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Abstract

We consider the problem of scheduling a number of jobs on a number of unrelated

parallel machines in order to minimize the makespan. We develop three heuristic

approaches, i.e., a genetic algorithm, a tabu search algorithm and a hybridization of

these heuristics with a truncated branch-and-bound procedure. This hybridization is

made in order to accelerate the search process to near-optimal solutions. The branch-

and-bound procedure will check whether the solutions obtained by the meta-heuristics

can be scheduled within a tight upper bound. We compare the performances of these

heuristics on a standard data set available in the literature. Moreover, the influence of

the different heuristic parameters is examined as well. The computational experiments

reveal that the hybrid heuristics are able to compete with the best known results from

the literature.

1 Introduction

The parallel machine scheduling problem consists of scheduling a set of jobs N on a set

of parallel machines M without interruption. Each job j (index j = 1, ..., n) becomes

available for processing at time zero and has to be processed by exactly one out of the m

(index i = 1, ..., m) parallel machines. Every machine can process only one job at a time
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and once a job is started on a certain machine, no preemption is permitted. In general,

various classes of parallel machine scheduling problems have been defined to minimize

the maximal completion time (Ci) of the machines or the makespan (Cmax = maxi Ci),

depending on how the processing times of the jobs are defined. In the case where the

processing time pj of a job j is independent of the machine, the problem is known as the

identical parallel machine scheduling problem. The problem can be represented by P ||Cmax

using the classification scheme of Graham et al. (1979). In the case where each machine

i has a different speed si for processing the jobs, it is referred to as the uniform parallel

machine scheduling problem (U ||Cmax) and the processing time of a job j on machine i is

derived as follows: pij = pj/si. When the processing time pij depends on the machine on

which the job j is scheduled, but no relationship exists between the machine speeds, the

problem is known as the unrelated parallel machine scheduling problem (R||Cmax). In this

paper, we consider the unrelated parallel machines scheduling (UPMS) problem with the

objective of minimizing the maximal completion time of the machines, which is known to

be NP-hard (Garey and Johnson, 1979).

The literature on (identical) parallel machine scheduling is very extended. However,

the unrelated parallel machine scheduling problem has been much less studied. In the

following paragraphs, an overview is given of the most relevant papers that focus on the

unrelated parallel machine problem with a makespan objective. With respect to exact

approaches, we mention the work of van de Velde (1993) and Martello et al. (1997). van de

Velde (1993) proposes an exact algorithm using a branch and bound technique and an

iterated local search meta-heuristic, which are both based on a dual approach. The paper of

Martello et al. (1997) discusses effective lower bounds for the problem based on Lagrangian

relaxation and presents some approximate algorithms. Some efficient heuristic approaches

are discussed in Glass et al. (1994), Piersma and Van Dijk (1996), Srivastava (1998),

Sourd (2001), Mokotoff and Chrétienne (2002), Mokotoff and Jimeno (2002), Ghirardi

and Potts (2005), Monien and Woclaw (2006), Guo et al. (2007), Fanjul-Peyro and Ruiz

(2010), Fanjul-Peyro and Ruiz (2011) and Lin et al. (2011). Glass et al. (1994) perform

a comparison between a genetic algorithm, a simulated annealing approach and a tabu

search algorithm. Another effective tabu search algorithm is presented in the paper of

Srivastava (1998). Guo et al. (2007) develop hybrid heuristic methods based on simulated

annealing, tabu search and squeaky wheel optimization. Piersma and Van Dijk (1996)

propose a local search technique with an efficient neighborhood search. Similarly, Sourd

(2001) presents two heuristic algorithms based on a large neighborhood search. Monien and
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Woclaw (2006) present an experimental study on the unsplittable Truemper algorithm and

Lin et al. (2011) discuss a two-phase scheduling heuristic with two improvement methods.

Mokotoff and Chrétienne (2002) develop a cutting plane algorithm that deals with the

polyhedral structure of this UPMS problem. This algorithm is further refined in Mokotoff

and Jimeno (2002), where heuristic algorithms based on partial enumeration are presented.

This approach was considered to be the most effective approach for R||Cmax, together with

the recovering beam search of Ghirardi and Potts (2005). However, Fanjul-Peyro and Ruiz

(2010) present a set of iterated greedy local search based heuristics that outperform the

aforementioned state-of-the-art procedures. In addition, Fanjul-Peyro and Ruiz (2011)

propose meta-heuristics based on a size reduction of the original job-machine assignment

problem with which they challenge the well-performing methods of Fanjul-Peyro and Ruiz

(2010). They prove that they can obtain better results by running their algorithms in

parallel mode having several physical cores or processors available and keeping the best

result at the end.

The contribution of this paper can be summarized as follows. First, we develop three

meta-heuristic approaches to solve the UPMS problem. These meta-heuristics are im-

proved by the inclusion of a local search algorithm that takes problem specific information

into account. Second, we present a hybridization of these meta-heuristics with a novel

truncated branch-and-bound procedure in order to accelerate the search process to near-

optimal solutions. As such, the meta-heuristics are guided in their search process to skip

non-promising areas of the solution space. Third, we compare the performances of these

heuristics on a standard data set available in the literature. We carefully examine the

influence of the different heuristic parameters, such as the backtrack limit and the upper

bound strategy, to select the best combination for the hybrid algorithms and check the

influence of the problem parameters on the performance of these hybrid meta-heuristics.

The outline of this paper can be summarized as follows. Section 2 gives a brief overview

of the stand-alone genetic algorithm, tabu search procedure and the local improvement

technique developed for the problem under study. Section 3 describes the principles and the

implementation of the truncated branch-and-bound procedure. In Section 4, the computa-

tional experiments are discussed, which show the promising results of the hybrid heuristics

in solving the unrelated parallel machine scheduling problem. Section 5 summarizes the

main conclusions and contributions.
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2 Meta-heuristic solution procedures

2.1 Solution representation

A commonly used representation technique for the parallel machine scheduling problem

is described in Cheng and Gen (1997) and Mendes et al. (2002). This representation

consists of a permutation encoding with job symbols and partitioning symbols, where

every chromosome is a permutation of the n jobs in which each job appears exactly once.

m − 1 partitioning symbols (*) are used to represent the assignment of the jobs to the

different machines. As such, the solutions are represented by a string with size n + m− 1.

