
Motion planning for robotic manipulators using robust
constrained control

Andrea Maria Zanchettin⁎, Paolo Rocco
Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria, Piazza Leonardo Da Vinci 32, Milano, Italy

Keywords: Robotic manipulators, Trajectory planning, Constraints, Robustness, Uncertainty, Industrial robots

Since their first appearance in the 1970's, industrial robotic manipulators have considerably extended their application fields, allowing end-
users to adopt this technology in previously unexplored scenarios. Correspondingly, the way robot motion can be specified has become more
and more complex, requiring new capabilities to the robot, such as reactivity and adaptability. For an even enhanced and widespread use of
industrial manipulators, including the newly introduced collaborative robots, it is necessary to simplify robot programming, thus allowing this
activity to be handled by non-expert users. Next generation robot controllers should intelligently and autonomously interpret production
constraints, specified by an application expert, and transform them into motion commands only at a lower and real-time level, where updated
sensor information or other kind of events can be handled consistently with the higher level specifications. The availability of several execution
strategies could be then effectively exploited in order to further enhance the flexibility of the resulting robot motion, especially during
collaboration with humans.

This paper presents a novel methodology for motion specification and robust reactive execution. Traditional trajectory generation techniques
and optimisation-based control strategies are merged into a unified framework for simultaneous motion planning and control. An experimental
case study demonstrates the effectiveness and the robustness of this approach, as applied to an image-guided grasping task.

1. Introduction

Robot motions are typically programmed by means of Cartesian
and angular position and velocity profiles of the end-effector along a
given path. Programming a specific task, which happens in today's
motion generation algorithms, results in solving the motion planning
problem by actually over-constraining the space of solutions in order to
select a particular end-effector motion among others. Even more
advanced and commercially available trajectory planning strategies
prevent the low-level controller from adapting or modifying the
generated trajectory based on real-time events or sensor readings, or
need a lot of handling logics to be pre-programmed, rarely guarantee-
ing hard real-time capabilities or reduced reaction times.

Constraint-based programming of robot motions represents the
most natural solution to the problem of indirectly planning a robot
trajectory based on process requirements, which are specified by means
of constraints. The constraint-based approach, originally introduced in
Siciliano and Slotine (1991) based on the task-function formalism,
Samson, Espiau, and Borgne (1991), has been recently and intensively
exploited within the so-called iTaSC (instantaneous Task Specification
using Constraints) framework, see De Schutter et al. (). While originally
developed to cope only with instantaneous constraints (i.e., those

corresponding to the current time instant), recent extensions towards
a more comprehensive constraints representation are reported, see e.g.
Decre, Bruyninckx, and De Schutter (2013). A very similar approach
has been presented within the Stack of Tasks framework, see Mansard,
Khatib, and Kheddar (2009), Escande, Mansard, and Wieber (2014).
Similar to the Stack of Tasks, the iCAT (inequality Control objectives,
Activations and Transitions) task priority framework was introduced in
Simetti and Casalino (2016) to deal with smooth transitions during
task activation/deactivation. Yet another similar prioritised framework
has been recently proposed in Tazaki and Suzuki (2014). In
Kermorgant and Chaumette (2014), another control method dealing
with constraints is presented: constraints (such as joint limits and field-
of-view constraints) are conveniently defined as additional costs to be
optimised and activated by suitable thresholds.

A constraint-based approach to accommodate joint position limits,
as well as velocity, acceleration or even torque ones has been proposed
in Antonelli, Chiaverini, and Fusco (2003), Flacco and De Luca (2015)
with reactive capabilities based on time-based trajectory scaling. These
methods, however, only rely on pure kinematic or dynamic rescaling of
a predefined trajectory, which limits the reaction capabilities of the
robot. In fact, a simple scaling technique not always guarantees the
existence of a feasible motion. Moreover, such approaches only deal

⁎ Corresponding author.
E-mail addresses: andreamaria.zanchettin@polimi.it (A.M. Zanchettin), paolo.rocco@polimi.it (P. Rocco).

MARK

Received 10 May 2016;
Received in revised form 8 September 2016;
Accepted 16 November 2016
Available online 06 December 2016

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Published Journal Article available at http://dx.doi.org/10.1016/j.conengprac.2016.11.010

http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conengprac.2016.11.010&domain=pdf
http://dx.doi.org/10.1016/j.conengprac.2016.11.010

hence embedding the capability of handling real-time events, with
reduced pre-programmed control logics. This shift of paradigm repre-
sents a major improvement for the control of new generation robots
working in unstructured environments, and thus allows a more wide-
spread use of robotic technology, especially in SMEs.

A pictorial view of the idea is sketched in Fig. 1, as compared to the
traditional pipelined approach. In traditional robot programming, see
Fig. 1(a), the trajectory is offline computed and possibly optimised,
whilst being only online evaluated, hence leading to a completely
pipelined and non reactive execution. This architecture may introduce
inefficient handling strategy of sensed events, as the event has to traverse
the whole architecture before ultimately influencing the control com-
mands. Moreover, the programmer should specify how to handle each
single event or deviation from the nominal task execution when a
corresponding trajectory has been already generated. This setting has
clearly two major drawbacks: (a) the user of the robotic application
should be simultaneously an expert of both the process and the typical
robotic programming structures, and (b) a significant lag between an
event and the corresponding handle triggering may be thus introduced.

Within this work, we propose a method, see Fig. 1(b), to con-
tinuously re-generate, and hence evaluate, the reference trajectory
towards a given goal depending on the current state of the robot. The
reactive controller generates the next control command based on the
current desired state of motion and of the workspace sensing, with the
aim of tracking the desired motion to the extent allowed by the
constraints specified by the programmer. If this entails a deviation
from the planned trajectory, a new trajectory from the current state of
motion to the target is generated. Furthermore the robot is endowed
with reactive capabilities within a millisecond time scale, something
difficult, if not impossible, to achieve with a traditional pipelined
architecture. This way the robotic programmer is free to focus only on
process requirements (which are then suitably turned into constraints)
without caring of what-if handling strategies to define each possible
non-nominal behaviour to cope with at execution time. The main task
of the programmer is then to specify all the common features of each
possible nominal behaviour, whilst a particular one will be eventually
selected during execution, based on the actual context (i.e., presence of
human co-workers, moving obstacles, etc).

