
Declarative, Formal, and Extensible Syntax Definition for AspectJ
A Case for Scannerless Generalized-LR Parsing

Martin Bravenboer
Department of Information and

Computing Sciences, Utrecht University
The Netherlands
martin@cs.uu.nl

Éric Tanter
Center for Web Research, DCC,

University of Chile
etanter@dcc.uchile.cl

Eelco Visser
Department of Information and

Computing Sciences, Utrecht University
The Netherlands
visser@acm.org

Abstract
Aspect-Oriented Programming (AOP) is attracting attention from
both research and industry, as illustrated by the ever-growing pop-
ularity of AspectJ, the de facto standard AOP extension of Java.
From a compiler construction perspective, AspectJ is interesting as
it is a typical example of a compositional language, i.e. a language
composed of a number of separate languages with different syntac-
tical styles: in addition to plain Java, AspectJ includes a language
for defining pointcuts and one for defining advices. Language com-
position represents a non-trivial challenge for conventional parsing
techniques. First, combining several languages with different lexi-
cal syntax leads to considerable complexity in the lexical states to
be processed. Second, as new language features for AOP are being
explored, many research proposals are concerned with further ex-
tending the AspectJ language, resulting in a need for an extensible
syntax definition.

This paper shows how scannerless parsing elegantly addresses
the issues encountered by conventional techniques when parsing
AspectJ. We present the design of a modular, extensible, and for-
mal definition of the lexical and context-free aspects of the AspectJ
syntax in the Syntax Definition Formalism SDF, which is imple-
mented by a scannerless, generalized-LR parser (SGLR). We in-
troduce grammar mixins as a novel application of SDF’s modu-
larity features, which allows the declarative definition of different
keyword policies and combination of extensions. We illustrate the
modular extensibility of our definition with syntax extensions taken
from current research on aspect languages. Finally, benchmarks
show the reasonable performance of scannerless generalized-LR
parsing for this grammar.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.4 [Programming
Languages]: Processors

General Terms Languages, Design, Standardization

Keywords AspectJ, syntax definition, syntax extension, grammar
mixins, scannerless parsing, generalized-LR parsing, lexical syntax

1. Introduction
“A language that is used will be changed” to paraphrase Lehman’s
first law of software evolution [25]. Lehman’s laws of software evo-
lution apply to programming languages as they apply to other soft-
ware systems. While the rate of change is high in the early years of
a language, even standardized languages are subject to change. The
Java language alone provides good examples of a variety of lan-
guage evolution scenarios. Language designers do not get it right
the first time around (e.g. enumerations and generics). Program-
ming patterns emerge that are so common that they can be sup-
ported directly by the language (foreach, crosscutting concerns).
The environment in which the language is used changes and poses
new requirements (e.g. JSP for programming dynamic webpages).
Finally, modern languages tend to become conglomerates of lan-
guages with different styles (e.g. the embedding of XML in XJ).

The risks of software evolution, such as reduced maintainabil-
ity, understandability, and extensibility, apply to language evolution
as well. While experiments are conducted with the implementation,
the actual language definition diverges from the documented spec-
ification, and it becomes harder to understand what the language
is. With the growing complexity of a language, further improve-
ments and extensions become harder and harder to make. These
risks especially apply to language conglomerates, where interac-
tions between language components with different styles become
very complex.

AspectJ [24], the de facto standard aspect-oriented program-
ming language, provides a good case in point. While the official
ajc compiler for AspectJ extends the mainstream Eclipse compiler
for Java and has a large user base, the aspect-oriented paradigm is
still actively being researched; there are many proposals for further
improvements and extensions (e.g. [26, 32, 11, 36, 4, 29, 19]). The
AspectBench Compiler abc [5] provides an alternative implemen-
tation that is geared to experimentation with and development of
new aspect-oriented language features.

AspectJ adds support to Java for modularization of crosscutting
concerns, which are specified as separate aspects. Aspects contain
advice to modify the program flow at certain points, called join
points. AspectJ extends Java with a sublanguage for expressing
pointcuts, i.e. predicates over the execution of a program that deter-
mine when the aspect should apply, and advices, i.e. method bod-
ies implementing the action that the aspect should undertake. The
pointcut language has a syntax that is quite different from the base
language. This complicates the parsing of AspectJ, since its lexical
syntax is context-sensitive. This is a problem for scanners, which
are oblivious to context. The parsers of the ajc and abc compil-
ers choose different solutions for these problems. The abc parser
uses a stateful scanner [21], while the ajc compiler uses a hand-
written parser for parsing pointcut expressions. For both parsers the

result is an operational, rather than declarative, implementation of
the AspectJ syntax, in particular the lexical syntax, for which the
correctness and completeness are hard to verify, and that is difficult
to modify and extend.

In this paper, we present a declarative, formal, and extensible
syntax definition of AspectJ. The syntax definition is formal and
declarative in the sense that all aspects of the language are defined
by means of grammar rules. The syntax definition is modular and
extensible in the sense that the definition consists of a series of mod-
ules that define the syntax of the ‘component’ languages separately.
AspectJ is defined as an extension to a syntax definition of Java 5,
which can and has been further extended with experimental aspect
features.

We proceed as follows. First we give brief introductions to con-
cepts of parsing (Section 2) and aspect-oriented programming (Sec-
tion 3). To explain the contribution of our approach we examine in
Section 4 the issues that must be addressed in a parser for AspectJ
and discuss how the parser implementations of ajc and abc, two
state-of-the-art compilers for AspectJ, solve these issues. In Sec-
tion 5 we present the design of a syntax definition for AspectJ that
defines its lexical as well as context-free syntax, overcoming these
issues. Our AspectJ syntax definition is based on the syntax defi-
nition formalism SDF2 [40] and its implementation with scanner-
less generalized-LR parsing (SGLR) [39, 14]. The combination of
scannerless [33, 34] and generalized-LR [38] parsing supports the
full class of context-free grammars and integrates the scanner and
parser. Due to these foundations, the definition elegantly deals with
the extension and embedding of the Java language, the problems
of context-sensitive lexical syntax, and the different keyword poli-
cies of ajc and abc. For the latter we introduce grammar mixins, a
novel application of SDF’s modularity features.

In Section 6 we examine the extensibility of ajc and abc and
we show how grammar mixins can be used to create and combine
extensions of the declarative syntax definition. In Section 7 we dis-
cuss the performance of our implementation. While LALR parsing
with a separate scanner is guaranteed to be linear in the length of
the input, the theoretical complexity of GLR parsing depends on
the grammar [31]. However, obtaining a LALR grammar is often
a non-trivial task and context-sensitive lexical syntax further com-
plicates matters. The benchmark compares the performance of our
parser to ajc, abc, and ANTLR. We conclude with a discussion of
previous, related, and future work. In particular, we analyze why
SGLR is not yet in widespread use, and discuss research issues to
be addressed to change this. The contributions of this paper are:

• An in-depth analysis of the intricacies of parsing AspectJ and
how this is achieved in mainstream compilers, compromising
extensibility;

• A declarative and formal definition of the context-free and
lexical syntax of AspectJ;

• A modular formalization of keyword policies as applied by the
ajc and abc AspectJ compilers;

• An account of the application of scannerless parsing to ele-
gantly deal with context-sensitive lexical syntax;

• A demonstration of the extensibility of our AspectJ syntax
definition;

• A mixin-like mechanism for combining syntactic extensions
and instantiating sub-languages for use in different contexts;

• A case study showing the applicability of scannerless generalized-
LR parsing to complex programming languages.

Availability The AspectJ syntax definition and parser are avail-
able as part of AspectJ-front, which is open source (LGPL) and
available at http://aspectj.syntax-definition.org.

2. Scanning and Parsing
In this section we review the basic concepts of the conventional
parser architecture using a separate scanner for tokenization and
compare it to scannerless parsing, in which the parser reads char-
acters directly. A parser transforms a list of characters (the pro-
gram text) into a structured representation (a parse tree). For exam-
ple, Figure 1 shows a (simplified) parse tree for the Java statement
if (chars[count] == ’\n’) line++;. Parse trees are a better
representation for language processing tools such as compilers than
plain text strings.

2.1 Tokenization or Scanning
Conventional parsers divide the work between the proper parser,
which recognizes the tree structure in a text, and a tokenizer or
scanner, which divides the list of characters that make up the
program text into a list of tokens. For example, the Java statement

if (chars[count] == ’\n’) line++;

is divided into tokens as follows

if (chars [count] == ’\n’) line ++ ;

Figure 2 illustrates the collaboration between scanner and parser.
The parser building a parse tree requests tokens from the scanner,
which reads characters from the input string.

The reason for the division is the use of different techniques
for the implementation of tokenization and parsing. Tokens can
be recognized using a deterministic finite automaton (DFA), while
parsers for recursive structures need a pushdown automaton, i.e. a
stack. Furthermore, tokenization reduces the number of items the
parser has to consider; long sequences of characters are reduced to
a single token, and whitespaces and comments are usually ignored
by the parser.

2.2 Scanner and Parser Generators
Scanners and parsers can be generated from formal definitions of
the lexical and context-free syntax of a language. Scanners are
generated from regular expressions describing the tokens of the
language and parsers are generated from context-free grammars
(BNF). Conventional parser generators such as YACC, Bison, and
CUP accept only a restricted class of context-free grammars such as
LL, LR, or LALR. The advantage is that the complexity of parsers
for such grammars is linear in the size of the input. Furthermore,
grammars in these classes are not ambiguous; only one interpre-
tation for any string is possible. The fact that a grammar does not
belong in a certain class shows up as conflicts in the parse table.
For example, in the case of LR parsing, shift-reduce and reduce-
reduce conflicts indicate that the parser cannot make a decision

Figure 1. Simplified parse tree for a Java statement

Figure 2. A scanner-based parser uses a scanner to partition the
input string into tokens, which become the leafs of parse trees.

about how to proceed based on the provided lookahead informa-
tion. Solving such conflicts requires rewriting the grammar and
sometimes changing the syntax of the language. Also, restricted
classes of context-free grammars are not closed under composition.

2.3 Lexical Context
The uniform tokenization of the input string by means of regular
expressions can be problematic, since the scanner does not con-
sider the context in which a token occurs. This means that a partic-
ular sequence of characters is interpreted as the same token every-
where in the program text. For syntactically simple languages that
have been designed with this restriction in mind this is not a prob-
lem. However, modern languages tend to become combinations of
‘domain-specific’ languages, each providing syntax appropriate for
its domain. Because of the limitations of the ASCII character set,
the same characters may play different roles in these languages.

One solution that is employed is the use of lexical state; the
scanner operates in different modes depending on the context. This
requires state switching when entering and leaving a context, and
may require interaction between the scanner and the parser.

2.4 Programmatic Parsers
Another solution to bypass the restrictions posed by scanner and
parser generators is the use of programmatic ‘handwritten’ parsers,
usually according to the recursive descent (topdown parsing) ap-
proach. The advantage is that it is easy to escape the rigor of the
parsing algorithm and customize it where necessary. Possible cus-
tomizations are to drive tokenization from the parser to deal with
lexical context or to provide customized error handling. A disad-
vantage of programmatic parsers is that a parser does not provide
a declarative specification of the language; conversely, a formal
grammar can serve as both documentation and implementation.
Also, parser implementations are usually much larger in terms of
lines of code, with all the implications for maintainability.

2.5 Scannerless Generalized LR Parsing
A scannerless parser does not make use of a separate scanner to
tokenize the input [34]; the parser directly reads the characters of
the input string. Instead of a separate specification of lexical and
context-free syntax as is customary in scanner-based parsing, a sin-

gle grammar is used that defines all aspects of the language. Al-
though there is no conceptual difference with scanner-based pars-
ing, scannerless parsing is not in common use because it does
not work with conventional parser generators. A grammar that de-
scribes the lexical as well as the context-free syntax of a language
does not usually fit in the grammar classes supported by parser
generators. The problem is that these algorithms need to make a
decision on the first (few) token(s) in the input. In the case of scan-
nerless parsing a decision may only be made after reading an un-
bounded number of characters. This problem is solved by the use
of Generalized-LR (GLR) parsing. GLR parsers use a parse table
generated by a normal LR parser table generator, e.g. LALR(1)
or SLR(0). At points in the input where the parser encounters a
shift-reduce or reduce-reduce conflict, there are multiple possible
continuations. In that case a GLR parser simulates the execution of
all possible LR parses in parallel. Scannerless GLR (SGLR) pars-
ing adds a few disambiguation techniques to GLR parsing to make
it suitable for scannerless parsing [39, 40, 14]. Follow restrictions
define longest match disambiguation and reject productions express
reserved word policies.

An advantage of SGLR parsing is that it deals naturally with
the problem of lexical context. Rather than parsing a lexical entity
in isolation, as is done with regular expressions, the parsing context
acts naturally as lexical state. Thus, the same sequence of characters
can be interpreted differently in different parts of a program.

In the following sections we closely examine the differences
between scanner-based and scannerless parsing, by studying state-
of-the-art implementations of parsers for AspectJ. In Section 4 we
analyze the properties of the parsers of the ajc and abc compilers
for AspectJ. In Section 5 we discuss a syntax definition for AspectJ
using the declarative syntax definition formalism SDF2.

3. A Quick Introduction to AspectJ
To understand the examples and issues we discuss in this paper, it
is important to be somewhat familiar with the syntactical structure
of an AspectJ program. This section briefly discusses the various
constructs of AspectJ. (In this paper we focus on the pointcut-
advice mechanism of AspectJ.) Knowledge of their semantics is
not necessary for this paper. For a more extensive account of the
AspectJ language we refer to [1].

Figure 3 shows an AspectJ aspect for caching executions of the
calc method of Fibonacci objects. It shows the concise syntax for
defining pointcuts, an around advice, and how this is mixed with
normal Java code (AspectJ keywords are in emphasized bold).

Aspect Declarations Aspects can be declared, similar to Java
classes, either as top-level entities or nested in Java classes 1. An
aspect declaration consists of a number of pointcut declarations and
advices, as well as standard Java members (e.g. the cache field 2).

Pointcuts A pointcut is the specification of a pattern of join points
of interest to a given aspect. Join points here are events in the
dynamic execution of a program, e.g. a method call or an access to
an object field. As such, the pointcut language of AspectJ is really
a separate domain-specific language for identifying join points.