To illustrate this, we give an example of an unrelated parallel machine scheduling

problem with 6 jobs and 3 machines in Table 1. The table shows the processing times of

jobs on the different machines. A possible solution for this problem can be represented by

the string: 4 5 * 1 3 * 2 6. According to this solution, machine 1 will process jobs

4 and 5 in that sequence, machine 2 will execute jobs 1 and 3 and machine 3 will process

jobs 2 and 6, resulting in a makespan value of 9, which is equal to the maximal completion

time obtained by machine 3 (i.e., p32 + p36 = 5 + 4 = 9).

Table 1: Example of an UPMS instance with 10 jobs and 3 machines

Machines

Jobs i=1 i=2 i=3

j=1 9 3 6

j=2 7 8 5

j=3 6 5 10

j=4 3 4 7

j=5 2 5 6

j=6 6 7 4

Processing times

2.2 Tabu Search algorithm

2.2.1 General

The tabu search algorithm (TS), introduced by Glover (Glover and Laguna, 1997), is a

well-known meta-heuristic for finding near optimal solutions in combinatorial optimization

problems. The TS can be seen as a hill-climbing technique that tries to prevent local opti-

mality by allowing non-improving moves. The principles of the TS can be briefly described
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as follows (Gendreau and Potvin, 2010). The algorithm starts with a feasible initial solu-

tion and tries to iteratively improve the solution by examining a set of candidate moves in

the neighborhood of that solution. The neighborhood contains all feasible solutions that

can be obtained from the current solution by executing a simple move. The neighboring

solutions are evaluated based on their objective function value and the current solution

moves to its best neighboring solution, even if it results in a worse objective value. The

best move is put on the tabu list, so that it cannot be made undone for some number

of iterations in order to avoid a cyclic search. The number of iterations that a move is

set tabu is determined by the size of the tabu list. The size of the list must be large

enough to prevent cycling and to emphasize exploration and small enough to ensure the

intensification of the search. Furthermore, an aspiration criterion is defined to deal with

the situation where the moves are tabu. A commonly used aspiration criterion allows a

tabu move when it results in a solution with an objective value better than the current

best-known solution. The algorithm stops when a certain stopping criterion is satisfied and

the best found solution so far is returned as the final solution.

2.2.2 Procedure

Our TS algorithm starts with the initial solution obtained by the shortest processing time

(SPT) rule. With this rule, every job is assigned to the machine on which it has the smallest

processing time. The initial solution is then inserted in the tabu search procedure. The

tabu search makes use of the general pairwise swap (GPS) neighborhood (Laguna et al.,

1991), in which every job and/or partitioning symbol is swapped with every other job

and/or partitioning symbol. Swapping two jobs that belong to different machines results

in different job-machine assignments for both jobs, swapping a job with a partitioning

symbol can results in a completely different schedule. For example, if we swap job symbol

5 with job symbol 2 in the solution 5 3 * 2 4 * 1 6 described above, this results

in job 5 scheduled on machine 2 and job 2 scheduled on machine 1. However, if we swap

job symbol 5 with the first partitioning symbol in the sequence, this leads to the solution

where no jobs are scheduled on machine 1 and 4 jobs scheduled on machine 2 ( i.e., * 3

5 2 4 * 1 6 ). Every swap is evaluated to determine its influence on the machines’

completion times. The best possible swap that results in the smallest makespan value is

then executed, unless the swap is prohibited by the tabu list. However, if a tabu swap

results in a makespan that is less than the overall minimum obtained so far, the swap is

accepted nevertheless (aspiration criterion). The tabu list is then updated with the best
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swap. The tabu list is a matrix with dimension of (n+m−1)×(n+m−1). The value in the

tabu list matrix is set equal to the current iteration plus the tabu list size, which is equal

to the number of next iterations the (reverse) swap will be tabu. After the execution of the

best swap, the current solution is further improved by a local search algorithm, which will

try to improve the solution by moving jobs to other machines. Because of the importance

of the local improvement technique, we discuss it in more detail in Section 2.5. The new

solution is evaluated and the search process continues with this newly obtained solution.

The tabu search stops after a specified number of generated schedules and returns the best

solution found.

Because of the GPS neighborhood, the maximum number of possible moves is equal to∑(n+m−1)−1
i=1 ((n + m − 1) − i) and thus the number of neighboring solutions will increase

as the number of jobs increases. Due to this large neighborhood size and the resulting

computational burden, a modification can be be made to restrict the neighborhood as much

as possible without compromising the efficiency of the TS algorithm (Shin et al., 2002).

For that reason, we have examined a number of ways to restrict the general pairwise swap

neighborhood in a conditional manner. The first restricted neighborhood (NH) requires

that the jobs to be swapped belong to different machines. The second NH swaps jobs

on different machines if at least one of them has a different processing time on the other

machine. The third NH only considers swaps of jobs if they result in an improvement of

the sum of the processing times. The fourth NH restricts the neighborhood by requiring

that one of the corresponding machines is the critical machine (i.e., machine with highest

completion time), but relaxes the requirement of the improvement of the third NH. The

fifth NH is a combination of NH3 and NHY4 and restricts the neighborhood by requiring

an improvement in the sum of the processing times and that one of the machines is critical.

The selection of the best neighbourhood restriction is done on a small dataset and will be

discussed in Section 4.2.2.

2.3 Genetic algorithm

2.3.1 General

The genetic algorithm (GA) is a population-based meta-heuristic based on the principles

of genetics and natural selection. The method was initially developed by John Holland in

the 1970s (Holland, 1975), who was inspired by Darwin’s evolution theory “the survival

of the fittest”. A GA starts with a population of (randomly) generated solutions, which
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is improved iteratively. A single iteration is referred to as a generation. The population

of one generation consists of individuals surviving from the previous generation plus the

newly generated solutions, while keeping the population size constant. Each individual

of the population is characterized by its fitness value. This fitness value is related to the

associated value of the objective function. Better solutions of the population are selected

to serve as parents in a recombination phase. The recombination phase uses a crossover

operator to combine the characteristics of the parents in the creation of new solutions and a

mutation operator to alter these new solutions to ensure an extensive search of the solution

space. The obtained solutions enter the population of the next generation replacing the

worst solutions of the current generation. This new population is evaluated and recombined

again until a certain stopping criterion is met.