2.2. Contributions and comparisons

Most of the available results in the literature, like the iTaSC (De

Fig. 1. Proposed control architecture (bottom) as compared to a traditional solution
(top).

with decoupled constraints in the joint space like the avoidance of joint
position, velocity or acceleration limits.

In the framework of constraint-based trajectory planning, it is
important to mention the works in Macfarlane and Croft (2003),
Biagiotti and Melchiorri (2008), Kroeger and Wahl (2010) which
present various approaches for online generation of smooth and
time-optimal trajectories for multi-axes machines and robots.

For a better and reliable task execution, the problem of trajectory
planning and the subsequent (constraint-based) control should be merged
in a unified framework with capabilities of both motion planning and
reactive control/execution. Beside the constraint-based specification, the
first idea of connecting planning and reactive/adaptation capabilities was
developed in Quinlan and Khatib (1993), within the well-known Elastic
Strips framework, and later refined within the Elastic Bands framework,
Brock and Khatib (2002). Other examples of real-time reaction planners
can be found in, e.g., Haddadin et al. (2010), where virtual and physical
contact are merged to form the desired reactive behaviour, or in Khansari-
Zadeh and Billard (2012), where the reactive behaviour of the robot is
obtained by the imposition of a proper attractor dynamics. Finally
(Hauser, 2012) presents a re-planning strategy to be executed when the
nominal plan fails, due to unpredictable obstacles movements.

This work presents a method to combine a trajectory generation
algorithm with a constrained optimisation problem, which relies on a
continuously updated reference trajectory and a reactive control
strategy. Further details on the features of the proposed algorithm
and on how the method stands with respect to available results are
discussed in the next Section. The remainder of this paper is organised
as follows. Section 2 describes the motivations underlying this work
and discusses the original contribution with respect to the existing
literature. In Section 3, the main contribution is detailed and an
algorithm for constraint-based reactive trajectory generation is pre-
sented. Section 4 briefly discusses two extensions to cope with
redundant robots and to enforce a compliant behaviour of the robot,
respectively. Section 5 complements the specification of the algorithm
with best practice to guarantee robustness of the overall system with
respect to measurement uncertainties. Finally, an experimental case
study, describing how a selected application may benefit from the
proposed approach, is reported in Section 6.

2. Motivations and problem setting

In this Section, we first motivate our work and then discuss the
main features of the approach as compared with the state of the art.

2.1. Motivations and key concepts

Today's robots are able to execute tasks that are way more complex
than those they were originally designed for. Is worth noticing that the
VAL scripting language, developed by Unimation Robotics in the mid
1970's, consisted in no more than 30 instructions. Nowadays, advanced
scripting languages for modern industrial robots, like ABB's RAPID or
KUKA KRL, include hundreds of different instructions. Therefore, as
the adoption of robots is becoming more and more pervasive, novel
applications require more and more advanced functionalities, hence
more involved programming primitives, especially to promptly react or
adapt to unpredicted situations.

The main idea behind this work is to develop a control architecture
that endows the robot with advanced flexibility during task execution.
Specifically, we propose to use control tools to move from an imperative
programming paradigm (i.e. specifying the robot how to perform a task),
in which process requirements are semantically and uniquely mapped by
the robot programmer into a suitable end-effector velocity profile,
towards a declarative programming paradigm (i.e. specifying require-
ments for task execution, and leave to the robot the autonomy to execute
it properly). With this paradigm, process requirement and constraints
are turned by the controller into motion commands only at run-time,

q vector of joint variables
q̇ time derivative of q
x vector of task variables
qi i-th element of vector q
Ai i-th row of matrix A

Ak matrix A evaluated at discrete time instant k
bk vector b evaluated at discrete time instant k

3.2. Robot behaviour in the joint space

Consider the dynamic model of a generic n-dof robot in the joint
space as a nonlinear discrete-time dynamical system

τ B q u h q q τ q q q q q u q

q u

T T

T

= () + (, ˙) + (, ˙) = + ˙ + 0.5 ˙

= ˙ +
fk k k k k k k k k s k s k k

k s k

+1
2

+1

(1)

where Ts is the sampling time of the control law, B is the positive
definite inertia matrix, h represents centrifugal/Coriolis, and gravita-
tional torques, τ stands for the motor torque input signal, whilst τf is an
additional friction torque. Here, we consider a second order kinematic
control strategy, where the joint acceleration q u¨ =k k represents the
control input. The behaviour of system (1) is subject to (hard)
constraints, such as joint position, velocity and torque limits, like

q q q q q τ τ≤ ≤ ˙ ≤ ˙ ≤min
i i

max
i i

max
i i

max
i (2)

Let i ∞ represent the largest region in plane q q− ˙i i such that any
point q q(, ˙)i i admits at least one feasible input acceleration ui allowing
the system to remain within the region itself. For further details on
invariant sets for linear systems we refer the reader to Blanchini
(1999). This eventually corresponds to a pair of configuration and
velocity dependent values for the maximum and minimum input
accelerations, i.e.

u u u≤ ≤infi i
sup

i (3)

3.3. Trajectory generation and task constraints

Let vector x identify a set of m task variables (e.g., Cartesian or
cylindrical coordinates, Euler angles, etc.), Samson et al. (1991). The
relationship between the robot joint space and the corresponding task
space is well-known and is just recalled here

x f q x J q q x J q q J q u= () ˙ = () ˙ ¨ = ˙ () ˙ + () (4)

where J is the m-by-n task Jacobian matrix, which locally (i.e.,
instantaneously) relates the joint space to the task space. Notice that,
since the system (1) together with the output equation x f q= () has a
relative degree of two, second order differentiation is needed to make
the dependency of the task variable x on the control input u explicit.

For task variables x and their time derivatives, dynamics similar to
(1) are assumed. By taking into account the kinematic relations
between the task space and the joint space in (6), the following
relations hold

x x J q J q J u x J q J q J uT T T= + ˙ + 0.5 (˙ ˙ +) ˙ = ˙ + (˙ ˙ +)k k s k k s k k k k k k k s k k k k+1
2

+1

(5)

where J J q= ()k k and, similarly, J J q˙ = ˙ ()k k . Moreover, we assume the
following bounds to apply on task velocities and accelerations

x x x x| ˙| ≤ ˙ ¨ ≤ ¨i
max

i i
max

i (6)

Vectors ẋmax and ẍmax denote maximum task velocities and accelera-
tions, respectively.