A pointcut is specified using a number of pointcut designators.
Primitive pointcut designators refer to different kinds of operations
in the execution of a program. For instance, execution refers to
the execution of a method 4 — which method(s) is specified by
giving a method pattern as explained below. Furthermore, some
pointcut designators are used either to further restrict a pointcut,
or to bind some values to pointcut formal parameters. In Figure 3,
the pointcut is given a name (a named pointcut) and exposes one
parameter of type int 3, which is bound via the args pointcut des-
ignator to the value of the argument to calc method executions 4.

public aspect Caching { 1

private Map<Integer, Integer> cache = 2

new HashMap<Integer, Integer>();

pointcut cached(int value): 3

execution(* Fib.calc(int)) && args(value); 4

int around(int value): cached(value) { 5

if(cache.containsKey(value)) {
return cache.get(value);

}
else {

int result = proceed(value); 6

cache.put(value, result);
return result;

}
}

}

Figure 3. A sample caching aspect in AspectJ.

Advice Advice are pieces of code to execute when an associated
pointcut matches. This piece of code, which is similar to a Java
method body, can be executed before, after, or around the inter-
cepted join point based on the advice kind. Since the caching aspect
may actually replace the execution of calc, it is declared to be of
the around kind 5. As a consequence, its return type (int) must be
specified. The caching advice is associated to the cached named
pointcut, and it is parameterized by the value of the argument to
calc. Within an around advice body, calling proceed results in
the intercepted join point to be executed 6.

Patterns Fundamental to the pointcut language of AspectJ are
patterns. A name pattern is used to denote names (method names,
field names, type names) in a declarative fashion, using wildcards
such as * and ?. A type pattern is used to denote types, e.g. int
matches the primitive type int, while A+ matches object type A and
all its subtypes (+). A method pattern as in the execution pointcut
designator in 4 identifies matching method signatures: a return type
pattern (* in 4), a declaring type pattern (Fib in 4), a name pattern
(calc in 4), and then type patterns for the parameters (int in 4).

4. Issues in Parsing AspectJ
In this section we give an overview of some of the challenges
of parsing AspectJ. The overview is based on an analysis of the
AspectJ language and a review of the source of the scanner and
parser of the two major AspectJ implementations: the official As-
pectJ compiler ajc, and the abc compiler from the AspectBench
Compiler project [5]. The scanner and the parser of abc have par-
tially been documented in [21]. The purpose of this overview is to
show that the parsers of the major implementations of AspectJ are
not based on a declarative and complete definition of the language,
which leads to minor differences between the two compilers and
a lack of clarity about the exact language that each recognizes, as
well as parsers that are not easy to maintain and extend.

4.1 Introduction
The main source of the issues in parsing AspectJ is the difference
between the lexical syntax of different parts of an AspectJ source
file. Conventionally, parsers use a separate scanner (or lexer) for
lexical analysis that breaks up the input character stream into a list
of tokens, such as identifiers, literals, layout, and specific keywords
such as class, public, and try. Usually this tokenization is
applied uniformly to the text of a program, so at every offset in
the input, all the same tokens of the language can be recognized
by the scanner. However, this does not apply to AspectJ, which is

in fact more like a mixture of three languages. Regular Java code,
aspect declarations, and pointcut expressions each have a different
lexical syntax.

For example, in Java, get* is an identifier followed by a mul-
tiplication operator, while in a pointcut expression it represents an
identifier pattern that matches any identifier with prefix get. In the
first case, the scanner should produce the tokens get *, while in
the second case a single token get* would be expected. Similarly,
the + in the pointcut call(Foo+.new()) is not an addition oper-
ator, but a subtype pattern that matches any subclass of Foo. To
complicate matters, Java code can also occur within a pointcut def-
inition. For instance, the if(...) pointcut designator takes as an
argument a plain Java expression.

The languages involved in AspectJ also have different keywords.
Depending on the AspectJ implementation, these keywords might
be reserved or not. For ajc, most keywords are not reserved, since
at most places they are explicitly allowed as identifiers in the gram-
mar. For example, aspect is a keyword, but it is allowed as the
name of a local variable. Similarly, around is not allowed as the
name of a method in an aspect declaration, but it is in regular Java
code. On the other hand, around is allowed as the name of a local
variable in regular Java as well as in aspect declarations. The abc
compiler uses a different keyword policy. For example, before is a
keyword in the context of an aspect declaration, but is an identifier
in Java code and in pointcut expressions. In both compilers, point-
cut expression keywords, such as execution and get, are allowed
as elements of a pointcut name pattern, e.g. Foo.execution is a
valid name pattern, and so is get*.

Hence, an AspectJ compiler needs to consider the context of a
sequence of characters to to decide what kind of token they repre-
sent. Next, we discuss in detail how abc and ajc parse AspectJ.

4.2 The ajc Scanner and Parser
The official AspectJ compiler1, ajc, extends the Eclipse compiler
for Java, which is developed as part of the Eclipse Java Develop-
ment Tools (JDT) [17]. The parser of ajc roughly consists of three
components:

Scanner The scanner of ajc is a small extension of the regular
Java scanner of the JDT. The JDT scanner and the extension
in ajc are both written by hand. The scanner extension does
nothing more than adding some keywords to the scanner.

Parser The parser of ajc is generated from a grammar using the
Jikes parser generator. The grammar is a modified version of
the JDT grammar for regular Java. It does not actually define
the syntax of pointcut expressions: these are only scanned and
parsed separately.
The handwritten part of the JDT parser for constructing ASTs is
extended as well. The original Java code has to be modified at
some places, mostly for making the parser more flexible and
extensible by introducing factory methods. Presumably, this
could be merged with the JDT parser itself.

Pattern Parser A handwritten recursive descent parser is invoked
to parse the pointcut expressions of AspectJ after the source
file has been scanned and parsed by the previous components.
Except for the if pointcut designator, the pattern parser works
directly on the result of the ajc scanner, since the parser parses
pointcuts as a list of tokens.

4.2.1 Pointcuts
The most interesting part of the ajc parser is the handling of
pointcuts.

1 Our study is based on ajc version 1.5.0.

Scanner The ajc scanner is applied uniformly to the input pro-
gram, which means that the same set of tokens is allowed at all
offsets in the input. Note that the ajc scanner does not add tokens
to the JDT scanner, except for some keywords, so the pointcuts
are tokenized as any other part of the source file. For example, the
pointcut of the caching aspect in Figure 3 is scanned to the follow-
ing list of tokens:

execution (* Fib . calc (int)) && args (value)

This sequence of tokens is a correct tokenization of this pointcut,
but our previous example of the simple name pattern get* is ac-
tually not scanned as the single token get*, but as the tokeniza-
tion you would expect in the context of a regular Java expression:
an identifier followed by a multiplication operator, i.e. the scanner
produces the tokenization get *.

Still, this does not look very harmful, but actually scanning
pointcuts and Java code uniformly can lead to very strange tok-
enizations. For example, consider the (somewhat artificial) pointcut
call(* *1.Function+.apply(..)). For this pointcut the cor-
rect tokenization according to the lexical syntax of pointcuts is:

call (* *1 . Function + . apply (..))

However, the ajc scanner produces the following list of tokens for
this pointcut:

call (* * 1.F unction + . apply (. .))

Perhaps surprisingly, Function has been split up and the F is now
part of the token 1.F, which is a floating-point literal where the
F is a floating-point suffix. Of course, a floating-point literal is
not allowed at all in this context in the source file. As we will
show later, the pattern parser needs to work around this incorrect
tokenization.

Unfortunately, things can get even worse. Although rather un-
common, the first alpha-numerical character after the * in a simple
name pattern can be a number (in fact, this is also the case in the
previous floating-point example). The token that starts after the *
will always be scanned as a number by the JDT scanner, and the
same will happen in the ajc scanner. The JDT scanner checks the
structure of integer and floating-point literals by hand and immedi-
ately stops parsing if it finds a token that should be a floating-point
or integer literal according to the Java lexical syntax, but is invalid
because certain parts of the literal are missing. This can result in
error messages about invalid literals, while in this context there can
never actually be a literal.

For example, scanning the pointcut call(void *0.Ef()) re-
ports an “Invalid float literal number” because the scanner wants
to recognize 0.E as floating-point literal, but the actual exponent
number is missing after the exponent indicator E. As another exam-
ple, scanning the pointcut call(void Foo.*0X()) fails with the
error message “Invalid hex literal number”, since 0X indicates the
start of a hexadecimal floating-point or integer literal, but the actual
numeral is missing.

Parser The ajc parser operates on the sequence of tokens pro-
vided by the scanner. Unfortunately, for pointcuts the parser can-
not do anything useful with this tokenization, since it is not even
close to the real lexical syntax of pointcuts in many cases. In a
handwritten parser it might be possible to workaround the incor-
rect tokenization, but the ajc parser is generated from a grammar
using the Jikes parser generator. In a grammar workarounds for in-
correct tokenizations are possible as well (as we will see later for
parameterized types) but for pointcuts this would be extraordinarily
difficult, if not impossible.

For these reasons, the parser processes pointcuts just as a list
of tokens called pseudo tokens that are parsed separately by the
handwritten pattern parser. In this way, the main parser basically

PointcutDeclaration ::=
PcHeader FormalParamListopt ’)’ ’:’ PseudoTokens ’;’

DeclareDeclaration ::=
DeclareAnnoHeader PseudoTokensNoColon ’:’ Anno ’;’

PseudoToken ::=
’(’ | ’)’ | ’.’ | ’*’ | Literal | ’new’
| JavaIdentifier | ’if’ ’(’ Expression ’)’ | ...

ColonPseudoToken ::= ’:’

PseudoTokens ::=
one or more PseudoToken or ColonPseudoToken

PseudoTokensNoColon ::=
one or more PseudoToken

Figure 4. Pseudo tokens in the ajc grammar for AspectJ

just skips pointcuts and forwards the output of the scanner (with a
twist for the if pointcut) to the pattern parser. It is essential that the
parser can find the end of the pointcut without parsing the pointcut.
Fortunately, this is more or less the case in AspectJ, since pointcuts
cannot contain semicolons, colons, and curly braces, except for the
expression argument of the if pointcut designator, which we will
discuss later.

The handling of pointcuts using pseudo tokens is illustrated in
Figure 4: the first production defines pointcut declarations, where
the pointcut, recognized as pseudo tokens, starts after the colon and
is terminated by the semicolon. The second production for inter-
type annotation declarations uses a somewhat smaller set of pseudo
tokens, since it is terminated by a colon instead of a semicolon.
Most of the Java tokens, except for curly braces, semicolons, and
colons, but including keywords, literals, etc., are defined to be
pseudo tokens.

The if pointcut designator is a special case, since it takes
a Java expression as an argument. Of course, the pattern parser
should not reimplement the parsing of Java expressions. Also,
Java expressions could break the assumption that pointcuts do not
contain colons, semicolons, and curly braces. For these reasons, the
if pointcut designator is parsed by ajc parser as a special kind of
pseudo token, where the expression argument is not a list of tokens,
but a real expression node (see Figure 4).

Interestingly, this special pseudo token for the if pointcut des-
ignator reserves the if keyword in pointcuts, while all other Java
keywords are allowed in name patterns. Hence, the method pattern
boolean *.if*(..) is not allowed in ajc 2.

Pattern Parser Finally, the handwritten pattern parser is applied
to pointcuts, which have been parsed as pseudo tokens by the
parser. The pattern parser takes a fair amount of code, since the
pointcut language of AspectJ is quite rich. Most of the code for
parsing pointcuts is rather straightforward, though cumbersome to
implement by hand. The most complex code handles the parsing of
name patterns. Since the tokenization performed by the ajc scan-
ner is not correct, the pattern parser cannot just consume the tokens.
Instead, it needs to consider all the possible cases of incorrect tok-
enizations. For example, the pointcuts call(* *1.foo(..)) and
call(* *1.f oo(..)) are both tokenized in the same way by the
ajc scanner:

call (* * 1.f oo (. .)) ;

However, the token sequences for these two pointcuts cannot be
handled in the same way, since the second one is incorrect, so

2 This turned out to be a known problem, see bug 61535 in ajc’s Bugzilla:
https://bugs.eclipse.org/bugs/show bug.cgi?id=61535, which
has been opened in May 2004.

a parse error needs to be reported. Therefore, the pattern parser
checks if tokens are adjacent or not:

while(true) {
tok = tokenSource.peek();
if(previous != null) {

if(!isAdjacent(previous, tok))
break;

}
... }

The need for this adjacency check follows naturally from the fact
that the pattern parser has to redo the scanning at some parts of the
pointcut and a single AspectJ pointcut token can span multiple Java
tokens, in particular in name patterns.

The special if pseudo tokens do not have to be parsed anymore.
For this purpose, the IToken interface, of which PseudoToken and
IfPseudoToken are implementations, is extended with a method
maybeGetParsedPointcut that immediately returns the pointcut ob-
ject. This method is invoked from the pattern parser:

public Pointcut parseSinglePointcut() {
IToken t = tokenSource.peek();
Pointcut p = t.maybeGetParsedPointcut();
if(p != null) {

tokenSource.next();
return p;

}
String kind = parseIdentifier();
... // continue parsing the pointcut

}

4.2.2 Ajc Parameterized Types
Incorrect tokenization problems are not unique to AspectJ. Even
in regular Java 5, a parser that applies a scanner uniformly to an
input program has to deal with incorrect tokenizations, namely
of parameterized types. For example, the parameterized type
List<List<List<String>>> is tokenized by the ajc scanner
as:

List < List < List < String >>>

where >>> is the unsigned right shift operator 3. Because of this,
the grammar cannot just define type arguments as a list of comma-
separated types between ’<’ and ’>’, since in some cases the final
> will not actually be a separate token.

This tokenization problem has to be dealt with in two places: in
the ajc grammar and in the handwritten pattern parser. For the ajc
grammar, Figure 5 shows the production rules for type arguments.
Clearly, this is much more involved than it should be 4. For the
pattern parser, incorrect tokenizations of >> and >>> are fixed by
splitting the tokens during parsing when the expected token is a
single >. Figure 6 show the code for this. The eat method is
used in the pattern parser to check if the next token is equal to a
specified, expected token. If a shift operator is encountered, but
a > is expected, then the token is split and the remainder of the
token is stored in the variable pendingRightArrows, since the
remainder is now the next token.

