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ABSTRACT 

In the Mediterranean region most climatic forecasts predict longer and more intense drought periods 

that can affect tree growth and mortality over broad geographic regions. One of the silvicultural 

treatments that has gained currency to lessen the impacts of climatic change is the reduction of stand 

density by thinning. However, we lack information on how the response of forest stands to different 

thinning treatments will be affected by climate change, and on the post-thinning temporal dynamics of 

water balance, specifically blue and green water. We adopted a modeling approach to explore the 

long-term effects of different thinning intensities on forest dynamics and water balance under climate 

change scenarios, coupling an individual-based model of forest dynamics (SORTIE-ND) with a 

mechanistic model of soil moisture dynamics and plant drought stress. We used as a case study three 

Scots pine plots across a gradient of climatic conditions, and we assessed the effect of site, three 

climatic scenarios and eight thinning intensities on tree growth, stand productivity, tree drought stress 

and blue water. The best thinning intensity in terms of stand productivity was obtained when between 

20 and 40% of the basal area was removed, whereas the final stand stock rapidly decreased at higher 

thinning intensities. Moreover, the decrease in final basal area occurred at lower thinning intensities 

the drier the site conditions. Moderate and heavy thinnings (>30%) doubled basal area increment 

(BAI) of the following years in all the plots, although the effect vanished after 30 to 40 years, 

independently of the site and climate scenario. As expected, thinning was simulated to have an overall 

positive effect on the blue water yield and tree water status, which increased and also tended to last 

longer for higher thinning intensities. However, the magnitude of this effect on tree water status was 

most dependent on the site and climatic scenario, as drier conditions generally raised stronger and 

longer lasting reductions in drought stress for a given thinning intensity. Furthermore, our results 

highlight the existence of a site- and climate-dependent trade-off between the gain in stand 

productivity and the improvement in tree water status obtained by thinning, particularly for moderate 

or heavy thinning intensities. Our simulations suggest that thinning is a useful management tool to 

mitigate climate change but strongly argue against the application of general recipes across sites and 

appeals for carefully taking into consideration local climatic trajectories for management planning. 

Keywords: climate change, water balance, drought, thinning, Pinus sylvestris, modelling 
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1. INTRODUCTION 

In the Mediterranean region most climatic models forecast reductions in the total amount of 

rainfall and increases in the seasonality (IPCC, 2014), leading to longer and more intense 

drought periods that can strongly affect tree growth and mortality over broad geographic 

regions (Carnicer et al. 2011). Moreover, climatic changes have the potential to bring about 

modifications in runoff and streamflow of forested landscapes, and in the balance between 

blue water (the water exported via runoff or drainage to saturated layers, i.e. ultimately going 

to streams and lakes) and green water (the part that flows through the plant before returning 

to the atmosphere, hence contributing to vegetation growth; Avila et al., 1996). Since water 

resources are highly dependent on land cover and vegetation type (see for example Llorens 

and Domingo, 2007 or Vicente-Serrano et al., 2016), hydrology-oriented silviculture is 

increasingly considered as an option to attenuate the effects of water shortage on vegetation 

drought stress and streamflow, although a better understanding and quantification of its 

effects on the water fluxes is required (del Campo et al, 2014). 

One of the silvicultural treatments that has gained currency to diminish impacts of climatic 

changes is the reduction of stand density by thinning (Linder et al., 2000; Kolström et al., 

2011). Thinning treatments have been long-time applied as a means of increasing the quality 

and value of timber and the health of trees and stands. In some contexts, thinning can also 

lead to higher cumulative timber volume, i.e., the sum of extracted and stocking timber (del 

Río et al., 2008, Magruder et al. 2013). In a context of climate change, thinning has been 

praised due to its positive effect on tree vigour (López et al., 2009; Rodríguez-Calcerrada et 

al., 2011), water use efficiency (Gebhardt et al. 2014), resilience to drought events (D’Amato 
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et al. 2013), and soil water content (Ganatsios et al., 2010). The positive effects of stand 

density reduction on the water balance of forests are mediated by three processes: First, it 

diminishes interception losses, increasing the amount of water that infiltrates into the soil 

(Mazza et al., 2011; Molina and del Campo, 2012). Second, it reduces water losses due to 

lower stand transpiration (Zhang et al., 2001). Third, the amount of water available in the soil 

is apportioned among fewer trees (Martin-Benito et al. 2010, Magruder et al. 2013). 

However, the release in growth accelerates post-thinning canopy closure, so the effects of 

thinning on the stand and soil water balance are transient, and its duration dependent on 

thinning intensity and environmental or site conditions (Aussenac and Granier, 1988, 

D’Amato et al., 2013, Elkin et al., 2015).  