A variety of methods to generate a trajectory from a given state of
motion x x(, ˙)k k to a target one x x(, ˙)trg trg exist, see e.g. Biagiotti and

Schutter et al.,), the Stack of Tasks (Escande et al., 2014) or others
(Flacco & De Luca, 2015), are focused on the control aspects of the
constraint resolution, i.e. they propose methods to solve constrained
optimisation problems in real-time. Also, the usually address on a
regulation problem, rather than a trajectory tracking one.

In Ceriani, Zanchettin, Rocco, Stolt, and Robertsson (2015), as a
compromise between offline planning and real-time execution, we have
proposed a method to adapt the execution of a certain motion based on
perception. The method was able to (i) temporarily suspend the
generation of the nominal reference trajectory, (ii) react to some event,
(iii) plan a recovery trajectory towards the point where it was
interrupted, and eventually (iv) resume the nominal behaviour to
reach the target state of motion. The control architecture selected in
that work was motivated by the reduced accessibility of the proprietary
trajectory planner of the robot controller. It turned out, however, that
in many circumstances, the recovery strategy (iii) and the correspond-
ing handover to the nominal execution (iv) were not strictly necessary,
a re-planning towards the target state being more effective. The point is
then how to endow the robot controller with re-planning capabilities in
the most effective, reliable, and easy to implement way.

Differently from the available re-planning strategies that are
triggered whenever the nominal plan fails, see also Hauser (2012),
the present paper addresses the problem of combining trajectory
generation and constraint-based control from a different and unifying
perspective. In particular, the trajectory generation algorithm is moved
within the feedback loop, so as to be continuously adapted to all the
sensed information. The approach itself of continuously adapting the
reference trajectory is very similar to the Elastic Strips/Bands frame-
work (Brock & Khatib, 2002). Similar adaptation approaches can be
found in Haddadin et al. (2010), Khansari-Zadeh and Billard (2012),
where proper attractor dynamics are defined and updated to steer the
robot towards the desired position.

In this work, however, the robot trajectory is modified online by
means of constraints, rather than based on virtual forces, potential
fields or attractors, thus guaranteeing satisfaction of hard constraints
(like e.g. safety, or joint limits).

Moving from the above considerations, the present paper contri-
butes in: (i) presenting a framework to evolve from a purely pipelined
planning and execution control architecture, towards a more flexible
one which guarantees lower reaction time and reduced handling logics;
(ii) proposing an algorithm that continuously adapt the trajectory of
the robot, by solving a constrained optimisation problem; (iii) addres-
sing the problem of robust satisfaction of constraints to deal with
measurement uncertainties. The idea behind this work has been
originally presented in Zanchettin and Rocco (2013) and verified in
simulations, only, while a specific application involving redundant
degrees of freedom has been preliminarily presented in Zanchettin and
Rocco (2015). This paper further contributes with a more comprehen-

sive definition of the programming and control framework, including
the dynamic properties of the robot and analysing the effect of the
uncertainties on the performance of the control strategy, also based on
an experimental verification.

3. Proposed method

In this Section we formulate the problem to be solved. Further, we
present the reactive control architecture and detail the constraints the
robot must enforce during its motion. In particular, we split the
discussion into two parts concerning the joint space and the task
space, respectively.

3.1. Symbols and notation

The symbols and corresponding notation adopted in the paper are
listed here:

E u f≤k k k (7)

Such constraints are introduced to cope with sensor-related events
occurring at time instant k to be handled, at time k + 1, with a proper
selection of the input acceleration uk. The case study in Section 6
provides an example of constraints expressed in such form.

A block diagram describing the overall algorithm has been already
reported in Fig. 1(b). It comprises two main modules: Trajectory
generation and Reactive controller. The block named Trajectory
generation is responsible for generating a reference trajectory for each
of the task variables, by implementing any of the well-known algo-
rithms described in Biagiotti and Melchiorri (2008). It has notion of all
task constraints, i.e., the target state of motion x x(, ˙)trg trg , and of the
velocity and acceleration bounds ẋmax, ẍmax. On the other hand, this
module completely ignores all constraints at joint level as well as all
sensor-dependent constraints. The output of this module is the next
state of motion in the task space x x(, ˙)k

ref
k
ref

+1 +1 to be possibly reached by
the robot within the next discrete-time interval.

This information is propagated to the Reactive controller, whose
role is to track the reference signal while accommodating the con-
straints in (7). Its output consists in the next state of motion q q(, ˙)k k+1 +1
to be commanded to the lower level (axes) controllers. Because of the
constraints E u f≤k k k to be handled, the reference calculated by the
Trajectory generationmodule might not be feasible at the current time
instant. Therefore the block Direct kinematics evaluates (4) to compute
the state of motion in the task space x x(, ˙)k k which is then used by the
Trajectory generation module within the next control cycle, as a
starting point for the computation of an updated trajectory.

Algorithm 1.

Input: qk , q̇k , xtrg, ẋtrg, ẋmax, ẍmax, Ek, fk
Output: qk+1, q̇k+1, τk

1: compute relevant kinematic quantities (Jacobians, task vari-
ables, etc.)

2: generate a trajectory, compliant with(2), to connect x x, ˙k k with
x x, ˙trg trg

3: evaluate the next desired state of motion x x, ˙k
ref

k
ref

+1 +1

4: evaluate acceleration bounds u u,inf
sup as in(3)

5: solve the following QP problem

x x x xmin (˙ − ˙ , −)
u

k k
ref

k k
ref

+1 +1 +1 +1
k (8a)

x x J q J q J uT Tsubject to = + ˙ + 0.5 (˙ ˙ +)k k s k k s k k k k+1
2 (8b)

x J q J q J uT˙ = ˙ + (˙ ˙ +)k k k s k k k k+1 (8c)

τ B q u h q q τ q q= () + (, ˙) + (, ˙)fk k k k k k k (8d)

u u u≤ ≤inf k
sup (8e)

τ τ τ− ≤ ≤max
k

max (8f)

x x x− ˙ ≤ ˙ ≤ ˙max
k

max
+1 (8g)

x J q J u x− ¨ ≤ ˙ ˙ + ≤ ¨max
k k k k

max (8h)

E u f≤k k k (8i)

6: update the state of motion as in(1)

τ B q u h q q τ q q q q q u q

q u

T T

T

= () + (, ˙) + (, ˙) = + ˙ + 0.5 ˙

= ˙ +
fk k k k k k k k k s k s k k

k s k

+1
2

+1

(9)

In the following, we further detail the algorithm implementing the
Reactive controller in order to (i) transform task velocity into
corresponding joint commands (inverse kinematics), (ii) handle sen-
sor-related constraints and (iii) track the reference signal.