4.2.3 Ajc Pseudo Keywords
For compatibility with existing Java code, ajc does not reserve all
the keywords introduced by AspectJ. Yet, the scanner of ajc does
add keywords to the lexical syntax of Java (aspect, pointcut,
privileged, before, after, around, and declare), which usu-
ally implies that these keywords cannot be used as identifiers since
the scanner will report these tokens as being keywords. However,

3 In C++ this is not allowed: a space is required between the angle brackets.
4 This workaround is documented in the GJ specification [13].

TypeArgs ::= ’<’ TypeArgList1

TypeArgList -> TypeArg
TypeArgList ::= TypeArgList ’,’ TypeArg
TypeArgList1 -> TypeArg1
TypeArgList1 ::= TypeArgList ’,’ TypeArg1
TypeArgList2 -> TypeArg2
TypeArgList2 ::= TypeArgList ’,’ TypeArg2
TypeArgList3 -> TypeArg3
TypeArgList3 ::= TypeArgList ’,’ TypeArg3

TypeArg ::= RefType
TypeArg1 -> RefType1
TypeArg2 -> RefType2
TypeArg3 -> RefType3

RefType1 ::= RefType ’>’
RefType1 ::= ClassOrInterface ’<’ TypeArgList2
RefType2 ::= RefType ’>>’
RefType2 ::= ClassOrInterface ’<’ TypeArgList3
RefType3 ::= RefType ’>>>’

Figure 5. Parameterized types in the ajc grammar

private void eat(String expected) {
IToken next = nextToken();
if(next.getString() != expectedValue) {

if(expected.equals(">")
&& next.getString().startsWith(">")) {

pendingRightArrows = substring from 1 of next;
return;

}
throw parse error

}}

private IToken pendingRightArrows;
private IToken nextToken() {

if(pendingRightArrows != null)
IToken ret = pendingRightArrows;
pendingRightArrows = null;
return ret;

else {
return tokenSource.next();

}
}

Figure 6. Splitting shift operators in the ajc pattern parser

in its grammar, ajc introduces JavaIdentifier, a new non-
terminal for identifiers, for which these keywords are explicitly al-
lowed:

JavaIdentifier -> ’Identifier’
JavaIdentifier -> AjSimpleName

AjSimpleName -> ’around’
AjSimpleName -> AjSimpleNameNoAround
AjSimpleNameNoAround -> ’aspect’ or ’privileged’ or

’pointcut’ or ’before’ or ’after’ or ’declare’

This extended identifier replaces the original Identifier, which
can no longer be one of the AspectJ keywords, at most places in
the grammar. For example, the following productions allow the
AspectJ keywords as the name of a class, method, local variable,
and field.

ClassHeaderName1 ::= Modifiersopt ’class’ JavaIdentifier
MethodHeaderName ::= Modifiersopt Type JavaIdentifier ’(’
VariableDeclaratorId ::= JavaIdentifier Dimsopt

However, the extended identifier is not allowed everywhere. In
particular, it cannot be the first identifier of a type name, which

means that it is not allowed as a simple type name, and cannot be
the first identifier of a qualified type name, which could refer to
a top-level package or an enclosing class. For example, the first
import declaration is not allowed, but the second one is 5:

import privileged.*;
import org.privileged.*;

If keywords would be allowed as simple type names, the grammar
would no longer be LALR(1). The keywords as type names intro-
duce shift-reduce and reduce-reduce conflicts. Hence, a qualified
name is defined to be an Identifier, followed by one or more
JavaIdentifiers:

ClassOrInterface ::= Name
SingleTypeImportDeclarationName ::= ’import’ Name
Name -> SimpleName or QualifiedName
SimpleName -> ’Identifier’
QualifiedName ::= Name ’.’ JavaIdentifier

Pointcuts The names of the primitive AspectJ pointcut designa-
tors, such as get, set, call, etc., are not declared as keywords.
The scanner does not have any knowledge about pointcuts, so the
names are parsed as identifiers, unless the pointcut designator was
already a keyword, such as if. As we have seen earlier, the name
if is still accidentally a reserved keyword, but the names of the
other pointcut designators are not, so they can be used in point-
cut expressions, for example in name patterns. However, a named
pointcut with the same name as a primitive pointcut designator can
not be used (though surprisingly, it can be declared without warn-
ings).

Around Advice Declarations Around advice declarations intro-
duce another complication. Whereas after and before advice dec-
larations immediately start with the keywords after or before,
around advice declarations start with a declaration of the return
type. This introduces a shift-reduce conflict between an around ad-
vice declaration and a method declaration. For this reason, ajc
does not allow methods named around in aspect declarations. Of
course, it would not be acceptable to disallow the name around
for all methods, including the ones in regular Java classes, so this
restriction should only apply to aspect declarations (advice cannot
occur in class declarations). Therefore, the ajc grammar needs to
duplicate all the productions (19) from an aspect declaration down
to a method declaration, where finally the name of a method is re-
stricted to a JavaIdNoAround:

JavaIdNoAround -> ’Identifier’
JavaIdNoAround -> AjSimpleNameNoAround
MethodHeaderNameNoAround ::=

Modifiersopt TypeParameters Type JavaIdNoAround ’(’

4.3 The abc Scanner and Parser
The parser of abc6 is based on Polyglot [28], which provides PPG,
a parser generator for extensible grammars based on the LALR
CUP parser generator. PPG acts as a front-end for CUP, by adding
some extensibility and modularity features, which we will discuss
later in Section 6. Polyglot’s scanner for Java is implemented using
the JFlex scanner generator. Polyglot does not feature an extensible
scanner, so the abc compiler implements its own scanner for As-
pectJ, which takes an approach radically different from ajc. The
abc scanner and parser can parse the entire source file in a single
continuous parse. So, the Java, aspect, and pointcut language are
defined in a single JFlex specification and CUP grammar. The abc

5 This is related to ajc bug 37069 at https://bugs.eclipse.org/
bugs/show bug.cgi?id=37069
6 Our study is based on abc version 1.1.0, which supports ajc 1.2.1 with
some minor differences

Java

AspectJ

PointcutPointcut If

class
aspect,class

[;{)]

pointcut

[;{)]

per*,pointcut,after

if

[)]

class

class aspect

Figure 7. Lexical state transitions in the abc scanner

scanner is designed to immediately produce the correct tokeniza-
tion, so there is no need to fix incorrect tokenizations later. Also,
the scanner does not interact with the parser.

4.3.1 Managing Lexical State
The abc scanner performs a rudimentary form of context-free pars-
ing to recognize the global structure of the source file while scan-
ning. The scanner keeps track of the current state (or context), by
using a set of state transition rules that have been determined by
a detailed analysis of the possible state switches in AspectJ. The
lexical states and the transitions between them are illustrated in
Figure 7. Some transitions have additional conditions, which we
will explain later. Maintaining lexical state is not uncommon. It is
widely used for scanning string literals and it is a standard feature
of JFlex. Every lexical state has its own set of lexical rules, which
means that a sequence of characters can be scanned as a different
token in different states.

Pointcut Declarations A simple example of such a state transi-
tion rule, is that a pointcut state is entered after the pointcut key-
word and exited after a ";" in pointcut context. For this example,
the pointcut keyword and the semicolon indicates the start and
end of a pointcut declaration, respectively. The exit of the pointcut
state after a pointcut declaration is implemented in the flex specifi-
cation by returning to the previous state (which is maintained on a
stack) whenever the ";" token is encountered in the pointcut state
(POINTCUT):

<POINTCUT> {
";" {

returnToPrevState();
return op(sym.SEMICOLON);

}}

For reasons of extensibility, keywords and their corresponding
actions for entering lexical states are not specified in the flex
specification, but are initialized from the Java code by means
of a Java interface LexerAction whose instances can be reg-
istered with the scanner. LexerActions are always attached to
keywords and can change the lexical state when the keyword has
been scanned. For example, the following Java statement adds the
keyword pointcut, which starts the pointcut declaration, to the
scanner and specifies that the new lexical state after this keyword
is pointcut.

lexer.addAspectJKeyword("pointcut",
new LexerAction_c(new Integer(sym.POINTCUT),

new Integer(lexer.pointcut_state())));

In this way, keywords are registered per lexical state in a HashMap.
Initially, keywords are always scanned as identifiers and depending
on the current lexical state, the identifier is turned into a keyword
by a lexer action. As a side effect, the lexer action can modify
the lexical state of the scanner. Figure 8 shows a fragment of the
Java class LexerAction c and the invocation of the lexer actions
from the flex specification after an Identifier has been scanned.

<YYINITIAL,ASPECTJ,POINTCUTIFEXPR,POINTCUT> {
{Identifier} {

LexerAction la;
switch(yystate()) {

case YYINITIAL:
la = javaKeywords.get(yytext()); break;

case ASPECTJ:
la = aspectJKeywords.get(yytext()); break;

...
}

if(la != null)
return key(la.getToken(this));

return id();
}}

class LexerAction_c implements LexerAction {
public Integer token;
public Integer nextState;
public int getToken(AbcLexer lexer) {

if(nextState != null)
lexer.enterLexerState(nextState.intValue());

return token.intValue();
}}

Figure 8. Lexer actions in the abc scanner

Note that keywords are automatically reserved in this way, since
the identifier is always be turned in a keyword if there is a lexer
action for it. Note that this design choice for resevered keywords is
different from the pseudo keyword policy used by ajc.

If Pointcut Designator The pointcut lexer action and the lexi-
cal rule for ; look rather concise, but unfortunately, most rules are
more complex than this. For instance, the if(..) pointcut designa-
tor takes a Java expression as argument, which has the same lexical
syntax as Java code in Java context, so the lexical state should be
changed for the argument of the if(..). Entering the lexical state
is not very difficult: a lexer action for the if keyword can perform
this state transition. The following Java statement adds the pointcut
keyword if to the scanner and specifies that the new lexical state
after this keyword is the special POINTCUTIFEXPR state:

lexer.addPointcutKeyword("if",
new LexerAction_c(new Integer(sym.PC_IF),

new Integer(lexer.pointcutifexpr_state())));

However, for recognizing the end of the if(..) pointcut designa-
tor, the scanner needs to find the closing parenthesis. Of course,
a Java expression can contain parentheses as well. It would be in-
correct to leave the special lexical state at the first closing paren-
thesis. Thus, the scanner needs to find the closing parenthesis
that corresponds to the opening parenthesis after the if. For this
purpose, the abc scanner maintains a variable parenLevel that
is used to balance the parentheses. If a ")" is encountered, the
parenLevel is decremented and the new parenLevel is com-
pared to the parenLevel of the if pointcut, for which the initial
parenLevel has been saved in the entry on the nestingStack:

<YYINITIAL,ASPECTJ,POINTCUTIFEXPR> {
"(" { parenLevel++; return op(sym.LPAREN); }
")" {

parenLevel--;
if((yystate() == POINTCUTIFEXPR) &&

(parenLevel == nestingStack.peek().parenLevel))
returnToPrevState();

return op(sym.RPAREN);
}}

Per-clause There are more places where pointcuts can occur in an
AspectJ program: aspect declarations optionally take a per-clause,

which is used to control the instantiation of aspects. For example,
declaring:

aspect Foo perthis(pc) { ... }

entails that a new aspect instance of Foo is created for every this
where the pointcut pc matches. Finding out the end of the pointcut
of a per-clause is a bit more difficult than for normal pointcuts. The
scanner again needs to find the matching closing parenthesis, but it
also needs to know if it is actually scanning the pointcut of a per-
clause or not. Instead of a new lexical state for per-clause pointcuts,
the abc scanner uses a global boolean variable inPerPointcut.
This variable is set to true by a lexer action for all per-clause
keywords (perthis, percflow, etc.):

class PerClauseLexerAction_c extends LexerAction_c {
...
public int getToken(AbcLexer lexer) {

lexer.setInPerPointcut(true);
return super.getToken(lexer);

}}

For a closing parenthesis in the pointcut lexical state, the scanner
now needs to check if it is currently scanning a per-clause pointcut
and if the closing parenthesis occurs at the same parenthesis level
as the opening parenthesis that preceded the pointcut:

<POINTCUT> {
")" {

parenLevel--;
if(inPerPointcut &&

parenLevel == nestingStack.peek().parenLevel) {
returnToPrevState();
inPerPointcut = false;

}
return op(sym.RPAREN);

}}

Class Keyword While the end of a lexical state is detected in the
flex specification by a lexical rule for a token, the start of a context
is declared in the lexer action of a keyword. In most cases, the start
of a new lexical state is clearly indicated by a keyword. However,
the class keyword does not unambiguously indicate the start of the
Java lexical state for a class declaration, since it may also be used in
class literals (e.g. Foo.class). To distinguish a class literal from
a class declaration, the abc scanner maintains a special variable
lastTokenWasDot. All tokens, except for the dot, set this variable
to false. The rule for the class token can now determine whether
it appears in a class literal or a class declaration and change the
scanner state accordingly.

lexer.addGlobalKeyword("class",
new LexerAction_c(new Integer(sym.CLASS)) {

public int getToken(AbcLexer lexer) {
if(!lexer.getLastTokenWasDot())

lexer.enterLexerState(aspectj or java);
return token.intValue();

}});

It is interesting to observe the consequences for the scanner if a
keyword no longer unambiguously indicates the next lexical state.
In this case, the scanner needs to be updated for all tokens to
maintain the lastTokenWasDot variable.

4.3.2 Parser
Thanks to the rudimentary context-free parsing in the scanner, the
AspectJ grammar of abc is a clean modular extension of the basic
Java grammar, implemented in PPG and based on the existing
Polyglot grammar for Java. The grammar defines the entire AspectJ
language, including pointcuts and name patterns, which is not the
case in ajc.

reference_type_1 ::= reference_type GT
| class_or_interface LT type_argument_list_2;

reference_type_2 ::= reference_type RSHIFT
| class_or_interface LT type_argument_list_3;

reference_type_3 ::= reference_type:a URSHIFT;

wildcard ::= QUESTION;
wildcard_1 ::= QUESTION GT;
wildcard_2 ::= QUESTION RSHIFT;
wildcard_3 ::= QUESTION URSHIFT;

Figure 9. Production Rules for Parameterized Types in abc.