Given the ecological and economical importance of Scots pine (Pinus sylvestris L.), many 

thinning trials have been conducted on forests of this species, including some with long-term 

observations examining mainly its effects on growth (Chroust, 1979; del Río et al., 2008; 

Montero et al., 2001; Peltola et al., 2002), but also on resistance and resilience to drought 

episodes (Giuggiola et al. 2013, Sohn et al. 2016). Nevertheless, we lack information on how 

the response of forest stands to different thinning treatments will be affected by climate 

change. Moreover, we are still far from a thorough understanding of the post-thinning 

temporal dynamics of blue and green water, or the trade-offs between increasing resilience to 

drought stress and increasing forest productivity. The main limitation lies on the difficulty of 

setting field experiments that include several thinning intensities and that are monitored for a 

sufficient amount of time to observe the long-term effects on water budget, tree growth and 

resilience to drought stress. The use of ecological models to forecast long-term post-thinning 

effects may help to overcome the limitation of experimental data, and their ability to evaluate 
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future scenarios may provide adequate recommendations for the management of forests in the 

predicted context of environmental uncertainty. 

Here, we adopt a modeling approach to explore the long-term effects of different thinning 

intensities on forest dynamics and water balance under climate change scenarios. 

Specifically, we coupled an individual-based model of forest growth and dynamics (SORTIE-

ND; Canham et al. 2005), with a mechanistic model of soil moisture dynamics and drought 

stress in individual forest stands (De Cáceres et al., 2015). This integration allowed us to 

evaluate the effects of a wide array of thinning intensities, and to assess the combined effects 

of thinning intensity, site conditions and climate change on forest production, water balance 

and tree drought stress. Previous studies have shown that the effects of thinning on forest 

growth and tree drought stress are greater and last longer for heavy thinning treatments, but 

we expect this trend to be affected by initial site conditions and climate scenario. Moreover, 

we expect to find a trade-off between the benefits obtained by thinning in terms of stand 

productivity and water balance, which could have important implications for management.  
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2. MATERIAL AND METHODS 

2.1. Study area and species 

We used as a case study Scots pine stands of Catalonia (NE Spain). Scots pine is a shade-

intolerant widespread species that in this region covers more than 240,000 ha (17% of the 

forested area), two thirds of which are monospecific stands. It is one of the most productive 

species, providing yearly more than 160,000 m3 of timber, which represents >25% of the total 

annual timber volume harvested in the region (IDESCAT, 2014). Scots pine thrives in 

Catalonia from the humid valleys at the northern slopes of the Pyrenean range, with annual 

precipitation exceeding 1,000 mm, to the semiarid meridional mountains in the Catalan Pre-

Coastal Range, where annual precipitation drops to ~500 mm. There, the species is close to 

its distributional boundary and its populations are currently suffering drought-induced decline 

in the most xeric sites (Martínez-Vilalta and Piñol, 2002, Galiano et al., 2010). Climate 

change predictions in the region include increases in temperature and slight reductions in 

precipitation (Barrera-Escoda and Cunillera, 2011), with an increase of precipitation 

concentration leading to more intense and longer drought periods. Therefore, drought-

induced declines are expected to continue and even expand into other parts of its distribution 

in the near future. 

2.2. Site conditions and climatic scenarios 

We selected three plot locations representative of the gradient of climatic conditions 

experienced by P. sylvestris in Catalonia (humid, mesic and xeric; see Table 1). For each of 

the three locations we defined three climatic scenarios, each encompassing 90 years. In a first 

scenario we assumed no trend in temperature and precipitation during the 90 years (no 



Post-print version. The final version of this documemt can be found at: 
Ameztegui A, Cabon A, de Cáceres M, Coll L (2017) Managing stand density to enhance the adaptability of 
Scots pine stands to climate change: a modelling approach. Ecological Modelling 356:141-150.  
DOI: j.ecolmodel.2017.04.006 
 
 

 

climate change; NoCC). The second and third climatic scenarios corresponded to the climate 

forecasts according to the IPCC emissions scenarios B2 and A2 on the period 2011-2100 

(IPCC, 2014). Historic and projected climatic data were extracted from raster maps 

developed using the methods of the Climatic Atlas of the Iberian Peninsula (Ninyerola et al., 

2000) from information provided by the Spanish National Meteorological Agency (AEMET). 

Table 2 shows a summary of climatic changes predicted between 2010 and 2100 under 

scenarios B2 and A2 for the three studied sites. Temporal series of mean annual temperature 

and precipitation for the three scenarios can be found in Appendix A. 