A commonly adopted methodology to transform task velocities into
corresponding joint commands relies on the so called Closed-Loop
Inverse Kinematics (CLIK) algorithm. Different solutions exist to cope
with either first-order, Siciliano (1990), or second-order differential
kinematics, Caccavale, Chiaverini, and Siciliano (1997). While the
CLIK algorithm is well-suited to accurately track a given task space
trajectory, it is however hardly applicable to reactive control strategies,
especially in case the robot motion is subject to constraints, apart from
those in (4). Moreover, in some situations, the tracking accuracy of the
reference has lower priority with respect to other constraints in terms
of task completion. For this reason, we introduce Algorithm 1, to
simultaneously handle the different types of constraints as well as the
inverse kinematics problem. The quadratic cost function in (8a) has
been introduced to weigh the difference between the next state of
motion x x(, ˙)k k+1 +1 and its reference values x x(, ˙)k

ref
k
ref

+1 +1 obtained as an
output of the trajectory generation algorithm. A generic, yet quadratic,
cost function can be used to this purpose, i.e.

e e e Q e e Q e e Q e g e g e(, ˙) = 0.5 + 0.5˙ ˙ + ˙ + + + ˙T
p

T
v

T
p v p

T
v
T

, (10)

where Q Q,p v are positive definite matrices, while Q g,p v p, and gv are a
matrix and two vectors of suitable dimensions.

Constraints (8b) and (8c) are required to map joint space velocities
and accelerations into their task space counterparts. Constraints in (8f)
represent the maximum motor actuator torques, while (8d) specifies
the dynamics of the robotic manipulator. Constraints (8e) are intro-
duced to maintain the robot's next state of motion q q(, ˙)k k+1 +1 within the
maximum invariant set ∞. Constraints in (8g) and (8h) relate to
velocity and acceleration bounds on the task variables, respectively.
Finally, (8i) represents all instantaneous and sensor-related con-
straints, as already discussed.

The output of the QP problem consists in the desired joint
acceleration uk from which the corresponding desired position qk+1
and velocity q̇k+1 can be computed using (1).

Remark. A constrained QP formulation has been introduced to solve
the control problem, which guarantees stability of the resulting motion
thanks to the introduction of the invariant set in i ∞, see Scokaert,
Mayne, and Rawlings (1999). Using a state of the art QP solver
(Ferreau, Kirches, Potschka, Bock, & Diehl, 2014), a solution can be
obtained within a millisecond time scale, thus allowing a real-time
implementation. The existence of a solution clearly depends on the
selection of additional, and typically sensor-dependent, constraints in
(7). In Section 5, constraints are formulated so as to guarantee
existence of a solution, even in case of uncertainties.

3.5. Possible implementations

In describing the control architecture for simultaneous trajectory1 See Zanchettin and Rocco (2015) for an example of such constraints.

Melchiorri (2008), Kroeger and Wahl (2010). Their output can be made
consistent with bound constraints like those in (6). We here assume
that an algorithm for trajectory generation is available and returns the
planned trajectory, in terms of desired task position and velocity, at
time instant k + 1.

3.4. Development of the method

We here aim at developing a kinematic control strategy that handles
different kinds of constraints, both in the task and in the joint space,
possibly known only at execution time, as it happens in case of sensor-
related constraints. Without any loss of generality, we assume that the
robot motion has to be consistent with the following constraints1

generation and control, no assumption has been made on the existence
of a pre-existing (industrial) controller. In particular, the output of the
algorithm, as sketched in Fig. 1(b), consists in position, velocity and
torque signals. The torque signal τk can be used directly as a motor
torque input to be commanded, while q q, ˙k k represent the actual state of
the robot. This way, the described algorithm can be used directly as a
feedback controller. This situation is sketched in Fig. 2(a). It usually
happens in practical situations, however, that the high-level motion
planning algorithm must be interfaced with a lower-level axis con-
troller. In this case, the output signals of the algorithm in Fig. 1(b) can
be used as references (i.e. feedforward actions) for a pre-existing lower
level axis controller. This, more common, situation is sketched in
Fig. 2(b).

4. Kinematic redundancy and compliant behaviour

4.1. Redundant degrees of freedom

In case of redundant degrees of freedom or in case of task
redundancy, the cost function in (10) is no longer strictly positive
definite, although Qp and Qv are designed to be positive definite. It
follows that the QP problem in (8) might have infinite, and equally
optimal, solutions. Let uk

0 be any of those optimal solutions. All
solutions must then satisfy the following constraint

J u u 0(−) =k k k
0 (11)

meaning that all alternative solutions might differ from the candidate
one uk

0 only in the null space of the task Jacobian, see e.g. Kanoun,
Lamiraux, and Wieber (2011), Escande et al. (2014). In this case, it is
convenient, and to some extent mandatory, to exploit this redundancy
to achieve additional and secondary requirements, having lower
priority with respect to the main task. Within an optimisation-based
framework this is usually handled by introducing a second optimisation
stage, acting only in the task null space. We then introduce the
following optimisation problem, which inherits all the constraints from
the original one in (8), together with the corresponding optimality
criterion in (11) (thus preserving the optimality of the higher priority
task)

u Q u g umin 1
2

+
u

k
T

u k u
T

k
k (12a)

J u J u=k k k k
0 (12b)

u u u≤ ≤inf k
sup (12c)

E u f≤k k k (12d)

where Qu and gu are design parameters of suitable dimensions, whilst
Qu is now a positive definite matrix in order to ensure the uniqueness of
the solution in terms of commanded joint accelerations uk.