Name Patterns There is one interesting language construct for
which some undesirable production rules have to be defined: name
patterns. The grammar explicitly allows the reserved keywords of
the pointcut lexical state as simple name pattern to allow name pat-
terns such as Foo.get. Without explicitly allowing keywords, this
would be forbidden, since get is a reserved keyword for pointcuts
in abc and will therefore not be parsed as an identifier. The CUP
production rules for this are:

simple_name_pattern ::=
PC_MULT | IDENTIFIERPATTERN | IDENTIFIER
| aspectj_reserved_identifier ;

aspectj_reserved_identifier ::=
ASPECT | ... | PC_GET | ... | PC_SET ... ;

This is somewhat unfortunate, because the keywords for pointcuts
are hence defined in the grammar, as well as in the Java code,
namely for adding lexer actions to the scanner. Extensions of As-
pectJ implemented in abc that introduce new pointcut keywords
have to extend the aspectj reserved identifier production
as well. Extensions may easily forget to do this and thereby reserve
their keywords in name patterns. This extensibility issue will be
discussed in more detail in Section 6.

Ideally, the abc scanner should enter a new lexical state for
name patterns, since the lexical syntax of name patterns differs
from pointcuts (i.e. the set of keywords is different). However, this
will be more difficult to implement than the existing lexical states,
since name patterns are not very explictly delimited by certain
tokens 7.

Parameterized Types Although abc does not support AspectJ 5.0
and parameterized types, it is interesting to take a look at how the
scanning problems for parameterized types would be solved in a
similar setup of the scanner and parser. Currently, an extension of
Polyglot for Java 5.0 is under development at McGill. In contrast
to the approach of the abc compiler, the scanner of this extension
does not always produce the correct tokenization for regular Java.
Instead, the grammar works around the incorrect tokenization of
parameterized types by encoding this in the definition of type
arguments and reference types. To illustrate this workaround for
incorrect tokenization, some production rules of this grammar are
shown in Figure 9 (lots of details have been eluded). To resolve this
issue a different lexical state should be used for types, since their
lexical syntax is different from expressions. However, types will
be very difficult to identify by a scanner in the input file, so this
approach is rather unlikely to work.

Unfortunately, this grammar is now difficult to extend for ref-
erence types, since there are a large number of production rules
involved, which encode the syntax of reference types in a rather
tricky way.

7 Indeed, very recently bug 72 has been created in the abc bugzilla, which
proposes to introduce a lexer state for name patterns. See: http://abc.
comlab.ox.ac.uk/cgi-bin/bugzilla/show bug.cgi?id=72

4.4 Summary and Discussion
We have discussed two approaches to parsing AspectJ. The ajc
compiler uses a single scanner, but separate parsers (for ‘regular’
code and for pointcut expressions). The abc compiler uses a single
parser with a stateful scanner. Based on our analysis we can make
the following observations. Many rules on the syntax of AspectJ
are only operationally defined in the implementation of the scanner
and parser. As a consequence neither implementation provides a
declarative formalization of the syntax of AspectJ, although the
LALR grammar of abc [21] is a step in the right direction. The
ajc parser has undocumented implementation quirks because of
the scanner implemented in and for plain Java. The abc parser
improves over this by using a scanner with lexical states. The abc
parser is also more predictable, but managing the lexical state in
the parser is tricky and duplicates code and development effort. It
is difficult to reason about the correctness and completeness of the
context switching rules of the abc scanner. For example, the use of
the global variable inPerPointcut happens to work correctly in
case an anonymous class is used with aspect members in a per-
pointcut, but a slight change or extension of the language may
render this implementation invalid. Choices for introducing lexical
states are guided by the complexity of determining this lexical
state in the scanner. For example, a separate lexical state for name
patterns might be more appropriate. In conclusion, although the
implementation techniques used in the parsers of ajc and abc are
effective for parsing AspectJ, their implementations have several
drawbacks.

5. A Declarative Syntax Definition for AspectJ
In the previous section, we have presented a range of implemen-
tation issues in parsing AspectJ, and the solutions for these in the
two major AspectJ compilers, i.e. ajc and abc. As a consequence
of these issues, the syntax of the language that is supported by these
compilers is not clearly defined. We conclude that the grammar for-
malisms and parsing techniques that are used are not suitable for the
specification of the AspectJ language. A complete and declarative
definition of the syntax of the AspectJ language is lacking.

In this section, we present a definition of the syntax of AspectJ
that is declarative, modular, and extensible. Our AspectJ syntax
definition is based on the syntax definition formalism SDF and its
implementation with scannerless generalized-LR parsing. Thanks
to these foundations, the definition elegantly deals with the exten-
sion and embedding of the Java language, the problems of context-
sensitive lexical syntax, and the different keyword policies of the
ajc and abc compilers. Indeed, the modularity of SDF allows us
to define three variations of the AspectJ language:

• AJF, which is the most liberal definition, where only real ambi-
guities are resolved, for example by reserving keywords at very
specific locations.

• AJC, which adds restrictions to the language to be more com-
patible with the official AspectJ compiler. The additional re-
strictions are mostly related to shift-reduce problems in the
LALR parser of ajc.

• ABC, which reserves keywords in a context-sensitive way, thus
defining the language supported by the abc compiler.

The AspectJ syntax definition modularly extends our syntax def-
inition for Java 5 8. Also, the AJF, AJC, and ABC variations are
all modular extensions of the basic AspectJ definition. Moreover,
in Section 6 we will show that our syntax definition can be easily
extended with new aspect features. In Section 7 we present bench-
mark results, which show that these techniques yield a parser that

8 Available at http://java.syntax-definition.org

module Java 7

imports Statements Expressions Identifiers 8

exports context-free syntax
PackageDec? ImportDec* TypeDec+ -> CompilationUnit 9

module Statements exports context-free syntax
"for" "(" FormalParam ":" Expr ")" Stm -> Stm
"while" "(" Expr ")" Stm -> Stm

module Expressions exports context-free syntax
ExprName -> Expr 10

Expr "+" Expr -> Expr {left} 11

MethodSpec "(" {Expr ","}* ")" -> Expr 12

MethodName -> MethodSpec
Expr "." TypeArgs? Id -> MethodSpec

module Identifiers exports lexical syntax
[A-Za-z_\$][A-Za-z0-9_\$]* -> Id 13

lexical restrictions
Id -/- [a-zA-Z0-9_\$] 14

Figure 10. Fragment of syntax definition for Java

performs linear in the size of the input with an acceptable constant
factor, at least for specification, research and prototyping purposes.

The core observation underlying the syntax definition is that
AspectJ is a combination of languages, namely Java, aspects, and
pointcuts. From this viewpoint, this work applies and extends pre-
vious work on combining languages for the purpose of domain-
specific language embedding [16] and meta-programming with
concrete object syntax [15] (see Section 8.1).

5.1 Integrating Lexical and Context-Free Syntax
SDF integrates the definition of lexical and context-free syntax in
a single formalism, thus supporting the complete description of the
syntax of a language in a single definition. In this way, the lexical
syntax of AspectJ can be integrated in the context-free syntax
of AspectJ, which automatically leads to context-sensitive lexical
syntax. Parsing of languages defined in SDF is implemented by
the scannerless generalized-LR parser SGLR [39], which operates
on individual characters instead of tokens. Thus, recognizing the
lexical constructs in a source file is actually the same thing as
parsing. This solves most of the issues in parsing AspectJ.

Lexical syntax can be disambiguated in a declarative, explicit
way, as opposed to the implicit, built-in heuristics of lexical analy-
sis tools, such as a longest-match policy and a preference for key-
words. Without explicit specification, keywords are not reserved
and, for example, are perfectly valid as identifiers. Instead, key-
words can be reserved explicitly by defining reject productions.

Java Figure 10 illustrates the basic ideas of SDF with sam-
ple modules and productions from the Java syntax definition. Of
course, the real syntax definition is much larger and spread over
more modules. Note that the arguments of an SDF production are
at the left and the resulting symbol is at the right, so an SDF pro-
duction s1 . . . sn -> s0 defines that an element of non-terminal s0

can be produced by concatenating elements from non-terminals s1

. . . sn, in that order. The modules of Figure 10 illustrate that mod-
ules have names 7 and can import other modules 8. The module
Java defines the composition of compilation units 9 from package
declarations, import declarations, and type declarations. Note the
use of optional (?) and iterated (*,+) non-terminals. The module
Expressions defines expression names 10 (local variables, fields,
etc), addition of expressions 11, which is declared to be left asso-
ciative, and method invocation 12. The production rule for method
invocations uses {s lit}*, which is concise notation for a list of

module AspectDeclaration exports context-free syntax
AspectDecHead AspectBody -> AspectDec 15

AspectMod* "aspect" Id TypeParams? Super?
Interfaces? PerClause? -> AspectDecHead 16

"perthis" "(" PointcutExpr ")" -> PerClause 17

"pertypewithin" "(" TypePattern ")" -> PerClause 18

AdviceMod* AdvSpec Throws? ":" PointcutExpr
MethodBody -> AdviceDec 19

"before" "(" {Param ","}* ")" -> AdvSpec 20

"after" "(" {Param ","}* ")" ExitStatus? -> AdvSpec 21

ResultType "around" "(" {Param ","}* ")" -> AdvSpec 22

"returning" "(" Param ")" -> ExitStatus 23

Figure 11. Fragment of syntax definition for aspects and advice.

module PointcutExpression exports context-free syntax
"call "(" MethodConstrPattern ")" -> PointcutExpr 24

"get" "(" FieldPattern ")" -> PointcutExpr 25

"this" "(" TypeIdStar ")" -> PointcutExpr 26

"cflow" "(" PointcutExpr ")" -> PointcutExpr 27

"if" "(" Expr ")" -> PointcutExpr 28

PointcutName "(" {TypeIdStar ","}* ")"
-> PointcutExpr 29

Id -> PointcutName

Figure 12. Fragment of syntax definition for AspectJ pointcut
expressions.

s separated by lit. The module Identifiers shows how lexical
syntax is defined in the same syntax definition as the context-free
syntax. To define lexical non-terminals such as identifiers SDF
provides character classes to indicate sets of characters 13. The
Identifiers module also defines a longest-match policy for iden-
tifiers, by declaring that identifiers cannot directly be followed by
one of the identifier characters 14. Another difference with respect
to other formalisms is that there may be multiple productions for
the same non-terminal. This naturally leads to modular syntax def-
initions in which syntax can be composed by importing modules.

Aspects Similar to the syntax definition of Java, SDF can be used
to define modules for the languages of aspects, pointcut expres-
sions, and patterns. Figure 11 presents a few productions for aspect
declarations in AspectJ. The first two productions define aspect
declarations 15 and aspect declaration headers 16. Both produc-
tions use non-terminals from Java, for example Id, TypeParams
(generics), and Interfaces. The aspect header may have a per-
clause, which can be used to control the instantiation scheme of an
aspect. For instance, a perthis clause 17 specifies that one aspect
instance is created for each currently executing object (this) in the
join points matched by the pointcut expression given as a param-
eter. The per-clause pertypewithin 18, which has been added to
the language in AspectJ 5, is used to create a new aspect instance
for each type that matches the given type pattern. This is the only
per-clause that does not take a pointcut expression as an argument.

Advice declarations 19 are mainly based on an advice speci-
fier and a pointcut expression, where an advice specifier can be a
before 20, after 21, or around 22 advice. Note that most of the pro-
ductions again refer to Java constructs, for example ResultType
and Param (an abbreviation of FormalParam).

Pointcuts The AspectJ pointcut language is a language for con-
cisely describing a set of join points. Pointcut expressions con-
sist of applications of pointcut designators, which can be primi-
tive or user-defined. Also, pointcut expressions can be composed
using boolean operators. Figure 12 shows some of the primitive
pointcuts of AspectJ. The call 24 and get 25 pointcut designators
take patterns of methods, constructors, or fields as arguments. The

module Pattern exports context-free syntax
IdPattern -> NamePattern
NamePattern "." IdPattern -> NamePattern
NamePattern ".." IdPattern -> NamePattern 30

PrimType -> TypePattern 31

TypeDecSpecPattern -> TypePattern
TypeDecSpecPattern TypeParamsPattern -> TypePattern 32

NamePattern -> TypeDecSpecPattern 33

NamePattern "+" -> TypeDecSpecPattern 34

FieldModPat TypePat ClassMemberNamePat -> FieldPat 35

MethodModPat TypePat ClassMemberNamePat
"(" {FormalPat ","}* ")" ThrowsPat? -> MethodPat 36

lexical syntax
[a-zA-Z_\$*][a-zA-Z0-9_\$*]* -> IdPattern 37

Figure 13. Fragment of syntax definition for AspectJ patterns.

this 26 pointcut designator cannot be used with arbitrary type pat-
terns. Instead, the argument must be a Type, an Id or a wildcard.
The if 28 pointcut designator, which we have discussed before,
takes a boolean Java expression as an argument. Finally, Figure 12
defines the syntax for user-defined pointcuts 29 in pointcut expres-
sions, which have been declared somewhere in the program using
a pointcut declaration.

Patterns The AspectJ pattern language plays an important role:
as we have already seen, most of the pointcut designators operate
on patterns. Figure 13 shows some productions for the syntax of
the pattern language. Name patterns are used to pick out names in
a program. A name pattern is a composition of identifier patterns 37,
which are used for matching identifiers (i.e. names without a dot)
by adding a * wildcard to the set of identifier characters. The
.. wildcard 30 can be used to include names from inner types,
subpackages, etc. Almost every pointcut uses type patterns, which
are used for selecting types. Any name pattern is a type pattern 33,
but type patterns can also be used to match subtypes 34, primitive
types 31, parameterized types 32, etc.

Method 36 and field patterns 35 combine name patterns, type
patterns, modifier patterns, throw patterns and patterns for formal
parameter into complete signature patterns that are used to match
methods and fields by their signatures.