2.3.2 Procedure

In contrast to the tabu search, the GA starts with a population of randomly generated

solutions. However, we seed this population with the SPT solution in order to improve the

quality of the future solutions and to speed up the search process (Reeves, 2003). In order

to determine the best combination of reproduction operators, such as selection, crossover

and mutation operators, we have performed a full factorial design where we tested every

possible combination of 3 selection methods (i.e., tournament selection, roulette wheel

selection and ranking selection), 5 crossover operators (i.e., partially mapped crossover,

order crossover, position based crossover, order based crossover and cycle crossover) and 3

mutation operators (i.e., swap, insertion and inversion mutation), resulting in 3× 5× 3 =

45 possible combinations.

Based on the results of this computational experiment, we make use of the tournament

selection method, where we compare pairs of solutions and select the best one as being the

parent solution (based on their makespan values). The selected solutions are then recom-

bined by the order crossover (OX) operator, which is executed with a certain probability,

the crossover rate. In the OX, two crossover points are selected at random from the first

parent solution and the job and/or partioning symbols between these positions are copied

to the same positions of new solution. Those symbols are deleted from the other parent

solution and the remaining symbols are inserted into the new solution according to the

order they appear in the second parent solution (Kellegöz et al., 2008). In order to ensure

some diversity in the population, these solutions are then mutated with the swap mutation,

where a randomly chosen job and/or partitioning symbol is swapped with another random
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symbol in the sequence. Mutation is also executed with a certain, rather low, probability,

the mutation rate. Before the new solutions are introduced into the population, they are

improved by the best local search described in Section 2.5. The solutions are evaluated

and inserted back in the population by using an incremental replacement approach. The

new (unique) solutions will replace the solutions with the worst makespan to ensure that

the best solutions will survive to the next generation. The GA is stopped when a limit on

the examined schedules is exceeded.

2.4 Sampling heuristic

In order to validate the contribution of the meta-heuristic solution approaches, we have also

implemented a sampling heuristic. This sampling heuristic generates a number of random

solutions that are improved by the local improvement technique described in Section 2.5.

This process is repeated for a maximum number of iterations and the best-found solution

is returned as the final solution.

A graphical representation of the genetic algorithm, the tabu search procedure and the

sampling heuristic is given in Figure 1. Moreover, we will examine the hybridization of

these meta-heuristics with a truncated branch-and-bound procedure in order to accelerate

the search process to near- optimal solutions. This hybridization will takes place in the

evaluation phase after each iteration of the meta-heuristic, when newly obtained schedules

are evaluated on their makespan values (labelled as ’Evaluation’ in Figure 1). As a result,

the branch-and-bound algorithm will serve as a guidance tool in the meta-heuristic search

process.

2.5 Local improvement technique

The local search algorithm that we have implemented consists of two neighborhoods, i.e.,

an insertion and a swap neighborhood, which are examined consecutively. In the inser-

tion neighborhood, the move of jobs to other machines is examined, while in the swap

neighborhood, we consider the swapping of jobs belonging to different machines. We have

implemented and tested four different approaches, which differ in the job and machine se-

lection strategy. These approaches are, to some extent, based on the variable neighborhood

descent method as proposed by Fanjul-Peyro and Ruiz (2010). The first approach (LS1)
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Figure 1: General outline of the genetic algorithm (left), tabu search (middle) and sampling

heuristic (right)

focuses on the critical machine h, i.e., the machine responsible for the maximal completion

time or makespan value (Ch = Cmax). In the first phase, we try to relocate each job j

belonging to this critical machine to another machine i ∈ M \ {h}, where the scheduling

of this job results in the lowest increase in completion time of that machine. The move is

accepted if the new completion time Ci+pij is less than the original makespan value Cmax.

This process is repeated until no more improvement can be found or until a time limit has

been exceeded. In the second phase, we try to swap every job j of the critical machine h,

which can differ from the original critical machine due to changes made in phase 1, with

every other possible job k located at another machine i ∈M \ {h}. Only swaps that result

in a net gain of processing times, i.e., the sum of the new processing times is less than

the sum of the old processing times (phj + pik < pij + phk), are taken into consideration.

The swap that results in the lowest increase in completion time on the new machine i is

accepted if the new completion times of the critical and new machine are less than the

original makespan value Cmax. Again, phase 2 is repeated until no more improvement can

be found or when the time limit is exceeded.

The second approach (LS2) also selects jobs to be moved or swapped from the critical

machine h, but differs from the first approach in the condition of rescheduling. In phase 1,

every job j of the critical machine is assigned to another machine i ∈M \ {h}., such that

the scheduling of the job results in the lowest increase in processing time, i.e., the difference

between its original processing time phj (on the critical machine) and its new processing

time pij (on the chosen machine i). In the second phase, this condition translates to the

smallest difference in the sum of the new and old processing times ((pij +phk)−(phj +pik)).
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The moves and/or swaps are accepted if the newly obtained completion times are less than

the original makespan value. Similar to LS1, both phases are repeated until no more

improvement can be found or when a time limit has been exceeded.

The third (LS3) and fourth (LS4) approach are similar to the first two approaches,

except that they are not restricted to the critical machine, but allow moves and/or swaps

of jobs from every machine i ∈ M . The third approach is exactly the approach described

in the paper of Fanjul-Peyro and Ruiz (2010), LS1 is a restricted version of this approach,

while LS2 and LS4 are newly developed approaches.

These four local search approaches are tested in Section 4.2.1, to determine the best

approach for implementation in the meta-heuristics.

3 Hybridization with truncated branch-and-bound

In this Section, we describe the hybridization of our meta-heuristics and the sampling

heuristic with a branch-and-bound procedure. As we have already mentioned in the pre-

vious sections, the branch-and-bound algorithm will evaluate each solution resulting from

the heuristics by means of an upper bound set on the makespan value. More precisely,

the algorithm will check the possibility of scheduling the corresponding solution, with the

jobs assigned to a certain machine, within that upper bound. The general principles of the

branch-and-bound procedure will be described in Section 3.1. The specific implementation

details, with the discussion of the upper and lower bound strategy and the truncation, will

be discussed in Section 3.2. In addition, in order to illustrate these general principles and

implementation details, an overview of the algorithm is given in Figure 2.