Table 1. Mean climatic and stand characteristics of the studied plots of Scots pine (Pinus 
sylvestris) before the application of thinning treatments. 
 

  Humid Mesic Xeric 

Mean annual temperature (º C) 8.7 12.0 12.5 

Mean annual rainfall (mm) 828.0 714.3 564.3 

Martonne Index 44.3 32.5 25.1 

Quadratic mean diameter (cm) 12.6 12.6 12.6 

Initial Stem density (stems·ha-1) 2510.0 2377.0 2278.0 

Initial Basal Area (m2·ha-1) 31.4 29.7 28.6 

 

2.3. Initial structure and thinning intensity 

We created individual tree datasets describing the initial stand configuration on each of the 

three site conditions (Table 1). The size of each plot was set to 1 ha and the three virtual 
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stands had an initial mean diameter (d) = 12.5 cm, the diameter at which thinning is usually 

first applied in the region (Piqué et al., 2011a). We then determined the initial stem density 

for each stand using the modification of the Stand Density Index (SDI) proposed by Condés 

et al. (2016), in which stand density depends on the mean quadratic diameter (dg) and site 

aridity: 

𝑁!"# =  (𝐶0 +  𝐶1 ⋅ 𝑙𝑜𝑔(𝑀)) ⋅ 𝑑!
 (!0! !1!)       (1) 

where M is the Martonne’s Aridity Index (P/(T+10)) and C0, C1, E0 and E1 are estimated 

parameters (for Pinus sylvestris, C0 = 339979, C1 = -2764.14, E0 = -1.9662, and E1 = 0.0065, 

Condés et al. 2016). To ensure some variation in the initial conditions, the diameter 

distribution of the virtual stands was drawn from a truncated normal distribution (µ = 12.5 

cm, σ = 1.87, min = 0 cm, max = 25 cm). 

We defined eight different treatments of increasing thinning intensity. In the first treatment 

(control) no thinning was applied to the virtual stand, whereas subsequent treatments implied 

the removal of 10, 20, 30, 40, 50, 60 and 70% of stand basal area, respectively. In all cases, 

thinning was applied from below, i.e. we started removing the smallest diameter trees and 

worked upward through diameter classes until the specified target basal area was achieved. 

The details on the density and basal area removed by site, treatment and diameter class can be 

found in Appendix B.  
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Table 2. Climatic values at the end of the simulation period (2100) for the three sites under 
two climatic scenarios: B2 (moderate) and A2 (severe). Values in brackets indicate the 
difference with respect to initial values (Table 1). 
 

  Humid 
 

Mesic 
 

Xeric 

  B2 A2 
 

B2 A2 
 

B2 A2 

Mean annual 
temperature (º C) 

11.4 

(+26.7%) 

13.3 

(+47.8%) 

 
14.4 

(+20.0%) 

16.3 

(+35.8%) 

 
15.0 

(+20.0%) 

16.7 

(+33.6%) 

Mean annual 
 rainfall (mm) 

776.4 

(-3.7%) 

686.8 

(-14.8%) 

 
651.4 

(-8.8%) 

592.8 

(-17.0%) 

 
564.2 

(-0.0%) 

506.3 

(-10.3%) 

Martonne  
Index 

36.3 

(-18.0%) 

29.5 

(-33.4%) 

 
26.7 

(-17.8%) 

22.5 

(-10.4%) 

 
22.6 

(-10.0%) 

19.0 

(-24.3%) 

 

2.4. Modeling forest structure dynamics with SORTIE-ND 

Growth and mortality after thinning were simulated for 90 years under the three climatic 

scenarios using SORTIE-ND version 7.4 (http://www.sortie-nd.org) (Canham et al., 2005). 

SORTIE-ND is a spatially explicit, individual-based model of forest dynamics, in which the 

growth of every single individual tree is influenced by its spatial context and climate 

according to the following equation: 
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Diam. Growth = PDG · Size effect · Crowding effect · Temp. Effect · Prec. Effect   (2) 

where PDG is the maximum potential diameter growth (in mm·yr-1), whereas size, crowding, 

temperature and precipitation effects are all factors that act to reduce the estimated maximum 

growth rate. Each of these effects is a scalar that ranges between 0 and 1. Size effect takes the 

form of a lognormal function, whereas crowding effect is based on the Neighborhood 

Competition Index (NCI, Canham and Uriarte, 2006), which states that competition exerted 

to a target tree by its neighbours increases with the size of the neighbors and decreases with 

their distance to the target tree. Temperature effect and precipitation effect are modelled using 

a bivariate Gaussian function. Each of the parameters needed to estimate diameter growth 

were obtained using likelihood methods and data from the Spanish Forest Inventory IFN 

(Gómez-Aparicio et al., 2011; Ameztegui et al., 2015), and the results were validated against 

an independent dataset. Details on the exact formulation of tree growth, the parameter values 

used to run the simulations and the validation can be found in Appendix C.  

