re:Invent DECEMBER 2 - 6, 2024 | LAS VEGAS, NV

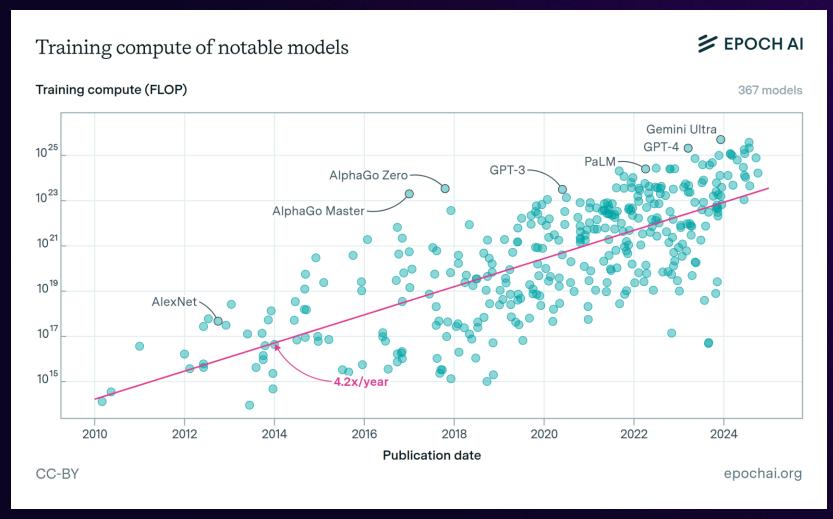
AIM380

High performance distributed model training with Amazon SageMaker

Anirudh Viswanathan

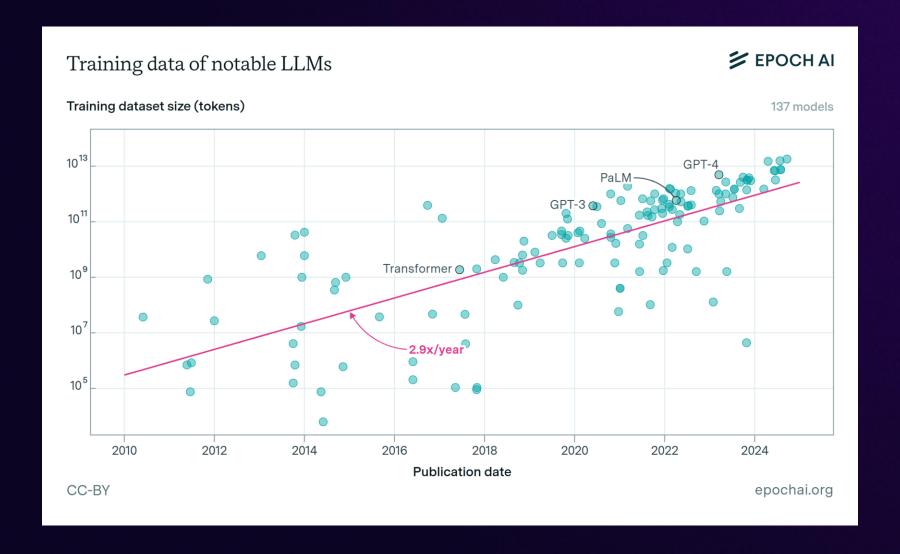
Sr. Product Manager, Technical, Amazon SageMaker AWS

Sanjay Dorairaj

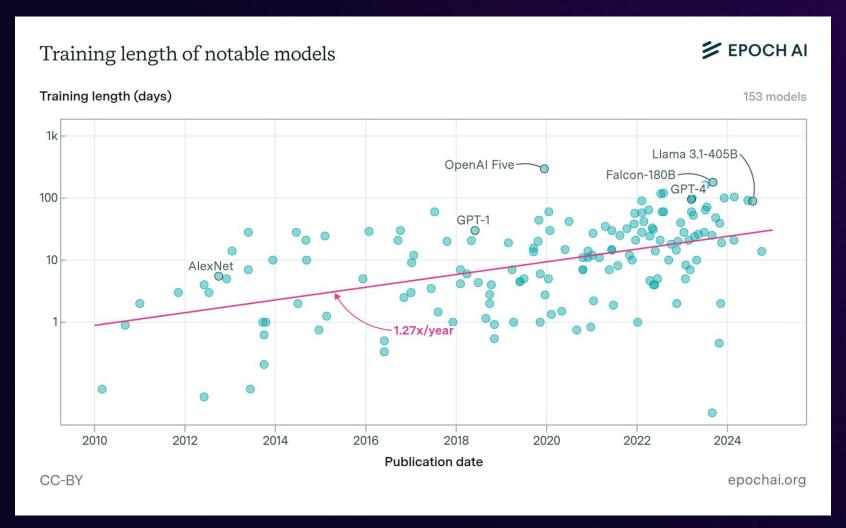

Software Development Manager, Amazon SageMaker AWS

Antonio Ginart, Ph. D.

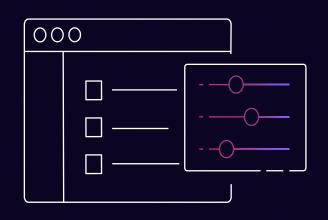
Lead Scientist, Al Research Salesforce



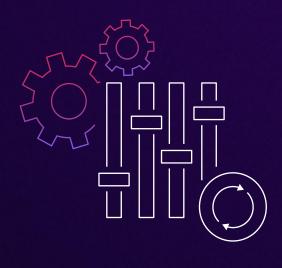
Training compute of foundational models is growing by ~5x per year, doubling ~6 months



Dataset sizes are doubling every 8 months



Time to market spans months of investment and continues to increase



Unique challenges to manage hardware resources efficiently for large-scale FM training

Cluster provisioning and management

Infrastructure stability

Distributed training performance

Amazon SageMaker HyperPod

Scale and accelerate generative AI model development across thousands of AI accelerators

Designed for scale

Reduce model training time by 40%

Resilient environment

Advance observability and control

Top AI companies use HyperPod to train and deploy models

Luma Al

ILLUSTRATIVE OSS STACK

PyTorch Distributed (FSDP, DTensor, DCP)

NeMo & Megatron-Core

PyTorch Lightning

Framework

PyTorch Core

Network and hardware programming

libfabric

NCCL

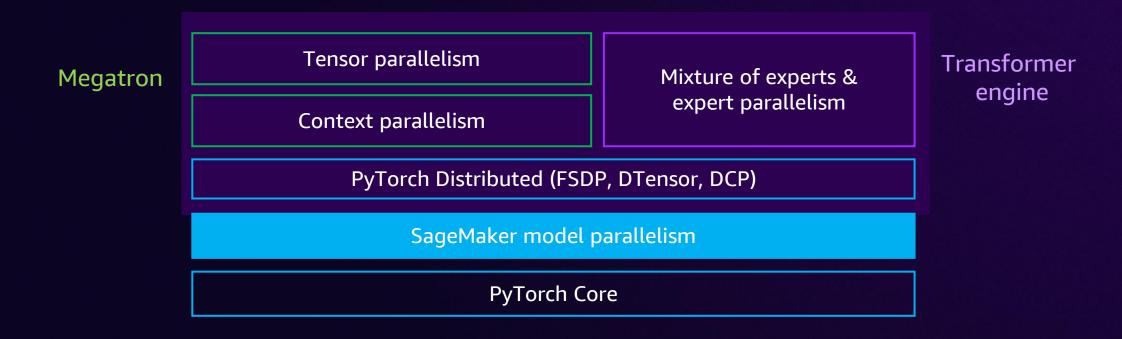
AWS OFI NCCL

Accelerators SDK & libs (CUDA, Neuron)

