K. Note that (G1, ..., GK) must be a partition

of {1, ..., J} and therefore must satisfy the following conditions:

G1 ∪ ... ∪GK = {1, ..., J}

Gi ∩Gj = ∅, ∀i 6= j ∈ {1, ...K}

A procedure has been proposed to test, for a given number K, the null hypothesis H0(K) that there is at least

one partition (G1, ..., GK) so that all the above conditions are met. The alternative hypothesis H1(K) is that for

any (G1, ..., GK), there is at least one group Gk in which Fi 6= Gj for some i, j ∈ Gk.

The procedure is based on the J-dimensional process:

Û(z) = (Û1(z), Û1(z), ÛJ(z))

where, for j = 1, ..., J,

Ûj(z) =
K∑
k=1

[F̂ (z)− Ĉk(z)]Ij∈Gk

and Ĉk is the pooled nonparametric estimate based on the combined Gk-partition sample.

The following test stats were considered for testing H0(K): a Cramer-von Mises type statistic

DCM
= min

G1,...,Gk

J∑
j=1

∫
R
Û2
j (z)dz

and a modification of it based on the L1 norm proposed in the Kolmogorov-Smirnov test statistics

DKS
= min

G1,...,Gk

J∑
j=1

∫
R

∣∣∣Ûj(z)
∣∣∣ dz

where R is the support of the lifetime distribution or the support of the independent variable in the case survival
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or regression, respectively.

K-nonparametric curves algorithm:

1. With the original sample, for j = 1, ..., J and i = 1, ..., nj , and using the nonparametric estimator obtain

F̂j .

2. Initialize with K = 1 and test H0(K):

(a) Obtain the “best” partition G1, ..., GK by means of the k-means or k-medians algorithm.

(b) For k = 1, ...,K, estimate Ĉk and retrieve the test statistic D.

(c) Generate B bootstrap samples and calculate D∗b, for b = 1, ..., B.

(d) if D > D∗(1−α) then

reject H0(K)

K = K + 1

go back to (a)

else

accept H0(K)

end

3. The number K of groups of equal nonparametric curves is determined.
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Chapter 4

Cox regression model

One of the aspects of the Cox proportional hazards model [6] is that it is formulated based on the relationship

between the risk function and the covariates. This model allows estimating the relationship between the relative

risk rate and the predictor variables. Although the effect of the covariates is modeled parametrically, this model

is semi-parametric, given that the underlying risk function does not require the choice of a probabilistic model to

represent the survival times of individuals, making the model more robust than parametric methods.

4.1 Formulation of the Cox Regression model

The hazard function is given by:

hi(t;Z) = h0(t) exp(βZi1 + ...+ βkZik)

where Z = (Z1, ..., Zk) is a vector of covariates, β = (β1, ..., βk) a vector of regression parameters and

h0(t) the baseline hazard function.

4.2 Estimation in the Cox Model

Let t(1) < ... < t(r) be the lifetimes and let Rj be the risk set at the instant t(j). The partial likelihood function

proposed by David Cox (1972) [6] is defined by:

L(β) =
r∏

j=1

exp(βZj)∑
l∈Rj

exp(βZl)′

where Zj is the vector of covariates.
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4.3 Selection of covariates in the Cox model

We are interested in identifying which covariates have significant influences in the survival of individuals, among

all that were registered.

Let T be a continuous random variable representing the lifetime and Z = (Z1, ..., Zk) the vector of covariates

associated with each individual.

The risk of ”death” of an individual, at the instant t is given by h(t;Z) = h0(t)×g(βZ), where β = β1, ..., βk

is the vector of the unknown regression parameters, h0 is the function of underlying hazard and g an arbitrary

function of Z and β.

We intend to test the following hypothesis:

H0 : β = 0 vs H1 : β 6= 0, j = 1, ..., k

in the null hypothesis, we are testing whether the covariate Zj does not influence survival in the presence of

other covariates, against the alternative hypothesis, in which this covariate has a statistically significant influence on

survival. If we reject the null hypothesis, it means that the variable in question influences survival. The inference

methods are fundamentally based on the maximum likelihood method.

Likelihood ratio test

To assess whether or not the covariate in question influences survival, we will use the likelihood ratio test, which

is based on comparing logarithm values of the maximized likelihood function under the null hypothesis validity.

The test statistic is given by:

LRT = −2 log

[
L(reduced model)

L(full model)

]
= −2 log(Lr) + 2 log(Ls)

Where Lr is the likelihood of the reduced model and Ls is the likelihood of the full model.

4.4 Selecting a suitable model

The objective is to find the most parsimonious model, that is, the model that involves the least possible

parameters to be estimated and that explains the behavior of a response variable. We will place more emphasis on

the Akaike information criterion (AIC) as a criterion for model selection.

The estimate of AIC for a given model is given by: AIC = −2L+2r in that, L is the logarithm of the likelihood

function with the parameters θ and r is the number of model parameters.
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4.5 Validation of the proportional hazard assumption

The Cox model is only valid if the proportional hazards assumption is verified, which can be verified through

a graph log (− log (S (t))) against t. The proportional hazards assumption is verified if the curves obtained are

parallel, if this is not the case, the proportional hazards assumption is not valid.

The proportional hazards assumption test tests the following hypotheses:

H0: proportional hazards assumption is satisfied

vs

H0: proportional hazards assumption is not satisfied

The null hypothesis is rejected if the global p-value is less than established significance level. Another way to

validate the risk assumption proportional is through the graph of Schoenfeld residuals, proposed by Schoenfeld

(1982) [23].

According to Schoenfeld, there is not just one residual for each individual, but several, as many as the covariates

included in the model. Furthermore, it is not necessary to obtain an estimate of the cumulative risk function. For

the i-th individual under study, the residual corresponding to the covariate Zj, j = 1, ..., p is given by:

rji = δi (Zji − αji)

where α =

∑
l∈Ri

Zjl exp(Zlβ̂)∑
l∈Ri

exp(Zlβ)
, where Ri is the set of individuals at risk at the instant ti. These residuals can

be interpreted as the difference between the observed values of the covariates of a given individual, whose death

was observed in ti, and is a weighted average of the values   of these covariates, for all individuals at risk in ti. The

weights corresponding to these individuals are exp(Zlβ).

According to Schoenfeld, if the proportional hazards assumption is satisfied, there can be no trend in the graph,

that is, the graphical representation should present the appearance of a cloud of points around zero.
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Chapter 5

Univariate continuous distributions and

some parametric survival models

If it is possible to admit a parametric model for the lifetime, there is the advantage of having of direct application

inference methods [22]. However, the circumstances necessary for the application of a parametric model relevant

to the data under study are not frequent. Next, some univariate continuous distributions and some of the parametric

survival models are presented.

5.1 Exponential Distribution

Let T be a random variable with exponential distribution of parameter λ > 0, with given density function.

f(t) = λ exp (−λt), t ≥ 0

The risk and survival functions are respectively h(t) = λ and S(t) = exp (−λt). This distribution

presents a constant risk function.

The exponential distribution is a reference in the analysis of survival data due to its mathematical simplicity and

properties. The risk function being constant over time restricts the use of this distribution in many applications.