The site characteristics defined a stand structure that was used as starting point for SORTIE-

ND (Figure 1). We ran 5 replicates of each simulation to account for the stochasticity of some 

processes (the position of individual trees, as well as mortality). SORTIE-ND produced 

annual estimates of stand structure, based on the position, diameter and growth of every 

individual tree in a plot.  
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Figure 1. Diagram showing the integration of SORTIE-ND and the water balance model 

from ‘medfate’ R package to simulate the effects of thinning and climate change on forest 

dynamics and water balance. Site characteristics define the initial forest structure, which is 

entered into SORTIE-ND. Competition, growth and mortality are then simulated for 90 years 

under three climatic scenarios. SORTIE-ND provides annual outputs of forest structure, 

which are subsequently used by the water balance model, together with climatic data, to 

estimate rainfall interception, evapotranspiration, runoff and deep drainage. Outputs from this 

latter model are finally used to estimate plant drought stress and blue water. 
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2.5. Modeling water balance and drought stress 

The water balance model described in De Cáceres et al. (2015) (implemented in an R package 

called ‘medfate’) was used to estimate water fluxes and stand drought stress over the 90 years 

for each combination of plot, climatic scenario and thinning intensity. The model follows the 

design principles from BILJOU (Granier et al. 1999) and SIERRA water balance submodel 

(Mouillot et al. 2001). The model performs daily updates of soil water content as a function 

of the stand structure and daily weather (radiation, temperature and precipitation). Soil water 

balance is the difference between processes determining water input (precipitation) and 

outputs (canopy interception, tree transpiration, bare soil evaporation, surface runoff and deep 

drainage). Details of the formulation of each of these processes are given in De Cáceres et al. 

(2015). 

The water balance model requires stand structure to be described at the cohort level by the 

average height of individuals and their cumulative leaf area index (LAI). The diameter 

distribution dynamics given by SORTIE-ND were used to update the canopy evaporative 

surface every year by calculating LAI of each cohort as follows:  

𝐿𝐴𝐼 = 𝑆𝐿𝐴 ⋅ 1/𝑆 ⋅ [𝑎 ⋅ 𝐷𝐵𝐻!! ⋅ 𝑒!⋅!"#! ⋅ 𝐷𝐵𝐻!
!∙!"#!]

!

!!!

 (3) 

where n is the number of individuals of the cohort, SLA is the specific leaf area of P. 

sylvestris in Catalonia, S the plot surface, i.e. 10 000 m2, DBHi is the diameter at breast height 

of the target tree i, and BALi is the basal area of trees with a larger DBH than the target tree i; 

whereas a, b, c, and d are parameters calibrated against data from the Catalan forest inventory 
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(Gracia et al. 2004). Soil was represented using two layers with a total depth of 50 cm, a 

loamy texture (USDA soil texture definition) and a rock content fraction of 10-15% in 

volume. The proportion of fine roots in the two layers was set assuming a conic distribution 

of the roots across the whole profile.  

The daily water balance was simulated for each input stand structure dynamic simulated by 

SORTIE-ND (i.e. one for each combination of site, climatic scenario, thinning intensity and 

simulation replicate). In the same way as for SORTIE-ND simulations, the water balance 

simulations were replicated 15 times in order to account for the stochasticity of the water 

balance model induced by the downscaling of the monthly to daily precipitation, raising the 

total number of simulation replicates to 5×15 = 75. 

We calculated the annual proportion of blue water (BWyear) as the annual sum of water 

exported via runoff and deep drainage relative to annual precipitation. Annual BWyear values 

were averaged over the 90-year period to obtain a single estimate of blue water proportion 

(BW) for each combination of site, treatment, climate scenario and replicate. In order to 

estimate daily drought stress, we first calculated the whole plant relative conductance (K) as a 

function of the soil water potential (De Cáceres et al. 2015): 

𝐾 = 1/2 ⋅ 𝜈! ⋅ 𝑒𝑥𝑝 −𝑙𝑛 1 2 ⋅
𝜓!"#$,!
𝜓!"

!!

!!!

 (4) 

where νk and Ψsoil,k are the root proportion and the soil water potential in the kth soil layer, 

respectively, and Ψ50 is the water potential at which the relative conductance of P. sylvestris 
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is equal to 50% (Ψ50 = -3.61 MPa; Choat et al., 2012). We defined a daily drought stress 

index (SIday) as the complement of the whole plant relative conductance (1 – K) and an annual 

drought stress index (SIyear) as the average of the daily drought stress of the 30 consecutive 

driest days of the year. We finally defined the drought stress corresponding to the 90 year- 

period of each simulation (SI) as the average of the SIyear of the driest 5 consecutive years.  