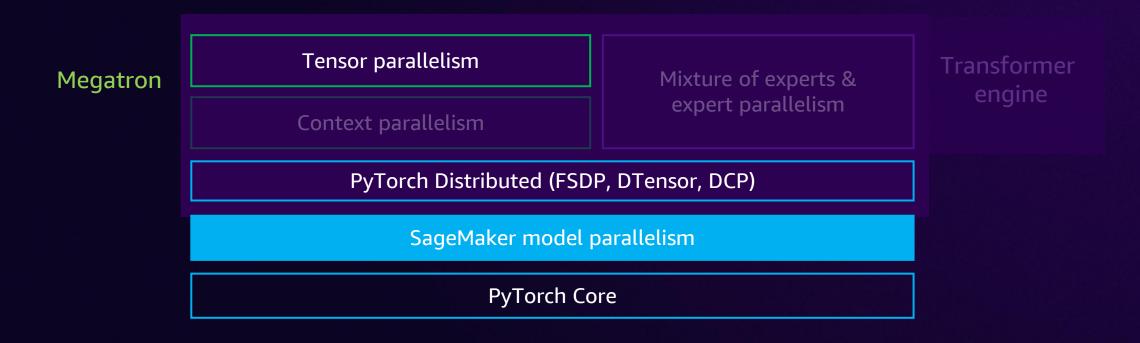
Device

Accelerator driver (GPU, TRN)

EFA device & kernel driver


Recipes SageMaker HyperPod recipes SageMaker model parallelism Framework PyTorch Lightning (SMP) PyTorch Core **NCCL** Accelerators SDK & libs AWS OFI NCCL (CUDA, Neuron) libfabric EFA device & kernel driver Accelerator driver (GPU, TRN) Device

SageMaker model parallelism Framework PyTorch Lightning (SMP) PyTorch Core **NCCL** Accelerators SDK & libs **AWS OFI NCCL** (CUDA, Neuron) libfabric EFA device & kernel driver Accelerator driver (GPU, TRN)

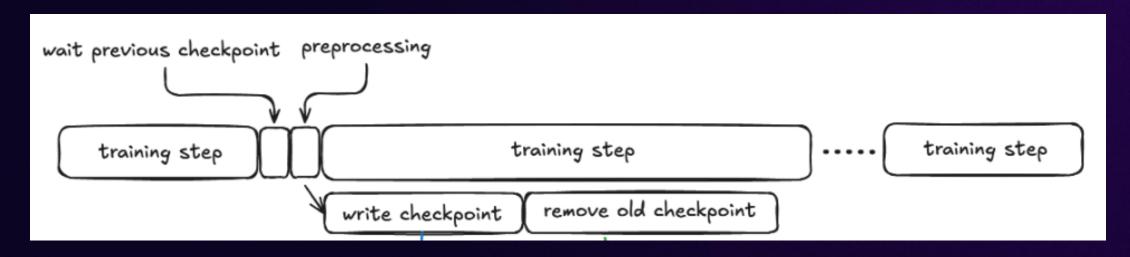

PyTorch fork with best-in-class, composable training techniques that are mutually compatible

Also includes: Delayed parameter initialization, activation checkpointing, activation offloading, etc.

PyTorch fork with best-in-class, composable training techniques that are mutually compatible

Supports training with TP + FSDP

PyTorch fork with best-in-class, composable training techniques that are mutually compatible


Supports training with CP + FSDP, FSDP + FP8 etc.

Async checkpointing for accelerated training

ASYNC CHECKPOINT

Compatible with native PyTorch Distributed Checkpoint (DCP)

Optimizations

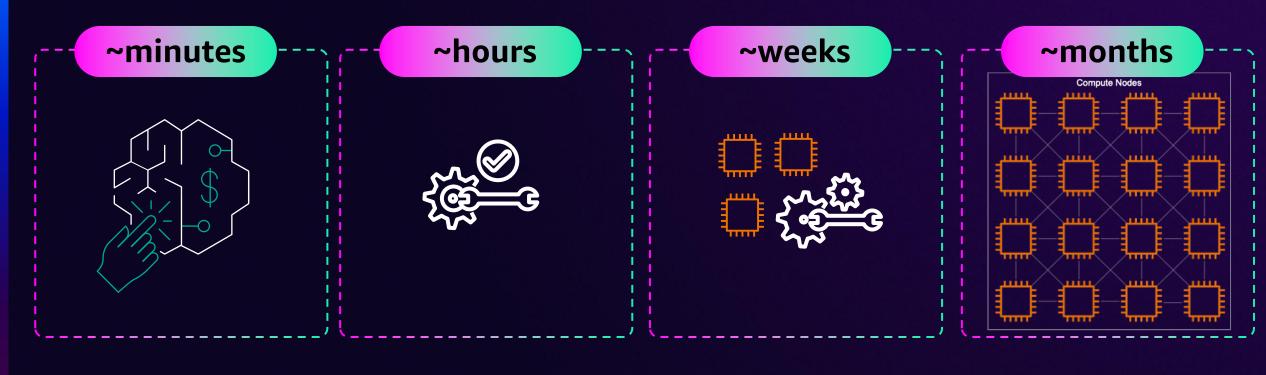
- Smart metadata caching system for faster checkpoint saving
- Native Amazon S3 support to use S3 links as the checkpoint saving/loading destination

Recipes SageMaker HyperPod recipes PyTorch Core NCCL Accelerators SDK & libs **AWS OFI NCCL** (CUDA, Neuron) libfabric EFA device & kernel driver Accelerator driver (GPU, TRN)

Audience poll

How many of you are currently pre-training and fine-tuning LLMs?

How many of you are using SageMaker for LLM training?


How many of you plan to start LLM training in the next 6 months?