5.2 Composing AspectJ
We have now illustrated how the syntax of the sublanguages of
AspectJ (Java, aspects, pointcuts, and patterns) can be defined as
separate SDF modules. Next, we need to compose these modules
into a syntax definition for AspectJ itself. In SDF, we can combine
two syntax definitions by creating a new module that imports the
main modules of the languages that need to be combined. The ease
with which syntax definitions can be composed, is due to the two
main features of the underlying parser: scannerless parsing and the
use of the generalized-LR algorithm.

First, in a setting with a separate scanner such a combination
would cause conflicts as has extensively been discussed in Sec-
tion 4. However, in the scannerless SDF setting this does not pose a
problem. Since lexical analysis is integrated with parsing, context-
sensitive lexical analysis comes for free. For example, when pars-
ing 1+1 as a Java expression the + will be seen as an addition oper-
ator 11, but when parsing Foo+ in the context of a pointcut expres-
sion, then the + will be interpreted as a subtype pattern 34.

Second, if LL, LR, or LALR grammars are used, then the com-
bination of one or more languages is not guaranteed to be in the
same subset, since these subsets of the context-free languages are
not closed under composition. Indeed, if we combine method dec-
larations from Java and advice declarations from aspects, then

module AspectJ 38

imports
Java AspectDeclaration PointcutExpression Pattern 39

exports context-free syntax
AspectDec -> TypeDec 40

ClassBodyDec -> AspectBodyDec 41

AspectDec -> ClassMemberDec 42

PointcutDec -> ClassMemberDec 43

Figure 14. SDF module combining Java, pointcut, and aspect dec-
larations.

shift-reduce conflicts pop up since this combination is no longer
LALR, as has been discussed in Section 4.2.3. Since SDF is im-
plemented using generalized-LR parsing, SDF supports the full
class of context-free grammars, which is closed under composi-
tion. Hence, new combinations of languages will stay inside the
same class of context-free grammars.

Nevertheless, in some cases there will be ambiguities in the new
combination of languages where there are actually two or more
possible derivations for the same input. These ambiguities can be
solved in a declarative way using one of the SDF disambiguation
filters [14], such as reject, priorities, prefer, and associativity. Sec-
tion 6 presents examples of this in AspectJ extensions. However,
this is not the case for AspectJ. For example, the around advice
problem is not a real ambiguity: the syntax of around advice and
method declarations are similar for the first arguments, but the
colon and the pointcut expression distinguishes the around advice
syntactically from method declarations.

AspectJ Figure 14 illustrates how the languages can be combined
by importing 39 the modules of Java, aspects, pointcuts, and pat-
terns 9. In this way, most of the integration happens automatically:
the productions for pointcut expressions already refer to patterns
and aspect declarations already refer to pointcut expressions and
patterns. By importing all modules, the symbols and productions
of these modules will be combined, and as a result the pointcut ex-
pressions will automatically be available to the aspect declarations.

The integration of the languages can be extended and refined by
adding more productions that connect the different sublanguages
to each other. For instance, aspect declarations (AspectDec) are
Java type declarations, since they can be used at the top-level of a
source file 40 (see also the production rule for compilation units 9).
Furthermore, aspect declarations 42 and pointcut declarations 43

can occur inside a class, i.e. as members of a Java class declaration.
Just as aspects and pointcuts can be defined in regular Java

code, the declarations of aspects can contain Java members such
as constructors, initializers, fields, and method declarations. Thus,
Java class body declarations (ClassBodyDec, i.e. elements of a
Java class body) are allowed as aspect body declarations 41.

5.3 Disambiguation and Restrictions
We have not yet defined any reserved keywords or other restric-
tions for the syntax that we have presented. Next, we explain how
the syntax definition can be extended in a modular way to impose
additional restrictions on the language, such as different reserved
keyword policies and requirements for being compatible with the
language accepted by an LALR grammar. First, we discuss how
keywords can be reserved in SDF. Next, we discuss the real ambi-
guities of the language that we have presented so far. The resulting
syntax definition, which is the most liberal AspectJ syntax defini-
tion without ambiguities, is called AJF. After that, we extend the
restriction to achieve the AJC and ABC variations, which are de-

9 The actual composition in the full definition is somewhat different, to
make the definition more customizable. We will discuss this later.

signed to be compatible with the AspectJ language as supported by
the ajc and abc compilers, respectively.

Reserving Keywords Scannerless parsing does not require a syn-
tax definition to reserve keywords. Depending on the context, the
same token can for example be interpreted as a keyword or as an
identifier. However, in some cases a keyword is inherently ambigu-
ous if it is not reserved. For example, the Java expressions this and
null would be ambiguous with the identifiers this and null if
they would not be reserved. In SDF reserved keywords are defined
using reject productions [39], which are productions annotated with
the reject keyword. The following two SDF productions illustrate
this mechanism:

"abstract" | "assert" | ... | "while" -> Keyword
Keyword -> Id {reject}

The first production defines keywords and the second rejects these
keywords as identifiers. Reject productions employ the capability
of generalized-LR parsers to produce all possible derivations. In
case of a keyword, there will be two possible derivations: one
using the real production for identifiers and one using the reject
production. If the reject production is applicable, then all possible
parses that produce the same non-terminal (in this case Id) are
eliminated. In this way, the parse that uses the production for the
real identifier is disallowed. Thus, in SDF reserved keywords are
defined per non-terminal: in the example above, the keywords are
only reserved for the Id non-terminal. If other identifier-like non-
terminals would exist in Java (which is not the case), then keywords
would not be reserved for that non-terminal. Because there is just a
single identifier non-terminal for regular Java, this feature does not
add much over a mechanism for global keywords, but the feature
is most useful if languages are being combined: it can be used for
defining context-sensitive keywords.

5.3.1 AJF

One of the few ambiguities in the syntax definition are the appli-
cations of user-defined 29 and primitive pointcut designators. For
example, the pointcut expression this(Foo) can be parsed as the
primitive pointcut this, but it can also parsed as a user-defined
pointcut with the same name. To resolve this ambiguity, AJF re-
jects the names of primitive pointcuts as the name of a user-defined
pointcut, which is similar to the behaviour of ajc and abc. To
make the names of primitive pointcuts available to extensions and
the other variations of AspectJ, we introduce a new non-terminal:
PrimPointcutName. These names are rejected as the name of a
used-defined pointcut.

"adviceexecution" | "args" | "call" | ...
| "within" | "withincode" -> PrimPointcutName

PrimPointcutName -> PointcutName {reject}

Another ambiguity that needs to be resolved by reserving keywords
occurs in type patterns. Type patterns are composed of name and
identifier patterns, but we have not imposed any restrictions on
these name patterns, which implies that a name pattern can just
as well be one of the built-in types int, float, void, etc. We do
not want to reject these types as identifier patterns in general, since
there is actually no ambiguity there. To resolve this ambiguity more
precisely, we can disallow keywords only for the name patterns that
are used as type patterns, i.e. TypeDecSpecPatterns 33.

Keyword -> TypeDecSpecPattern {reject}

The final ambiguity is a bit more surprising. The ajc compiler
does not reserve keywords in patterns, not even the regular Java
keywords (except for the bug with the if pseudo token). For ex-
ample, the method pattern * try(String) is accepted by ajc. Of
course, this is not very useful since there can never be a method

with this name, but for now we follow this decision. As a re-
sult of this, the identifier pattern new is allowed for the name of
a method in a method pattern. Surprisingly, the constructor pat-
tern *Handler+.new() can now also be parsed as a method pat-
tern by splitting the *Handler identifier pattern after any of its
characters. The part before the split then serves as a type pattern
for the return type of the method. For example, one of the re-
sults of parsing are the method patterns * Handler+.new() and
*H andler+.new(). The reason for this is that SDF does not by
default apply a longest-match policy. Of course, this split is not de-
sirable, so to disallow this, we define a longest-match policy specifi-
cally for identifier patterns using a follow restriction, which forbids
derivations where an identifier pattern is followed by a character
that can occur in a pattern.

IdPattern -/- [a-zA-Z0-9_\$*]

5.3.2 AJC Compatibility
In Section 4.2.3 we have discussed the pseudo keyword policy
of ajc in detail. Basically, the pseudo keywords of AspectJ are
only reserved for a few specific language constructs. This can
concisely be expressed using reject productions, which allow the
definition of reserved keywords per non-terminal. Similar to the
PrimPointcutName we introduced earlier, a new non-terminal for
pseudo keywords can be used. For all the language constructs that
cannot be pseudo keywords, a reject production is defined. For
example:

"aspect" | "pointcut" | "privileged" | "before"
| "after" | "around" | "declare" -> PseudoKeyword

PseudoKeyword -> TypeName {reject}
PseudoKeyword -> PackageOrTypeName {reject}

The first production handles the case where a typename is a single
identifier (e.g. aspect). The second case rejects pseudo keywords
as the first identifier of the qualifier of a typename (i.e. a package-
or typename), which corresponds to the behavior of ajc, where
pseudo keywords are not allowed as the first identifier of a type-
name. Finally, to be more compatible with ajc, AJC could produce
parse errors for incorrect floating-point literals in name patterns by
defining the syntax of incorrect floating-point literals and the name
patterns that contain them. These patterns can then be rejected as
name patterns. If this behaviour were required, then this might be
useful, but for now we leave this as an ‘incompatibility’.

5.3.3 ABC Compatibility
While extending the syntax definition for compatibility with ajc
was relatively easy, extending the definition (as we have presented
it until now) to become compatible with abc is substantially more
difficult, if undertaken without the appropriate solutions. First, we
discuss how a relatively easy restriction of abc can be enforced.
This leads to the explanation why other restrictions are impossible
to solve concisely in the current setup. For this, and for the defini-
tion of AspectJ extensions, we present a novel method of combin-
ing languages using grammar mixins. Grammar mixins then arise
as the key mechanism for composing the languages involved in As-
pectJ. After discussing grammar mixins, we return to the ABC com-
patibility.

Keywords and Name Patterns In Section 4.3 we have discussed
that the abc compiler reserves a different set of keywords per lex-
ical state. For example, in the lexical state of a pointcut, abc re-
serves all the names of primitive pointcut designators. To support
these keywords (such as the rather common get and set) in iden-
tifier patterns, they are explicitly allowed by the grammar of abc
(Section 4.3.2). In SDF, this is not an issue: keywords are reserved
per non-terminal, so keywords that have been reserved for identi-
fiers are still allowed as identifier patterns. As opposed to ajc, abc

does not allow regular Java keywords as identifier patterns, so the
previous example of the method pattern * try(String) results in
a syntax error. In our ABC compatible variation, this is handled by
rejecting plain Java keywords as identifier patterns:

Keyword -> IdPattern {reject}

However, it is not obvious how the context-sensitive keywords of
abc could be defined. For example, consider the following candi-
date for making primitive pointcut names keywords:

PrimPointcutName -> Keyword

Unfortunately, adding this production reserves keywords in every
context, not just in pointcuts. The previous reject production for
IdPattern illustrates why this is the case: we only have a single
keyword non-terminal and in this way we cannot have context-
specific sets of keywords. Moreover, we have just a single identifier
non-terminal (Id), but an identifier can occur in every context, and
for every context we need to reserve a different set of keywords.
Since we cannot refer to an identifier in a specific context, it is
impossible to define reserved keywords for it. Grammar mixins
are a solution for this, but are more generally useful than just for
defining reserved keywords.

5.4 Grammar Mixins
In the context of object-oriented programming, mixins are abstract
subclasses that can be applied to different superclasses (i.e. are
parameterized in their superclass) and in this way can form a family
of related classes [12]. In the context of grammars, grammar mixins
are syntax definitions that are parameterized with the context in
which they should be used. The key observation that leads to
the use of mixins for defining AspectJ is that the language uses
multiple instances of Java, which are mixed with the new language
constructs of AspectJ. For example, a Java expression in the context
of an if pointcut is different from a Java expression in an advice
declaration or in a regular Java class. Similarly, an identifier in the
context of a pointcut is different from an identifier in an aspect
body declaration. Therefore, it should be possible to handle them
as separate units, which would make it possible to customize them
separately.

Therefore, the Java language should be reusable in the definition
of a new language, where the Java syntax effectively becomes part
of the new syntax definition, i.e. if syntax definition A1 imports B
and C using mixin composition, then the syntax of B and C should
effectively become part of A1. A different language A2 should be
able to compose itself withB or C and modify this new composition
without affecting the other combination of A1, B, and C.

Grammar mixins provide a more flexible way of composing
languages compared to the plain import mechanisms of SDF that
we have been using until now. Using grammar mixins, Java can
be mixed with pointcuts, name patterns, and aspects and each of
these combinations is again a unit for composition. Also, it is
possible to extend, customize, or restrict the Java language only
for some specific combination. In particular, SDF grammar mixins
flourish because the syntax definitions that are subject to mixin
compositions are complete: the lexical as well as the context-free
syntax is being composed and can both be customized for a specific
composition. In the next section we will show how grammar mixins
can be used to their full potential to combine AspectJ language
extensions by unifying mixin compositions.