The effect of thinning on SIyear was calculated for every thinning treatment and timestep as 

the difference in SIyear between the thinned stands and the control. We thereafter defined the 

duration of the effect (T50,stress) as the number of years for which the effect of thinning was 

clear, i.e. at least 50% of the initial effect on SIyear (average of the 5 first years after thinning). 

Similarly, the duration of blue water surplus (T50,BW) was calculated as the number of years 

for which the surplus in BWyear was at least 50% of the initial surplus (the difference between 

thinned and unthinned stands for the first 5 years after thinning). 
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3. RESULTS 

3.1. Effects of thinning intensity, site conditions and climatic scenario on tree 

growth and stand productivity 

The maximum final basal area was obtained at different thinning intensities depending on site 

conditions and climatic scenario (Figure 2A). At the humid site, maximum basal area was 

obtained at intensities between 20 and 30%. For the mesic and xeric sites, early timber 

extraction through low or moderate thinnings (<30%) was offset by a greater growth of the 

residual stands but barely exceeded the final basal area of the control treatment (i.e., no 

thinning) (Figure 2A). In all cases the final stand stock rapidly decreased at higher thinning 

intensities (>40%). Moreover, the decrease in final basal area occurred at lower thinning 

intensities the drier the site conditions. Differences among climatic scenarios in terms of the 

thinning intensity corresponding to maximum final basal area were small (Figure 2A). 

Thinning intensity exerted an immediate positive effect on basal area increment (BAI, 

expressed as the annual increase in stand basal area). Moderate and heavy thinnings (>30%) 

had comparable effects on BAI, which doubled during the first years in all the plots (Figure 

2B), whereas light thinnings caused a much smaller effect. In any case, the initial positive 

effect of thinning on BAI vanished after 30 to 40 years, independently of the site and climate 

scenario (Figure 2B). 
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Figure 2. Effects of thinning intensity and climatic scenario on final stand basal area (a), and 

temporal dynamics of basal area increment as a function of thinning intensity (b) for three plots 

of Scots pine (Pinus sylvestris) across a range of initial climatic conditions. In (a), points and 

error bars represent the mean ± 1 SD of SORTIE-ND simulation replicates (n = 5). In (b), solid 

lines represent the basal area increment averaged across replications (n = 5) and shaded areas 

represent the range between the 5th and 95th centile. For (b), only the scenario with no climate 

change is shown. 

3.2. Effects of thinning intensity, site conditions and climatic scenario on tree 

drought stress and blue water 
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Average blue water (BW; i.e., the proportion of precipitation lost via runoff or deep drainage, 

averaged across years) increased non-linearly with thinning intensity at all sites (Figure 3A). 

Although BW tended to represent a higher proportion of total rainfall the more humid the site 

conditions and the milder the climatic scenario, the differences among climate scenarios were 

small and tended to decrease with thinning intensity. At the highest thinning intensity, BW 

represented ~50% of total precipitation for all sites and climatic scenarios. Average tree 

drought stress (SI) was higher the more xeric the site and for the most severe climatic 

scenario (A2), whereas there were almost no differences between scenarios B2 (moderate 

climate change) and NoCC (no climate change). For the unthinned stands, SI was always < 

0.5 (i.e. the simulated percentage of loss of conductivity was inferior to 50%) at the humid 

site, but always exceeded this value at the xeric site. The mesic site exhibited an intermediate 

behaviour, with SI of unthinned stand being much higher (~0.70) under the A2 climate 

scenario, whereas it was slightly below 0.5 under the climate scenario B2 and NoCC (Figure 

3B). Thinning had the consistent effect of reducing SI for all sites and climatic scenarios, 

leading the differences in tree stress among scenarios to decline with thinning intensity, and 

SI was below 0.2 for all sites and climate scenarios for the strongest thinning treatment. 

Consequently, the decrease of drought stress with thinning intensity was the highest at the 

xeric site (Figure 3B).  
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Figure 3. Effects of thinning intensity (in percentage of removed BA) and climatic scenario 

on (a) the 90-year average blue water expressed in percentage of annual precipitation (BW) 

and (b) drought stress index (SI), i.e. the average of the SIyear for the driest 5 consecutive 

years; for three plots of Scots pine (Pinus sylvestris) across a range of climatic conditions. 

Points and error bars represent the mean ± 1 SD of the simulation replicates (n = 75).  