Optimizing FM pre-training and fine-tuning can take weeks of effort

Optimizing FM pre-training and fine-tuning can take weeks of effort

Select a model

Configure framework

Optimize model training

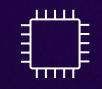
Production pre-training & fine-tuning

Why FM training falters: The technical bottleneck

CHANGING A SINGLE PARAMETER CAN CASCADE INTO OTHER TRAINING STACK CHANGES

- 70+ pre-training parameters and 100+ fine-tuning parameters
- Each parameter choice triggers cascading updates to other parameters
- Default choices may be suboptimal
- Leads to cost overruns, missed deadlines, and reduced productivity

Amazon SageMaker HyperPod recipes


Curated, ready-to-use recipes for pre-training and fine-tuning popular publicly available FMs

Tested and validated by AWS for foundational models such as Llama & Mistral

Automatic checkpoints
for faster fault
recovery and managed
end-to-end
training loop

Easily switch between
GPU-based or
Trainium-based
instances

Getting started in minutes

RUN FM PRE-TRAINING AND FINE-TUNING WITH A SINGLE LINE OF CODE

Select

a model training and fine-tuning recipe on GitHub

Set up prerequisites

Resource limits, AWS credentials, a training cluster

Run the recipe

on Amazon SageMaker HyperPod *or* SageMaker training jobs

Getting started

HOW CAN YOU GET STARTED WITH HYPERPOD RECIPES?

https://github.com/aws/ sagemaker-hyperpod-recipes

How it works

AMAZON SAGEMAKER

HYPERPOD TRAINING RECIPES REPOSITORY

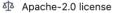
Open source implementation that includes launcher and recipes collection

Built on NeMo foundations (launcher, configuration hierarchy)

Over 30 recipes with different configurations

SageMaker optimized models (GPU)

AWS Neuron optimized models (Trainium)


Native NeMo models

Custom models

Amazon SageMaker HyperPod recipes

Overview

Amazon SageMaker HyperPod recipes help customers get started with training and fine-tuning popular publicly available foundation models in just minutes, with state-of-the-art performance. The recipes provide a preconfigured training stack that is tested and validated on Amazon SageMaker.

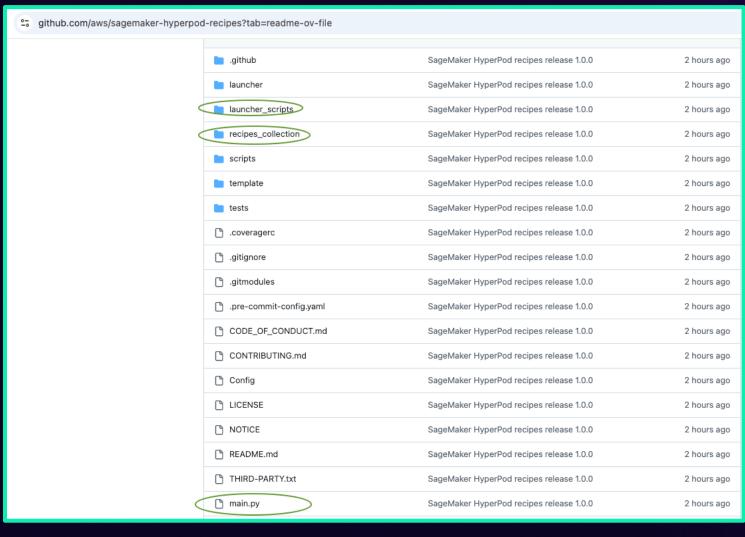
Please see Amazon SageMaker HyperPod recipes for documentation.

The recipes support Amazon SageMaker HyperPod (with Slurm or Amazon EKS for workload orchestration) and Amazon SageMaker training jobs.

Amazon SageMaker HyperPod recipes include built-in support for:

- Model parallelism tensor parallelism and context parallel
- Automated distributed checkpointing
- · Distributed optimizer
- Accelerators: NVIDIA H100 (ml.p5), NVIDIA A100 (ml.p4), and AWS Trainium (ml.trn1)
- Fine-tuning: Full, QLoRA, LoRA
- AWS Instances: ml.p5.48xlarge, ml.p4d.24xlarge, and ml.trn1.32xlarge instance families
- Supported Models: Llama, Mistral, Mixtral models
- · Model Evaluation: Tensorboard

Model Support

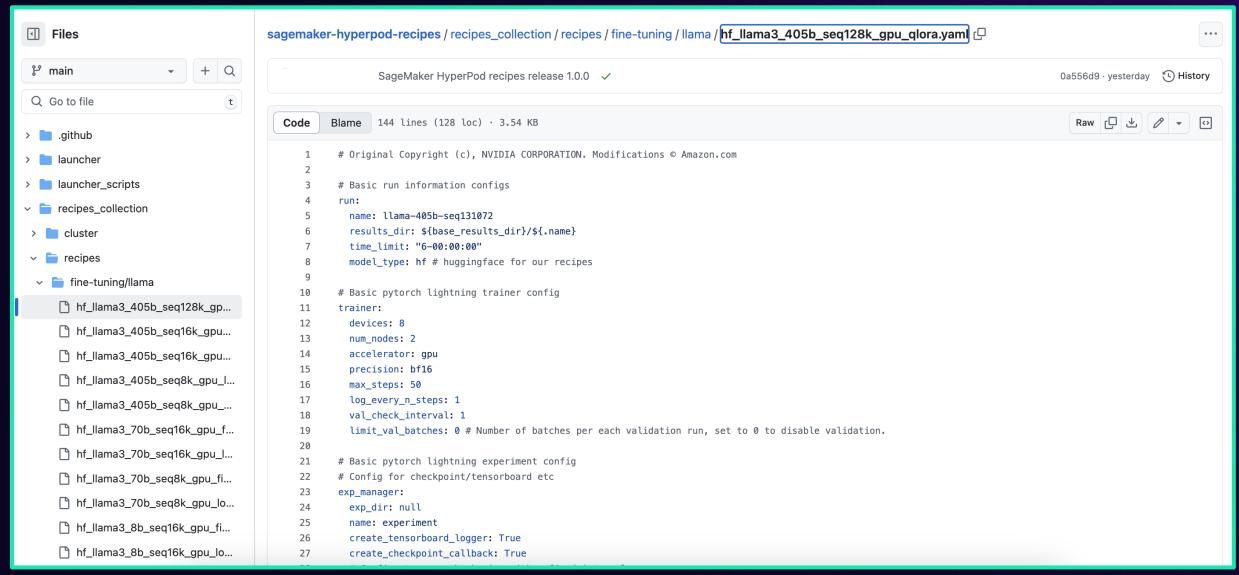

Pre-Training

List of specific pre-training recipes used by the launch scripts.

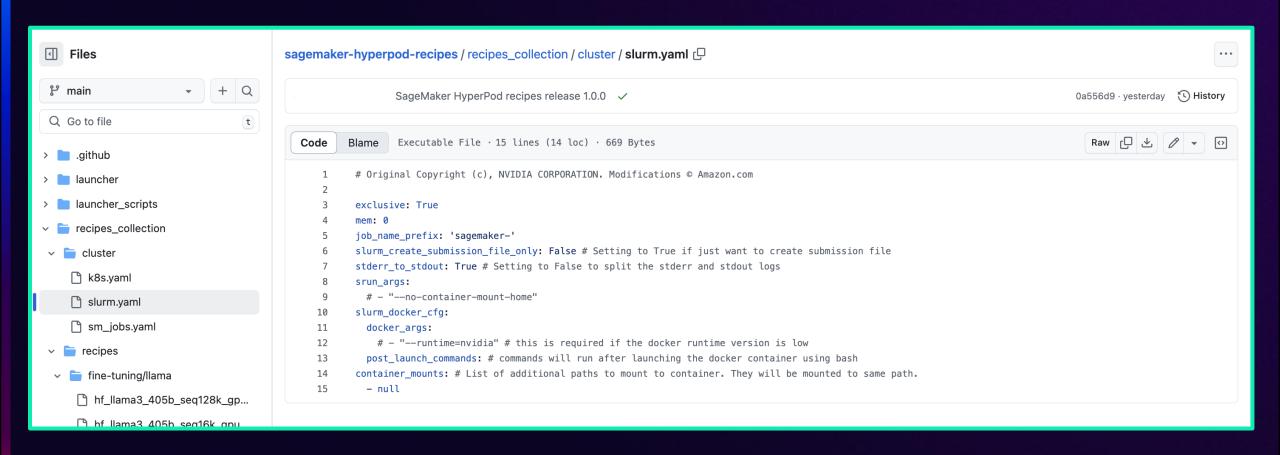
Source	Model	Size	Sequence length	Nodes	Instance	Accelerator	Recipe	Script
Hugging Face	Llama 3.2	11b	8192	4	ml.p5.48xlarge	GPU H100	<u>link</u>	link