5.2 Weibull distribution

Let T be a random variable with a Weibull distribution with a scale parameter λ > 0 of form α > 0, with a

density function given by:

f(t) = λα(λt)α−1 exp−(λt)α , t ≥ 0, λ, α > 0

The risk and survival functions are respectively h(t) = λα(λt)α−1 and S(t) = exp−(λt)α . The Weibull
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distribution is a generalization of the exponential distribution having a much higher use than this one, since its

hazard function can be either constant (α = 1), monotonous increasing (α > 1) or monotonous decreasing

(0 < α < 1).

5.3 Log-normal distribution

Let be T a random variable with a log-normal distribution with parameters µ ∈ (−∞,+∞) and σ > 0 and

a support t ∈ (0,+∞). The density function of probability is:

f(t) =
1√
2πσt

exp

[
− 1

2

(
ln t− µ

σ

)2]
The survival function is:

S(t) = 1− Φ

(
ln t− µ

σ

)
Where Φ is the gaussian distribution function with mean 0 and standard deviation 1.

The hazard function is:

h(t) =

1√
2πσt

exp

[
− 1

2

(
ln t−µ

σ

)2]
1− Φ

(
ln t−µ

σ

)
The hazard function is increasing until it reaches a maximum value from which it becomes descending. This

distribution is suitable when high values are of no interest.

5.4 Log-logistic distribution

The density function of probability of a random variable T with shape parameter α > 0 and scale λ > 0 is:

f(t) = λα(λt)α−1(1 + (λt)α)−2

The survival function is:

S(t) =
1

1 + (λt)α

The hazard function is:

h(t) =
λα(λt)α−1

1 + (λt)α
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It is used for events whose rate increases initially and decreases later.

5.5 Gamma distribution

The Gamma distribution is also a generalization of the exponential. Let T be a variable with Gamma distribution

with scale parameters θ and form k. The probability density, survival and hazard functions are given by:

f(t) =
1

Γ(k)
θktk−1exp−θt

S(t) =
1

kθtk−1

h(t) = kθtk−1

where t ≥ 0, θ > 0 e k > 0. Γ(k) is the gamma function. The hazard function is constant when (k = 1),

monotonic increasing when (k > 1) and monotonous decreasing (0 < k < 1).

5.6 The accelerated failure time model

Accelerated failure time model (AFT model) is a parametric model that provides an alternative to the commonly

used proportional hazards models. Whereas a proportional hazards model assumes that the effect of a covariate is

to multiply the hazard by some constant, an AFT model assumes that the effect of a covariate is to accelerate or

decelerate the life course of a disease by some constant [15].

Parametric multivariate regression techniques model the underlying risk/survival function. The time to event

(dependent variable) has some known distribution, such as Weibull, exponential, lognormal, etc. Using parametric

models to describe survival time becomes an advantageous methodology.

5.6.1 Formulation of the accelerated failure time model

The hazard function is:

hi(t;Z) = h0(t) ∗ k(βZ)

where Z = (Z1, ..., Zk) is a vector of covariates, β = (β1, ..., βk) a vector of regression parametres, h0(t)

a baseline hazard function and k a specified link function.
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5.6.2 Construction of the likelihood function

Let us consider that n individuals are being studied and that the data corresponding to the i − th individual

are of the form (ti, δi, zi), i = 1, ..., n, where ti is the lifetime (δi = 1) or censoring time (δi = 0) and zi is a

vector of fixed covariates. Let’s assume that the distribution of the lifetime T given z is known to less than a vector

of parameters θ, on which we wish to perform inference and that the survival function for the i − th individual is

S(ti; zi, θ), with the corresponding probability density function f(ti; zi, θ) [22].

As individuals are subject to an independent censorship mechanism, tooth and non-informative, the likelihood

function is given by:

L(θ) =

n∏
i=1

f(ti; zi, θ)δiS(ti; zi, θ)1−δi

5.6.3 Akaike Information Criterion

As in the Cox Proportional Hazards model, in the parametric model the Akaike information criterion (AIC) can

also be used as a criterion for selecting the best model.

AIC = −2 log L̂+ 2(p+ 1 + k),

where represents the maximized likelihood and p the number of regression parameters of the fitted model,

k = 0 for the exponential model and k = 1 for the Weibull, log-logistic and log-normal models. The smaller the

value of the AIC statistic, the better the model.
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Chapter 6

Competing Risk Analysis

When the subjects under study have several possible events in a time-to-event setting, it is possible to perform

a competitive risk analysis, a particular case of multi-state models. Multi-state models are very useful for describing

complex event history data with multiple endpoints. These models may be considered a generalization of survival

analysis where survival is the ultimate outcome of interest but where information is available about intermediate

events which individuals may experience during the study period. For instance, in most biomedical applications,

besides the ’healthy’ initial state and the absorbing ’dead’ state, one may observe intermediate (transient) states

based on health conditions (e.g., diseased), disease stages (e.g., stages of cancer or HIV infection) [25]. Examples

of events are recurrence, death from disease, death from other causes or treatment response.

The unobserved dependence between event times needs special consideration. For example, patients who

recur are more likely to die, and therefore times to recurrence and times to death would not be independent

events. For analysis in the presence of multiple potential outcomes there are two approaches, one in terms of the

associated potential or latent lifetimes for each cause of death (a concept that was introduced only for

mathematical convenience), the other commonly used is to describe the problem in terms of the cause-specific

risk functions Rocha, Cristina, and Ana Luísa Papoila. (2009) [22].

6.1 Cause-specific functions and their estimators

Let’s suppose that a population is subject to m causes of death. When a death occurs, we observe the lifetime

T and cause of death J, J ∈ {1, 2, ...,m}. The approach proposed by Prentice et al. (1978) [21] consists

of describing the problem in terms of of the cause-specific risk functions. The cause-specific risk function j(j =

1, ...,m) is defined by:

hj(t) = lim
dt→0

P (t ≤ T < t+ dt, J = j|T ≥ t)

dt

and describes the instantaneous probability of death due to cause j in the instant t, in the presence of the other
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causes of death.

The lifetime survival function T can be represented per:

S(t) = exp(−
m∑
j=1

∫ t

0
hj(u)du)

The cause-specific survival function and The cumulative incidence function of the cause j is also defined as

being:

P (T > t, J = j) =

∫ ∞

t
hj(u)S(u)du

Ij(t) = P (T ≤ t, J = j) =

∫ t

0
hj(u)S(u)du

6.2 Competing risks regression

Now suppose that each individual is associated with a vector of z covariates. The Cox model can be generalized

to allow its application in problems of competitive risks, being the cause-specific risk function j given by:

hj(t; z) = h0j(t)exp(βj
′z)

Subdistribution risks is the instantaneous rate of occurrence of a given type of event in individuals who have not

yet experienced an event of that type and is estimated using Fine-Gray regression [8].
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Chapter 7

A breef introduction to Machine Learning

Methods

Machine learning is an interdisciplinary activity that mainly combines two major areas: computer science and

statistics. Machine learning methods are increasingly being applied to decision-making, especially in medicine,

biology, and economics.

7.1 Classification and Regression Trees

Decision tree methods are predictive machine learning techniques that can be used for classification and

regression known as CART (Classification and Regression Trees). CART methods involve stratifying or segmenting

the predictor space into several simple regions. The mean or mode of training observations is normally used to

predict a given observation. These methods are known as decision tree methods because the set of division rules

used to segment the predictor space can be summarized in a tree. Tree-based methods are simple and useful for

interpretation. However, in terms of prediction accuracy, they are typically not competitive with the best supervised

learning approaches. The decision tree model algorithm works by repeatedly splitting the data into multiple

subspaces so that the results in each final subspace are as homogeneous as possible. This approach is called

recursive partitioning. The result produced consists of a set of rules used to predict the outcome variable,

regression tree for a continuous variable and classification trees for categorical variables.

