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Conditions for the stability of switched systems
containing unstable subsystems

Yue-E Wang, Hamid Reza Karimi, and Di Wu

Abstract—This paper studies the stability of switched systems
in which all the subsystems may be unstable. In addition, some of
the switching behaviors of the systems are destabilizing. By using
the piecewise Lyapunov function method and taking a tradeoff
between the increasing scale and the decreasing scale of the
Lyapunov function at switching times, the maximum dwell time
for admissible switching signals is obtained and the extended
stability results for switched systems in a nonlinear setting are
first derived. Then, based on the discretized Lyapunov function
method, the switching stabilization problem for linear context
is solved. By contrasting with the contributions available in the
literature, we do not require that all the switching behaviors of
the switching system under consideration are stabilizing. More
specifically, even if all the subsystems governing the continuous
dynamics are not stable and some of the switching behaviors
are destabilizing, the stability of the switched system can still be
retained. A numerical example is given to illustrate the validity
of the proposed results.

Index Terms—Switched nonlinear systems, unstable subsys-
tems, destabilizing, Lyapunov function.

I. INTRODUCTION

SWITCHED systems, as an important class of hybrid
systems, are composed of a set of continuous-time or

discrete-time subsystems and a switching rule acted among
subsystems. Over the past two decades, topics involving
switched systems have received increasing interest due to the
potential applications in many practical systems such as direct
injection stratified charge engines [1] and cellular mobile
communication systems [2]. For instance, in a cellular mobile
communication system, when the user moves from a base
station coverage area to another base station coverage area,
the previous occupied channel is immediately switched to
the pool of available channel, which can be modeled as a
switched system. A lot of efforts have been focused on the
stability analysis and the control problem of switched systems
[3]-[10]. For example, barrier Lyapunov functions for the
output tracking control of constrained switched systems was
studied in [11]. Work [12] discussed fault-tolerant control of
switched nonlinear systems with structural uncertainties. The
survey paper [13] gave an overview about the methods for the
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stability and the stabilization of switched linear systems. The
theoretical results and applications for the stability analysis
and stabilization of switched systems have been systematized
in [14], to which we refer the reader for research purpose.

On the other hand, the stabilization issue of switched
systems with unstable subsystems deservers deep investigation
due to its theoretical significance and practical application. In
fact, even if a switched system contains unstable subsystems,
the stability of it can still be guaranteed as long as the switch-
ing signal is properly designed. The paper [15] first studied
the topic for switched linear systems with some unstable
subsystems by using the average dwell time approach. It was
shown that if the average dwell time is chosen sufficiently
large and the total activation time of unstable subsystems is
relatively small compared with that of stable ones, the stability
of the switched systems can be guaranteed. Since then a lot of
contributions have been devoted to switched systems subject
to unstable subsystems. For instance, asynchronous networked
control systems can be modeled by switched systems with
both stable and unstable subsystems [16]. To sum up, the main
stabilization idea is to keep the stability of the whole switched
system through the trade-off between the stable subsystems
and the unstable ones [17].

However, when all the subsystems are unstable, the stabi-
lization problem is much more challenging since the trade-off
idea obviously fails. To solve this issue, the state-dependent
switching strategies such as the min-projection strategy and
the largest region function strategy have been proposed. Until
recently, the dwell time switching strategy was resorted to
discuss the stability of switched linear systems with all un-
stable subsystems under time-dependent switching. In a word,
the idea of these methods is to find a switching signal that
renders the switched system stable. Switching stabilization has
a wide range of applications in fields like hovercraft [18] and
electrochromic films [19] and has been employed in various
studies. For example, the input-to-state stability of switched
delay systems with all unstable subsystems were retained,
provided that the switching signal satisfies a dwell-time upper
bound condition in [20]. Work [21] extended the results in
[20] into an enlarged class of hybrid delayed systems. In [22],
stabilization of switched linear systems composed fully of
unstable subsystems under dwell time switching was investi-
gated. It is worth pointing out that all the switching behaviors
are required to be stabilizing in the above literatures. In fact,
even if some of the switching behaviors are destabilizing, one
may exploit the good characteristic of the switching behaviors
to make the switched system asymptotically stable. These
remarks motivate the present work.
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The main objective of this paper is to propose the stabiliza-
tion conditions of switched systems. The extended stability
results for switched systems in a nonlinear setting are first
derived by using the piecewise Lyapunov function method
and taking a tradeoff between the increasing scale and the
decreasing scale of the Lyapunov function at switching times.
Then, based on discretized Lyapunov method, the switching
stabilization problem for linear context is solved. By contrast-
ing with the results available in the literatures, the contribution
of this paper lies in two aspects. First, by further allowing
the Lyapunov function to increase during the running time of
the active subsystem, no subsystem is required to be stable.
Second, it is shown that, even if all the subsystems governing
the continuous dynamics are not stable and some of the
switching behaviors of the switched systems are destabilizing,
the residual stabilizing switching behaviors can successfully
stabilize the whole switched system, provided that there are
no overly long time intervals between switchings and the
destabilizing switchings do not occur too frequently.