Contents of the repository

SAGEMAKER HYPERPOD RECIPE REPOSITORY

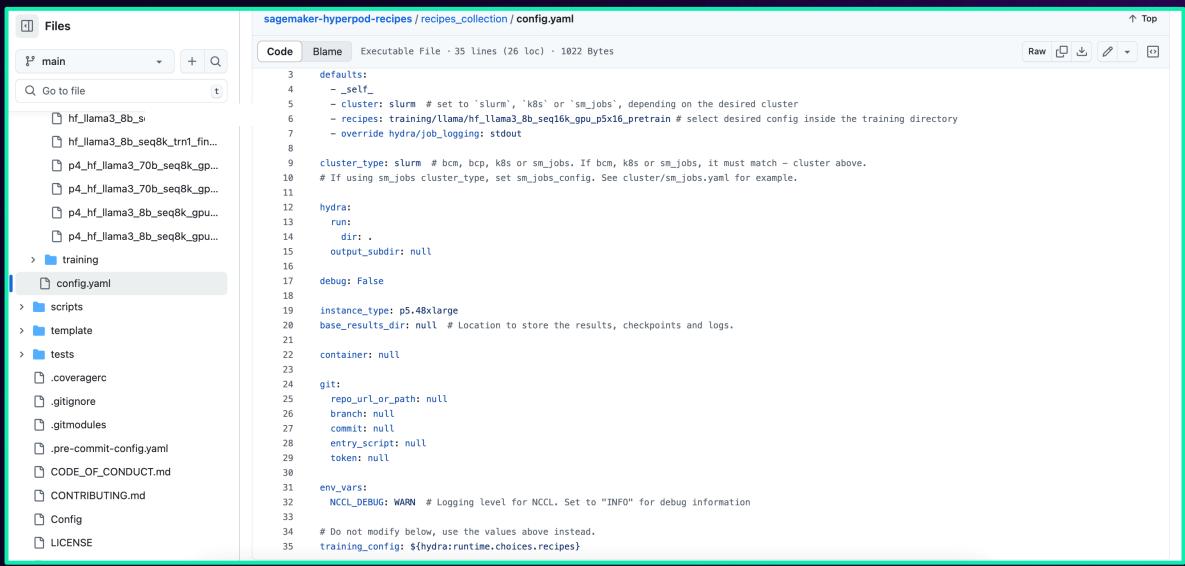

launcher_scripts contains pre-configured bash scripts for model training

recipes_collection contains Hydra-based YAML training and fine-tuning recipes


main.py is a Nemo-style launcher

All dependencies for HyperPod recipes are present in a docker container and an enroot-based filesystem

Getting started: Step 1 – Pick a recipe



Getting started: Step 2 – Specify the cluster config

Getting started: Step 3 – Update root-level config

Getting started – Slurm/k8s

RUN FM PRE-TRAINING AND FINE-TUNING WITH A SINGLE LINE OF CODE

Launcher scripts

bash launcher_scripts/<model>/<launcher-script>

HyperPod Slurm/k8s

Recipes on SageMaker HyperPod (Amazon EKS)

hyperpod start-job --recipe recipe-name

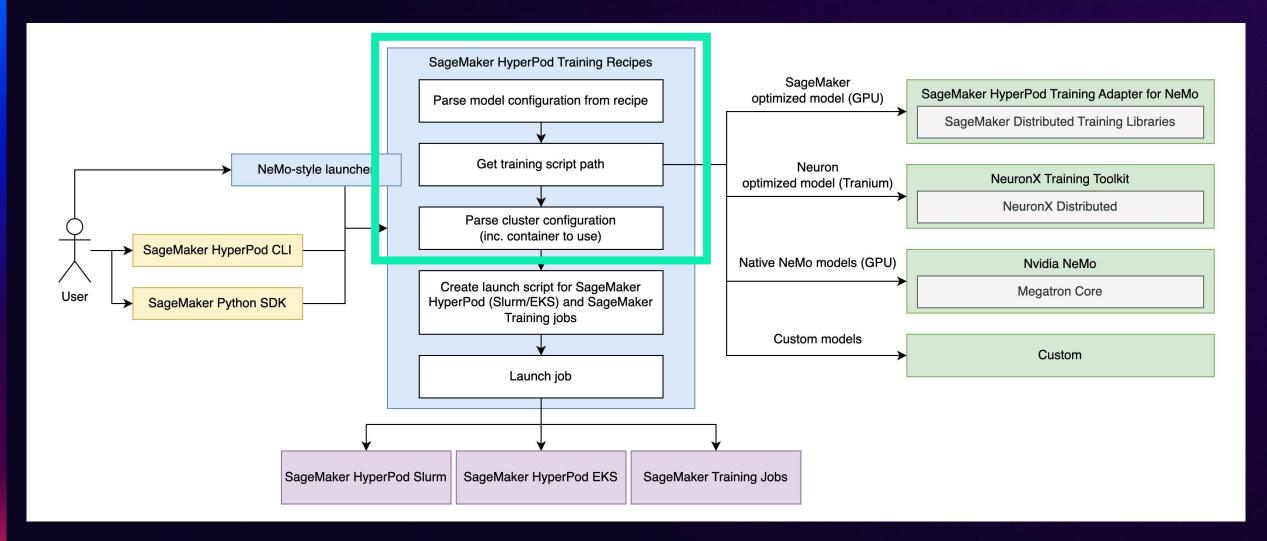
HyperPod CLI

Recipes on SageMaker HyperPod (Slurm./k8s)