3.1 Principles

The general procedure of the branch-and-bound can be summarized as follows. After

initialization (Step 0 ), the algorithm examines the solution obtained by the heuristic and

considers the job symbols successively in the order in which they appear in the list (Step

1 ). The procedure will check whether the assignment of the job to the current machine is

possible by comparing the resulting machine completion time with an upper bound (Step

2 ). If this assignment is possible within the upper bound (i.e., resulting makespan ≤ UB),

the job is scheduled on the corresponding machine and the branch-and-bound is recursively

called to go to the next level in the search tree (Step 3 ). The next level corresponds with the

next job symbol in the solution (Step 4 ), for which the same examination is made. However,
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if a certain job-machine assignment is not possible with respect to the imposed upper

bound, the procedure will try to assign the current job to one the other machines available.

The order in which these other machines are examined is determined by the shortest

processing time first-rule (Step 5 ). This means that the next machine to be considered is the

one on which the job has the smallest processing time. If another possible assignment has

been found, the job is scheduled on the corresponding machine and the branch-and-bound

continues with the next level in the search tree. However, if all machine assignments of a

particular job have been checked and none of these assignments are possible with respect to

the upper bound, the branch-and-bound will return an infeasible solution and backtracking

is needed (Step 6 ). This backtracking will unschedule previously scheduled jobs and will

examine another machine assignment for those jobs that can resolve the conflict found. If a

new possible assignment is found that resolves the upper bound violation, the branch-and-

bound continues from the last rescheduled job. However, if the upper bound violation can

not be resolved after backtracking (and before the backtrack limit is achieved, see infra), no

feasible solution can be found and the branch-and-bound returns the same solution back to

the (meta-)heuristic, which will try to improve it further (STOP -). However, if a complete

feasible solution has been found, this solution can result in other job-machine assignments

as obtained by the (meta-)heuristic (STOP * ). This new solution will only be accepted

if the newly obtained makespan value is less than the original makespan value. This will

speed up the search process of the meta-heuristics, as this improved solution will be the

input again of the meta-heuristics. As a result, while the heuristics search in a restricted

neighborhood, the branch-and-bound tries to jump out of the restricted neighborhood.

After the branch-and-bound procedure, the upper bound is updated according to a

certain strategy. Moreover, the branching process is guided by means of an effective lower

bound. In addition, to increase its effectiveness, the branch-and-bound procedure is trun-

cated by restricting the number of backtrack limits. These implementation details will be

discussed in the next section.

3.2 Implementation details

Truncation Since the branch-and-bound is hybridized with (meta-)heuristic algorithms,

the procedure has to be fast and efficient in returning a feasible solution. For that reason

we have truncated the branch-and-bound by defining a maximum number of backtrack

limits. This limit will restrict the number of times we unschedule a job in order to resolve

the upper bound violations. If the backtrack limit is attained, the remaining unscheduled

12



jobs are scheduled according to the SPT-rule, by assigning them to the machine on which

they have the smallest processing time (STOP +). As such, the branch-and-bound will

return a feasible heuristic solution, but with a makespan higher than the upper bound. In

Section 4.3, various backtrack limits will be compared in order to find the best value for

the hybrid algorithms.

Lower bound The branch-and-bound is guided by a lower bound. The initial lower

bound is equal to the makespan value obtained by the SPT-rule divided by the number

of machines. However, this rather simple lower bound is updated during the branch-and-

bound process. When the branch-and-bound does not find a solution within the currently

imposed upper bound and the search is not truncated before its backtrack limit (see infra),

the lower bound is set equal to the upper bound plus one in order to prevent that this

infeasible upper bound will be used again in the search process. Moreover, it lets us

conclude that the current solution is the optimal solution and we can stop the search.

Since the branch-and-bound checks all possibilities within that UB and was not truncated,

we know that no solution exists with a makespan equal to the upper bound, so the lower

bound must be equal to UB+1.

Upper bound As already mentioned above, the branch-and-bound also relies on a (vir-

tual) upper bound (i.e., different from the real upper bound or the best found solution)

that is imposed on the makespan value. Each time a job symbol is examined, the branch-

and-bound checks if the current completion time of the machine plus the processing time

of the job on that machine is not greater than the upper bound value. If so, there is no

advantage of scheduling the job on that machine as no better solution will be found (Step

2 ). The initial upper bound (UB) is set equal to the solution of the shortest processing

time (SPT) heuristic. During the scheduling process, i.e., each time the evaluation function

of the meta-heuristic is called, the upper bound is updated according to a certain strategy.

A first strategy is to set the upper bound equal to the best-found solution plus a certain

value X. If we add a positive value to the current best solution, we allow the solution to

deteriorate by X units. If we add a negative value to this best-found solution, we force

the branch-and-bound procedure to find a better solution than the current best one. A

second strategy is to fix the upper bound to a random value between the lower bound and

the best-found solution. Both strategies will be tested in our computational experiments

allowing a wide range of X-values for the first strategy.
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Minimal and available processing time Next to this upper bound, the branch-and-

bound also examines the solution by making use of two new definitions: the minimal and

available processing time. The minimal processing time (MPT) is the minimal time we

need to schedule all the jobs and is initially equal to the sum of all the shortest processing

times of the jobs. The available processing time (APT) is the time we have on each

machine to schedule the jobs without violating the upper bound and is initially set equal

to the upper bound times the number of machines. At each level, the branch-and-bound

procedure inspects the difference between the available and the minimal processing time

and compares it with the difference between the processing time of the job on the selected

machine and its shortest processing time. If the difference between the available and

minimal processing time is equal to zero, it means that the remaining jobs should be

scheduled on their shortest processing time machine in order not to violate the upper

bound. If the difference is positive, there is still more flexibility in scheduling the jobs.

The introduction of these new definitions helps the branch-and-bound in examining the

solutions more efficiently. This conditional expression is shown in Step 2 of the flow chart

of Figure 2 and is equal to

LB2 ≤ UB or pij −minipij ≤ APT−MPT. (1)

The available and minimum processing times are updated during the scheduling process

by subtracting the corresponding processing and shortest processing time of the scheduled

job, respectively (Step 3 ).