Initially, tree-based methods were developed to model a categorical or continuous result using a set of covariates

from a sample of data. They were introduced by Morgan and Sonquist (1963) [18], but became popular in the 1980’s

due in large part to the development of the CART paradigm by Breiman et al. (1984) [4]. The tree recursively splits

the covariate space to form the nodes. For a categorical answer, the Gini and entropy measures of the impurity

are popular, while the sum of squared deviations from the mean is more commonly used for a continuous answer.

The basic approach focuses on binary splits using a single covariate. For a continuous or ordinal covariate X , a
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division has the form X ≤ c where c is a constant. For a categorical covariate X , a potential division has the form

X ∈ c1, ..., ck where c1, ..., ck are possible values of X . The typical algorithm starts at the root node with all

observations, searches through all potential binary splits with the covariates, and selects the best one according to

a split criterion as a measure of impurity. In the CART approach, the process is repeated recursively until a stopping

criterion is met. Thus, a large tree is produced that normally overfits the data. To find an appropriate subtree, a

pruning and selection method is applied. In survival analysis the regression tree at each node uses the Kaplan-Meier

estimate of the survival function.

7.2 Decision tree

There are several ways to represent a tree: hierarchical, inclusion diagram, bar diagram, numbering by levels,

among others. In this work, the hierarchical form is used, represented in the figure 7.1

Figure 7.1: Decision Tree

The root node level is always 0. The height of a node is the length of the longest path between it and a leaf.

Decision trees represent the conjunction and disjunction of attributes. Each path from the root of the tree to a leaf

corresponds to a conjunction of attribute tests, and the tree itself to a disjunction of these conjunctions. A node can

be called a decision node or a leaf node. A decision node can be split into two nodes (a binary split). This binary

division is determined by a boolean condition that can be satisfied (”yes”) or not satisfied (”no”) by the observed

value of this variable. Izenman (2008) [12] cites an example of a recursive partitioning involving two input variables,

X1 and X2, whose tree is represented in Figure 7.1. Figure 3 shows the resulting partition into 5 regions.
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Figure 7.2: Decision tree with nodes

Figure 7.3: Recursive partitioning of five regions in R2, R1 −R5, corresponding to the five terminal nodes.

The possible steps of this tree are as follows:

(1) X2 ≤ θ1? If the answer is ”yes”, follow the left branch; otherwise, follow the right branch.

(2) If the answer to (1) is “yes”, then the following question is asked: X1 ≤ θ2? The answer “yes” produces

the leaf node τ1 with the corresponding region R1 = X1 ≤ θ2, X2 ≤ θ1 ; the answer “no” produces the leaf

node τ2 with the corresponding region R2 = X1 > θ2, X2 ≤ θ1.

(3) If the answer to (1) is ”no” , ask the next question:X2 ≤ θ3? If the answer is ”yes” , then ask: X1 ≤ θ4? If

the answer is ”yes”, the leaf node τ3 must be produced with the corresponding regionR3 = X1 ≤ θ4, θ1 < X2 ≤

θ3; otherwise, the right branch to the leaf τ4 node with the corresponding region R4 = X1 > θ4, θ1 < X2 ≤ θ3.

(4) If the answer to (3) is “no”, the leaf node τ5 is arrived at with the corresponding region R5 = X2 > θ3.

It is assumed that θ2 < θ4 and θ1 < θ3.
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In the regression tree, the predicted response for a given observation is given by the average of the training

observations that belong to the same leaf node. In the classification tree, it can be predicted that each observation

belongs to the most frequent training observation class in the region to which it belongs.

The induction algorithm must choose which predictive attribute will be used in each node of the tree. This choice

can be based on different criteria, such as impurity, distance or dependence. Most algorithms try to split the data

of a node in order to minimize the degree of impurity of the child nodes.

In classification, the sum of squares cannot be used as a criterion for binary divisions. An alternative to be used

is the classification error rate. Misclassification is one of the common impurity measures used in binary decision

trees.

7.2.1 Classification Trees

Classification aims to allocate objects from a population into one, two or more categories, based on a set of

characteristics in each object. For example, classifying patients into low, medium and high risk groups.

In classification, as in regression, the data comprise n pairs (Xi, Yi), i = 1, 2, ..., n. It is important to use

the data to define which components of the covariate vector X are needed to determine which category Yi, the i-th

observation belongs to. This information can be used to search for a function of explanatory variables that identify

the class for a given X (James et al., 2013) [13].

The simplest classification problems separate a population into two classes, labeled 1 and 2. Binary

classification problems can almost always be generalized to classification problems with multiple classes. The task

is to find a decision function to discriminate between data from k different classes, where k ≥ 2. The training set

of a classifier f of samples (xi, yi) for i = 1, ..., n where xi ∈ RP are feature vectors and yi ∈ {1, ...,K}

is the class label for the i-th sample. Based on the training set, the main objective is to learn the decision rule,

f(x) : RP −→ {1, ...,K}

used to separate the K classes and predict the class label for a new entry x = xnew. Generally, a pre-trained

multiclassifier is associated with a K -dimensional function

D(x) = (d1(x), ..., dK(x))

where dK(x) represents the strength of evidence that x belongs to class K. The classifier is induced from f

and defined as

f(x) = arg max
k=1,...,K

dk(x)

The decision boundary between classes k and l is described by the set
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{x ∈ RP : dk(x) = dl(x)}∀k 6= l

If K is not too big, one way to simplify multiclass problems is to turn them into a series of binary problems.

Each dk(x) is trained to separate the class k from the rest. These K binary classifiers are then combined to give

a final classification

f̂(x) = arg max
k=1,...,K

d̂k(x)

7.2.2 Regression Trees

To develop a regression tree, suppose that a dataset consists of p entries and a response, for each of the N

observations. According to James et al.(2013) [13], there are two steps for building a regression tree:

Step 1: Split the predictor space, the set of possible values for X1, X2, ..., Xp in J distinct, non-overlapping

regions, R1, R2, ..., RJ ;

Step 2: For each observation that occurs in the region Rj , the same prediction is made, which is the average

of the response values for the training observations in Rj .

In step 1 two regions R1 and R2 are obtained and that the average response of the training observations in the

first region is 10, while the average response of the observations of training in the second region is 20. Then, for a

given observation X = x, if x ∈ R1 the value 10 will be predicted and if x ∈ R2 the value 20 will be predicted.

For step 1, in theory, the regions can have any shape. The predictor space is divided into rectangles or boxes,

due to the simplicity and ease interpretation of the resulting predictive model. The objective is to find the boxes

R1, ..., RJ that minimize the sum of squares.

J∑
j=1

∑
i:xi∈Rj

(yi − ŷRj )
2

where ŷRj represents the average response for the training observations inside the j-th box.

It is unfeasible to consider all possible partitions of the feature space into J boxes. Then we proceed with the

recursive binary division. So, starting with all the data, consider a division variable j and division points s, and define

the pair of ”middle planes”.