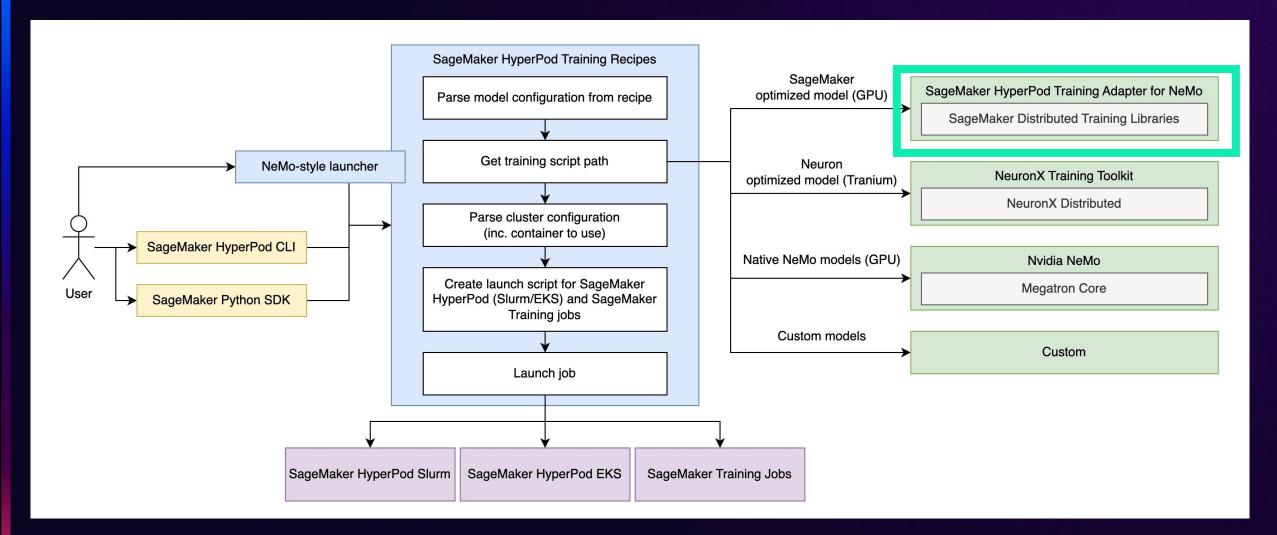
python3 main.py recipes=recipe-name

NeMo-style launcher

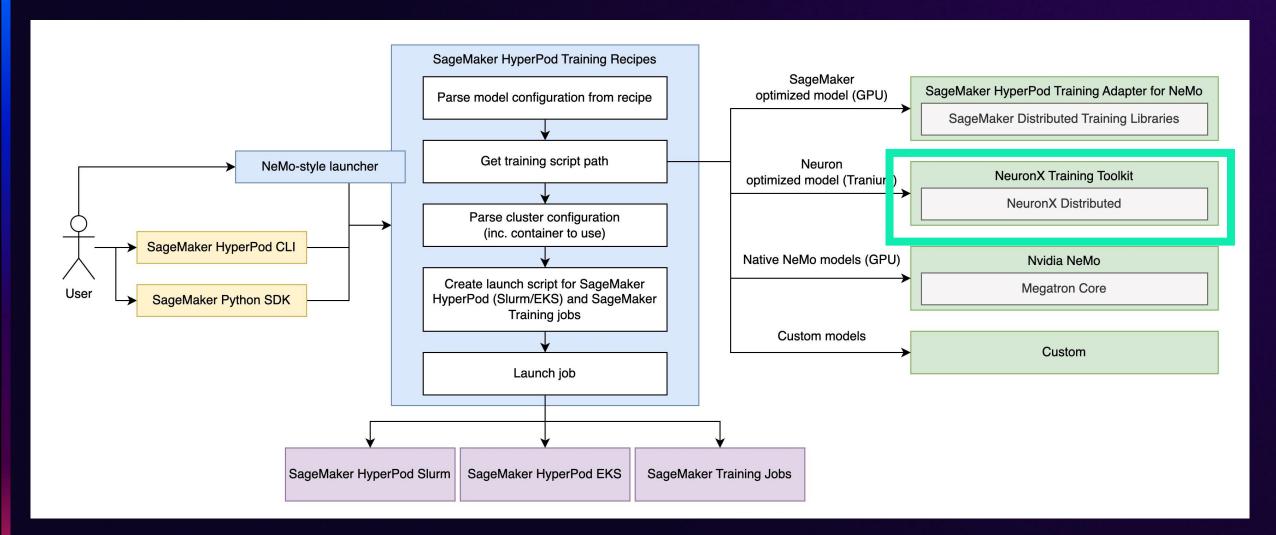
Getting started – SageMaker training jobs