SDF Implementation For the implementation of grammar mix-
ins we make use of a combination of existing SDF features whose
applicability to syntax definition had not been fully explored pre-
viously: parameterized modules and parameterized symbols. Fig-
ure 15 shows the SDF implementation of the mixin module for
Java. An SDF grammar mixin is an SDF module that has a for-

module JavaMix[Ctx] 44

imports Java 45

[CompilationUnit => CompilationUnit[[Ctx]] 46

TypeDec => TypeDec[[Ctx]]
...
FieldAccess => FieldAccess[[Ctx]]
MethodSpec => MethodSpec[[Ctx]]
Expr => Expr[[Ctx]]]

Figure 15. SDF grammar mixin for Java.

module AspectJ[JavaCtx AspectCtx PointcutCtx PatternCtx]
imports

JavaMix[JavaCtx] 47

JavaMix[AspectCtx]
JavaMix[PointcutCtx]
JavaMix[PatternCtx]
aspect/Declaration[AspectCtx JavaCtx] 48

pattern/Main[PatternCtx] 49

pointcut/Expression[PointcutCtx JavaCtx] 50

Figure 16. Main module of grammar mixin-based AspectJ

AspectDec -> TypeDec[[JavaCtx]] 40

ClassBodyDec[[AspectCtx]] -> AspectBodyDec 41

AspectDec -> ClassMemberDec[[JavaCtx]] 42

PointcutDec -> ClassMemberDec[[JavaCtx]] 43

"before" "(" {Param[[AspectCtx]] ","}* ")" -> AdvSpec 20

"if" "(" Expr[[JavaCtx]] ")" -> PointcutExpr 28

PrimType[[PatternCtx]] -> TypePattern 31

Figure 17. AspectJ productions updated to grammar mixins. The
numbers refer to the productions mentioned earlier.

mal parameter 44 that identifies a particular mixin composition. By
convention this parameter is called Ctx (for context) and the mod-
ule name has the suffix Mix. This grammar mixin module imports
the real syntax definition 45 and applies a renaming 46 to all the
non-terminals of the grammar, which places these non-terminals in
the given Ctx by using a parameterized non-terminal. The list of
renamings covers all the non-terminals of the language, which can
be a very long list that is tedious to maintain. Therefore, we provide
a tool gen-sdf-mix that generates a grammar mixin module given
an SDF syntax definition. The grammar mixin is never modified by
hand, so it can be regenerated automatically.

All grammar mixins that are imported using the same symbol
for Ctx are subjected to mixin composition. In a way, the import
statement of SDF and Ctx symbol are the mixin composition oper-
ators of grammar mixins. For grammar mixins, composition means
that the grammars of the syntax definitions involved in a compo-
sition are fully automatically combined, based on the normal SDF
grammar composition semantics (which are also applied to plain
imports).

5.5 AspectJ in the Mix
Now we have revealed the actual design of the syntax definition,
we need to revise the presentation of the AspectJ syntax. Figure 16
shows the imports of the main module of the syntax definition. The
AJF, AJC, and ABC variations import this module and the varia-
tion specific modules. The AspectJ module itself has four con-
texts parameters, to make the mixin composition configurable for
AspectJ extensions. AspectJ imports the grammar mixin JavaMix
four times, once for every context. This makes all the non-terminals
of Java available to AspectJ in these four contexts. The choice of
the four contexts is somewhat arbitrary. For example, it might be
a good idea to introduce an additional context for advice. Fortu-

nately, this is very easy to do by just importing another instance of
the Java grammar mixin with a symbol for that context. Our syntax
definition has one context more than the abc scanner has lexical
states: abc does not place patterns in a separate context.

Next, the modules for the sublanguages are imported, passing
the required contexts as parameters to the modules. For example,
pointcut expressions 50 need to know their own context, but also
the context of regular Java expressions.

The imports of JavaMix and the sublanguage modules automat-
ically compose all mixin compositions, but we still need to make
some interactions explicit, like we did earlier in Figure 14. How-
ever, this time the productions also connect non-terminals from dif-
ferent contexts (mixin compositions). Figure 17 shows some of the
production rules that we have discussed earlier, but this time us-
ing the context parameters. For example, aspect declarations are
type declarations in the JavaCtx 40, but all the arguments of the
aspect declaration will be in the context of aspects, so an aspect
declaration changes the context from JavaCtx to AspectCtx in
this case. The second production 41 defines that regular Java class
body declarations from the aspect context can be used as aspect
body declarations. The productions for aspect 42 and pointcut dec-
larations 43 make these constructs available as class members in the
regular Java context. Advice specifiers 20 use Java’s formal param-
eters from the aspect context. The if pointcut expression takes an
expression from the regular Java context as an argument. For ABC
compatibility, we will later define reserved keywords per context.
By using the expression from the Java context, aspect and pointcut-
specific keywords will be allowed in this Java expression. Finally,
the type pattern for primitive types 31 now uses a primitive type
from the pattern context.

Note that the choice of the context of a symbol is completely
up to the language designer: for every production argument we
can choose the most appropriate context. The choice of the context
switches (lexical state transitions) is not influenced by the complex-
ity of recognizing the context during lexical analysis. In the next
section we show that this enables language designers to improve
their language designs.

5.6 ABC Compatibility Revised
Thanks to the grammar mixins, we can now declare a different
set of reserved keywords for each context. The AspectJ gram-
mar now has four non-terminals for identifiers: Id[[JavaCtx]],
Id[[AspectCtx]], Id[[PointcutCtx]], and Id[[PatternCtx]].
Similarly, there are four non-terminals for keywords. Thus, the syn-
tax definition can now reject a different set of reserved keywords
for each specific context. The reject production is in fact already
defined in the Java modules imported by the AspectJ definition, so
we only need to extend the existing set of keywords. For the Java
context, abc introduces three new keywords:

"privileged" | "aspect" | "pointcut" -> Keyword[[JavaCtx]]

For the aspect context, abc introduces a series of new keywords.
Also, every keyword from the Java context is a keyword in aspect
context.

"after" | ... |"proceed" -> Keyword[[AspectCtx]]
Keyword[[JavaCtx]] -> Keyword[[AspectCtx]]

However, proceed is now a reserved keyword in aspect declara-
tions, so it is no longer allowed as the name of a method invocation,
which now rejects the special proceed call for invoking the orig-
inal operation in an around advice. To reintroduce the proceed
call, we need to allow it explicitly as a method specifier in the
aspect context (note that an advice context would be useful here,
though that would not be compatible with abc, which is the whole
point of this exercise).

"proceed" -> MethodSpec[[AspectCtx]]

In the context of pointcuts, abc reserves the Java keywords, prim-
itive pointcut names, and some additional keywords from the con-
text of aspects.

Keyword[[JavaCtx]] -> Keyword[[PointcutCtx]]
PrimPointcutName -> Keyword[[PointcutCtx]]
"error" | ... | "warning" -> Keyword[[PointcutCtx]]

Finally, we still need to define keywords for the context of patterns,
since our syntax definition uses a separate context for that. In abc,
these two states are merged, so defining pattern keywords is easy:

Keyword[[PointcutCtx]] -> Keyword[[PatternCtx]]
Keyword[[PatternCtx]] -> IdPattern {reject}

We have now defined the keyword policy of abc in a declarative
way as a modular extension of the basic syntax definition.

6. AspectJ Syntax Extensions
In the last few years, there has been a lot of research on extensions
of AspectJ. For experimenting with aspect-oriented language fea-
tures, an extensible compiler for AspectJ is most useful. One of
the goals of the abc project is to facilitate this research by provid-
ing such an extensible compiler. The previous sections have high-
lighted a few challenges for the definition of the syntax of AspectJ
and the implementation of an AspectJ parser. The result of this
complexity is that the parsers of ajc and abc are more complex
than usual, since the requirements imposed on the parser by the lan-
guage do not match the conventional parsing techniques too well.

This section demonstrates these limitations through several ex-
isting extensions and their issues. We compare the implementation
of the syntax of the extensions in abc to the definition of the syn-
tax in SDF, based on the syntax definition for AspectJ that we pre-
sented in the previous section. We would like to emphasize that this
discussion is all about the syntax of the extensions, and not about
the other compiler phases. Our modular and declarative approach
for the definition of the syntax of AspectJ does not suddenly make
the complete implementation of AspectJ extensions trivial, since a
lot of work is going on in later compiler phases.

Issues in Extensibility The abc compiler is based on Poly-
glot [28], which provides PPG, a parser generator for extensible
grammars based on CUP, a LALR parser generator. The exten-
sibility features of PPG are based on manipulation of grammars,
with features such as drop a symbol, override productions of
a symbol, and extend the productions of a symbol. This way of
extending a grammar works in practice for most of the language
extensions that have been implemented for abc until now. Un-
fortunately this is not a truly modular mechanism, since LALR
grammars do not compose, which means that the user of PPG has
to make sure that the composed grammar stays in the LALR sub-
class of context-free grammars. For example, we have discussed
the problem of around advice and method declarations with the
name around. The abc compiler overcomes some of these issues
by reserving keywords.

PPG does not feature an extensible scanner, so the abc compiler
implements its own, stateful scanner as we have discussed in detail.
This works fine for the basic AspectJ language, but it is inherently
not modular. The rules for switching from context are based on
knowledge of the entire language that is being scanned, which
breaks down if the language is extended in an unexpected way. The
abc scanner allows extensions to add keywords to specific states of
the scanner. In this way, it is relatively easy to add keywords, but it
is difficult to add operators and it is much more difficult to add new
scanner states. For example, suppose that AspectJ did not define
an if(...) pointcut. It would have been non-trivial to extend the

module HelloWorld[JavaCtx AspectCtx PointcutCtx] exports
context-free syntax

"cast" "(" TypePattern ")" -> PointcutExpr 51

"global"":" ClassNamePattern ":"
PointcutExpr ";" -> PointcutDec 52

"cflowlevel" "(" IntLiteral[[JavaCtx]] ","
PointcutExpr ")" -> PointcutExpr 53

lexical syntax
"cast" -> Keyword[[PointcutCtx]]
"cflowlevel" -> Keyword[[PointcutCtx]]
"global" -> Keyword[[JavaCtx]]
"global" -> Keyword[[AspectCtx]]

Figure 18. Syntax of some abc extensions implemented in SDF

scanner to handle this pointcut, since it requires the introduction
of a new lexical state that affects several aspects of the scanner. In
these situations, the scanner has to be copied and modified, which
is undesirable for maintenance and composition of extensions.

The modular syntax definition we have presented solves many
of these issues, since the definition itself can be extended in a
modular way as well. Context or lexical state management is not
based on rudimentary context-free parsing in the scanner, but fully
integrated in the parser by the use of scannerless parsing. Moreover,
contexts can be unified by mixin composition and ambiguities can
be resolved in a modular way.

6.1 Simple Extensions
First, we discuss some small AspectJ extensions that are part of the
EAJ (Extended AspectJ) extension of abc. The SDF implementa-
tion of the extensions is shown in Figure 18. Similar to the way Java
is extended, the AspectJ syntax definition can be extended by cre-
ating a new module that imports AspectJ and adds new constructs.

Cast and Global Pointcuts The cast pointcut designator 51 can
be used to select points in the program where an implicit or explicit
cast is performed. This is a very simple pointcut designator, yet this
simple example already introduces a problem the implementer of
the extension should be aware of. The keyword cast is reserved in
the context of a pointcut, which means that it is no longer allowed
as part of a name pattern (see Section 4.3.2). To resolve this, the
keyword should be added to the simple name patterns explicitly,
which has not been done for this extension in the abc implemen-
tation. The same problem occurs in the implementation of global
pointcuts 52 (a mechanism for globally restricting some aspects by
extending their pointcut definitions). In our syntax definition this is
not an issue, since the keywords are reserved per non-terminal.

CFlow Level The cflowlevel 10 pointcut designator is an exten-
sion used to select join points based on the level of recursion. The
cflowlevel pointcut designator takes two arguments: a number
for the recursion level and a pointcut. However, the lexical state for
pointcuts in abc does not allow integer literals. To avoid the need
for a new lexical state or other complex solutions, the syntax of
the cflowlevel construct was changed to a string literal, which is
supported in the pointcut lexical state 11. Unfortunately, in this case
the syntax of the extension was designed to fit the existing lexical
states of the scanner. In the SDF implementation of this extension
referring to an integer literal is not a problem.

6.2 Open Modules
Open modules were proposed by Aldrich [3] to solve the coupling
issues that arise between aspects and the code they advise. It pro-

10 Available at http://www.cs.manchester.ac.uk/cnc/projects/
loopsaj/cflowlevel/
11 See http://abc.comlab.ox.ac.uk/archives/dev/2005-Aug/0003.html

module AspectJMix[Ctx] imports AspectJ
[AspectDec => AspectDec[[Ctx]]

AspectBodyDec => AspectBodyDec[[Ctx]]
...
TypePattern => TypePattern[[Ctx]]
PointcutExpr => PointcutExpr[[Ctx]]]

Figure 19. Grammar Mixin for AspectJ

module OpenModule[JavaCtx] exports context-free syntax
ModDec+ -> CompilationUnit[[JavaCtx]]
Root? "module" Id "{" ModMember* "}" -> ModDec
"class" ClassNamePattern ";" -> ModMember
"friend" {AspectName ","}+ ";" -> ModMember
"open" {Module ","}+ ";" -> ModMember
"constrain" {Module ","}+ ";" -> ModMember
Private? "expose" ToClause? ":"

PointcutExpr ";" -> ModMember
Private? "advertise" ToClause? ":"

PointcutExpr ";" -> ModMember
"to" ClassNamePattern -> ToClause

lexical syntax
"root" | "module" -> Keyword[[JavaCtx]]
"module" | ... | "advertise" -> Keyword

Figure 20. SDF module extending AspectJ with open modules.

vides an encapsulation construct that allows an implementation to
limit the set of points to which external advice applies. Recently,
an abc extension was proposed that extends open modules to full
AspectJ ([3] is in the context of a small functional language) and
defines appropriate notions of module composition [29]. The nor-
mal form of open modules as proposed in [29] is as follows:

module ModuleName {
class class name pattern
friend list of friendly aspects
expose : pointcut defining exposed join points }

A module declaration applies to a set of classes as specified in
the class part. It states that aspects can only advise join points
matched by the pointcut specified in the expose part. Friendly
aspects, listed in the friend part, have unrestricted access to the
join points occurring within classes of the module. The exact syntax
is more elaborate for notational convenience, and also includes
constructs for restricting or opening modules upon composition.

The parsing of open modules requires a new lexical state. This
need falls out of the designed extensibility of abc, as highlighted in
Section 4.3. As a consequence the full scanner has to be copied and
modified. Although just 15 lines of code had to be modified in the
copy, this introduces a maintenance problem: copying the scanner
implies that the developer of the extension has to keep the extension
in sync with the main scanner of abc, which is bound evolve, for
example to introduce support for AspectJ 5.

SDF Conversely, SDF allows the syntax of open modules to be
concisely and modularly expressed, as illustrated in Figure 20. A
new context can be introduced in a modular way. The implementa-
tion is based on the AspectJ grammar mixin module of Figure 19.