4.2. Compliant motion

In some applications, the motion of the robot should be made
compliant to external forces: this is the case, for example, of safe
human-robot interaction. This means that the trajectory followed by

the robot is modified by an external force or moment. Assume a force μ
is applied to the robot TCP (Tool Centre Point), then the following
admittance filter can be adopted to compute the variation of the desired
trajectory with respect to the nominal, i.e. planned, one

x x M μ D x x x M μ D xT T TΔ Δ Δ Δ Δ Δ˙ = ˙ + (− ˙) = ˙ + 0.5 (− ˙)k k s k k k s k s k k+1
−1

+1
2 −1

(13)

where xΔ and xΔ ˙ represent the position and velocity modifications,
respectively, while M and D are positive definite design matrices
composing a mass-damper low-pass filter. Eq. (13) represents the state
update and the output equation of a set of, possibly independent, first-
order systems, having xΔ ˙ as state variable. The output equation simply
computes the positional displacement xΔ . In order to accommodate
external forces, the computed trajectory reference is modified as
follows

x x x x x xΔ Δ= + ˙ = ˙ + ˙∼ ∼
k
ref

k
ref

k k
ref

k
ref

k+1 +1 +1 +1 +1 +1 (14)

Finally, the updated reference has to be forwarded to the actual reactive
controller, described in the previous Section. Notice that, in case of
saturation or activation of other constraints, the robot TCP might not
be able to follow the modified trajectory. For this reason, the output of
the direct kinematics is sent back to the admittance filter, to prevent
wind-up phenomena to arise. The state of the admittance filter is then

updated as x x xΔ ˙ = ˙ − ˙∼
k k

ref
k+1 +1 +1.

5. Robust constraints specification

Despite the very general form of the constraints in (7), within
previous implementations of our and similar approaches, only small
attention has been paid to possible uncertainties in the description of
the system kinematics/dynamics or in sensor measurement. The
presence of uncertainties or disturbances (of different nature) might
easily compromise the satisfaction of a given constraint. Only few
attempts to solve this problem are actually reported in the literature,
see e.g. Del Prete and Mansard (2015). The main approach therein is to
rely on the so called chance constraints, Schwarm and Nikolaou (1999),
hence entailing an underlying probabilistic model of all possible
uncertainties. In the following, inspired by Blanchini, Mayne, Seron,
and Rakovi (2005), we first describe a systematic way to handle
uncertainties within the formulation of constraints of relative degree
two, i.e. position-dependent. Then, we discuss how the same strategy
can be adopted for other constraints with lower relative degree.

5.1. Robust bounds on configuration dependent variables

Consider a generic scalar task function qp p= () and its time
derivatives

J q q J q q J q up p˙ = () ˙ ¨ = ˙ () ˙ + ()p p p (15)

and assume, that during the motion of the robot, the controller must
ensure an upper bound2 for variable p, i.e. p p k≤ , ∀k

max .

Fig. 2. Possible implementations of the developed methodology.

2 Similar arguments can be derived for lower bounds.

π Aπ Bp= + ¨k k k+1 (16)

where

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥A BT T

T
= 1

0 1
= 0.5s s

s

2

and Ts is the sampling time. In order to achieve such a requirement,
the authors of Scheint et al. (2008) analytically derived the biggest
controllable invariant set, corresponding to the given constraint. In
particular, any control law satisfying the invariance must ensure, at any
time, the following constraint

ϕ p p(, ˙) ≤ 0 (17)

where

⎪
⎪

⎧
⎨
⎩

ϕ p p p p p

p p
(, ˙) = + − , if ˙ > 0

− , otherwise

p
p

max

max

˙
2 ¨max

2

(18)

where p̈max represents the maximum acceleration of p, i.e.
p p k¨ ≤ ¨ , ∀k

max . Let us denote with , the region of the π-space in which
condition (17) holds, i.e.

π ϕ p p= { : (, ˙) ≤ 0} (19)

Unfortunately, Eq. (16) only accounts for the nominal behaviour of
variable p in time, neglecting possible uncertainties and measurement
errors. A better description of the evolution of p in time is given by:

π A π B vpΔ= (+) + ¨ +k k k k k+1 (20)

where Δ and v represent the measurement uncertainty on the state
vector and a generic, non structured, modelling error, respectively. We
here assume Δk and vk to be bounded and such that k∀ , Δ ∈k  and

vk∀ , ∈k , where  and  are generic polytopes. By accounting for
uncertainty, Eq. (20) introduces a more realistic representation of a
system that the one in (16).

The values of p and ṗ at discrete time instant k + 1 can be then
written in terms of the following set inclusion

π Aπ B A∈ + ¨ ⊕ ⊕k k+1    (21)

where ⊕ represents the Minkowski sum, while p p p¨ = {¨ : ¨ ≤ ¨ }max . In
order to make the invariant set  robust with respect to the given
bounded uncertainties, the controller must select a value p̈ ∈ ¨

k  such
that π ∈k+1  even in case of worst-case uncertainties. Eq. (21)
represents all possible values of πk+1 given a certain initial state πk
and for all possible uncertainties. The key idea is to find the maximum
and the minimum admissible control inputs p̈sup and p̈inf such that
π ∈k+1 . As the right hand side of Eq. (21) suggests, the reachable set of
πk+1 results from the sum of different sets. The relationship between
these different sets, accounting for the two kinds of possible uncertain-
ties, is depicted in Fig. 3. In order to allow the controller to select an
admissible value for p̈k , the following optimisation problem can be
introduced

Aπ B Ap p p¨ = max ¨ such that + ¨ ⊕ ⊕ ⊆ .k
sup

p
k k k

¨ ∈ ¨k
  

 (22)

Its solution gives the maximum allowed acceleration p̈k
sup such that the

(robust) invariance property is guaranteed.