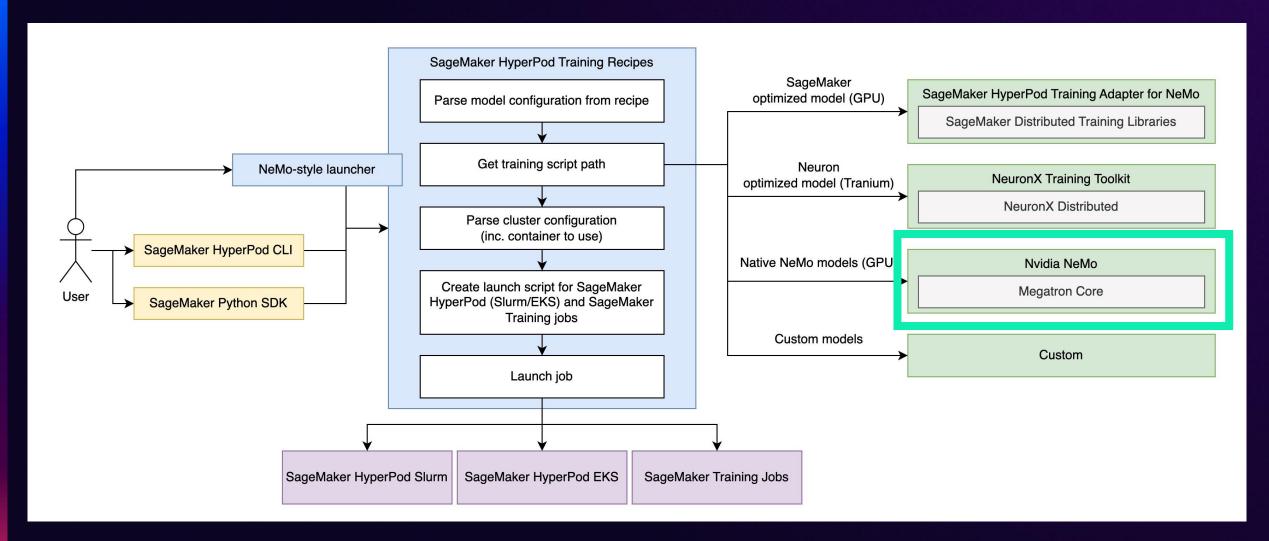

RUN FM PRE-TRAINING AND FINE-TUNING WITH A SINGLE LINE OF CODE

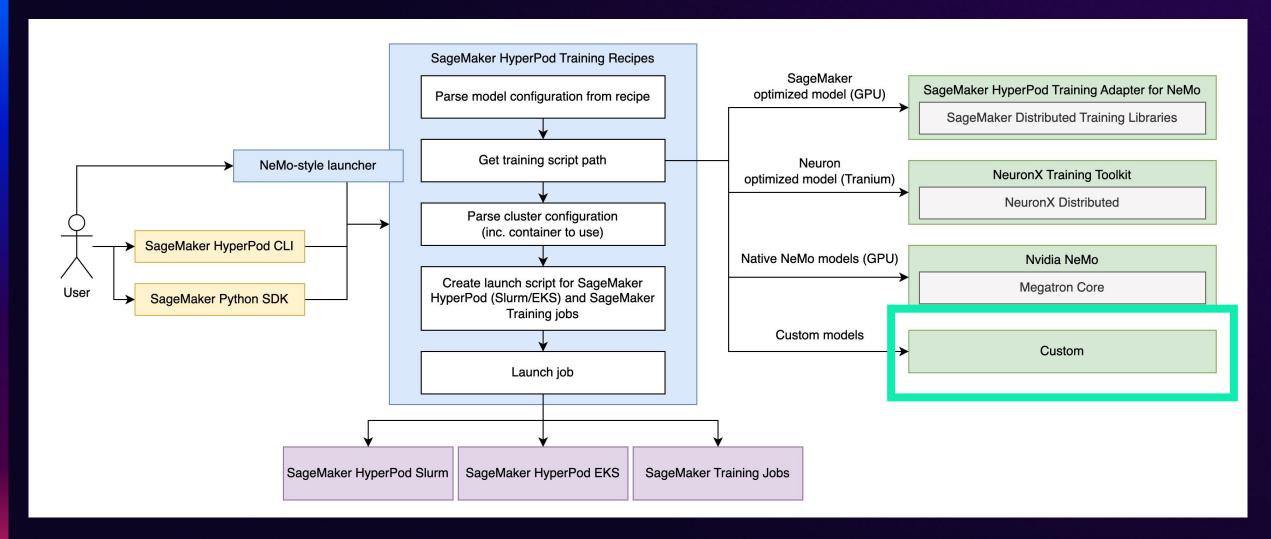
Recipes on SageMaker training jobs

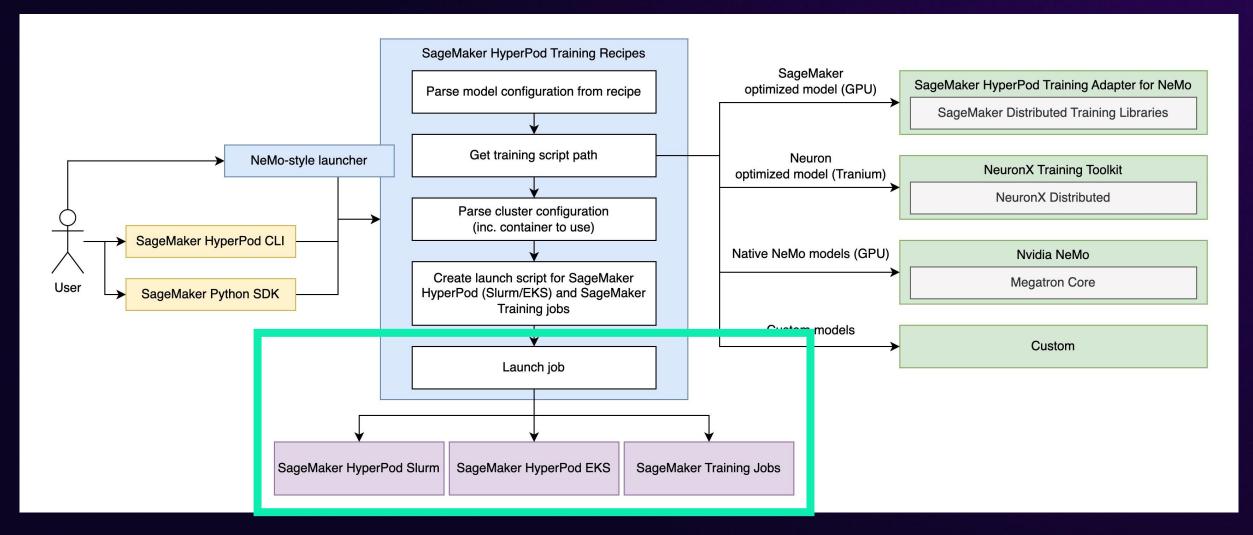

```
estimator = PyTorch(
    training_recipe=recipe-name
    ...,
)
estimator.fit(...)
```

SageMaker Python SDK









Recap

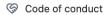
AMAZON SAGEMAKER

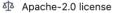
HYPERPOD TRAINING RECIPES REPOSITORY

Over 30 recipes with different configurations

Run training with a single line of code

Recipes support SageMaker HyperPod and training jobs


SageMaker optimized models (GPU)


AWS Neuron optimized models (Trainium)

Native NeMo models

Custom models

Amazon SageMaker HyperPod recipes

Overview

Amazon SageMaker HyperPod recipes help customers get started with training and fine-tuning popular publicly available foundation models in just minutes, with state-of-the-art performance. The recipes provide a preconfigured training stack that is tested and validated on Amazon SageMaker.

Please see Amazon SageMaker HyperPod recipes for documentation.

The recipes support Amazon SageMaker HyperPod (with Slurm or Amazon EKS for workload orchestration) and Amazon SageMaker training jobs.

Amazon SageMaker HyperPod recipes include built-in support for:

- Model parallelism tensor parallelism and context parallel
- · Automated distributed checkpointing
- · Distributed optimizer
- Accelerators: NVIDIA H100 (ml.p5), NVIDIA A100 (ml.p4), and AWS Trainium (ml.trn1)
- Fine-tuning: Full, QLoRA, LoRA
- AWS Instances: ml.p5.48xlarge, ml.p4d.24xlarge, and ml.trn1.32xlarge instance families
- Supported Models: Llama, Mistral, Mixtral models
- · Model Evaluation: Tensorboard

Model Support

Pre-Training

List of specific pre-training recipes used by the launch scripts.

Source	e Model	Size	Sequence length	Nodes	Instance	Accelerator	Recipe	Script
Hugging Face	Llama 3.2	11b	8192	4	ml.p5.48xlarge	GPU H100	<u>link</u>	<u>link</u>

Salesforce AI research

A little bit about Salesforce Al Research

We are Salesforce's AI Research org

- Foundational R&D
 Pushing forward state-of-the-art models for enterprise AI
- Customer incubation
 Customer-centric pathfinding with cutting-edge AI for high-value use cases
- Product innovation
 Incorporating AI models and technologies into generally available features

Salesforce AI & Amazon SageMaker HyperPod

We're big users of SageMaker for years

This year, we've leveraged HyperPod

"Supercomputer at our fingertips"

Why do model training and fine-tuning matter?

Salesforce AI Fine-tuning FMs with HyperPod recipes

SageMaker HyperPod recipes have great features that saved us significant infra work

FSDP + Context Parallelism + Low-Rank Adaptation (LoRA)
Unique Feature Set

Fine-tune Llama-3.1-405B at full 128K context with 4 nodes
1 node with Q-LoRA

Production models at Salesforce trained on HyperPod

Agentforce: Powering next-gen AI for Sales with xGen-Sales LLM

First proprietary sales-focused large language model (LLM)

Key features: call summarization, customer profiling, contact enrichment, and pipeline tracking

Users can interactively engage with AI-generated call summary

Al-generated summaries favored >50% of the time against human-generated

Call Transcript

[Salesperson]: Great! I noticed you've been attending a few sessions during our event. Have you had a chance to explore all the ones you were interested in?

[Customer]: Actually, one of our team members was trying to join a session on [DATE-1], but they had trouble accessing the video. It might've been blocked on our end, but we're not sure.

[Salesperson]: I understand. Let me see if I can help troubleshoot that for you.

......

[Salesperson]: I know you mentioned there were a few things that caught your attention, especially some of the new features we've rolled out. What specifically about them stood out to you?