Heavier thinning resulted in an increase of T50,BW, i.e. the thinning effect on BWyear persisted 

more years (Figure 4A, and see also Appendix D). The increase in T50,BW with thinning 

intensity was similar across climatic scenarios. At the xeric site, there was an apparent 
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unimodal effect of thinning intensity on T50,BW, with the lowest duration of the effect at 30% 

removal of basal area. However, the variability of T50,BW was higher at low thinning 

intensities, since the lower absolute effect of thinning made the duration of this effect more 

susceptible to extreme climatic years. 

Similarly, high thinning intensities also resulted in higher values of T50,Stress, i.e. a higher 

number of year for which the effect of thinning  on SIyear is superior to 50% (Figure 4B). 

There was often a high variability between the simulation replicates, which tended to 

decrease with thinning intensity. For a given thinning intensity, there was no systematic 

direction in the differences between the climatic scenarios NoCC and B2 and differences 

tended to be overridden by simulations dispersion when it was noticeable. On the contrary the 

climate scenario A2 had a large, negative impact on the duration of the effect of thinning on 

SIyear (Appendix D). Furthermore, the extent of the differences between the climate scenarios 

was largest at the humid site and lowest at the xeric site, indicating that the duration of the 

thinning effect on alleviating drought stress is more negatively impacted by climate change at 

the humid than at the xeric site. 
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Figure 4. Effects of thinning intensity (in percentage of removed BA) on (a) T50,BW and (b) 

T50,stress for three plots of Scots pine (Pinus sylvestris) across a range of climatic conditions. 

For all boxplots, the central solid line indicates the median, whereas lower and upper hinges 

indicate the first and third quartile (i.e. the Inter Quantile Range, IQR). The upper (lower) 

whisker extends from the hinge to the largest (smallest) value under (above) 1.5×IQR from 

the hinge. Outliers are not represented 
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3.3. Trade-offs between stand productivity and water balance 

Average blue water (BW) and final stand basal area increased simultaneously with thinning 

intensity for light thinnings (Figure 5A). In all cases, there was an optimum thinning intensity 

at which BW increased without inducing a decrease in final basal area. This optimum yielded 

a lower BW value and final basal area for drier climatic scenarios/sites. From this point, 

higher thinning intensities resulted in decreases in basal area, while BW kept increasing. This 

negative relationship was close to linear and represented the trade-off between productivity 

and the amount of available water, the slope of which was similar amongst sites and 

scenarios.  

There was an analogous relationship between average stress index (SI) and the final basal 

area (Figure 5B): SI decreased consistently with thinning intensity, while the final basal area 

reached an optimum and then decreased. However, there was a strong combined effect of site 

and climatic scenario on this relationship. At the humid site, SI was reasonably low (i.e. <0.5) 

even when no thinning treatment was applied, while low to moderate thinning intensities 

(<30% removal of BA) led to the greatest productivity in terms of final basal area. The same 

pattern was observed at the mesic site under the NoCC or B2 scenarios. However, for the A2 

scenario, SI under low intensity thinning remained high at both the mesic and the xeric site, 

and drought stress could only be reduced to values < 0.5 through intense thinning, with the 

consequence of substantially decreasing the final basal area of the stand (Figure 5B). 
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Figure 5. Effects of thinning intensity on the interaction between final basal area and (a) blue 

water, expressed in percentage of annual precipitation; and (b) the water stress index for three 

plots of Scots pine (Pinus sylvestris) across a range of climatic conditions. Final basal area is 

the basal area of the standing trees at the end of the simulation relative to the final basal area 

of the unthinned plots. Points and error bars represent the mean ± 1 SD of the simulation 

replicates (x-axis: n = 5, y-axis: n = 75).  
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4. DISCUSSION 

Our results highlight the existence of a trade-off between the gain in stand productivity and 

the improvement in tree water status obtained by thinning for moderate or heavy thinnings. 

Although this trade-off has not received much attention yet, it has important implications in 

the context of forest management for multiple objectives and under climate uncertainty. More 

interestingly, the trade-off was site- and climate-dependent, and strongly argue against 

general recipes across sites.  