The rest of this paper is divided into four sections. Section 2
introduces some preliminaries while Section 3 states our main
results regarding the stabilization conditions of switched linear
systems. A numerical example is presented in Section 4 and
Section 5 concludes the paper.

Notations. S = {1,2, ..,s}. N denotes the set of nonnegative
integer numbers and N+ = N/{0}. A function γ : R+ → R+

is said to be of class K if it is continuous, zero at the origin,
and strictly increasing. It is of class K∞ if it is of class K and
unbounded. A function β : R+×R+→ R+ is of class KL if
β (·, t) is of class K for each t ≥ 0 and β (s, ·) is decreasing to
zero for each s≥ 0.

II. PRELIMINARIES

Consider the switched nonlinear system

ẋ(t) = fσ(t)(x(t)), (1)

where x(t) ∈ Rnx is the state; x(t0) = x0 is the initial state;
σ(t) : [0,∞)→S is a switching signal. It has the switching
sequence {(`0, t0), ...,(`k, tk), ..., |`k ∈S ,k ∈N}, which means
that the `kth subsystem is active when t ∈ [tk, tk+1). For ∀i∈S ,
fi : Rnx → Rnx are smooth functions with fi(0) = 0, and the
origin is not a stable equilibrium for any modes i ∈S . We
assume that no jump occurs in the state at a switching time
and that only finitely many switchings can occur in any finite
interval. For the sake of clarity, we recall the definition of
asymptotic stability for switched systems.

Definition 1.[10] System (1) with switching signal σ(t) is
said to be asymptotically stable if there exists function β ∈
KL, such that for any initial condition x0 ∈ Rnx , the solution
of system (1) exists over R+ and satisfies |x(t)| ≤ β (|x0|, t−
t0), t ≥ t0 ≥ 0.

In this section, we aim to establish sufficient conditions
that guarantee the stability of system (1) when all subsystems
of (1) are unstable. In [20], [21], [22], this issue has been
studied by requiring that all of the switching behaviors of the
switching signal admit stabilizing property to compensate the
increment of the multiple Lyapunov functions. In this paper,

it is shown that even if some of the switching behaviors play
the destabilizing property, the stability of the whole switched
system can still be retained. We assume that after m stabilizing
switching, the system should undergo a destabilizing switch-
ing. Likewise, after n destabilizing switching, the system
should undergo a stabilizing switching. For this purpose, we
define a new class of switching time sequences. First, we let
pl =m+n, m,n∈N+, and define the sets Ξ1 = {0,1, ...,m−1},
Ξ2 = {pl − n, ..., pl − 1}, and Ξ = Ξ1 ∪Ξ2. Then, consider a
subsequence {tlk} of {tk} with tl1 = t1, tl0 = t0 = 0, which satis-
fies lk+1− lk = pl , lk,k, pl ∈N+. It is clear that any switching
point in [tlk , tlk+1) can be described as tlk+p, p ∈ Ξ. For any
p ∈ Ξ,k ∈ N, suppose that 0 < τmin ≤ tlk+p+1− tlk+p ≤ τmax.

To investigate the stability property of system (1), we choose
the following piecewise Lyapunov functions

V (t) = Vσ(t)(t,x), (2)

where Vi(t,x) : R+ × Rnx → R+, i ∈ S are continuous
non-negative functions, and define the notations Vi(t+k ) =
limt→t+k

Vi(t) and Vi(t−k ) = limt→t−k
Vi(t). Now, we are ready

to establish the stability result for system (1).
Theorem 1. Consider switched nonlinear system (1) with

switching signal σ(t). If there exists a piecewise continuous
Lyapunov function defined in (2) such that
(i) for each i ∈S , there exist functions α j ∈ K∞( j = 1,2) and
a constant η > 0 such that, for all x ∈ Rnx and t ≥ t0 ≥ 0,