Example We can illustrate the implementation details of the branch-and-bound proce-

dure using the example described in Section 2.1 and displayed in Table 1. The initial upper

bound of this example is equal to 9, i.e., the maximal machine completion time resulting

from scheduling all jobs to the machine on which they have the shortest processing time

(= max{3+2, 3+5, 5+4} = max{5,8,9}). The initial minimal processing time (MPT) is

equal to 22 (= 3+5+5+3+2+4), the initial available processing time APT is equal to 27

(= 3×9) and the machine completion times are set to zero.

Assume the initial start solution can be represented by 4 5 * 1 3 * 2 6 with

a total makespan of 9, then the branch-and-bound is used to search for an improvement

of this current solution, and hence, the upper bound is set to 8. In that case the APT is

reduced to 24 (= 3×8). The first job selection is job j = 4 since it is the first job in the

job list. The branching scheme is based on the machine assignments and starts with the
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machine where job j is assigned in the initial solution. In our example, job 4 is assigned to

machine 1, and the rest of the machines are branched by decreasing order in the processing

time of that job. In the second node, the Ci, APT and MPT values are updated (done in

step 3 in Figure 2), and the next job that will be selected is the second job j = 5 in the

initial solution. Again, the machine order for branching is equal to the current machine

assignment of job 5, which is machine 1, followed by the other machines by decreasing

processing time.

The search continues up to the last node displayed at the lowest level of the tree where

job 6 assigned to machine 3. However, this assignment violates the first condition in step 2

of Figure 3 (displayed in the tree as LB1 > UB). However, all other assignments of job 6

to the two other machines also violate the conditions of step 2 and therefore a backtrack is

made to the previous level of the tree. At this level, the same condition of step 2 is checked

and violated, leading to a backtrack to level 3 of the tree, while at level 2, backtracking

is done because of the violation of the second condition of step 2 (displayed in the tree as

LB2 ≥ UB). This process of branching and backtracking continues until the search returns

at level 0. In our example, none of the nodes have found a feasible solution, and hence,

the procedure stops with the STOP- condition, meaning that no feasible solution could be

found with a objective value of 8 or lower. Consequently, the lower bound can be updated

to 9, and since we already have found a solution with a value of 9 (see Table 1), the search

can be stopped and optimality is proven. The branch-and-bound tree is shown in Figure

3.

4 Computational experiments

In this section, the computational experiments are described. In Section 4.1, we give more

details on the benchmark instances used in our experiments. Section 4.2 elaborates on

the implementation of the stand-alone (meta-)heuristics, while Section 4.3 focuses on the

hybridization with the truncated branch-and-bound. In Section 4.4, we benchmark our

results for the UPMS with the best-known results from the literature. All algorithms were

coded in C++ and run on Intel CoreTM i7-3610QM CPU with 2,30GHz RAM.

4.1 Benchmark instances

The data instances for the R||Cmax-problem were generated by Fanjul-Peyro and Ruiz

(2010), who developed a comprehensive new data set based on the generation methods
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Ci = (0,0,0)
APT = 24, MPT = 22

B&B(0) → j = 4
i = 1 i = 2 i = 3

Ci = (3,0,0)
APT = 21, MPT = 19

B&B(1) → j = 5
i = 1 i = 2 i = 3

Ci = (0,4,0)
APT = 20, MPT = 19

B&B(1) → j = 5
i = 1 i = 2 i = 3

Ci = (5,0,0)
APT = 19, MPT = 17

B&B(2) → j = 1
i = 2 i = 3 i = 1

Ci = (5,3,0)
APT = 16, MPT = 14

B&B(3) → j = 3
i = 2 i = 1 i = 3

Ci = (5,8,0)
APT = 11, MPT = 9

B&B(4) → j = 2
i = 3 i = 1 i = 2

Ci = (5,8,5)
APT = 6, MPT = 4

B&B(5) → j = 6
i = 3 i = 1 i = 2

Ci = (2,4,0)
APT = 18, MPT = 17

B&B(2) → j = 1
i = 2 i = 3 i = 1

Ci = (2,7,0)
APT = 15, MPT = 14

B&B(3) → j = 3
i = 2 i = 1 i = 3

Ci = (8,7,0)
APT = 9, MPT = 9

B&B(4) → j = 2
i = 3 i = 1 i = 2

Ci = (8,7,5)
APT = 4, MPT = 4

B&B(5) → j = 6
i = 3 i = 1 i = 2

LB2 ≥ UB

LB2 ≥ UBLB2 ≥ UB

LB1 > UBLB2 ≥ UB

LB1 > UBLB1 ≥ UB

LB1 > UB LB1 > UB LB1 > UB

LB1 > UB LB1 > UB

LB1 > UB LB1 > UB LB1 > UB

LB1 > UB LB1 > UB

LB1 > UBLB1 > UB

LB2 ≥ UB LB1 > UB

LB1 > UB LB2 ≥ UB

STOP -
LB = 9

No feasible solution

Figure 3: Branch-and-bound tree of the example
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of previous work on the UPMS. The authors consider five different uniform distribu-

tions for the processing times, i.e pij ∈ U(1,100), U(10,100), U(100,200), U(100,120) and

U(1,000,1,100). In addition, they consider job correlated (Job Corr.) and machine corre-

lated (Mach. Corr.) processing times. In the job correlated instances, the processing times

are determined by the equation pij = bj + dij , with bj and dij uniformly distributed values

in the ranges U(1,100) and U(1,20), respectively. In the machine correlated instances, the

processing times are equal to pij = ai + cij , with ai and cij uniformly distributed in the

ranges U(1,100) and U(1,20), respectively (Fanjul-Peyro and Ruiz, 2010). For each of these

7 intervals they consider 5 values of m = 10, 20, 30, 40, 50 and 4 values for n = 100, 200,

500, 1,000. For each combination of m and n, 10 instances were generated. Therefore,

in total 200 × 7 = 1,400 instances were generated. Furthermore, the authors propose

benchmark results for these 1,400 instances by solving them with a recent version of ILOG

CPLEX (version 11.0). The solver was allowed to run for 2 hours for each individual in-

stance. About 34% of the instances could be solved to optimality with an average gap of

approximately 1% (Fanjul-Peyro and Ruiz, 2011). The performances of our algorithms are

verified by comparing them with the solutions found by the CPLEX solver. The relative

performance (%) can be defined as

RP =
CH
max(I)− C∗

max(I)

C∗
max(I)

, (2)

where CH
max(I) is the makespan value obtained by the heuristic H for instance I and

C∗
max(I) is the corresponding CPLEX solution for that instance.