R1(j, s) = {X|Xj < s} e R2(j, s) = {X|Xj ≥ s}

where {X|Xj < s} means the region of the predictor space in which Xj takes on a value less than s.
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One should look for the variable j and dot s that minimize the equation:

∑
xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
xi∈R2(j,s)

(yi − ŷR2)
2

where ŷR1 is the average response for the training observations in R1(j, s) and ŷR2 is the average response for

the observations of training in R2(j, s). Once the best split is found, the data is split into the two resulting regions

and the splitting process is repeated in each of the two regions. in order to minimize the sum of squares within each

of the resulting regions. This process continues until a criterion is met.

The regions R1, R2, ..., RJ , the response variable is predicted for a given test observation using the average

of the training observations from the region that the test observation belongs to. When the resulting tree is very

complex, good predictions can be generated in the training set, causing poor performance for the test set. In this

way, a smaller tree with fewer divisions (fewer regions R1, R2, ..., RJ ) can generate a smaller variance and better

interpretation with a small bias.

So a better strategy is to grow a T0 tree a lot, stopping the splitting process only when some minimum number

of nodes is reached. This large tree is pruned using cost complexity pruning. Cost complexity pruning provides a

way to select a small set of these subtrees, because instead of considering each one, it considers a sequence of

trees indexed by a non-negative adjustment parameter α.

A subtree T ⊂ T0 is defined as any tree that can be obtained by pruning T0. End nodes are indexed in m,

with node m representing the region Rm (the rectangle or subset of the predictor space). The number of terminal

nodes is denoted by |T|. Considering a sequence of trees indexed by a non-negative adjustment parameter α,

each value of α corresponds to a sub-tree T ⊂ T0, such that:

|T |∑
m=1

∑
xi∈Rm

(yi − ŷRm)
2 + α|T |

is as small as possible. The variable ŷRm is the predicted response associated with Rm, that is, the average of

the training observations in Rm. The α fit parameter controls the trade-off between the size of the tree and the

goodness of fit for the data.

7.3 Random Forests

The Random Forests (RF) technique is a powerful approach to data exploration, data analysis and predictive

modeling. This technique was developed by Leo Breiman (creator of CART) at the University of California, Berkeley

(Breiman, 2001) [3].

RF’s are based on CART, Learning Ensembles, Committees of Experts and Bagging (Bootstrap Aggregation)

(Dietterich, 2000) [7]. In Bagging you work with a sample of trees. However, the same complete set of predictors
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is used to determine each split in the data. This results in a high correlation between the constructed trees, which

are all very similar, resulting in little diversity (James et al., 2013) [13]. On the other hand, in RF’s randomness is

introduced by selecting random subsets of predictors for each division (Breiman, 2001) [3].

According to the website https://dimensionless.in/introduction-to-random-forest/, each of the decision trees

results in a biased classifier (since it considers only one subset of the data). Each captures different trends in the

data. In Classification problems, the result of most trees is used to classify a class. In the case of Regression

problems, the arithmetic mean of the predictions obtained in all trees is used to describe the global prediction. It is

also possible with the use of validation data to assign more weight to more decisive (important) trees in relation to

others.

Random forests (RF) represent a collection of decision/classification trees (CART) that follow specific rules in tree

growing determination, splitting, tree combination, self-testing and post-processing. In this process, a set containing

B random vector samples of the predictors under study are randomly and independently selected. For each of these

B samples, a tree is built. The selected trees describe a sample I.I.D. (independently and identically distributed) of

trees from a given forest or population. The constructed trees are combined in order to obtain a joint prediction.

Growth - The growth (expansion) of trees occurs by binary partitioning (each node (parent) is divided into no

more than two children). Each tree is grown/expanded at least partially at random. Randomness is achieved by

expanding each tree based on a subsample chosen at random from the training data. Randomness is also obtained

during the process of splitting the tree at each node.

Division - Assume that there areK predictor variables in the problem at hand. A small subset of these predictor

variables is randomly selected. Usually
√
K is used. For example, if K = 500, you select about mtry = 23

columns from the data matrix. Subsequently, each node is divided with the “best” of the 23 variables (not among

the 500).

Each tree is expanded to its maximum size and no pruning is performed. It has been shown that pruning impairs

the performance of these trees. The trees are deliberately overfitted in order to obtain predictors that resemble the

nearest neighbor, a very robust non-parametric technique. Let Ntree be the number of trees to build. The Random

Forests algorithm follows these steps for each of the Ntree iterations:

1. Select a new bootstrap sample (with replacement) from the training set.

2. Expand the tree: add more branches (no pruning).

3. At each internal node, randomly select mtry predictors and determine the best split using only these mtry

predictors.

4. Without pruning, register (save) the tree, as it is, in a directory dedicated to these trees.
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Chapter 8

Survapp

The main goal of Shiny applications is to allow the use of some methodologies that are implemented in R in a

friendly environment. In our case, we intend to use the most common models and methods for survival analysis.

The different methodologies will be implemented in the different menus of the application. In this chapter, the

constitution of the application is explained.

An analysis is presented for different databases that allows any user of the application to understand the

interpretation of the different methodologies.

The source code of the application is available at:

https://github.com/EmanuelVieira1111/Survapp/blob/main/app.R.

8.1 Shiny

Shiny is a framework for creating web applications using R code. It is designed primarily with data scientists in

mind, and to that end, you can create pretty complicated Shiny apps with no knowledge of HTML, CSS, or JavaScript.

On the other hand, Shiny doesn’t limit you to creating trivial or prefabricated apps: its user interface components

can be easily customized or extended, and its server uses reactive programming to let you create any type of back

end logic you want [28].

In this section, some of the Shiny package [5] functions used in the Survapp application are presented.

8.1.1 UI Layout

The user interface of Survapp is a navbar page with three tabpanels, About, Data.file and Survival analysis. The

Survival analysis tabpanel is built by a navbar menu with several tabpanels representing the various methodologies

for analyzing survival data. Each tabpanel has the constitution of a sidebarLayout with a sidebar panel and a main

panel. The UI inputs shown below are the main elements in the sidebar panels of the entire application. UI Inputs

are the application elements with which the user interactively interacts. In a reactive way, these inputs given by the
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user are used by the server to generate the desired outputs in the main panels, be they graphs, tables or summaries.

8.1.2 UI Inputs

In this subsection are presented some of the Shiny UI Inputs functions used.

Select input

Figure 8.1: Select Input for GBSG dataset.

FileInput

Figure 8.2: File Input.

Numeric input

Figure 8.3: Numeric Input.

Action and radio buttons

Figure 8.4: Action and radio buttons.
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Check box group input

Figure 8.5: Check box group input for GBSG dataset.

8.1.3 UI Outputs

In this subsection are presented some of the Shiny UI Outputs functions used.

PlotOutput

Create an plot or image output element.

Figure 8.6: Plot output from cumulative risk function.

TableOutput

Create a table output element.

VerbatimTextOutput

Create a verbatim text output element.
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Figure 8.7: Table and Text output from GBSG dataset.

Download button

Create a download button or link.

Figure 8.8: Download button.

8.1.4 Interface builder functions

HTML Builder Functions (a, br, code, div, em, h1, h2, h3, h4, h5, h6, hr, img, p, pre, span, strong, tags).

8.1.5 Rendering functions

Functions used in survapp server side code, assigning them to outputs that appear in user interface.

renderPlot

Plot Output

renderPrint

Printable Output.

renderDataTable

Table output with the JavaScript library DataTables.

downloadHandler

File Downloads.