[Customer]: Yeah, we're really intrigued by the AI capabilities, particularly how your company plans to implement them by [DATE-2]. It's fascinating stuff. We're also curious about what other features might benefit us and if we can share some ideas with your product team to explore.

[Salesperson]: Sure, I'd be happy to connect you with our dedicated specialist who knows all about the product. They can answer your questions and provide more information.

[Customer]: That would be great. Also, I'm interested in knowing which business units are the

priorities for implementation right now.

[Salesperson]: Right now, we've rolled out the AI capabilities in the [GPE-1], and the next step is
to expand into other regions, including [GPE-2]. We're also working on integrating the AI with our

[Customer]: That makes sense. And you mentioned that there's a dedicated specialist. Is that

[PRODUCT-1] feature to make it even more seamless

[Salesperson]: Yes. I'm more of a generalist, but I can connect you with a specialist on our team who can help you with that. Let me check their schedule. We could do [DATE-3], or any time [DATE-4] generally works for us. What does your availability look like?

[Customer]: I'm pretty busy [DATE-3], but I can make it work. Can you send me an invite to the meeting?

[Salesperson]: Of course, I'll take care of it. I'll include the product specialists in the invite as well.

Customer Impression:

The customer seemed interested in the AI products, stating that they were curious about AI capabilities, relevant products, and which business units are implementing them. The Customer appeared positive and engaged throughout the call, particularly interested in upcoming features, and expressed a desire to share ideas with the product team and meet with a dedicated specialist.

Call Summary:

The call focused on the customer's responses to sessions around AI capabilities. The customer stated that a team member has issue accessing a session on [DATE-1] and wanted to watch the recording. The Salesperson offered to take a look at that for the customer, and redirected the conversation to the customer's interests, which were AI capabilities, relevant products, and which business units were seeing implementation first. The Salesperson stated that implementation is in [GPE-1] for now, though they are planning to expand to other locations and integrate the feature with [PRODUCT-1]. They also invited the customer to a meeting with a dedicated specialist, which the customer agreed to.

Next Step

- Salesperson to help troubleshoot the access issue for [DATE-1] session.
- Salesperson will schedule a meeting for [DATE-3] with the Customer and product specialist for a deeper discussion.

Contributors:

Semih Yavuz, Xinyi Yang, Srijan Bansal, Donna Tran, John Emmons, Jason Lee, Erik Nijkamp, Bo Pang, Egor Pakhomov, Akash Gokul, Antonio Ginart, Yingbo Zho

Agentforce: Powering next-gen AI for Sales with xGen-Sales LLM

Call Transcript

[Salesperson]: Great! I noticed you've been attending a few sessions during our event. Have you had a chance to explore all the ones you were interested in?

[Customer]: Actually, one of our team members was trying to join a session on [DATE-1], but they had trouble accessing the video. It might've been blocked on our end, but we're not sure.

[Salesperson]: I understand. Let me see if I can help troubleshoot that for you.

[Salesperson]: I know you mentioned there were a few things that caught your attention, especially some of the new features we've rolled out. What specifically about them stood out to you?

[Customer]: Yeah, we're really intrigued by the AI capabilities, particularly how your company plans to implement them by [DATE-2]. It's fascinating stuff. We're also curious about what other features might benefit us and if we can share some ideas with your product team to explore.

[Salesperson]: Sure, I'd be happy to connect you with our dedicated specialist who knows all about the product. They can answer your questions and provide more information.

[Customer]: That would be great. Also, I'm interested in knowing which business units are the priorities for implementation right now.

[Salesperson]: Right now, we've rolled out the AI capabilities in the [GPE-1], and the next step is to expand into other regions, including [GPE-2]. We're also working on integrating the AI with our [PRODUCT-1] feature to make it even more seamless.

[Customer]: That makes sense. And you mentioned that there's a dedicated specialist. Is that right?

[Salesperson]: Yes. I'm more of a generalist, but I can connect you with a specialist on our team who can help you with that. Let me check their schedule. We could do [DATE-3], or any time [DATE-4] generally works for us. What does your availability look like?

[Customer]: I'm pretty busy [DATE-3], but I can make it work. Can you send me an invite to the meeting?

[Salesperson]: Of course, I'll take care of it. I'll include the product specialists in the invite as well.

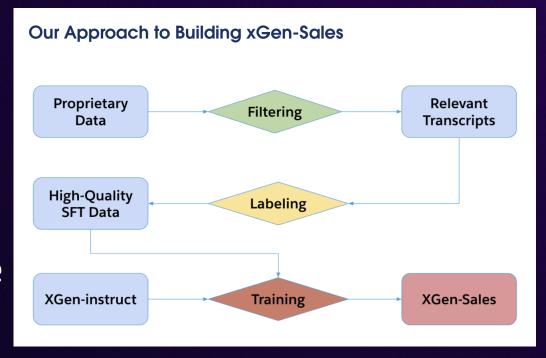
Customer Impression:

The customer seemed interested in the AI products, stating that they were curious about AI capabilities, relevant products, and which business units are implementing them. The Customer appeared positive and engaged throughout the call, particularly interested in upcoming features, and expressed a desire to share ideas with the product team and meet with a dedicated specialist.

Call Summary:

The call focused on the customer's responses to sessions around AI capabilities. The customer stated that a team member has issue accessing a session on [DATE-1] and wanted to watch the recording. The Salesperson offered to take a look at that for the customer, and redirected the conversation to the customer's interests, which were AI capabilities, relevant products, and which business units were seeing implementation first. The Salesperson stated that implementation is in [GPE-1] for now, though they are planning to expand to other locations and integrate the feature with [PRODUCT-1]. They also invited the customer to a meeting with a dedicated specialist, which the customer agreed to.

Next Steps:


- Salesperson to help troubleshoot the access issue for [DATE-1] session.
- Salesperson will schedule a meeting for [DATE-3] with the Customer and product specialist for a deeper discussion.

Agentforce: Powering next-gen AI for Sales with xGen-Sales LLM

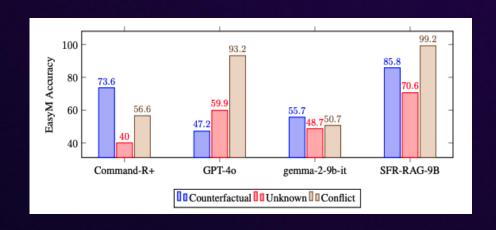
Developed using human-in-the-loop reinforcement learning and diverse sales datasets

Planned integration with Agentforce, live customer pilots are already underway!