4.1. Effect of thinning intensity on stand structure and production 

The stand structure resulting from the simulations after thinning matched previous 

observational studies with Scots pine: final mean tree diameter in heavily thinned stands was 

on average 1.6 fold higher than control stands after 40 years and double at the end of the 

simulations, values very close to those previously reported for Scots pine in Spain (Montero 

et al. 2001, del Rio et al. 2008). BAI was initially doubled by moderate or heavy thinning 

(>30%), also in accordance with previous studies (del Rio et al. 2008, Sohn et al. 2016), and 

final basal area after 90 years under no climatic scenario matched values commonly observed 

in managed stands in Catalonia (Piqué et al. 2011a). Previous experimental studies have 

shown that the maximum stand production is reached at intermediate thinning intensities, 

since the strong growth increase of individual trees in the heavy thinning treatments is usually 

not enough to compensate the sharp reduction in stand density (Montero et al. 2001, del Río 

et al., 2008, Giuggiola et al. 2013). Our simulation study led to patterns in accordance with 

observations, and it showed maximum stand production to occur at lower thinning intensities 

the more xeric the initial site conditions and the more severe the climatic scenario.  
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4.2. Effect of thinning intensity on tree drought stress and blue water 

Previous studies have highlighted a direct relationship between thinning intensity, the 

amelioration of tree water status, and the increase of available blue water. Thinning increases 

throughfall precipitation due to the decrease of the canopy density (Limousin et al. 2008). It 

also has the potential to substantially decrease the stand-level transpiration despite increasing 

the tree-level water use (del Campo et al. 2014, Gebhardt et al. 2014). Hence, it increases soil 

water availability (Bréda et al. 1995, Jiménez et al. 2008), reduces tree drought stress 

(Aussenac and Granier 1988, Rodríguez-Calcerrada et al. 2011) and increases the amount of 

water exported via deep drainage (del Campo et al. 2014). Our water balance model allowed 

us to simulate all these effects with a reasonable degree of realism. For instance, del Campo 

et al. (2014) showed that removing 75% of the stand basal area in an Aleppo pine forest 

increased blue water percentage by almost 30% in the two following years and by 20% a 

decade later, which is similar to the 20-40% average increase obtained in this simulation 

experiment.  

More generally, thinning had the effect of consistently increasing the amount of blue water 

along with the treatment intensity, as it was reported by Del Campo et al. (2014). However, 

this effect was very little dependent on the site and climatic scenario. This is partially due to 

the fact that we defined BWyear as a ratio between exported water and precipitation. Thinning 

as a means to improve the blue water provision therefore seems to be a suitable management 

option in the Mediterranean area (Callegari et al. 2003), regardless of the local climate 

conditions.  
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Previous works report a direct reduction of drought-induced mortality of Scots pine for high 

thinning intensities (Giuggiola et al. 2013). However, there are more ambiguous results on 

whether thinning favours the resistance of trees (i.e. it reduces the growth decline caused by 

drought; Misson et al. 2003, Martin-Benito et al. 2010, Giuggiola et al. 2013), the recovery of 

growth following drought events (Sohn et al. 2013, 2016), or both (D’Amato et al. 2013). The 

water potential inducing 50% of loss of conductivity has been associated to a threshold 

provoking irreversible drought damage for conifer species (Brodribb & Cochard, 2009, 

Brodribb et al., 2010). One can therefore assume that the combination of climate, site and 

treatment with a SI value superior to 0.5 is likely to induce die-off events. At the xeric site, 

the control treatment induced values of SI > 0.5 even under current climatic conditions, which 

can be linked to the drought related die-off and defoliation events that have been observed 

since the 1990s in a P. sylvestris stand of NE Spain with similar site conditions (Martínez-

Vilalta & Piñol, 2002; Hereş et al. 2012). Here, we observed that the drought stress index was 

lower and decreased almost linearly with thinning intensity for the mildest conditions (humid 

site, or mesic site without climate change), whereas the initial stress was higher and its 

decrease was steeper for heavier thinning intensities under the most xeric conditions. These 

results suggest that decreasing drought stress would be necessary in drought-exposed areas in 

order to avoid important die-off events under future climatic conditions, and that intense 

thinning in these areas could be an efficient way to reduce drought stress and hence mortality 

(Sohn et al 2016). Although the alleviation of drought stress was more important at xeric 

sites, the effect lasted similarly across the three studied sites. For a given thinning intensity, 

the effect of thinning lasted similarly between NoCC and A2 but was generally much shorter 

for A2. Previous studies with Scots pine found that the effects of thinning on tree growth 

were still noticeable for up to three decades in xeric stands (Giuggiola et al. 2013), but 
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anticipated lower effectiveness under severe climatic change (Sohn et al. 2016).  In 

agreement with these results, our model simulated the effects of thinning on basal area 

increment to last for 30-40 years and the return time of drought stress to be much lower for 

climate scenario A2, which could potentially lower the long term effect of thinning in this 

case. Frequent thinning regime may therefore be required under severe climate change 

scenarios in order to maintain the positive effects on the remaining stand (Sohn et al. 2016).  