Remark. The solution of problem (22) provides the maximum value
for p̈k such that the constraint p p≤ max is made robustly invariant,
meaning that it will remain satisfied at time instant k + 1 and on, for
any possible value of the uncertainties within the prescribed bounds,
i.e. for all possible Δ ∈k  and v ∈k .So far, the input p̈k has been
considered ideal, i.e. not affected by uncertainties. It is worth noticing
that should the signal p̈k be uncertain itself, problem (22) can be

written in the following way

Aπ B Ap p p Δp¨ = max ¨ such that + (¨ + ¨) ⊕ ⊕ ⊆k
sup

p Δp
k k k

max
¨ + ¨ ∈ ¨k

max
  



(23)

where Δp̈max represents the maximum actuation uncertainty. Notice
that, problem (23) is equivalent to (22) once the condition p p¨ ≤ ¨k k

max is
replaced with p p Δp¨ ≤ ¨ − ¨k

max max in the definition of ̈. In the current
setting, i.e. polytopic sets and piece-wise linear and quadratic
boundaries, the mentioned problem can be solved in closed form, i.e.
without adopting a numerical algorithm, by solving suitably defined
second order polynomial equations.

Finally, the constraint that the given control variable u must satisfy
at time k can be written as follows

J q u J q qp() ≤ ¨ − ˙ () ˙p k k k
sup

p k k (24)

hence consistently with the general form in (7).

5.2. Robust bounds on velocity dependent variables and actuation
torques

Consider now a constraint of the form q qp p p˙ = ˙ (, ˙) ≤ ˙max and
assume that qp∂ ˙ /∂ ˙ is always full rank. The discrete time behaviour of
variable ṗ can be now introduced by the following (nominal) first order
discrete time system

p p T p˙ = ˙ + ¨k k s k+1 (25)

whilst the corresponding uncertain system is as follows

p p Δ T p v˙ = ˙ + + ¨ +k k k s k k+1 (26)

where we assume Δ Δ Δ Δ Δ∈ = { : ≤ ≤ }k min k
max , k∀ and similarly for

the input noise v v v v v∈ = { : ≤ ≤ }k min k
max , k∀ . Differently from the

previous case, in case of constraints of unitary relative degree (i.e.
velocity-dependent), the biggest controllable invariant set is already
represented by the constraint itself, i.e. p p p= {˙ : ˙ ≤ ˙ }max .

p p p T p¨ = max ¨ such that ˙ + ¨ ⊕ ⊕ ⊆k
sup

p
k k s k

¨ ∈ ¨k
  

 (27)

which can be simply translated into the general form (7) in the same
way as explained in the previous case.

Finally, since within the presented strategy we adopt a full dynamic
model of the manipulator, it is important to notice that at least the real
joint friction torque is uncertain with respect to the modelled one
τ q q(, ˙)f in (1). It follows that the joint torque bounds in (2) should be
rewritten in order to account for the uncertain representation of the
friction torque. To this end, it is convenient to explicitly account for the
uncertainty on the model of friction torque by introducing the following
range of variability

τ q q τ q q τ q q(, ˙) ≤ (, ˙) ≤ (, ˙)f min f f
max

, (28)

Fig. 3. Geometric interpretation of condition (21).

Define the corresponding state of motion as π = [p ṗ]T . Then, the
behaviour of variable p in time, can be described by the following
discrete time system

τ B q u h q q τ≤ () + (, ˙) ≤inf k k k k
sup (29)

where τ τ τ q q= − + (, ˙)inf
max

f min k k, and τ τ τ q q= − (, ˙)sup max
f
max

k k .

6. Experimental case study

This Section describes an experimental case study, that shows most
of the features of the developed control architecture: robust definition
of constraints, compliant motion and redundant degree(s) of freedom.
As an experimental verification, we consider an image-based grasping
task, performed by a redundant robot. The experimental setup consists
of an ABB dual-arm lightweight prototype robot of which only the 7-
DOF right arm will be used, with an eye-in-hand camera (web-cam),
see Fig. 4. The robot has to approach the orange sphere, while being
compliant with respect to external forces applied by a human operator.
As the robot is endowed with the capability of accommodating external
forces, it is also asked to constantly maintain the visibility of the object
within the camera field of view. Finally, a vertical virtual wall is
implemented to prevent both the TCP and the elbow to enter a
forbidden area on the right of the robot itself.

6.1. Task constraints and redundancy resolution

Typical frames describing the grasping operation are shown in
Fig. 4: SE∈ (3) is the world frame, SE∈ (3) is the robot TCP
frame, SE∈ (3) is the camera frame related to by means of the so-
called extrinsic parameters and SE∈ (3) is the object frame. The
object frame is rigidly attached to the object itself. In order to
accomplish its task, the robot has to align frame to the object frame
. Vector of task variables x x y z ρ θ ϕ= []T is introduced to

represent the origin of frame in frame and the corresponding
XYZ Euler angles.

First, the robot has to estimate the position of the object frame
with respect to the world frame ; this is accomplished by taking a
picture of the scene. The position of the object is then computed with
off-the-shelf computer vision algorithms.

Then, the robot starts its grasping motion. Additional constraints
are here introduced to maintain as much as possible the object centred
in the image, or at least in the camera field of view. This is obtained by
limiting the camera velocity in some directions of motion whenever
some relevant features approach the border of the image. This

requirement will be further detailed in the following, with special
emphasis to its robust characterisation.

For a point feature, the adoption of the perspective camera model
results in the following relationship between point coordinates and
corresponding position ξ e f= (,) (in pixels) in the image frame

e λ x
z

e f λ
y
z

f= − + 0.5 = − + 0.5max max

where x y, and z are the point coordinates in the camera frame , λ
is the focal length (in pixels), while ξ e f= (,)max max max defines image
width and height.

Consider the following relationship between the time derivatives of
image features and the velocity of the camera frame:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥ξ L q p

ω L q J q q P q q
e
f

˙ =
˙
˙ = () ˙ = () () ˙ = () ˙

(30)

where L is the so-called interaction matrix, see Espiau, Chaumette,
and Rives (1992), ṗ and ω are the linear and angular velocities of the
camera frame (in local frame), while J is the Jacobian of the camera
frame and P LJ= c. The relationship containing the control input u is
obtained by further differentiating (30), i.e.