All the instances are available at the website http://soa.iti.es. Some of the experiments

are mainly carried out to determine the best settings of the various parameters of the

algorithms, and are therefore tested on a small portion of the dataset. Using 8 randomly

selected instances of each dataset (resulting in 56 instances in total) as a training set is

better than using the full set to avoid the problem of overtuning our parameters settings.

In all our experiments, it is assumed that the tests have been carried out on the full dataset,

except where indicated otherwise.

4.2 Performance of stand-alone heuristics

In this section we will analyze the performances of the local improvement techniques and the

stand-alone genetic algorithm, tabu search and sampling heuristic, before the hybridization

with the branch-and-bound is considered.
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4.2.1 Local improvement technique

The four different local search approaches that are described in Section 2.5 were tested

to find the best alternative. In order to test their individual performance, all approaches

were applied to the solution obtained by the SPT-rule. The results are shown in Table

2. The different columns represent the different local search approaches, with the first

column equal to the SPT-solution. The first row gives the average deviations from the

CPLEX solutions of Fanjul-Peyro and Ruiz (2010). These values are obtained by taking

the average relative performances obtained by equation (2) over all instances. The second

row shows the average CPU time (in milliseconds) that the local searches run until no more

improvement can be found. The last row shows the number of times (in percentage) that

the corresponding local search approach outperforms the other approaches. From this table

it can be seen that the second local search that selects jobs from the critical machine and

selects machines according to the lowest increase in the job’s processing time is the best

approach to use. Not only does this local search result in the smallest average deviation, it

also requires a reduced CPU time. Moreover, it clearly outperforms the approach proposed

in the paper of Fanjul-Peyro and Ruiz (2010) (LS3). In order to validate these results,

we have applied the local searches on random initial solutions, which resulted in the same

overall conclusions and confirmed the outperformance of LS2.

Table 2: Comparison of the local improvement techniques

SPT LS1 LS2 LS3 LS4

Average % deviation 131.9% 7.6% 3.7% 8.2% 5.9%

Average CPU time (in ms) 3.8 7.4 11.1 71.0 90.8

% best LS approach 0% 9% 70% 11% 32%

4.2.2 Parameter settings

In order to determine the best values for the heuristics without the truncated branch-and-

bound, a number of experiments have been carried out. A fractional factorial design was

done to determine the best parameter values for the genetic algorithm and the tabu search,

and some of the results are shown in this section. For the genetic algorithm, a decision

concerning the population size, the crossover type and rate, the mutation type and rate

and the seleection type should be made, while for the tabu search, the appropriate list

size and neighbourhood selections should be specified. The test values and corresponding
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results are shown in the tables below. The chosen value is shown each time in bold. All

test results in this section are obtained by running our experiments on the training set

instead of the full dataset.

Tabu search: In order to determine the best performing neighborhoods, a computational

experiment was performed by running the TS with the different NHs restrictions discussed

in Section 2.2.2. In these experiments, the list sizes were varied between 1 and 200 and

showed that a list size of 100 resulted in the best results (see Table 3). The tests for

the performance of the neighbourhoods have been carried out by starting from the most

restrictive NH to the NH with the lowest restriction, and finally, to the general pairwise

swap without restrictions. More precisely, the most restrictive neighbourhood NH5 is

called first, and only when no improvements can be found then NH4 is called. When NH4

is not able to find any improvement, the algorithm tries NH3 to find improvements. This

approach is continued with calling NH2 and NH1 and finally, in case of no improvements, a

final search for improvemens by the general pairwise swap is executed. Given this sequence

of NH search, we have carried out our tests under six different settings, as displayed in

Table 4. The column PS shows the average percentage deviation of equation (2) when

no restriction is used. The column NH showns the results when the first NH is used in

collaboration with the pairwise swap in case NH1 finds no improvements. Likewise, the

column NH21 relies on NH2 first, followed by NH1 and PS, and all other columns have

a similar meaning. The experiments clearly showed that the TS performs best with the

most restricted neighborhood (NH5) and hence this approach has been followed in all the

remaining experiments.

Table 3: Parameter fine-tuning for TS: Size of list

1 2 5 10 20 50 100 200

1.53% 1.34% 1.27% 1.06% 0.59% 0.47% 0.45% 0.53%

Table 4: Parameter fine-tuning for TS: Use of neighbourhoods

PS NH1 NH21 NH321 NH4321 NH54321

3.11% 2.52% 2.52% 1.06% 0.77% 0.45%
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Genetic Algorithm: In order to determine the best values for the parameters of the

genetic algorithm, a computational experiment on the training set data instances have been

performed varying different settings for the population size, the selection type as well as

for the crossover and mutation types and rates.

The types used for the selection, mutation and crossover has been previously discussed

in Section 2.3.2 and will be briefly summarized here. The Selection type consists of three

variants known as tournament selection (Type 1), roulette wheel selection (Type 2) and

ranking selection (Type3) The mutation type also consists of three variants known as swap

(Type 1), insertion (Type 2) and inversion mutation (Type 3). The crossover type have five

different types consisting of paritally mapped crossover (Type 1), order crossover (Type

2) position based crossover (Type 3), order based crossover (Type 4) and cycle crossover

(Type 5). The selection of the best performing types is based on the percentage of times

each type leads to the best solution, as is shown in bold in Table 5.

The rates of the best performing mutation and crossover operators have been varied

between 0% and 100% as shown in Table 6 and show the best performing values measured

by the average percentage deviation of equation (2).

Finally, the best value for the population size has been found by varying the size

between a very low value (4) to a very high value (500) and the best results were found

with a population size of 8. Our tests have shown an impact of varying the population

size according to the number of jobs and machines, but this impact was not significant.

Therefore, we have decided to put the population size to the fixed value of 8. Partial results

showing the average percentage deviation are shown in Table 7.