α1(|x|)≤Vi(t,x)≤ α2(|x|), (3)
V̇i(t)≤ ηVi(t), (4)

(ii) there are two constants 0 < ρ < 1, µ ≥ 1 such that for all
i 6= j, i, j ∈S , k ∈ N+,

Vi(t+lk+p)≤
{

ρVj(t−lk+p), p ∈ Ξ1;
µVj(t−lk+p), p ∈ Ξ2, (5)

(iii) Γ1 < 1 and m
n > lnΓ2

− lnΓ1
,

where, Γ1 = ρM, Γ2 = µM, M = eητmax . Then, switched non-
linear system (1) with switching signal σ(t) is asymptotically
stable.

Proof. See the Appendix.
Corollary 1. Consider switched system (1) with switching

signal σ(t). If there exists a piecewise continuous Lyapunov
function defined in (2) such that
(i)’ for each i ∈ S , there exist functions α j ∈ K∞( j = 1,2)
and a constant η > 0 such that, for all x ∈Rnx and t ≥ t0 ≥ 0,
α1(|x|)≤Vi(t,x)≤ α2(|x|) and V̇i(t)≤ ηVi(t),
(ii)’ there is a constant 0 < ρ < 1 such that for all i 6= j, i, j ∈
S , Vi(t+k )≤ ρVj(t−k ),k ∈ N+,
(iii)’ ρeητmax < 1.

Then, switched system (1) with switching signal σ(t) is
asymptotically stable.

Remark 1. The results in [23] apply to cases where some
subsystems of the switched systems are not necessarily stable
under the influence of asynchronous switching or input delay.
The method in the literature fail to deal with the stability of
system (1) in the paper because all the subsystems are allowed
to be unstable.
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Remark 2. In some previous results for switched nonlinear
systems with all unstable subsystems [20], [21], [22], the
switching behaviors are required to decrease the value of the
piecewise continuous Lyapunov functions at switching times.
However, this viewpoint is too strict since the destabilizing
property of some of switching behaviors is not considered.
In Theorem 1, even if all the subsystems are unstable and
some of the switching behaviors are destabilizing, the residual
stabilizing switching behaviors can successfully stabilize the
switched system.

III. STABILIZATION FOR SWITCHED LINEAR SYSTEM

Consider the switched linear system

ẋ(t) = Aσ(t)x(t), (6)

where x(t) and σ(t) are described the same as in (1). All the
subsystem matrices Ai, i∈S are supposed to have eigenvalues
located in the right half-plane. Without loss of generality,
we suppose that the subsystems i (i ∈S − = {1,2, ...,r},1 ≤
r < s,r ∈ N) are activated in [tlk+p, tlk+p+1),k ∈ N+, p ∈ Ξ1,
while the other subsystems j( j ∈ S + = {r + 1,r + 2, ...,s})
are activated in [tlk+p, tlk+p+1),k ∈ N+, p ∈ Ξ2 and introduce
the set S = {0,1,2, ...,L−1} with the integer L≥ 1.

Theorem 2. Given scalars η > 0, 0< ρ < 1, µ ≥ 1, consider
switched system (6), if the following conditions hold:
i) for each i ∈S −, there exist matrices Pq

i > 0,q = 0,1, ...,L,
such that for all i, j ∈S −, i 6= j,

AT
i Pq

i +Pq
i Ai +ϖ

q
i −ηPq

i < 0,q ∈ S, (7)

AT
i P

q+1

i +Pq+1
i Ai +ϖ

q
i −ηPq+1

i < 0,q ∈ S, (8)
AT

i PL
i +PL

i Ai−ηPL
i < 0, (9)

P0
i −ρPL

j ≤ 0, (10)

ii) for each i ∈S +, there exist matrices Qi > 0, such that for
all i, j ∈S +, i 6= j,

AT
i Qi +QiAi−ηQi < 0 and Qi−µQ j ≤ 0, (11)

iii) for all i ∈S −, j ∈S +,

P0
i −ρQ j ≤ 0 and Q j−µPL

i ≤ 0, (12)

iv) Γ1 < 1 and m
n > lnΓ2

− lnΓ1
,

where, Γ1 = ρM, Γ2 = µM, M = eητmax , ϖ
(q)
i = L(Pq+1

i −
Pq

i )/τmin. Then, switched linear system (6) is asymptotically
stable.

Proof. See the Appendix.