ξ P q q P q u¨ = ˙ () ˙ + () (31)

The evolution of variables ξ and ξ̇ can be written in terms of the
following (nominal) discrete time system, see (16)

ξ ξ ξ ξ ξ ξ ξT T T= + ˙ + 0.5 ¨ ˙ = ˙ + ¨
k k s k s k k k s k+1

2
+1 (32)

As both the feature coordinates ξ as well as their time derivatives ξ̇
might be affected by uncertainties (e.g. pixel discretisation and/or
approximation of the interaction matrix L in (30), the approach
described in Section 5 might be beneficial to the purpose of maintain-
ing such feature within the camera field of view. Once uncertainty
bounds are specified, using the approach described in Section 5,
visibility constraints can be written as follows

ξ P u P q ξ¨ ≤ + ˙ ˙ ≤ ¨
k
inf

k k k k k
sup

(33)

As for the virtual wall, for the TCP position the requirement can be
simply formulated as

y y≥ min

and made robust with respect to possible uncertainties

J u J qy y¨ ≤ + ˙ ˙ ≤ ¨k
inf

k k k k k
sup

2 2

where ÿk
inf and ÿk

max are computed as described in Section 5, while J2
stands for the 2nd row of the Jacobian matrix, corresponding to the y-
coordinate. A similar discussion can be made to implement the same
constraint for the elbow.

All the listed constraints can be ultimately translated into the
general form (7).

As the given manipulator is redundant, it is necessary to implement
an additional optimisation layer to resolve this kinematic redundancy.
One possible way to exploit the redundant degree of freedom of the
manipulator is to make its motion similar to the human arm perform-
ing the same task, using the method explained in Zanchettin, Bascetta,
& Rocco (2013b). This redundancy resolution technique has also
proved to facilitate the perceived safety by humans collaborating with
robots, Zanchettin, Bascetta, & Rocco (2013a).

Since the particular selection of a redundancy resolution scheme is
outside the scope of this paper, in the experiments the redundancy is
exploited in order to select the minimum velocity in the joint space.

6.2. Implementation and experiments

The robot is position controlled and the axis controller, receiving
joint position and velocity references at 250 Hz T(= 4 ms)s , commu-
nicates with an external LINUX real-time PC through a research inter-

Fig. 4. Setup for the experimental verification comprising: a redundant robot with eye-
in-hand camera, and the object to be grasped.

Hence, the specification of torque actuation bounds can be made robust
by simply accounting for the variability of the friction torques as
follows

p v p

while all the other weights in (10) are set to zero. As for the redundancy
resolution criterion, the cost function in (12a) has been tuned as
follows

Q g qq T= diag((˙)) = ˙u
max

i u s k
−2 −1

. Finally, the values for the mass-damper admittance filter have been
selected as M I D I= , = 20 , suitable to obtain high reactivity of the
robot with respect to external forces.

Two experiments have been run. During the experiments, the QP
problem (8) in Algorithm 1, consisting in 7 optimisation variables and
43 constraints, has been solved within an average time of 360 μs (less
than 700 μs in worst case), while the second QP problem set to handle
the redundant degree of freedom has been solved in closed-form, hence
in negligible time. Statistics are shown in Fig. 5 with reference to a
2,5 GHz INTEL Core i5 (only one core is used by the QP solver).

6.2.1. Experiment without robustness
The first experiment has been run without accounting for the robust

characterisation of the constraints, i.e. setting all uncertainties to zero.
Fig. 6 reports a bird's eye view of the workspace showing the

traversed path of both the end-effector and of the elbow. In point ① a
force is applied to the robot end-effector. The robot accommodates the
external force, and approaches the virtual wall with both the end-
effector and the elbow. As one can see, the virtual wall constraints are
satisfied, since they are not affected by any uncertainty.

Fig. 7 reports the position of the object within the camera frame.
During the experiment, due to external forces, the object approaches
the limit of the camera frame. At a certain point, the object cannot be
maintained within the field of view and the experiment terminates with
a failure state.

6.2.2. Experiment with robustness
The second experiment has been performed similarly to the first

one, except that the robust characterisation of the constraints ex-
plained in this paper in Section 5 has been enforced. In particular, for
each feature coordinate and its time derivative, the maximum mea-
surement uncertainty, i.e. Δ Δ≤k

max, has been set to 8 pixels (mainly
to account for pixel quantisation and uncertainty in features extraction)
and 4 pixels/second (to account for uncertainty on the focal length λ as
well as on depth estimation within the interaction matrix in (30)),
respectively. As for possible modelling errors vk , the same worst-case
values, i.e. such that v v≤k

max, have been considered to possibly
account for camera distortion effects, and similar, yet generic, non
idealities. Concerning the virtual wall constraint, 1 mm and 1 mm/s

have been selected to describe possible uncertainties, which are mainly
due to the discrete time implementation of the control law.

Fig. 8 reports the position of the end-effector and of the elbow in
the Cartesian space. Similarly to the previous experiment, while the
robot is accommodating external forces ①, both the end-effector and
the elbow approach the virtual wall. Also in this case, the correspond-

Fig. 5. Execution time of the first QP problem.

Fig. 6. End-effector position (blue) and elbow position (green) – bird's eye view (without
robust constraint characterisation) (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.).

Fig. 7. Object position in the camera frame (without robust constraint characterisation).

3 http://www.opencv.org/.
4 https://projects.coin-or.org/qpOASES/.
5 http://www.reflexxes.ws.

face. The same PC computes the overall algorithm and implements the
computer vision processing code developed with the OpenCV3 libraries
running at around 30 fps. A simple extrapolation strategy has been
implemented to increase the update rate of the video processing
algorithm. The qpOASES4 solver has been used to implement the
control algorithm. As for the trajectory generation module in Fig. 1(b),
the Reflexxes Motion Library5 has been used. The robot is not equipped
with joint torque sensors. Therefore, a model-based sensor-less recon-
struction of interaction forces is introduced. The inertial, centrifugal
and gravitational torques have been made available from the robot
manufacturer, whilst the friction torques and their variability, see (28),
have been experimentally identified offline, using standard Least
Squares (LS) techniques. The sensor-less torque estimation is based
on the method in De Luca and Mattone (2005). The following values
have been assigned within the cost function in (8a)

=Q I Q = 0.1Q

ing constraints are satisfied as they do not entail any uncertainty. Once
the external force vanishes, ②, the robot is able to reach its final
destination ③.

Fig. 9 reports the object position in the camera frame. During this
experiment, as the algorithm is able to account for possible measure-
ment uncertainties, the object can be maintained within the camera
field of view all along the execution of the task.