Table 5: Parameter fine-tuning for GA: Type of selection (3), mutation (3) and crossover (5)

Type 1 Type 2 Type 3 Type 4 Type 5

Selection 71% 63% 61% - -

Mutation 73% 57% 55% - -

Crossover 54% 77% 21% 21% 43%

Table 6: Parameter fine-tuning for GA: Mutation and crossover rate

0% 10% 25% 50% 75% 90% 100%

Mutation 1.11% 1.27% 1.06% 1.01% 1.17% 1.07% 1.02%

Crossover 1.37% 1.09% 1.10% 1.08% 1.08% 1.06% 1.10%
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Table 7: Parameter fine-tuning for GA: Population size

4 6 8 10 20 50 100 200 500

Popsize 1.11% 1.25% 1.01% 1.12% 1.21% 1.29% 1.23% 1.27% 1.32%

4.2.3 Comparison of heuristics

With the parameter settings and the implementation of the best local search approach

discussed in the previous section, the heuristics were run 10 times on all 1,400 instances

described in Fanjul-Peyro and Ruiz (2010) for 15 seconds. The results are summarized in

Table 8. A distinction is made according to the number of jobs, the number of machines

and the distribution of the processing times. Again, the values in the table are the average

relative performances obtained by equation (2) over all the instances per problem param-

eter. The last rows shows the overall relative performance of the heuristics (Average),

the number of instances with a better solution (#Improv), the number of instances that

have been proven to be optimal (#Opt) and the number of times the procedure shows the

best result (%Best). From these rows, it can be seen that the tabu search algorithm (TS)

outperforms the sampling (Sam) and the genetic algorithm (GA) procedure.

If we look at the influence of these problem parameters, we see that for all instances,

the best performance is obtained for larger problem sizes (n = 1, 000), a small number

of machines (m = 10) and large processing time ranges (pij ∈ U(1, 000, 1, 100)) or job

correlated processing time. For these last two categories, the TS is even able to improve

the CPLEX solutions of Fanjul-Peyro and Ruiz (2010). Thanks to the good performance

of the tabu search algorithm, we have chosen to use this method for hybridization with the

branch-and-bound procedure of Section 3, which is the topic of the next section.

4.3 Hybrid procedure parameter setting

In this section, we examine the hybridization of the tabu search heuristic with the truncated

branch-and-bound. As mentioned in Section 3.2, there are two important parameters that

determine the functioning of the hybrid procedure: the chosen upper bound strategy and

the maximum number of backtrack limits. Besides the random strategy, where the upper

bound is set equal to a random value between the current best solution and the lower

bound, we have examined a large number of possible X-values for the second strategy,

with X ranging from -100 to +5. Negative X-values will force the branch-and-bound to

find a better solution than the one obtained by the (meta-)heuristic, while a positive value
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Table 8: Relative performances of the heuristics

Sam TS GA

n

100 2.20% 0.38% 1.30%

200 2.15% 0.71% 1.22%

500 1.30% 0.53% 0.80%

1,000 0.77% 0.34% 0.54%

m

10 0.84% 0.11% 0.33%

20 1.43% 0.37% 0.76%

30 1.43% 0.46% 0.91%

40 1.97% 0.78% 1.33%

50 2.36% 0.73% 1.50%

pij

U(1,100) 2.59% 1.95% 2.17%

U(10,100) 2.44% 1.57% 1.71%

U(100,120) 0.42% 0.00% 0.16%

U(100,200) 1.72% 0.08% 0.61%

U(1,000,1,100) 0.19% -0.01% 0.05%

Job Corr. 1.11% -0.53% 0.25%

Mach. Corr. 2.76% 0.38% 1.81%

Average 1.61% 0.49% 0.97%

#Improv 42 249 98

#Opt 0 9 0

%Best 10% 96% 27%
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allows a deterioration of the makespan value. However, these deteriorations are kept small

by limiting X to 5. With respect to the truncation of the branch-and-bound, we let the

backtrack limit range from 0 to 1,000,000. Of course, given that we use a time limit as

stopping criterion, the choice of the backtrack limit will have an influence on the relative

computation times of the branch-and-bound compared to the meta-heuristics. The higher

the backtrack limit, the more CPU time will be spent by the branch-and-bound, resulting

in less schedules examined by the meta-heuristics. A low backtrack limit on the contrary,

will result in a higher percentage of the CPU time that will be used by the meta-heuristics.

The branch-and-bound procedure can be called in two different ways in our hybrid TS

approach, as follows:

• Every time the algorithm finds a solution improvement, it updates the upper bound

and the branch-and-bound procedure is called. Since this only happens rarely during

a search, the backtrack limit is set to high values (up to 1,000,000).

• Every time a local search has been carried out, the branch-and-bound is called. Since

these call are done very frequently, the backtrack limit has been set to very low values

(ranging from 0 to maximum 1,000).

In order to determine the best upper bound strategy and backtrack limit for the hybrid

TS/B&B procedure, all test results in this section are obtained by running our experiments

on the training set instead of the full dataset under a stopping criterion of 15 and 60 seconds.

Only the most relevant results are summarized in Table 9 showing the average deviations

from the CPLEX solutions are given for the hybrid tabu search algorithm (HTS).

Table 9: Influence of upper bound strategy and backtrack limit on the performance of the hybrid

tabu search (HTS) (partial results)

B&B backtrack limit X-value B&B backtrack limit B&B backtrack limit

after UB update for LS after LS (15 s.) after LS (60 s.)

no B&B 10 no B&B 10

no B&B
Ran

0.455%
0.462%

0.432%
0.433%

-1 0.453% 0.443%

1,000
Ran

0.533%
0.525%

0.496%
0.374%

-1 0.464% 0.444%

1,000,000
Ran

0.530%
0.522%

0.497%
0.371%

-1 0.461% 0.441%
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The computational results have shown that a backtrack limit of 10 for the B&B pro-

cedure performed after each local search (LS) of 10 performs best, and therefore, higher

values are not shown in table 9. The backtrack limit for the B&B performed every time a

new upper bound have been found is set at 0 (i.e., no B&B, 1,0000 or 1,000,000) and the

best value depends on the stop criterion. However, the table also shows that increasing the

time limit from 15 to 60 seconds results in improvements, but the improvements are bigger

for the tests where the B&B after the UB update is set a high values for the backtrack

limit. Finally, the best results are obtained by using the B&B for after each LS and each

UB update, leading to an average percentage deviation of 0.371%.