8.1.6 Reactive programming

A sub-library that provides reactive programming facilities for R. In computing, reactive programming is a

declarative programming paradigm concerned with data flows and the propagation of changes.
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reactive

Create a reactive expression.

observe

Create a reactive observer.

observeEvent

Event handler (eventReactive).

reactiveValues

Create an object for storing reactive values.

8.2 Data.file

The data.file menu is the basis of the application, as it allows the user to import the desired database for analysis

or use an example already contained in the application. Through a selectInput with the options ”Load my own data”

and ”Example dataset” the user defines if he is going to do the analysis with his own data or with example data

available as part of the application. Examples of data are GBSG (right censored), IR diabetes (interval censored) and

Melanoma for competing risks analysis. There is no machine learning approach implemented for interval-censored

data. The choice of one of these examples is allowed through a selectInput with their names as options, and this

selectInput is only visible if the option ”Example dataset” is selected in the previous selectInput. It is possible to

download the sample databases through a downloadButton.

If the option selected in the first selectInput is ”Load my own data”, a file input appears and the user can

choose the data to be imported in a csv format. The users can control some of the important parameters through

radiobuttons. Selecting the header option places the first row of the database in the order corresponding to the

column names. It is allowed to choose the separator type (comma, semicolon or tab) and the quote type (none,

double quote or single quote).

In mainPanel, the data table, its summary, and its structure are given as output. Here it is possible to see if it

is necessary to make any transformations in the classes of the variables for the future analysis.

In case it is necessary to transform the variable classes, there are two selectInputs and an actionButton. The

first selectInput chooses the variable to transform; the second chooses the new class of the variable, having as

options factor, numeric, integer, and character. By clicking on the action button, the transformation is performed.
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Figure 8.9: File input and change variable class.

8.3 Survival analysis

This section explains in detail each of the application’s tabpanels referring to the methodologies for analyzing

survival data. The R packages with greater relevance to the implemented methodologies and their respective

functions are mentioned below.

Package ’Survival’ [26]

Surv → Create a Survival Object.

survfit → Create survival curves.

survdiff → Test Survival Curve Differences.

cox.zph → Test the Proportional Hazards Assumption of a Cox Regression.

coxph → Fit Proportional Hazards Regression Model.

survreg → Regression for a Parametric Survival Model

Package ’clustcurv’ [27]

survclustcurves → Main function for determining groups of multiple survival curves and selecting automatically

the optimal number of them.
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Package ’icenReg’ [2]

ic_sp → Fits a semi-parametric model for interval censored data

ic_par → Parametric Regression Models for Interval Censored Data

Package ’rpart’ [26]

rpart → Recursive Partitioning and Regression Trees

Package ’caret’ [16]

createDataPartition → Data Splitting functions

Package ’ranger’ [29]

ranger → random forests

Package ‘cmprsk’ [11]

crr → Competing Risks Regression

cuminc → Cumulative Incidence Analysis

8.3.1 Kaplan Meier

Here, in case the data is right-censored, the user starts by selecting the variables related to the time and event

of interest through two selectInputs. In the event that the data presents interval censoring, the variables referring

to the left and right hand side of the interval are selected. After clicking the ”Click to do full analysis” button, in

mainPanel, automatically after selecting the variables, the graph of the Kaplan-Meier estimator, the print of the

results, the summary, and the graph of the cumulative hazard function are generated. The user can, through a

numericInput, select a specific time and obtain a print of the results of it. The option to download the generated

graphics is given by clicking on the respective downloadsButtons with the possibility to choose the type of file, png

or pdf.

Up to section 9 of this chapter we use data from a trial conducted by the German Breast Cancer Study Group

(GBSG) in which a total of 720 women with primary node positive breast cancer is recruited in the period between July

1984 and December 1989. It retains the 686 patients with complete right censored data for the prognostic variables.

Breast cancer is one of the most commonly occurring cancers in women. Fortunately, a large percentage of women

survive their cancer for 1 year or more after diagnosis, but this prognosis depends on many things, including lifestyle

factors, hormone levels, and some medical conditions. The database, available as part of the R survival package

contains 11 variables. The rfstime and status variables are the most relevant for survival analysis. The rfstime

indicates recurrence-free survival time, days to first recurrence, death, or last follow-up. Status indicates whether

the patient is alive without recurrence (status=0) or if relapse or death has occurred (status=1). The remaining

variables in the database are patient identifier, age in years, menopausal status, tumor size in millimeters, tumor

grade, number of positive lymph nodes, progesterone receptors (fmol/ l), estrogen receptors (fmol/l), presence or

absence of hormone therapy.
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a) Survival curve by the Kaplan-Meier estimator

Figure 8.10 shows the Kaplan–Meier curve of a study describing survivorship.

Figure 8.10: Kaplan-Meier estimator for GBSG dataset.

Table 8.1: Survfit for gbsg

Call: survfit(formula = Surv(rfstime, status) ∼1, data = gbsg)

n events median 0.95LCL 0.95UCL

686 299 1807 1587 2030

In table 8.1 is the print of the survfit function. There are 686 observations and 299 events. The median survival

is 1807 days, with the limits of the confidence interval being 1587 and 2030.

b) Comparison of survival curves

Here, the user only needs to select the desired covariate and click on the button that allows executing the

analysis. In the mainPanel are the following reactive outputs: graph with survival curves, Log-rank and Gehan-

Wilcoxon tests (only for right censored data), print and summary of the Kaplan-Meier estimator for the different

curves. Here, one can also download the generated graphic in PNG or PDF format.

In the German Breast Cancer data (gbsg database), there are two variables that show statistically significant

differences between their levels; the hormone variable and the grade variable. The graphical differences are observed

in Figure 8.11 and Figure 8.12. In both cases, the log-rank test obtained a probability value lower than 5%.
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Figure 8.11: Survival Curves by Kaplan-Meier estimator as a function of the hormon variable.

Table 8.2: Survfit for hormon variable

Call: survfit(formula = Surv(rfstime, status) ∼gbsg$hormon,

data = gbsg)

n events median 0.95LCL 0.95UCL

hormon=0 440 205 1528 1296 1814

hormon=1 246 94 2018 1918 NA

Table 8.2 shows the print obtained when using the survfit function with the hormon variable as a covariate. For

the group with no therapy (hormone value 0), there are 440 observations and 205 events. The median survival

time is 1528 days, with the limits of the confidence interval given by 1296 and 1814. For the group with therapy

(hormone value 1), there are 246 observations and 94 events. The median survival time is 2018 days, with the

lower limit of the confidence interval given as 1918 days.
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Figure 8.12: Survival Curves by Kaplan-Meier estimator as a function of the grade variable

Table 8.3: Survfit for grade variable

Call: survfit(formula = Surv(rfstime, status) ∼grade,

data = gbsg)

n events median 0.95LCL 0.95UCL

grade=1 81 18 NA 1990 NA

grade=2 444 202 1730 1493 2030

grade=3 161 79 1337 960 NA

Table 8.3 shows the print obtained when using the survfit function with the grade variable as a covariate. For

the group with grade value 1, there are 81 observations and 18 events. The lower limit of the confidence interval

is given by 1990 days. For the group with grade value 2, there are 444 observations and 202 events. The median

survival time is 1730 days, with the limits of the confidence interval given by 1493 and 2030 days. For the group

with grade value 3, there are 161 observations and 79 events, the median survival time is 1337 days, with the lower

limit of the confidence interval given by 960 days.