6.3 Context-Aware Aspects
We now consider the AspectJ syntax extensions for the pointcut
restrictors proposed in [36] for context-aware aspects. Context-
aware aspects are aspects whose pointcuts can depend on external
context definitions, and whose advices may be parameterized with
context information. Contexts are stateful, parameterized objects:
they are specified by implementing a context class with a method
that determines whether the context is active or not at a given point

in time; context activation can be based on any criteria, like the
current control flow of the application, some application-specific
condition, or input from environment sensors. A context is an
object that may hold relevant state information (such as the value
obtained from a given sensor).

[36] proposes a number of general-purpose and domain- or
application-specific pointcut restrictors for restricting the applica-
bility of an aspect based on some context-related condition. These
pointcut restrictors are explained using an AspectJ extended syn-
tax, although only a framework-based implementation is provided,
based on the Reflex AOP kernel [37].

Syntax of Context-Aware Aspects From a syntactical viewpoint,
context-aware aspects have the following requirements:

i) Context restriction. The inContext pointcut restrictor is sim-
ilar to an if pointcut designator, restricting the applicability of an
aspect (e.g. Discount) to the application currently being in a cer-
tain context (e.g. PromotionCtx):

pointcut amount(): execution(double Item.getPrice())
&& inContext(PromotionCtx);

ii) Context state exposure. A mechanism is proposed to expose
state associated to the context (e.g. discount rate) as a pointcut
parameter, subsequently used in the advice:

aspect Discount {
pointcut amount(double rate):

execution(* ShoppingCart.getAmount())
&& inContext(PromotionCtx(rate));

double around(double rate): amount(rate) {
return proceed() * (1 - rate);

}}

Here the rate property of the PromotionCtx is exposed in the
pointcut and subsequently used in the advice to compute the asso-
ciated discount.

iii) Context parameterization. Context activation can be param-
eterized in order to foster reuse of contexts. For instance, a stock
overload context can be parameterized with the ratio of stock over-
flow required to be considered active:

pointcut amount():
execution(* ShoppingCart.getAmount())

&& inContext(StockOverloadCtx[.80]);

In the above, the amount pointcut matches only if the stock over-
load factor is superior to 80% when the rest of the pointcut matches.

iv) Extensible constructs. An important characteristic of the ap-
proach presented in [36] is the possibility to extend the set of point-
cut restrictors, either general purpose or domain/application spe-
cific. Hence the set of context restrictors is open-ended.

An example of general-purpose restrictor is one that makes it
possible to refer to past contexts, such as the context at creation
time of an object. For instance, the createdInCtx restrictor refers
to the context in which the currently-executing object was created:

pointcut amount(): execution(* ShoppingCart.getAmount())
&& createdInCtx(PromotionCtx);

In the above, the amount pointcut matches if the current shop-
ping cart was created in a promotional context, independently of
whether the promotion context is still active at check-out time.

An example of application-specific restrictor for the EShop
application is putInCartInCtx, which refers to the context at the
time an item was put in the shopping cart:

pointcut amount(): execution(* Item.getPrice())
&& putInCartInCtx(PromotionCtx);

module CtxAspect exports context-free syntax
"inContext" "(" ActualCtx ")" -> PointcutExpr
"createdInCtx" "(" ActualCtx ")" -> PointcutExpr
TypeName[[JavaCtx]] ACParams? ACValues? -> ActualCtx
"[" {Expr[[JavaCtx]] ","}+ "]" -> ACParams
"(" {CtxId[[JavaCtx]] ","}+ ")" -> ACValues

lexical syntax
"inContext" | "createdInCtx" -> Keyword[[PointcutCtx]]

module EShopCtxAspect imports CtxAspect exports
context-free syntax

"putInCartInCtx" "(" ActualCtx ")" -> PointcutExpr
lexical syntax

"putInCartInCtx" -> Keyword[[PointcutCtx]]

Figure 21. Two SDF modules for context-aware aspects: (top)
general-purpose pointcut restrictors; (bottom) application-specific
extension for the EShop.

Parsing Context-Aware Aspects Extending AspectJ with the two
general-purpose context restrictors inContext and createdInCtx
can be defined in a CtxAspect SDF module (Figure 21 (top)). The
context-free syntax section defines the new syntax: a context re-
strictor followed by the actual context definition; a context is a
Java type name, with optional parameters and values (for state ex-
posure). The lexical syntax section specifies that the new pointcut
restrictors have to be considered as keywords in a pointcut context.

Figure 21 (bottom) shows a modular syntactic extension for
context-aware aspects with the definition of the putInCartInCtx
application-specific restrictor. Interestingly, it is not necessary to
redefine the syntax for parameters and values in the new syntax ex-
tension definition (ActualCtx is visible from EShopCtxAspect).

7. Performance
Deriving a production quality (i.e. efficient and with language-
specific error reporting) parser from a declarative, possibly ambigu-
ous, syntax definition is one of the open problems in research on
parsing techniques. In particular, the area of scannerless parsing is
relatively new and the number of implementations is very limited
(i.e. about 2). This paper does not improve the performance, error
reporting or error recovery of these parsers in any way: besides the
arguments for a declarative specification of AspectJ, it only pro-
vides a strong motivation for continued research on unconventional
parsing techniques. Although our current objectives are not to re-
place every single parser in a production compiler by a scannerless
generalized-LR parser, it is good to get an impression of the current
state of a scannerless generalized-LR parser compared to parsers
used in existing compilers.

In order to evaluate the applicability of our approach beyond
specification purposes, we have performed some benchmarks to
estimate the efficiency of scannerless generalized-LR parsing. It
has been shown that although O(n3) in the worst case (with n the
length of the input), generalized-LR performs much better on gram-
mars that are near-LR [31], and that the cost of scannerless parsing
is linear in the length of the input, although with an important con-
stant factor [33]. There is little knowledge of how the integration
of scannerless and generalized-LR parsing performs. We hereby
compare the cost of the SGLR parser with that of abc, ajc, and
ANTLR [30] (an LL(k) parser generator) when parsing both a mas-
sive amount of Java code and the AspectJ testsuite of abc.

7.1 Benchmark Setup
The test machine is an Intel Pentium 4 3.2GHz CPU with 1GB
memory, running SUSE 9.0. The abc, ajc, and ANTLR parsers
use the Sun JDK 5.0. SGLR 3.15 is invoked with heuristic filters

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

 0

 50

 100

 150

 200

 0 10000 20000 30000 40000 50000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

sglr/ajc
sglr/java

abc
antlr

ajc

Figure 22. Benchmark of Java source files. Left to right: sglr/ajc, sglr/java, abc, ANTLR, ajc, and the trend lines in a single graph.

and cycle detection disabled. For all parsers, we only measure the
actual parse time: this includes the construction of the parse tree,
but no semantic analysis and I/O costs. In all benchmarks, the same
source file is parsed 15 times and the first 10 parses are ignored to
avoid start-up overhead (class loading and JIT compilation for Java,
parse table loading for SGLR). For ANTLR we use version 3.0b3
and a recent Java 1.5 grammar written by Terence Parr.

7.2 Benchmark Results
Figure 22 shows the results of the Java benchmark: parsing of the
source files of the Azureus Bittorrent client and Tomcat 5.5.12. This
figure shows that parsing with all parsers is linear in the size of the
input, illustrated by the trend lines (calculated using least-squares).
SGLR parsing with the AspectJ grammar is about 4% slower than
parsing with the Java grammar. The constant factor of parsing with
abc is about 40% of the factor of SGLR. Clearly, the performance
of ajc is superior to all the other parsers. The performance of
the ANTLR Java parser is more or less between the abc and ajc
parsers, but this is a plain Java parser. The creation of ANTLR
parsers has been heavily optimized in this benchmark after noticing
the substantial setup cost of ANTLR3 parsers. The absolute times
are all fractions of second, which is only a very small portion of the
total amount of time required for compiling an AspectJ program,
since the most expensive tasks are in semantic analysis and actual
weaving of aspects.

Figure 23 shows the results for parsing aspect code from the
testsuite of abc. Note that the scales are different, since aspect
sources are typically smaller. Again, the parse time is linear in the
size of the input, but the constant factor of abc is about 60% of
the factor of SGLR. The performance of SGLR compared to ajc
has improved as well. For both Java parsers, parsing source files
close to 0 bytes is relatively expensive. The reason for this is JIT
compilation, which still introduces start-up overhead after parsing
the same file 10 times before the actual benchmark. At first, we
ignored just the first two parses, which had a dramatic impact on
the performance. Overall, the parse time is always smaller than
0.06 second, so the absolute differences are extraordinarily small
for these tiny source files. We would have to benchmark larger

aspect sources (which do not exist yet) to get more insight in the
performance of parsing aspects and pointcuts.

As a matter of fact, a typical project consists of a lot of Java
code with a few AspectJ aspects, so the Java benchmark is partic-
ularly relevant. To conclude, the absolute and relative performance
of scannerless generalized-LR parsing is promising for the consid-
ered grammars (Java and AspectJ). The fact that the parsers are im-
plemented in Java versus C is not relevant, since the most important
question is whether SGLR is fast enough in absolute time. Never-
theless, since there is virtually no competition in the area of scan-
nerless parsing at present, there is ample opportunity for research
on making the performance of scannerless parsing even more com-
petitive.

7.3 Testing
The compatibility of the AJC syntax definition is tested heavily by
applying the generated parser to all the valid source files of the test-
suite of ajc 1.5.0. Testing invalid sources requires the examination
of the full ajc testsuite to find out if tests should fail because of se-
mantic or syntactic problems. This is a considerable effort, but will
be very useful future work. The results of the testsuite are available
from the web page mentioned in the introduction.

8. Discussion
8.1 Previous Work
Although SDF has a long history [20], a more recent redesign
and reimplementation as SDF2 [40, 14] has made the language
available for use outside of the algebraic specification formalism
ASF+SDF. This redesign introduced the combination of scanner-
less and generalized-LR parsing [39].

In [16] we motivated the use of SGLR for parsing embedded
domain-specific languages. This method, called METABORG, fo-
cuses on creating new language combinations, where it is important
to support combinations of languages with a different lexical syn-
tax. In [15] we presented the introduction of concrete object syntax
for AspectJ in Java as a reimplementation of the code generation
tool Meta-AspectJ [41]. In that project, we used the AspectJ syntax

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

 0

 10

 20

 30

 40

 50

 60

 70

 0 2000 4000 6000 8000 10000 12000 14000

p
a

rs
e

 t
im

e
 (

m
ill

is
e

c
o

n
d

s
)

size of source file (bytes)

Figure 23. Benchmark of parsing AspectJ source files. Left to right: ajc, abc, sglr/ajc

definition of this paper, but the design and benefits of the grammar
were not discussed.

Compared to this earlier work, we have discussed the design of
the syntax definition of AspectJ, which poses a challenge to parser
generators. We discussed in detail how complex differences in lex-
ical syntax of the involved languages can concisely be defined in
SDF, and how this is related to a stateful lexer. The syntax defi-
nition for AspectJ provides a compelling example of the applica-
tion of scannerless parsing to an existing language, where all of
the following features of SDF prove their value: modular syntax
definition, rejects for keywords, scannerless parsing, generalized-
LR parsing, parameterized symbols, and parameterized modules.
Grammar mixins are a surprisingly useful application of parame-
terized modules and non-terminals. Also, we presented a solution
for implementing context-sensitive keywords in SDF.

8.2 Related Work
Using a scannerless parser for AspectJ has not been proposed
or even mentioned before in the literature. Concerning AspectJ
implementations, we have discussed the abc and ajc scanners and
parsers at length.

The advantage of separate scanners is their foundation on finite
automata, which allows fast implementations. However, this char-
acteristic also implies obliviousness to context, while processing
languages such as AspectJ requires introducing context-sensitivity
into scanners. There are essentially two options to make scanners
context-sensitive. First, the scanner may interact with the parser to
retrieve the context of a token. This is not very difficult to imple-
ment in a handwritten parser, but parser generators based on this ap-
proach are rare, and as far as we know none have been used to parse
AspectJ. Blender [9] uses GLR parsing with an incremental lexical
analyzer that is forked together with the LR parsers in the GLR al-
gorithm. A similar approach was also used by the implementation
of SDF before the introduction of scannerless parsing [20]. Sec-
ond, lexical analysis may be extended with a rudimentary form of
context-free parsing to recognize the global structure of the source
file while scanning by means of lexical states, without interaction
with the parser. This approach is used in the abc scanner and parser
for AspectJ.

DURA-LexYt [10] supports lexical analysis with multiple in-
terpretations of the input. As opposed to scannerless parsing, a sep-
arate scanner with support for backtracking is used. In this way,
choosing the correct lexical interpretation can be controlled by the
parser without the need for managing lexical states in the scanner.
DURA provides several levels of lexical backtracking to facilitate
typical scenarios of tokenization (e.g. a single or multiple divisions
into tokens), whereas scannerless parsing requires this to defined
explicitly. Lexical backtracking can be used for context-sensitive
lexical analysis, but does not facilitate context-specific reserved
keywords. DURA-LexYt does not support inherent ambiguities:

the parser always returns a single parse tree, which might also not
be the one desired. More experience with lexical backtracking is
required to get insight in the performance compared to scannerless
parsing.

JTS Bali [8] is a tool for generating parsers for extensions of
Java. It supports composition of lexical syntax based on heuristics
such that the best results are produced in the common cases. For
example, keyword rules are put before the more general rules, such
as for identifiers. This means that it cannot handle lexical state and
it not suitable for defining AspectJ-like extensions of Java.

Parsing techniques with higher-order (parameterization) fea-
tures, such as parser combinators in higher-order functional lan-
guages [22], allow reuse and abstraction over grammars, but do not
support unanticipated reuse of a grammar. Grammar mixins, on
the other hand, are modules based on unparameterized grammars
(e.g. Java) that make this grammar reusable and allow unanticipated
modification of the grammar in every context.

8.3 Future Work
8.3.1 Grammar Mixins
In this paper we have applied grammar mixins and explained their
functionality only in an informal way. In future work, we plan to
make the notion of grammar mixins more formal. In particular, the
semantics of mixin composition of grammars that already use mix-
ins itself needs to be defined more precisely. Also, grammar mixins
should be integrated in a syntax definition formalism. Currently, an
external tool is used to generate grammar mixin modules, which is
not desirable. Furthermore, a notion of interfaces for grammar mix-
ins would be useful to separate the implementation of a mixin from
its interface. Finally, multiple instantiations of a grammar mixin for
a relatively large language, such as Java or AspectJ has a major im-
pact on the performance of the parser generator, which could again
be solved by integration of grammar mixins in the syntax definition
formalism.