4.4 Computational results of the R||Cmax-problem

The hybrid heuristics with their best X-values and backtrack limit parameter settings were

run 10 times on all 1,400 instances of Fanjul-Peyro and Ruiz (2010) for 15 seconds. Table 10

summarizes the results. The pure meta-heuristic results are the results for the procedures

used in Table 8, while the hybrid meta-heuristics rely on the branch-and-bound procedure

of Section 3 added on top of the pure meta-heuristic searches. This table confirms the

improvement of the stand-alone heuristics by the B&B hybridization and the dominance

of the tabu search method.

Table 10: Relative performances of the heuristics

Sam TS GA

Pure meta-heuristic 1.61% 0.49% 0.97%

Hybrid meta-heuristic 1.52% 0.47% 0.91%

The best approach for each heuristic was compared with the CPLEX-solutions of Fanjul-

Peyro and Ruiz (2010) (see Table 11). Again, we made a distinction between the number of

jobs, number of machines and the distribution of the processing times. Our tests revealed

that the TS was able to obtain better solutions than the CPLEX-solutions in 245 instances

(see Table 11). These instances mainly had job correlated processing times or processing

times from the uniform distribution U(1000,1100), number of jobs larger than 200 and

number of machines larger than 30. This validates the benefit of a meta-heuristic for

larger scaled problems. The poor performance of CPLEX for these instances (especially

the job correlated instances), was also conformed by the authors (Fanjul-Peyro and Ruiz,

2010).
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Table 11: Number of times the procedures find better solutions than the CPLEX solutions of

Fanjul-Peyro and Ruiz (2011)

HSam HTS HGA

n

100 0 48 3

200 9 54 18

500 9 71 38

1,000 25 72 40

m

10 0 5 0

20 1 23 11

30 15 90 33

40 13 72 32

50 14 55 23

pij

U(1,100) 0 0 0

U(10,100) 0 0 0

U(100,120) 2 30 3

U(100,200) 5 23 7

U(1,000,1,100) 6 61 13

Job Corr. 30 129 76

Mach. Corr. 0 2 0

Total 43 245 99
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These best heuristics were also compared with the best-known solutions from the liter-

ature. These are the solutions obtained by the partial enumeration of Mokotoff and Jimeno

(2002) (Partial), the recovering beam search of Ghirardi and Potts (2005) (RBS ) and the

iterated greedy local search based heuristic of Fanjul-Peyro and Ruiz (2010) (NVST-IG+).

Since the results presented in the paper of Fanjul-Peyro and Ruiz (2011) were obtained

by parallel algorithms ran on a cluster of dual processors, we did not include them in our

overview to have a fair comparison. However, we are aware of these improved results and

we see the use of parallel algorithms as a noteworthy future research topic.

The results presented in the left part of Table 12 were taken from the paper of Fanjul-

Peyro and Ruiz (2011). The authors ran the algorithms of Mokotoff and Jimeno (2002)

and Ghirardi and Potts (2005) on their benchmark set using a stopping criterion of 15 sec.

However, both the partial enumeration as the recovering beam search, on average, needed

more CPU time. The values in the right part of the table are our proposed algorithms.

All values in the table are presented as the average deviations from the CPLEX solutions

per category of processing time distributions. The best values are indicated in bold, the

second best values are underlined.

These values show that we are able to compete with, and in some cases to outperform,

the best known results from the literature as given by the NVST-IG+ procedure of Fanjul-

Peyro and Ruiz (2010). Although our heuristics are not always able to outperform the

NVST-IG+ procedure on all processing time distributions, they all obtain better results

for the job correlated and machine correlated processing time instances, as well as for the

U(100,120), U(100,200) and U(1000,1100)-instances. Furthermore, we approximate the

performances on the U(1,100) and U(10,100) instances with TS procedure. In addition,

in average, our heuristics have better results compared to either the more time consuming

partial enumeration procedure of Mokotoff and Jimeno (2002) or the recovering beam

search of Ghirardi and Potts (2005).

5 Conclusions

This paper considered the problem of scheduling a number of jobs on a number of unre-

lated parallel machines in order to minimize the makespan. We have developed a genetic

algorithm and a tabu search algorithm, which were hybridized with a truncated branch-

and-bound procedure in order to accelerate the search process to near-optimal solutions.

Both meta-heuristics were further improved by means of an effective local search algo-
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Table 12: Comparison with benchmark results from the literature

Partial RBS NVST-IG+ HSam HTS HGA

U(1,100) 2.88% 2.03% 1.34% 2.51% 1.83% 2.02%

U(10,100) 1.31% 1.87% 0.75% 2.31% 1.51% 1.64%

U(100,120) 0.33% 0.13% 0.04% 0.36% 0.00% 0.14%

U(100,200) 1.05% 0.81% 0.32% 1.52% 0.08% 0.56%

U(1000,1100) 0.23% 0.18% 0.02% 0.17% -0.01% 0.04%

Job Corr. 2.34% 0.35% 0.48% 1.06% -0.53% 0.23%

Mach. Corr. 0.94% 2.36% 0.55% 2.71% 0.38% 1.77%

Average 1.3% 1.10% 0.50% 1.52% 0.47% 0.91%

rithm and were combined in order to take advantage of both heuristics. The truncated

branch-and-bound procedure checked the possibility of scheduling the solutions obtained

by the meta-heuristics within an upper bound set on the makespan value. Each individual

job-machine assignment was successively examined by the branch-and-bound and altered if

necessary. In doing so, the meta-heuristics were stimulated to skip non-promising areas of

the solution space. We compared the performances of these heuristics on a standard data

set available in the literature. We carefully examined the influence of the different heuris-

tic parameters, such as the backtrack limit and the upper bound strategy, to select the

best combination for the hybrid algorithms. These experiments showed that each heuristic

performed best with a different upper bound strategy and backtrack limit.

Our computational experiments revealed that the tabu search heuristic outperformed

the genetic algorithm, but that hybridization with the truncated branch-and-bound pro-

cedure was able to compete with and sometimes outperform the best known results from

the literature. For the job correlated and machine correlated processing time instances as

well as for the bigger instances, our heuristics were even able to find better solutions than

the CPLEX solutions.

An interesting field of future research could be to develop an exact branch-and-bound

procedure, relying on the knowledge obtained by the truncated branch-and-bound proce-

dure, and to benchmark this procedure against our hybrid procedures and the methods

described in the literature. Moreover, the extension of our procedures to more complex

problems, such as the inclusion of setup times is definitely an interesting future research

topic.
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