8.3.2 Clusters of survival curves

In cases where the covariate used to compare survival curves has more than two levels, it is possible to try to

find clusters of curves. However, this methodology is only possible for databases with the right censoring and with

a binary event variable.

The mainPanel displays the summary and the graph with the identified clusters. The generated graph can be

transferred in PNG and PDF format.

For this subsection the nodes variable is transformed into qualitative and node values greater than 13 are all

stored with 14, so level 14 represents more than 13 nodes.
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Figure 8.13: Clusters of survival curves

Three clusters are observed, represented by the green, blue, and orange colors. The first cluster in green is

made up of three curves, in which individuals have 1, 2, or 3 nodes. The second in blue is made up of five curves,

which represent individuals with 4, 5, 6, 7, and 9 nodes. The last orange cluster contains six individual curves, with

8, 10, 11, 12, 13 and more than 13 nodes.

8.3.3 Cox PH Model

In the Cox PH Model menu option contained in the sidebarPanel there is a checkboxGroupInput where the user

can select the variables to be included in the model.

For right censored data in mainPanel, the print and graphs of the proportional hazards test of the model are

reactively generated. It is possible to choose the combination of covariates that provides a better model since the

Akaike Information Criterion (AIC) is also generated in the printout of the model.

For interval censoring, in mainPanel, the print of the model is generated.

Table 8.4 show the output for the Cox model with the lowest AIC, hence the best model according to the AKaike’s

Information Criterion. The probability value (p-value) for the likelihood ratio test (LRT) show that the model is clearly

better than the null model. The LRT evaluate the null hypothesis that all of the betas (β) are 0.

The variable nodes have a hazard ratio higher than 1 (HR = 1.0557), showing that for each additional nodule the

hazard of recurrence or death increases by 5.5%. The p-value for pgr is 7.24e-05, with HR = 0.9977, showing that

for each additional unit of progesterone receptors, the hazard of recurrence or death decreases by about 0.23%. The

p-value for the variable hormone with hormone therapy (hormon = 1) is 0.01084, with HR = 0.7259, indicating a

decrease of 28% in the hazard of recurrence or death for patients with hormone therapy. The level 2 of variable grade

has a p-value of 0.00873 with a hazard ratio higher than 1 (HR = 1.92), indicating that the hazard of recurrence or
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Table 8.4: Cox Proporcional Hazard model for gbsg dataset

Call:

coxph(formula = Surv(rfstime, status) ∼factor(grade) + nodes +

pgr + factor(hormon), data = gbsg)

coef exp(coef) se(coef) z p

factor(grade)2 0.6523706 1.9200872 0.2487603 2.622 0.00873

factor(grade)3 0.8083537 2.2442103 0.2677781 3.019 0.00254

nodes 0.0542471 1.0557454 0.0067762 8.006 1.19e-15

pgr -0.0022086 0.9977939 0.0005566 -3.968 7.24e-05

factor(hormon)1 -0.3202792 0.7259463 0.1257023 -2.548 0.01084

Likelihood ratio test=99.16 on 5 df, p=<2.2e-16

n= 686, number of events= 299

AIC value of the model:

[1] 3487.045

death increases 92% compared to those with grade = 1. The level 3 of variable grade has a p-value of 0.00254 with

HR = 2.24, indicating that the hazard of recurrence or death increases by 124% compared to those with grade = 1,

and 32% compared to those with grade = 2.

Looking at the Figure 8.14 the p-value for individual Schoenfeld test on the covariates grade is (0.0049) and

pgr is (0.0398), so the null hypothesis, the assumption of proportional hazards for these covariates, is rejected.

Graphically, it is observed that the residuals of these covariates are not parallel around 0. The global Schoenfeld

test (p-value = 0.01418) rejects the proportional hazards assumption for this model.

Figure 8.14: Graphical Test of Proportional Hazards

8.3.4 AFT Model

In the sidebarPanel of the AFT Model interface there are two checkboxGroupInputs, one to select the distribution

to be used and the other to choose the covariates.

For right-censored data, the print of the parametric model is displayed on the mainPanel. It is possible to choose
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the combination of covariates that provides a better model since the Akaike Information Criterion (AIC) is also given

in the print of the model.

For interval censoring, the model print is generated in the mainPanel.

The accelerated failure time model can be considered as an alternative model to the cox model when the

proportional hazards assumption does not hold.

Table 8.5: Accelerated failure time model for gbsg dataset

Call:

survreg(formula = Surv(rfstime, status) ∼factor(grade) + nodes +

pgr + factor(hormon), data = gbsg, dist = ”lognormal”)

Value Std. Error z p

(Intercept) 7.905705 0.174548 45.29 <2e-16

factor(grade)2 -0.499856 0.166663 -3.00 0.00271

factor(grade)3 -0.663241 0.184325 -3.60 0.00032

nodes -0.054527 0.007690 -7.09 1.3e-12

pgr 0.001450 0.000352 4.12 3.7e-05

factor(hormon)1 0.309932 0.094693 3.27 0.00106

Log(scale) -0.011888 0.044381 -0.27 0.78880

Scale= 0.988

Log Normal distribution

Loglik(model)= -2562.4 Loglik(intercept only)= -2618.9

Chisq= 112.97 on 5 degrees of freedom, p= 9.6e-23

Number of Newton-Raphson Iterations: 4

n= 686

AIC value of the model:

[1] 5138.796

Table 8.6: AFT interpretation

(Intercept) grade2 grade3 nodes pgr hormon1

2712.7143 0.6066 0.5151 0.9469 1.001 1.3633

Table 8.5 show the results of the accelerated failure time model for the German breast cancer data. The AIC

criterion was used to choose the covariates as well as the distribution of the model (log-normal). The p-value for the

likelihood ratio test is significant, indicating that the model is significant better than the null model.

The level 2 from variable grade shorten survival time by exp(−0.499856) = 0.6066 times. The level 3 from

variable grade shorten shorten survival time by exp(−0.6632) = 0.5151 times. 1 unit change in nodes shorten

survival time by exp(0.0545) = 0.9469. 1 unit change in pgr extends survival time by exp(0.0014) = 1.001

times. The level 1 from variable hormon extends survival time by exp(0.3099) = 1.3633 times.

8.3.5 Regression Trees

To perform regression trees, in the sidebarPanel, there is a checkboxgroupInput where the user chooses the

desired covariates. To perform the analysis just click on the actionButton. The mainPanel generates the decision
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tree graphic, the print and summary of the Kaplan-Meier estimator for each node.

Figure 8.15: Regression tree for GBSG dataset

The decision tree for regression in the Figure 8.15 uses the variables nodes, size and pgr, resulting in 6 branches

at the end.

The tree starts by dividing into 2, individuals that have less than 4 nodes (the ones with the lowest hazard of

recurrence or death) and those that have 4 or more nodes.

Starting with individuals with less than 4 nodes, those with less than 15 millimeters of tumor have a mean

hazard of recurrence or death 86% lower than all others, with 2 events being observed in these conditions (where

= 3). When the tumor is 15 millimeters or more there is one more division, (where = 5) for individuals with 90 or

more progesterone receptors where the mean hazard of recurrence or death is 55% lower compared to all others

containing 28 events and (where = 6) for less than 90 progesterone receptors has a 13% lower mean hazard of

recurrence or death than all others containing 89 events.