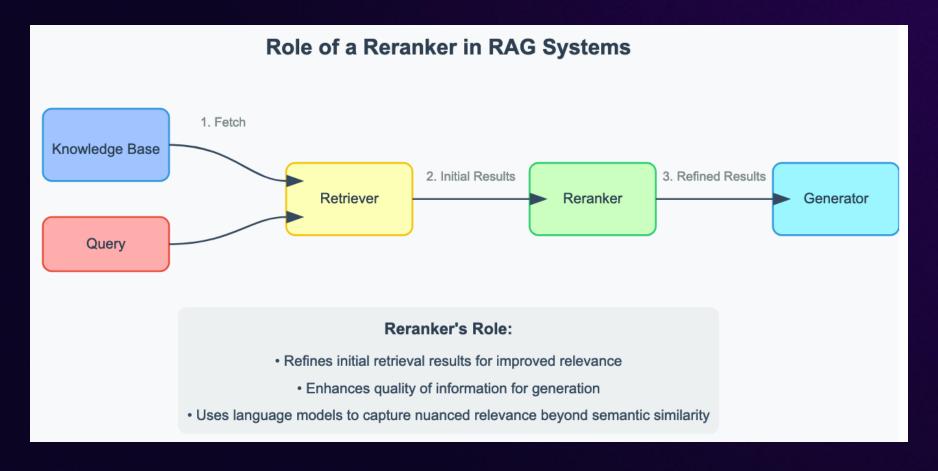
Ragforce: Building contextually faithful LLMs with SFR-RAG

Retrieval Augmented Generation: Combine semantic search + in-context learning + generative LLM

- Augments LLMs with enterprise data retrieval, but quality depends heavily on document hygiene
 - Conflicting versions, outdated info, and inconsistent formatting can confuse the model


- How should models handle prioritization of information given rich metadata?
 - o Prioritization semantics based on sources, tags, and dates
 - "Official" tag takes priority over "Draft" tag unless date is <6 months old

Ragforce: Building contextually faithful LLMs with SFR-RAG


- Trained a contextual LLM (9B) for RAG generation
 - Faithful: Trained to minimize hallucinations, even in adverse settings (conflicting info) & precisely follow complex prioritization rules
 - Lightweight and high-performing: State-ofthe-art aggregate performance with 9B params, beating larger models (104B+)
 - Trained on HyperPod using 2x p5.48xlarge nodes

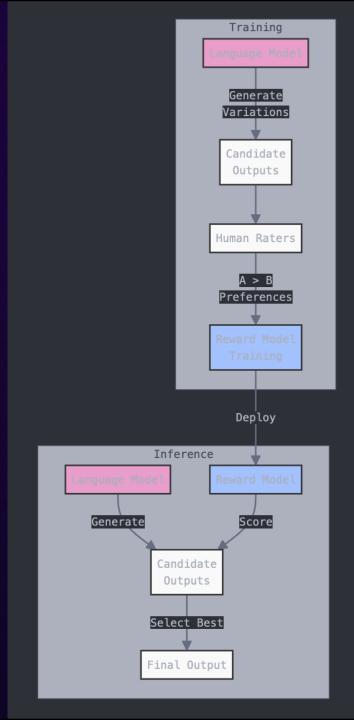
Rankforce: State-of-the-art enterprise reranking with SFR-LlamaRank

Lead contributors: A. Ginart, N. Kodali, J. Emmons

Rankforce: State-of-the-art enterprise reranking with SFR-LlamaRank

- Core technical specs:
 - o Built on Llama3-8B-Instruct with human-guided training (4x p5.48xlarge)
 - Supports 8K document chunks with fast inference (<200ms/4 docs on H100)
- Superior code search performance
- Linear, calibrated scoring
 (0.9+ highly relevant to ~0.0 irrelevant)
- Horizontally scalable for enterprise deployment

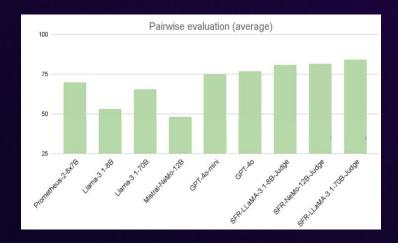
Results: Hit Rate @ K = 8


Model	Avg	SQuAD	TriviaQA	NCS	TrailheadQA
SFR LlamaRank	92.9%	99.3%	92.0%	81.8%	98.6%
Cohere Rerank V3	91.2%	98.6%	92.6%	74.9%	98.6%
Mistral-7B QLM	83.3%	87.3%	88.0%	60.1%	97.7%
Embeddings Only	73.2%	93.2%	88.3%	18.2%	93.2%

Lead contributors: A. Ginart, N. Kodali, J. Emmons

Judgeforce What is a reward model?

- Learn a model that predicts human preferences based on pairwise comparisons ("A is better than B")
- Used in training models (RLHF) as well as automatic evaluations and even inference


Judgeforce: Automating LLM eval with SFR-Judge

- Trained 3 LLM-as-judge models (8B, 12B, 70B) for automatic evaluation
 - Multifaceted: Trained to evaluate via pairwise comparisons, single rating, and classification
 - State-of-the-art aggregate performance across 13 evaluation benchmarks
 - Trained 70B on HyperPod using 4x p5.48xlarge nodes

DIRECT JUDGEMENT PREFERENCE OPTIMIZATION

Peifeng Wang*, Austin Xu*, Yilun Zhou, Caiming Xiong, Shafiq Joty Salesforce AI Research

- (a) **Single Rating**: Assign a score between 1 and 5, according to the scoring rubric.
- (b) **Pairwise Comparison**: Select Response A or B, that is better for the given instruction.
- (c) **Classification**: Does the response meet the requirement of ...?

What's next at Salesforce AI?

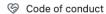
Are we hitting entropy rate of internet corpus? Can we scale up post-training dataset sizes?

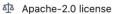
What will inference-time compute scaling be? 2025 may be the year of inference-time scaling!

Multi-Agent Systems:

 Components: Specialized models for tasks – Re-rankers, reward models
 xGen-Sales

- Assistants: Dispatch directly with humans real-time, multi-modal, low-latency SFR-RAG
- Agents: Long-running AI with tools Minutes, hours, or even days
 - Powered by reasoning-style LLMs


Get started with HyperPod recipes



AMAZON SAGEMAKER HYPERPOD RECIPES

https://github.com/aws/sagemaker-hyperpod-recipes

Amazon SageMaker HyperPod recipes

Overview

Amazon SageMaker HyperPod recipes help customers get started with training and fine-tuning popular publicly available foundation models in just minutes, with state-of-the-art performance. The recipes provide a preconfigured training stack that is tested and validated on Amazon SageMaker.

Please see Amazon SageMaker HyperPod recipes for documentation.

The recipes support Amazon SageMaker HyperPod (with Slurm or Amazon EKS for workload orchestration) and Amazon SageMaker training jobs.

Amazon SageMaker HyperPod recipes include built-in support for:

- Model parallelism tensor parallelism and context parallel
- · Automated distributed checkpointing
- · Distributed optimizer
- Accelerators: NVIDIA H100 (ml.p5), NVIDIA A100 (ml.p4), and AWS Trainium (ml.trn1)
- Fine-tuning: Full, QLoRA, LoRA
- AWS Instances: ml.p5.48xlarge, ml.p4d.24xlarge, and ml.trn1.32xlarge instance families
- Supported Models: Llama, Mistral, Mixtral models
- Model Evaluation: Tensorboard

Model Support

Pre-Training

List of specific pre-training recipes used by the launch scripts.

Source	Model	Size	Sequence length	Nodes	Instance	Accelerator	Recipe	Script
Hugging Face	Llama 3.2	11b	8192	4	ml.p5.48xlarge	GPU H100	link	<u>link</u>

Thank you!

Please complete the session survey in the mobile app