8.3.2 Improvements to SDF and SGLR
As we have shown in this paper, SDF provides a declarative ap-
proach to solving complex parsing problems. Yet, the formalism
and tools are not in widespread use. What may be the reason for
this (other than publicity) and what improvements can be made?

Rule Syntax SDF’s reverse grammar production rules may make
developers accustomed to BNF style rules uncomfortable. It might
make sense to provide a version of SDF using such a conventional
style.

Performance The benchmarks showed that the performance of
the SGLR parser is a constant factor slower than the abc parser,
which should be acceptable for use at least in research projects.
However, there is good hope that the performance of SGLR

can be much improved. There are alternative GLR implementa-
tions (e.g. [7, 27]) and alternative algorithms such as right-nulled
GLR [35] with better performance than SGLR. However, these
techniques have not yet been extended to scannerless parsing, while
scannerlessness is essential in our syntax definition for AspectJ.
Even after these techniques are adopted, there remains a theoretical
performance gap between GLR and LALR, since the complexity
of GLR depends on the grammar. Therefore, it would be useful
to develop profiling tools that help grammar developers to detect
performance bottlenecks in grammars.

Error Reporting The current error reporting of SGLR is rather
Spartan; it gives the line and column numbers where parsing fails.
This may be improved using a technique along the lines of the Merr
tool that generates error reporting for LR parsers from examples
[23]. This requires an adaption of the techniques where the set of
parsing states at the failure point is interpreted.

Analyzing Ambiguities The disadvantage of LR-like parser gen-
erators is that the grammar developer is confronted with shift-
reduce and reduce-reduce conflicts. However, this is also their ad-
vantage; the developer is forced to develop an unambiguous gram-
mar. When using GLR there is no need to confront the developer,
however, the conflicts are still there to inspect. It would be useful
to develop heuristics that can be used to inspect the conflicts in the
parse table and use these to point the developer to problematic parts
in the grammar.

Platform A more mundane, not so scientific reason for lack of
adoption may be the platform. The SDF parser generator and
the SGLR parser are implemented in C and the distribution is
Unix/Linux style. Furthermore, parse trees and abstract syntax
trees are represented using ATerms, which requires linking with
the ATerm library. Retargeting the SDF/SGLR implementation to
other platforms, such as Java, may help adoption.

8.3.3 Applications of the AspectJ Syntax Definition
With respect to the AspectJ syntax definition itself, there are a
number of applications to consider.

AspectJ Specification For widespread acceptance of aspect-
oriented languages, a complete specification of the syntax and se-
mantics of the language is important. In particular, concerns about
modifying the semantics of the host language could be reduced by
at least having a complete specification of the syntax of the lan-
guage. If there is enough interest in the specification of the syntax
and semantics of the AspectJ language, then we would like to work
with the AspectJ developers to make the current syntax definition
even more compatible with ajc and make it the basis of such a
specification.

As one of the first applications, the abc team has already used
our syntax definition of AspectJ in a definition of the semantics
of static pointcuts, defined as a set of rewrite rules from AspectJ
pointcuts to Datalog [6].

Connecting to the AspectBench Compiler Considering the ex-
tensibility goals of abc, our modular and extensible definition of
AspectJ would be most useful as part of the front-end of abc. Also,
we have shown that pseudo keywords do not require a handwritten
parser, so the abc compiler could be made more compatible with
syntax accepted by ajc.

Multi-language AOP We are currently working on integrating
the MetaBorg approach [16] and the Reflex AOP kernel project [37]
for multi-language AOP. The current AspectJ syntax definition can
be used to support AspectJ in Reflex, allowing AspectJ extensions
to be prototyped conveniently.

9. Conclusion
We have presented the design of a modular syntax definition for
the complete syntax of AspectJ, i.e. integrating the formalization of
the lexical and the context-free syntax of the language. In addition,
we have shown that scannerless parsing in combination with an
expressive module system can elegantly deal with the context-
sensitive lexical syntax of AspectJ. The result is a syntax definition
that achieves a new level of extensibility for AspectJ, which is
useful for research on aspect-oriented programming extensions.
The performance of the scannerless generalized-LR parser for this
grammar turns out to be linear with an acceptable constant factor,
which opens up possibilities for the integration of our solution in
extensible compilers for AspectJ.

Furthermore, our work on syntax definition for AspectJ pro-
vides guidelines for approaching the current trend to design pro-
gramming languages that are in fact mixtures of various sublan-
guages, for example for the integration of search capabilities or
concrete object syntax (e.g. LINQ, E4X, XQuery, Cω). The con-
vention of separating the parsing process into a scanner and a parser
does not apply to such languages, requiring language designers and
implementers to reconsider the parsing techniques to use.

With the syntax definition for AspectJ, we have shown that scan-
nerless generalized-LR parsing is not just useful for reverse en-
gineering, meta programming, interactive environments, language
prototyping, and natural language processing, but that scannerless
generalized-LR may at some point be used in compilers for mod-
ern general-purpose languages. AspectJ makes a strong case for the
use of scannerless parsing to provide concise, declarative specifi-
cation and implementation of the next-generation of programming
languages.

This result provides a strong motivation for addressing the bar-
riers to a wider adoption of scannerless generalized-LR parsing that
we observed in the previous section.

Acknowledgments
At Utrecht University this research was supported by the NWO/Jac-
quard project TraCE (638.001.201). É. Tanter is partially financed
by the Millenium Nucleus Center for Web Research, Grant P04-
067-F, Mideplan, Chile. We thank the abc team for the report
on the abc scanner and parser. The description of lexical states
was very useful in the development of our syntax definition. Pavel
Avgustinov of the abc team provided extensive feedback on the
syntax definition. We thank Arthur van Dam for his help with
Gnuplot, and Jurgen Vinju for his advice on benchmarking SGLR.
We thank Mark van den Brand, Jurgen Vinju and the rest of the
SDF/SGLR team at CWI for their work on the maintenance and
evolution of the SDF toolset. We thank Rob Vermaas for his help
with the implementation of the syntax definition and benchmarking
the generated parser. Finally, we would like to thank Eelco Dolstra
and the anonymous reviewers of OOPSLA for providing useful
feedback on an earlier version of this paper.

References
[1] AspectJ documentation. http://www.eclipse.org/aspectj/

docs.php. With links to the AspectJ Programming Guide and the
AspectJ 5 Developer’s Notebook.

[2] Proc. of the 5th Intl. Conference on Aspect-Oriented Software
Development (AOSD 2006), Bonn, Germany, Mar. 2006. ACM Press.

[3] J. Aldrich. Open modules: Modular reasoning about advice. In
Proc. of the European Conference on Object-Oriented Programming
(ECOOP’05), volume 3586 of LNCS, pages 144–168. Springer-
Verlag, July 2005.

[4] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble.

Adding trace matching with free variables to AspectJ. In Proc. of the
20th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2005), pages 345–
364, San Diego, California, USA, Oct. 2005. ACM Press. ACM
SIGPLAN Notices, 40(11).

[5] P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhoták,
O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc:
an extensible AspectJ compiler. In Proc. of the 4th Intl. Conference
on Aspect-Oriented Software Development (AOSD’04), pages 87–98,
New York, NY, USA, 2005. ACM Press.

[6] P. Avgustinov, E. Hajiyev, N. Ongkingco, O. de Moor, D. Sereni,
J. Tibble, and M. Verbaere. Semantics of static pointcuts in AspectJ.
Technical Report abc-2006-3, Programming Tools Group, Oxford
University, Oxford, United Kingdom, 2006.

[7] J. Aycock and R. N. Horspool. Faster generalized lr parsing. In Proc.
of 8th Intl. Conference on Compiler Construction (CC’99), volume
1575, pages 32–46, Amsterdam, March 1999. Springer-Verlag.

[8] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implement-
ing domain-specific languages. In Proc. Fifth Intl. Conference on
Software Reuse (ICSR’98), pages 143–153. IEEE Computer Society,
June 1998.

[9] A. Begel and S. L. Graham. Language analysis and tools for input
stream ambiguities. In Fourth Workshop on Language Descriptions,
Tools and Applications (LDTA’04), Electronic Notes in Theoretical
Computer Science, Barcelona, Spain, April 2004. Elsevier.

[10] D. Blasband. Parsing in a hostile world. In Proc. of the Eighth
Working Conference on Reverse Engineering (WCRE’01), page 291,
Washington, DC, USA, 2001. IEEE Computer Society.

[11] E. Bodden and V. Stolz. J-LO, the Java Logical Observer. http:
//www-i2.informatik.rwth-aachen.de/Research/RV/JLO/.

[12] G. Bracha and W. Cook. Mixin-based inheritance. In OOP-
SLA/ECOOP’90, pages 303–311. ACM Press, 1990.

[13] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. GJ specifica-
tion, May 1998.

[14] M. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disam-
biguation filters for scannerless generalized LR parsers. In N. Hor-
spool, editor, Compiler Construction (CC’02), volume 2304 of LNCS,
pages 143–158. Springer-Verlag, April 2002.

[15] M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized
type-based disambiguation of meta programs with concrete object
syntax. In Glück and Lowry [18], pages 157–172.

[16] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-
specific language embedding and assimilation without restrictions. In
D. C. Schmidt, editor, Proc. of the 19th ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications
(OOPSLA’04), pages 365–383. ACM Press, October 2004.

[17] Eclipse Java Development Tools (JDT) website. http://www.
eclipse.org/jdt/.

[18] R. Glück and M. Lowry, editors. Proc. of the 4th ACM SIG-
PLAN/SIGSOFT Conference on Generative Programming and Com-
ponent Engineering (GPCE 2005), volume 3676 of LNCS, Tallinn,
Estonia, Sept./Oct. 2005. Springer-Verlag.

[19] B. Harbulot and J. Gurd. A join point for loops in AspectJ. In Proc.
of the 5th Intl. Conference on Aspect-Oriented Software Development
(AOSD 2006) [2].

[20] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDF – reference manual. SIGPLAN Notices,
24(11):43–75, 1989.

[21] L. Hendren, O. de Moor, A. S. Christensen, and the abc team. The
abc scanner and parser, including an LALR(1) grammar for AspectJ.
Techrep, Programming Tools Group,Oxford University and the Sable
research group, McGill University, September 2004.

[22] G. Hutton. Higher-order functions for parsing. Journal of Functional
Programming, (2(3)):323–343, July 1992.

[23] C. L. Jeffery. Generating LR syntax error messages from examples.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 25(5):631–640, September 2003.

[24] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. G. Griswold. An overview of AspectJ. In J. Lindskov Knudsen,
editor, ECOOP 2001: Object-Oriented Programming: 15th European
Conference, volume 2072 of LNCS, pages 327–353. Springer-Verlag,
June 2001.

[25] M. M. Lehman. On understanding laws, evolution, and conservation
in the large-program life cycle. Journal of Systems and Software,
1(3):213–231, 1980.

[26] H. Masuhara and K. Kawauchi. Dataflow pointcut in aspect-
oriented programming. In Proc. of the First Asian Symposium on
Programming Languages and Systems (APLAS’03), volume 2895 of
LNCS, pages 105–121. Springer-Verlag, Nov. 2003.

[27] S. McPeak and G. C. Necula. Elkhound: A fast, practical GLR parser
generator. In E. Duesterwald, editor, Proc. of 13th Intl. Conference
on Compiler Construction (CC’04), volume 2985 of LNCS, pages
73–88, Berlin, April 2004. Springer-Verlag.

[28] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for Java. In Proc. of the 12th Intl.
Conference on Compiler Construction, volume 2622 of LNCS, pages
138–152. Springer-Verlag, April 2003.

[29] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. de Moor, and
G. Sittampalam. Adding open modules to AspectJ. In Proc. of the 5th
Intl. Conference on Aspect-Oriented Software Development (AOSD
2006) [2].

[30] T. Parr. ANTLR Parser Generator. http://www.antlr.org.

[31] J. Rekers. Parser Generation for Interactive Environments. PhD
thesis, University of Amsterdam, 1992.

[32] K. Sakurai, H. Masuhara, N. Ubayashi, S. Matsuura, and S. Komiya.
Association aspects. In K. Lieberherr, editor, Proc. of the 3rd Intl.
Conference on Aspect-Oriented Software Development (AOSD 2004),
pages 16–25, Lancaster, UK, Mar. 2004. ACM Press.

[33] D. J. Salomon and G. V. Cormack. Scannerless NSLR(1) parsing of
programming languages. ACM SIGPLAN Notices, 24(7):170–178,
1989. Proc. of the ACM SIGPLAN 1989 Conference on Programming
Language Design and Implementation (PLDI’89).

[34] D. J. Salomon and G. V. Cormack. The disambiguation and
scannerless parsing of complete character-level grammars for
programming languages. Technical Report 95/06, Department of
Computer Science, University of Manitoba, Winnipeg, Canada, 1995.

[35] E. Scott and A. Johnstone. Right nulled GLR parsers. ACM
Transactions on Programming Languages and Systems (TOPLAS),
28(4):577–618, 2006.

[36] É. Tanter, K. Gybels, M. Denker, and A. Bergel. Context-aware
aspects. In Proc. of the 5th Intl. Symposium on Software Composition
(SC 2006), LNCS, pages 227–249, Vienna, Austria, Mar. 2006.
Springer-Verlag.

[37] É. Tanter and J. Noyé. A versatile kernel for multi-language AOP. In
Glück and Lowry [18], pages 173–188.

[38] M. Tomita. Efficient Parsing for Natural Languages. A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers, 1985.

[39] E. Visser. Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam,
July 1997.

[40] E. Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, September 1997.

[41] D. Zook, S. S. Huang, and Y. Smaragdakis. Generating AspectJ
programs with Meta-AspectJ. In G. Karsai and E. Visser, editors,
Generative Programming and Component Engineering (GPCE’04),
volume 3286 of LNCS, pages 1–19. Springer, October 2004.