For individuals with 4 or more nodes those with 21 or more progesterone receptors (where = 8) have a 10%

higher mean hazard of recurrence or death than all others containing 77 events. When there are less than 21

progesterone receptors there is another division, (where = 10) for individuals with less than 10 nodes with a 100%

higher mean hazard of recurrence or death than all or others with 55 events and (where = 11) for individuals with 10

or more nodes, where there are 48 events with a 270% higher mean hazard of recurrence or death than all others.

In Table 8.7 is the print of the Kaplan-Meier estimator for each of the 6 branches of the decision tree. As already

evidenced by the previous decision tree, nodes with (where = 3, 5 and 6) have a lower hazard of recurrence or death,

as such, their median survival is higher than the other nodes.

In the Figure 8.16 is the plot of survival curves by the Kaplan-Meier estimator for each of the 6 branches of the

decision tree.
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Table 8.7: Print of survfit with different branches

Call: survfit(formula = Surv(rfstime, status) ∼fit1$where, data = gbsg)

n events median 0.95LCL 0.95UCL

fit1$where=3 33 2 NA NA NA

fit1$where=5 122 28 NA NA NA

fit1$where=6 221 89 1989 1641 NA

fit1$where=8 166 77 1701 1174 2018

fit1$where=10 87 55 742 577 1366

fit1$where=11 57 48 500 426 747

Figure 8.16: Kaplan-Meier for different branches of the regression tree in Figure 8.15

8.3.6 Classification Trees

Here, in the sidebarPanel, there is a checkboxgroupInput where the user chooses the desired covariates. To

perform the analysis just click on the actionButton. The mainPanel generates the decision tree graphic and the

model accuracy.

The best model is chosen taking into account pruning, which compares accuracy vs different values of complexity

parameter. In the Figure 8.17 is the pruning chart. The best model has a complexity parameter of 0.02 and an

accuracy of 73%.
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Figure 8.17: Pruning of classification trees for GBSG dataset

The decision tree for classification taking into account pruning is represented in Figure 8.18 and uses only the

variable rfstime to predict one of two states of individuals, (0 = alive without recurrence) or (1 = recurrence or death).

According to the model, individuals with rfstime greater than or equal to 892 days remained alive without

recurrence with a probalibility of 75% (236/315) . Individuals with rfstime less than 85 days remained alive without

recurrence with a probalibility of 100% (10/10). Individuals with rfstime between 85 and 892 days had recurrence

or death with a probalibility of 72% (161/225).

The model accuracy is obtained by comparing the model predictions of the training data with the test data, in

the calculated model it takes the value of 74%.

Figure 8.18: Classification tree for GBSG dataset
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8.3.7 Random Forests

In the sidebarPanel of this interface, the user selects the covariates to be included in the model and then clicks

on the action button to perform the analysis. The model graph, the prediction error and the importance of the

variables are generated in the mainPanel.

Figure 8.19: 20 survival curves of different decision trees for GBSG dataset

In the Figure 8.19, 20 survival curves of different decision trees are represented. In black is the curve of the

average probability of survival over time with a median time to relapse or death of 1061 days and median survival

of 66%.

The prediction error of this model is 0.32.

Table 8.8: Importance of variables for the GBSG database random forest model

importance

nodes 0.0444

pgr 0.0144

hormon 0.0101

age 0.0099

grade 0.0087

er 0.0051

meno 0.0015

size 0.0007

In Table 8.8 the importance of each variable in the model is represented. The nodes variable is the most

important, followed by pgr, hormon, age and grade. The remaining variables er, meno and size do not seem to have

great relevance for the model.
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8.3.8 Cumulative incidence

After having imported his data or chosen an example, the user selects, through two selectInputs, the variables

referring to the time and the event of interest. It is also necessary to choose behind a numericInput the level of the

variable of the event of interest that represents the censorship.

After the selected inputs, the graph and the print of the estimates and variances of the cumulative incidence

are automatically generated. It is possible to download the graphic by clicking on the downloadButton and using the

radioButtons to choose the file type PNG or PDF.

The dataset Melanoma will be used to illustrate a competitive risk analysis. The dataset consists of 205

measurements made on patients with malignant melanoma and is available as part of the boot R package. The

variables present in the database are time (survival time in days), status (1 died from melanoma, 2 alive, 3 dead

from other causes), sex (1 = male, 0 = female), age (in years), year of operation, thickness (tumor thickness in

mm) and ulcer (1 = presence, 0 = absence).

Table 8.9: Estimates e variances for cumulative incidence

Estimates

1000 2000 3000 4000 5000

1 0.1274571 0.2301396 0.3096201 0.3387175 0.3387175

3 0.0342670 0.0504564 0.0581114 0.1059471 0.1059471

Variances

1000 2000 3000 4000 5000

1 0.0005481 0.0009001 0.0013789 0.0016907 0.0016907

3 0.0001628 0.0002451 0.0002998 0.0010401 0.0010401

Looking at the Figure 8.20 and Table 8.9 of the cumulative incidence functions, it is easy to see that at all times,

the probability of a patient dying from melanoma is greater than the probability of dying from other causes. The

variance of the cumulative incidence function for individuals who died of melanoma is always greater at all times

than for individuals who died of other causes.
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Figure 8.20: Cumulative incidence

8.3.9 Cumulative incidence between groups

In this menu, in the sidebarPanel, the user, through a selectInput, selects the desired covariate. The graphs,

tests, estimates and variances of the cumulative incidence are automatically generated. It is also possible through

a downloadButton to download the generated graphics, choosing one of the two radioButtons, with the options of

the type of file to be transferred (png or pdf).

a) Sex variable

Figure 8.21: Cumulative incidence between groups (sex variable)
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From Figure 8.21 we see that for death from other causes (in blue, status = 3), the cumulative incidence curves

for the two genders are not very different. In Table 8.10 the p-value is 0.3553, so there is no statistically significant

evidence to reject the equality of the curves, as such, it is concluded that death from other causes is not influenced

by the individual’s gender.

When the cumulative incidence functions of the sex variable are compared to death from melanoma (in red,

status = 1), you can already see some difference looking at Figure 8.21. In the table 8.10 is the p-value of the test,

which reveals statistical evidence to reject the equality of cumulative risk functions (0.0159), so it is concluded that

the individual’s gender influences death from melanoma. For all times, estimates of the probability of death from

melanoma are always higher for men (sex = 1) than for women (sex = 0).

Table 8.10: Tests, estimates e variances for cumulative incidence between groups (sex variable)

Tests

stat pv df

1 5.8140209 0.0158989 1

3 0.8543656 0.3553203 1

Estimates

1000 2000 3000 4000 5000

0 1 0.0873015 0.1807759 0.2356516 0.2842449 0.2842449

1 1 0.1923717 0.3100982 0.4245358 0.4245358 NA

0 3 0.0317460 0.0398351 0.0522064 0.0853838 0.0853838

1 3 0.0381412 0.0669394 0.0669394 0.1347427 NA

Variances

1000 2000 3000 4000 5000

0 1 0.0006378 0.0012450 0.0018102 0.0027555 0.0027555

1 1 0.0020223 0.0028196 0.0042695 0.0042695 NA

0 3 0.0002459 0.0003073 0.0004529 0.0015284 0.0015284

1 3 0.0004727 0.0008614 0.0008614 0.0029506 NA
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b) Ulcer variable

Figure 8.22: Cumulative incidence between groups (ulcer variable)

From Figure 8.22 we see that for death from other causes (in blue, status = 3), the cumulative incidence curves

for the variable ulcer are not very different. In Table 8.11 the p-value is 6.903913e-01, so there is no statistically

significant evidence to reject the equality of the curves, as such, it is concluded that death from other causes is not

influenced by the presence or absence of ulcer.