IV. NUMERICAL EXAMPLE

In this section, we present one example to illustrate the
effectiveness of the proposed method.

Example 1. Most electronic systems, mechanical systems,
and aeroengine control systems can be modeled as multi-
integrator systems [24]. For simplicity, we consider a given
double integrator system as the example and first design a
suitable feedback controller for it. Considering the scenario as
following, the controller may have several backup controllers,
but all of controllers are partly failure or totally failure. The

double integrator system will be unstable with any controller.
However, we can design a switching law to stabilize the double
integrator system.

Consider the double integrator system with the state matrix

A =

[
0 1
0 0

]
, the input matrix B =

[
0
1

]
, and the feedback

control law K = [−1 − 2]. The controller and the backup
controllers are partly failure or totally failure and they can
be given as K1 = [0 0], K2 = [−1 0], and K3 = [0 −2], which
result in the closed-loop system as

ẋ(t) = Aσ(t)x(t),S = {1,2,3} (13)

with

A1 =

[
0 1
0 0

]
, A2 =

[
0 1
−1 0

]
, A3 =

[
0 1
0 −2

]
.

Obviously, we can check that all of matrixes are unstable.
Choose a switching sequence that satisfies tn+1−tn = 0.12s,

n ∈ N. we see that τmin = τmax = 0.12s. For, L = 8.333,
ρ = 0.76, µ = 1.3, and η = 1.9, the state trajectory and the
evolution of the Lyapunov function under the switching signal
σ are shown in Figs. 1 and 2, respectively.
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Fig. 1. State trajectories of the switched system (13)

V. CONCLUSION

We have studied the stability of switched systems in which
all the subsystems may be unstable and some of the switching
behaviors are destabilizing. By using the piecewise Lyapunov
function method and taking a tradeoff between the increas-
ing and the decreasing scales of the Lyapunov function at
switching times, the extended stability results for switched
systems in a nonlinear setting have been derived. Then, based
on the discretized Lyapunov function method, the switching
stabilization problem for linear context has been solved.

APPENDIX

Proof of Theorem 1. Set Γ = Γm
1 Γn

2. We use the mathemati-
cal induction method to prove that for ∀t ∈ [tlk+p, tlk+p+1),k ∈
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Fig. 2. Evolution of Lyapunov function.

N+,

ifp ∈ Ξ1,Vσ(tlk+p)(t)≤ Γ
p+1
1 Γ

k−1MVσ(t0)(t0), (14)

ifp ∈ Ξ2,Vσ(tlk+p)(t)≤ Γ
p+1−m
2 Γ

m
1 Γ

k−1MVσ(t0)(t0).(15)

From condition (ii), we note for later use that, for ∀t ∈
[tlk+p, tlk+p+1), k ∈ N+,

Vσ(tlk+p)(t)≤

{
Γ1Vσ(tlk+p−1)(t

−
lk+p), p ∈ Ξ1;

Γ2Vσ(tlk+p−1)(t
−
lk+p), p ∈ Ξ2.

(16)

Now, look at the case of [tl1+p, tl1+p+1), p∈Ξ. When p = 0,
that is just [tl1 , tl1+1), it follows from (4) that for ∀t ∈ [t0, tl1),

Vσ(t0)(t) ≤ eη(t−t0)Vσ(t0)(t0)

≤ eητmaxVσ(t0)(t0)

= MVσ(t0)(t0), (17)

which clearly gives that

Vσ(t0)(t
−
l1
) ≤ MVσ(t0)(t0). (18)

Then, combining (16) and (18) leads to, when t ∈ [tl1 , tl1+1),
Vσ(tl1 )

(t)≤ Γ1MVσ(t0)(t0).
Next, suppose that for t ∈ [tl1+p−1, tl1+p), p− 1 ∈ Ξ1, (14)

holds. Thus, when t ∈ [tl1+p, tl1+p+1), p ∈ Ξ1, using (14) and
(16), we deduce that

Vσ(tl1+p)(t) ≤ Γ1Vσ(tl1+p−1)(t
−
l1+p)

≤ Γ1Γ
p
1MVσ(t0)(t0)

= Γ
p+1
1 MVσ(t0)(t0). (19)

Therefore, from (19), when t ∈ [tl1+m−1, tl1+m), it holds

Vσ(tl1+m−1)(t) ≤ Γ
m
1 MVσ(t0)(t0). (20)