4.3. Potential shortcomings of the modelling approach 

The results showed that our approach could correctly predict the dynamics of Scots pine 

forest stands after thinning. We validated the model of forest dynamics (SORTIE-ND) 

against an independent dataset, and it produced unbiased estimations of tree growth and stand 

basal area increment across a wide range of initial tree densities (see Appendix C). On the 

other hand, the water balance model had been previously validated against measurements of 

soil moisture dynamics and plant transpiration in several forest plots, providing satisfactory 

results (De Cáceres et al. 2015). However, some processes could not be included in our 

approach and are worth mentioning, since they represent further development goals. 

First, tree mortality in our simulations was not drought-stress dependent, but density-

dependent. Previous observational studies have shown that thinning can reduce the slope of 

the allometric relationship between stand density and corresponding mean tree diameter 

(Giuggiola et al. 2013), so this could lead to underestimations of tree mortality, particularly at 

the most xeric sites and the most severe scenarios (Condés et al. 2016). However, it is 

difficult to model drought-related mortality either using process-based models or empirical 
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models (but see Gustafson and Sturtevant, 2013), and accounting for drought-dependent 

mortality would require the parameterization of this process across a range of water 

conditions, which is yet to be done in the study area and was beyond the scope of this work. 

Moreover, we could not include the shrubby layer in our simulations due to the lack of 

available data to model their growth, mortality and water balance under contrasting 

environmental conditions. Shrub abundance in Scots pine stands is closely related to tree 

canopy cover (Coll et al. 2011), so heavy thinnings can promote its development and increase 

the understory to overstory transpiration ratio (Simonin et al. 2007, Gebhardt et al. 2014). 

Last, the allometries used to derive LAI based on forest structure are also likely to be affected 

by thinning. While drought-induced tree mortality could potentially induce an overestimation 

of the stand LAI, especially for the unthinned treatments, the effect of using static allometries 

and not accounting for understory growth could lead to an underestimation of the LAI 

recovery rate after thinning. Put together, those inaccuracies have the potential to exaggerate 

the actual differences between the control and the thinned treatments, which in turn 

potentially leads to an overestimation of the effect of thinning on blue water and water status 

improvement. However, we believe that these potential shortcomings are not affecting the 

main results obtained in this simulation study, although they constitute future research topics 

that could help further refine our predictions. 

4.4. Thinning to enhance the adaptability of Scots pine to climate change: 

implications for management 

Low or medium intensity thinning could simultaneously improve stand productivity and 

water yield at all sites, but only in a scenario without climate change. Under climate change 

scenarios, a simultaneous positive effect of thinning on the two main objectives was only 
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possible – in a lesser extent – at the humid site, when tree water stress was relatively low 

regardless the thinning treatment. Conversely, thinning could barely improve stand 

productivity when the drought stress of the control treatment was strong. However, it should 

be taken into account that the present work did not evaluate the effects of complex thinning 

regimes including simultaneous variation in thinning intensity and rotation. Its is thus 

possible that less intense but more frequent thinning treatments could lead to different 

outputs. 

Our results agreed with del Campo et al. (2014) in that hydrology-oriented silviculture can be 

an interesting option to increase the resistance of forests to drought in xeric sites. In these 

areas, our simulations found effective reductions of tree water stress following thinning 

treatments, although under severe climate warming scenarios very heavy or repeated thinning 

would be needed. Our modelling approach may provide interesting insights here, since the 

duration of the thinning effect on water stress (T50, Stress) could be used as a guideline to 

design thinning regimes (in particular, thinning schedules) that maintain tree water stress 

below critical values. However, in some particular sites (i.e. at the xeric edge of the species 

distribution), even heavy, repeated thinnings may not be enough to alleviate drought stress, 

and the persistence of the species could be compromised no matter the thinning regime (see 

also Elkin et al 2015). In this context, treatments may be conceived to promote the transition 

of these Scots pine forests to mixed forests with more drought-resistant tree species 

(Giuggiola et al. 2013). 

In the mesic and humid areas, where most productive Scots pine stands locate, a compromise 

between the maintenance of stand production and the improvement of blue water 
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provisioning and/or drought stress relief could be achieved by the application of intermediate 

to heavy thinning (as also reported by Magruder et al. 2013). However, in the mesic areas, 

particular caution needs to be taken when defining the treatments, since for a giving thinning 

intensity the effects on productivity and tree water stress can substantially vary depending on 

the climatic scenario considered. In summary, our results strongly argue against general 

management recommendations that do not take into account the specificity of site conditions 

and thinning intensities to be applied. Instead, a case-by-case approach would be needed in 

order to elaborate guidelines adapted to the particularities of each situation. In this context, 

modeling approaches such as the one presented here could be interesting to provide the 

flexibility needed to produce case-specific recommendations. 
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