When the cumulative incidence functions of the ulcer variable are compared to death from melanoma (in red,

status = 1), you can already see some difference looking at the Figure 8.22. In Table 8.11 is the proof value of the

test, which reveals the statistical evidence to reject the equality of cumulative risk functions (3.207240e-07), so it is

concluded that the presence or absence of ulcer influences death from melanoma. For all times, estimates of the

probability of death from melanoma are always higher for presence of ulcer (ulcer = 1) than for absence of ulcer

(ulcer = 0).

8.3.10 Competing risk regression

In the competing risks regression menu, the user, through a selectInput, selects the desire approach,

Subdistribution hazards or Cause-specific hazards.

a) Subdistribution hazard approach

Here, through a checkboxGroupInput, the user selects the covariates to be included in the model and chooses,

through a numericInput, the level of the variable of the event of interest that represents the censorship. After the

chosen inputs, the model is automatically generated in the mainPanel.
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Table 8.11: Tests, estimates e variances for cumulative incidence between groups (ulcer variable)

Tests

stat pv df

1 26.120719 3.207240e-07 1

3 0.158662 6.903913e-01 1

Estimates

1000 2000 3000 4000 5000

0 1 0.0350904 0.1032227 0.1816540 0.1816540 0.1816541

1 1 0.2444444 0.3897274 0.4697234 0.5330696 NA

0 3 0.0174682 0.0262408 0.0402817 0.1296081 0.1296081

1 3 0.0555555 0.0798143 0.0798143 0.0798143 NA

Variances

1000 2000 3000 4000 5000

0 1 0.0002997 0.0008952 0.0019180 0.0019180 0.0019180

1 1 0.0020796 0.0026929 0.0035308 0.0046320 NA

0 3 0.0001512 0.0002255 0.0004165 0.0029626 0.0029626

1 3 0.0005902 0.0008546 0.0008546 0.0008546 NA

For people who have not yet experienced such an event.

Death from melanoma:

From the exponentials of the coefficients in Table 8.12 it is known that for every additional millimeter in tumor

thickness, the hazard of dying from melanoma increases by 10%. Individuals with ulcers have a 223% higher hazard

of dying from melanoma than individuals without ulcers.

Table 8.12: Subdistribution hazard for dead from melanoma

convergence: TRUE

coefficients:

thickness ulcer1

0.09966 1.17300

standard errors:

0.03579 0.30340

two-sided p-values:

thickness ulcer1

0.00540 0.00011

Death from other causes:

From the exponentials of the coefficients in Table 8.13 it is known that for each additional year of age, the

hazard of dying from other causes increases by 6%.

b) Cause-specific hazards

Here, through a checkboxGroupInput, the user selects the covariates to be included in the model and chooses,

through a numericInput, the level of the variable of the event of interest. After the chosen inputs, the model is

automatically generated in the mainPanel.
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Table 8.13: Subdistribution hazard for dead from other cause

convergence: TRUE

coefficients:

age

0.05868

standard errors:

0.01357

two-sided p-values:

age

1.5e-05

For individuals that are event free, didn’t have any of the events

Death from melanoma:

Table 8.14: Cause-specific hazards for dead from melanoma

Call:

coxph(formula = formula, data = Melanoma)

coef exp(coef) se(coef) z p

thickness 0.1140 1.1208 0.0361 3.158 0.00159

ulcer1 1.2180 3.3805 0.3091 3.941 8.12e-05

Likelihood ratio test=36.44 on 2 df, p=1.224e-08

n= 205, number of events= 57

From Table 8.14 it can be seen that for every additional millimeter in tumor thickness, the hazard of dying from

melanoma increases by 12%. Individuals with ulcers have a 238% higher hazard of dying from melanoma than

individuals without ulcers.

Death from other causes:

From Table 8.15 it can be seen that for each additional year of age, the hazard of dying from other causes

increases by 8%.

Table 8.15: Cause-specific hazards for dead from other cause

Call:

coxph(formula = formula, data = Melanoma)

coef exp(coef) se(coef) z p

age 0.07822 1.08136 0.02151 3.637 0.000276

Likelihood ratio test=15.77 on 1 df, p=7.153e-05

n= 205, number of events= 14

8.3.11 Case Study Dataset IR_diabetes

In this section it is intended to show the operation and application for the analysis of interval censored data. We

will use data from patients with Type 1 (insulin-dependent) diabetes. The data set is available as part of the icenReg

R package. The data set contains interval censored survival time for the time from the onset of diabetes to diabetic
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nephropathy. Accordingly, variables left and right correspond to the left and right sides of the observation interval.

The gender of the subject is also available. This data set will be used to illustrate the application of the survival

methods to interval censored data.

a) Survival curves by the Turnbul estimator

Figure 8.23: Kaplan-Meier estimator for the IR_diabetes database

Table 8.16: Summary of the Kaplan-Meier estimator for the IR_diabetes database

Call: survfit(formula = Surv(left, right, type = ”interval2”) ∼ 1, data = IR_diabetes)

n events median 0.95LCL 0.95UCL

731 731 16 15 17

There are 731 observations and 731 events. The median survival time is 16 days, with the confidence interval

limits being 15 and 17 days.

Survival curves by gender

Figure 8.24: Survival curves of the Kaplan-Meier estimator as a function of gender for the IR_diabetes database
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Table 8.17: Summary of the Kaplan-Meier estimator for survival curves as a function of sex for the IR_diabetes

database

Call: survfit(formula = Surv(left, right, type = ”interval2”) ∼gender,

data = IR_diabetes)

n events median 0.95LCL 0.95UCL

gender=female 277 277 15 15 16

gender=male 454 454 17 16 18

For gender female there are 227 observations and 227 events. The median survival time is 15 days, with the

confidence interval limits being 15 and 16 days. For gender male there are 454 observations and 454 events. The

median survival time is 17 days, with the confidence interval limits being 16 and 18 days.

b) AFT Model

The accelerated failure time model can be considered as an alternative model to the cox model when the

proportional hazards assumption does not hold.

Table 8.18: Parametric model for IR_diabetes

Call: ic_par(formula = cbind(left, right) ∼gender, data = IR_diabetes,

dist = ”loglogistic”)

Estimate Exp(Est) Std.Error z-value p

log_alpha 2.7730 16.0000 0.01379 201.000 0.0000

log_beta 1.5770 4.8420 0.03294 47.890 0.0000

gendermale -0.1459 0.8643 0.07917 -1.843 0.0654

final llk -2005.908

Iterations 4

As show in Table 8.18 it is estimated that the risk of diabetic nephropathy at any time will be approximately 14%

times lower for men than for women.
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Chapter 9

Discussion and Future Work

The developed application allows users to analyze survival data. For all the different methodologies, there are

example databases contained in the application, but the main objective is for users to import their data and carry

out their respective analyses.

The survapp can be found on Shinyapps.io, an online service for hosting Shiny apps in the cloud. With a simple

registration associating an email address, it is possible to access the application survapp. The initial objectives for

the application were exceeded. However, in this type of application, there are always improvements to be made. A

methodology in multi-state models, namely the illness-death model, is currently being implemented in the application.
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