Build better experiences that grow with you—with accessible, enterprise-grade caching built by the devs who brought you open source Redis.
res11 = r.json().set("newbike", "$", ["Deimos", {"crashes": 0}, None])
print(res11) # >>> True
res12 = r.json().get("newbike", "$")
print(res12) # >>> ['["Deimos", { "crashes": 0 }, null]']
res13 = r.json().get("newbike", "$[1].crashes")
print(res13) # >>> ['0']
res14 = r.json().delete("newbike", "$.[-1]")
print(res14) # >>> [1]
res15 = r.json().get("newbike", "$")
print(res15) # >>> [['Deimos', {'crashes': 0}]]
The best results are the results you were searching for. Make your AI app smarter and faster with streamlined document search, recommendation systems, semantic caching, and Retrieval Augmented Generation (RAG).
# Create a vector index using the HNSW algorithm, 768 dimension length, and inner product distance metric
> FT.CREATE idx-videos ON HASH PREFIX 1 video: SCHEMA content_vector VECTOR HNSW 6 TYPE FLOAT32 DIM 768 DISTANCE_METRIC IP content TEXT metadata TEXT
# Add a video vector with metadata
> HSET video:0 content_vector "\xa4q\t=\xc1\xdes\xbdZ$<\xbd\xd5\xc1\x99<b\xf0\xf2<x[...\xf8<" content "SUMMARY:\nThe video discusses the limitations of MySQL at scale and introduces Redis Enterprise" metadata "{\"id\":\"FQzlq91g7mg\",\"link\":\"https://www.youtube.com/watch?v=FQzlq91g7mg\",\"title\":\"Redis + MySQL in 60 Seconds\"}"
(integer) 3
# Search for videos using a similar vector and the K-nearest neighbors algorithm
> FT.SEARCH idx-videos "* => [KNN 3 @content_vector $vector AS vector_score]" RETURN 3 metadata content vector_score SORTBY vector_score LIMIT 0 3 PARAMS 2 vector "\b[\xb7;\x81\x12\x9c\xbc\xc6!...\xfe<" DIALECT 2
Use Redis as your NoSQL database to build fast, reliable apps that make five-9s uptime look easy.
# Create an index. In this example, all JSON documents with the key prefix 'user:' will be indexed.
rs = r.ft("idx:users")
rs.create_index(
schema,
definition=IndexDefinition(
prefix=["user:"], index_type=IndexType.JSON
)
)
# Use JSON.SET to set each user value at the specified path.
r.json().set("user:1", Path.root_path(), user1)
r.json().set("user:2", Path.root_path(), user2)
r.json().set("user:3", Path.root_path(), user3)
# Find the user Paul and filter the results by age.
res = rs.search(
Query("Paul @age:[30 40]")
)
# Result:
# {1 total, docs: [Document {'id': 'user:3', 'payload': None, 'json': '{"name":"Paul Zamir","email":"[email protected]","age":35,"city":"Tel Aviv"}'}]}
# b'OK'
# Create an index. In this example, all JSON documents with the key prefix 'user:' will be indexed.
rs = r.ft("idx:users")
rs.create_index(
schema,
definition=IndexDefinition(
prefix=["user:"], index_type=IndexType.JSON
)
)
# Use JSON.SET to set each user value at the specified path.
r.json().set("user:1", Path.root_path(), user1)
r.json().set("user:2", Path.root_path(), user2)
r.json().set("user:3", Path.root_path(), user3)
# Find the user Paul and filter the results by age.
res = rs.search(
Query("Paul @age:[30 40]")
)
# Result:
# {1 total, docs: [Document {'id': 'user:3', 'payload': None, 'json': '{"name":"Paul Zamir","email":"[email protected]","age":35,"city":"Tel Aviv"}'}]}
# b'OK'
# Create an index. In this example, all JSON documents with the key prefix 'user:' will be indexed.
rs = r.ft("idx:users")
rs.create_index(
schema,
definition=IndexDefinition(
prefix=["user:"], index_type=IndexType.JSON
)
)
# Use JSON.SET to set each user value at the specified path.
r.json().set("user:1", Path.root_path(), user1)
r.json().set("user:2", Path.root_path(), user2)
r.json().set("user:3", Path.root_path(), user3)
# Find the user Paul and filter the results by age.
res = rs.search(
Query("Paul @age:[30 40]")
)
# Result:
# {1 total, docs: [Document {'id': 'user:3', 'payload': None, 'json': '{"name":"Paul Zamir","email":"[email protected]","age":35,"city":"Tel Aviv"}'}]}
# b'OK'
set dummy $ac_prog;
ac_word=$2
set dummy $ac_tool_prefix;
ac_word=$2
public enum Gender
{
Male,
Female
}
//Set the randomizer seed if you wish to generate repeatable data sets.
Randomizer.Seed = new Random(8675309);
var fruit = new[] { "apple", "banana", "orange", "strawberry", "kiwi" };
var orderIds = 0;
var testOrders = new Faker()
//Ensure all properties have rules. By default, StrictMode is false
//Set a global policy by using Faker.DefaultStrictMode
.StrictMode(true)
//OrderId is deterministic
.RuleFor(o => o.OrderId, f => orderIds++)
//Pick some fruit from a basket
.RuleFor(o => o.Item, f => f.PickRandom(fruit))
//A random quantity from 1 to 10
.RuleFor(o => o.Quantity, f => f.Random.Number(1, 10))
//A nullable int? with 80% probability of being null.
//The .OrNull extension is in the Bogus.Extensions namespace.
.RuleFor(o => o.LotNumber, f => f.Random.Int(0, 100).OrNull(f, .8f));
var userIds = 0;
var testUsers = new Faker()
//Optional: Call for objects that have complex initialization
.CustomInstantiator(f => new User(userIds++, f.Random.Replace("###-##-####")))
//Use an enum outside scope.
.RuleFor(u => u.Gender, f => f.PickRandom())
//Basic rules using built-in generators
.RuleFor(u => u.FirstName, (f, u) => f.Name.FirstName(u.Gender))
.RuleFor(u => u.LastName, (f, u) => f.Name.LastName(u.Gender))
.RuleFor(u => u.Avatar, f => f.Internet.Avatar())
.RuleFor(u => u.UserName, (f, u) => f.Internet.UserName(u.FirstName, u.LastName))
.RuleFor(u => u.Email, (f, u) => f.Internet.Email(u.FirstName, u.LastName))
.RuleFor(u => u.SomethingUnique, f => $"Value {f.UniqueIndex}")
//Use a method outside scope.
.RuleFor(u => u.CartId, f => Guid.NewGuid())
//Compound property with context, use the first/last name properties
.RuleFor(u => u.FullName, (f, u) => u.FirstName + " " + u.LastName)
//And composability of a complex collection.
.RuleFor(u => u.Orders, f => testOrders.Generate(3).ToList())
//Optional: After all rules are applied finish with the following action
.FinishWith((f, u) =>
{
Console.WriteLine("User Created! Id={0}", u.Id);
});
var user = testUsers.Generate();
Console.WriteLine(user.DumpAsJson());
std::function
f {[&f](int i){
// do something
}},
dummy((f(3), nullptr));