When t ∈ [tl1+m, tl1+m+1), with (5) and (20), we get
that Vσ(tl1+m)(t)≤MµΓm

1 MVσ(t0)(t0) = Γ2Γm
1 MVσ(t0)(t0). Next,

suppose that for t ∈ [tl1+p−1, tl1+p), p− 1 ∈ Ξ2, (15) holds.
Thus, when t ∈ [tl1+p, tl1+p+1), p∈Ξ2, from (15) and (16), one
has Vσ(tl1+p)(t)≤ Γ2Vσ(tl1+p−1)(t

−
l1+p)≤ Γ

p+1−m
2 Γm

1 MVσ(t0)(t0).

Suppose that for all t ∈ [tlk−1+p, tlk−1+p+1), if p ∈ Ξ1, (14)
holds, if p ∈ Ξ2, (15) holds. We will show that for any t ∈
[tlk+p, tlk+p+1), if p∈Ξ1, (14) holds, and if p∈Ξ2, (15) holds.

First, we show the case of t ∈ [tlk , tlk+1), i.e. p = 0. From
(16),

Vσ(tlk )
(t)≤ Γ1Vσ(tlk−1)(t

−
lk
)≤ Γ1Γ

k−1MVσ(t0)(t0). (21)

Then, suppose that for t ∈ [tlk+p−1, tlk+p), p − 1 ∈ Ξ1,
(14) holds. By using (14) and (21), it can be easily
shown that (14) holds for any t ∈ [tlk+p, tlk+p+1), p ∈ Ξ1.
Thus, taking p = m, we can show that (15) holds for t ∈
[tlk+m, tlk+m+1). Next, suppose that for any t ∈ [tlk+p−1, tlk+p),
p− 1 ∈ Ξ2, (15) holds. Then, considering (15) and (16),
for t ∈ [tlk+p, tlk+p+1), p ∈ Ξ2, it is true that Vσ(tlk+p)(t) ≤
Γ2Vσ(tlk+p−1)(t

−
lk+p)≤ Γ

p+1−m
2 Γm

1 Γk−1MVσ(t0)(t0).
When t ∈ [tlk+p, tlk+p+1), k ∈ N+, p ∈ Ξ, t − t1 ≤ k(m +

n)τmax, which implies

k ≥ t− t1
(m+n)τmax

≥ t− t0− τmax

(m+n)τmax
. (22)

The inequalities Γ1 < 1 and m
n > lnΓ2

− lnΓ1
in condition (iii)

yield that

Γ
p+1
1 < 1 and Γ

p+1−m
2 Γ

m
1 ≤ Γ

n
2Γ

m
1 < 1. (23)

From (23), the estimates (14) and (15) easily give that, when
t ∈ [tlk+p, tlk+p+1), k ∈ N+, p ∈ Ξ,

Vσ(tlk+p)(t)≤ Γ
k−1MVσ(t0)(t0). (24)

Considering (3) and (24), when t ∈ [tlk+p, tlk+p+1), k ∈ N+,
p ∈ Ξ, it holds that

|x(t)| ≤ α
−1
1 (Γk−1MV (t0))

≤ α
−1
1

(
Γ

t−t0−τmax
(m+n)τmax

−1MV (t0)
)

≤ α
−1
1

(
Γ

t−t0−τmax
(m+n)τmax

−1Mα2(|x0|)
)
. (25)

In view of condition Γ < 1 and α1,α2 ∈ K∞, it is clear that
switched system (1) is asymptotically stable.

Proof of Theorem 2. We construct the multiple linear copos-
itive Lyapunov function V (t) =Vσ (t) in the quadratic form of
Vi(t) = xT (t)Pi(t)x(t), i ∈S − and Vi(t) = xT (t)Qix(t), i ∈S +

where Qi, i ∈S + is positive definite matrix and Pi(t), i ∈S −

is time-scheduled positive definite matrix. In order to render
the stability condition numerically computable, we divide the
interval Nkp = [tlk+p, tlk+p + τmin), p ∈ Ξ1 into L segments
N q

kp = [tlk+p + θq, tlk+p + θq+1), q ∈ S of equal length d =
τmin/L, and then θq = qd = qτmin/L,q ∈ S. The continuous
matrix function Pi(t), t ∈ [tlk+p, tlk+p+1) is chosen to be linear
within each segment N q

kp,q ∈ S. Let Pq
i = Pi(tlk+p +θq), then

since the matrix function Pi(t), i ∈S − is piecewise linear in
[tlk+p, tlk+p + τmin), it can be expressed in terms of the values
at segmentation points using a linear interpolation formula,
i.e., for 0≤ α ≤ 1, q ∈ S, and t ∈N q

kp,

Pi(t) = Pi(tlk+p +θq +αd) = (1−α)Pq
i +αPq+1

i = P(q)
i (α)

(26)
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where α = (t− tlk+p−θq)/d.
Then, the continuous matrix function Pi(t), i ∈S is com-

pletely determined by Pq
i ,q ∈ S

⋃
{L}, i ∈ S − in the mini-

mal dwell time interval [tlk+p, tlk+p + τmin). In the interval
[tlk+p + τmin, tlk+p+1), the matrix function Pi(t), i ∈ S − is
chosen as Pi(t) = PL

i , i∈S . To sum up, the discretized matrix
function Pi(t), i ∈S − is expressed as

Pi(t) =

{
P(q)

i (α), t ∈N q
kp,q ∈ S;

PL
i , t ∈ [tlk+p + τmin, tlk+p+1).

(27)

and the corresponding discretized Lyapunov function for the
ith (i ∈ S −) mode is Vi(t) = xT (t)P(q)

i (α)x(t), t ∈ N q
kp,q ∈

S, and Vi(t) = xT (t)PL
i x(t), t ∈ [tlk+p + τmin, tlk+p+1). One can

prove easily that (3) in condition (i) of Theorem 1 is satisfied.
For t ∈N q

kp, from (26), it follows that

xT (t)Ṗi(t)x(t) = xT (t)
L(Pq+1

i −Pq
i )

τmin
x(t)

= xT (t)ϖ (q)
i x(t) (28)

and ẋT (t)Pi(t)x(t) = xT (t)AT
i P(q)

i (α)x(t). (29)

Therefore, from (28) and (29), we have, for any t ∈N q
kp,

V̇i(t)−ηVi(t) = xT (t)Ṗi(t)x(t)+2ẋT (t)Pi(t)x(t)

−ηxT (t)P(q)
i (α)x(t)

= xT (t)[AT
i P(q)

i (α)+P(q)
i (α)Ai

−ηP(q)
i (α)+ϖ

(q)
i ]x(t). (30)

Let Ξ
(q)
i (α) = AT

i P(q)
i (α)+P(q)

i (α)Ai+ϖ
(q)
i . From (26), we

have

Ξ
(q)
i (α) = AT

i [(1−α)Pq
i +αPq+1

i ]

+[(1−α)Pq
i +αPq+1

i ]Ai +ϖ
(q)
i

= (1−α)Ξ
(q)
i,1 +αΞ

(q)
i,2 , (31)

where Ξ
(q)
i,1 = AT

i Pq
i + Pq

i Ai + ϖ
(q)
i and Ξ

(q)
i,2 = AT

i Pq+1
i +

Pq+1
i Ai +ϖ

(q)
i .

The inequalities (7), (8), and (26) give that, for any t ∈N q
kp,

V̇i(t)−ηVi(t) = xT (t)(1−α)[Ξ
(q)
i,1 −ηPq

i ]x(t)

+xT (t)α[Ξ
(q)
i,2 −ηPq+1

i ]x(t)

< 0. (32)

Moreover, by Pi(t) = PL
i and (9), when t ∈ [tlk+p +

τmin, tlk+p+1), we can derive V̇i(t)− ηVi(t) = xT (t)[AT
i PL

i +
PL

i Ai]x(t)−ηxT (t)PL
i x(t)< 0.

On the other hand, for ∀t ∈ [tlk+p, tlk+p+1), p∈Ξ2, from (11),
V̇i(t)−ηVi(t) = xT (t)[AT

i Qi +QiAi]x(t)−ηxT (t)Qix(t)< 0.
To summarize, we have, for ∀t ∈ [tlk+p, tlk+p+1), p ∈ Ξ,

V̇i(t) ≤ ηVi(t). Hence, (4) in condition (i) of Theorem 1
is satisfied. Furthermore, by (10), (12), and (27), we have
Vi(t+lk+p) ≤ ρVj(t−lk+p), p ∈ Ξ1 and Vi(t+lk+p) ≤ µVj(t−lk+p), p ∈
Ξ2. that is to say, condition (ii) of Theorem 1 is satisfied.

Therefore, considering iv), the stability of system (6) gov-
erned by any switching law σ(t) can be established by
Theorem 1. �
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