Finally, Fig. 10 reports the 3D trajectory of the end-effector during
the experiment and also reports the corresponding planned trajectory,
i.e. the output of the Trajectory generation of Fig. 1(b), which is
evaluated at each control cycle and represents the end-effector
trajectory that would be executed in case no further events occur.

6.3. Discussion

With reference to a possible novel programming language, using the
proposed method, this kind of task could be simply specified by means
of a single instruction like

without the need to further define handling strategies, e.g. when the
object approaches the borders of the image or the virtual wall.

As discussed within the introduction, the possibility to specify the

task of the robot without focusing on a specific execution strategy will
allow enhanced reactivity, which is not possible with today's motion
controller algorithm. Moreover, the novel paradigm described in this
paper will free the robotic programmer from the need of specifying
complex handling logics, which unnecessarily complicate the read-
ability and the maintenance of the program. As an example, within the
reported case study, it is not necessary to (i) specify a complete robot
trajectory at programming time, (ii) implement what-if handling logics
to modify the planned trajectory to obtain a compliant behaviour and,
above all, (iii) there is no need at all to specify a priori how the robot
should behave when one of the object features approaches the
boundaries of the camera field of view or when the robot itself
approaches the virtual wall. Using today's motion specification para-
digm, this can be done by specifying all possible reactions to all
possible situations to be handled.

Another important aspect of the present work is that there is no
need for the robot to recover the nominal execution, as the method
itself does not entail any nominal execution, since any possible
execution satisfying the given constraints is eligible to be used by the
robot. With reference to the second experiment, for example, when the
effect of external forces vanishes ②, the robot can directly proceed to its
target position ③ without adopting any recovery strategy, i.e. without
returning to point ① where the external forces were accommodated by
the robot.

Finally, as compared with similar strategies within the literature,
robustness with respect to measurement as well as to generic un-
certainties can be efficiently handled in real-time, thus mitigating the
effect of noise, which typically affects sensed information.

From the above considerations, we believe that the work reported in
this paper might stimulate discussion on whether the current imple-
mentation of robot programming and control algorithms is suitable to
handle future challenges in robotics. Robotic technology will be
adopted in increasingly demanding applications, requiring advanced
reactive capabilities, especially when robots need to interact with
human workers. The method presented in this paper is beneficial for
next generation robots as it tends to simultaneously simplify robot
programming and to endow the robot controller with robustness and
adaptation capabilities. Nowadays, reactive and adaptive behaviours
are only obtained with complicated what-if logics to be specified at
programming time, which seriously limit the possibility for a more
flexible adoption of robotic manipulators.

7. Conclusions

In this work we presented a control method to endow a robot with
reaction capabilities with respect to sensed events. The method has
been shown to be effective in a practical application and allows to

Fig. 8. End-effector position (blue) and elbow position (green) – bird's eye view. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 9. Object position in the camera frame.

Fig. 10. Resulting trajectory of the end-effector (black) and planned trajectories during
the experiment (red). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

robot manipulators with jacobian damped least-squares inverse: theory and
experiments. IEEE/ASME Transactions on Mechatronics, 2(3), 188–194.

Ceriani, N. M., Zanchettin, A. M., Rocco, P., Stolt, A., & Robertsson, A. (2015). Reactive
task adaptation based on hierarchical constraints classification for safe industrial

robots. IEEE/ASME Transactions on Mechatronics, 20(6), 2935–2949.
De Luca, A., & Mattone, R., (2005). Sensorless robot collision detection and hybrid

force/motion control. In IEEE International Conference on Robotics and
Automation.

De Schutter, J., De Laet, T., Rutgeerts, J., Decre, W., Smits, R., Aertbelien, E., Claes, K.,
& Bruyninckx, H. Constraint-based task specification and estimation for sensor-
based robot systems in the presence of geometric uncertainty, The International
Journal of Robotics Research 26 (5).

Decre, W., Bruyninckx, H., & De Schutter, J. (2013). Extending the iTaSC constraint-
based robot task specification framework to time-independent trajectories and user-
configurable task horizons. In IEEE International Conference on Robotics and
Automation, ICRA.

Del Prete, A., & Mansard, N. (2015). Addressing constraint robustness to torque errors
in task-space inverse dynamics. In Robotics, Sciences and Systems.

Escande, A., Mansard, N., & Wieber, P.-B. (2014). Hierarchical quadratic programming:
fast online humanoid-robot motion generation. The International Journal of
Robotics Research, 33(7), 1006–1028.

Espiau, B., Chaumette, F., & Rives, P. (1992). A new approach to visual servoing in
robotics. IEEE Transactions on Robotics and Automation, 8(3), 313–326.

Ferreau, H., Kirches, C., Potschka, A., Bock, H., & Diehl, M. (2014). qpOASES: a
parametric active-set algorithm for quadratic programming. Mathematical

Programming Computation, 6(4), 327–363.
Flacco, F., & De Luca, A. (2015). Discrete-time redundancy resolution at the velocity level

with acceleration/torque optimization properties. Robotics & Autonomous Systems,

70, 191–201.
Haddadin, S., Urbanek, H., Parusel, S., Burschka, D., Roßmann, J., Albu-Schaffer, A., &

Hirzinger, G., (2010). Real-time reactive motion generation based on variable attractor
dynamics and shaped velocities. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS.

Hauser, K. (2012). On responsiveness, safety, and completeness in real-time motion
planning. Autonomous Robots, 32(1), 35–48.

Kanoun, O., Lamiraux, F., & Wieber, P. B. (2011). Kinematic control of redundant
manipulators: generalizing the task-priority framework to inequality task. IEEE

Transactions on Robotics, 27(4), 785–792.
Kermorgant, O., & Chaumette, F. (2014). Dealing with constraints in sensor-based robot

control. IEEE Transactions on Robotics, 30(1), 244–257.
Khansari-Zadeh, S. M., & Billard, A. (2012). A dynamical system approach to realtime

obstacle avoidance. Autonomous Robots, 32(4), 433–454.
Kroeger, T., & Wahl, F. (2010). Online trajectory generation: basic concepts for

instantaneous reactions to unforeseen events. IEEE Transactions on Robotics, 26, 94–
111.
Macfarlane, S., & Croft, E. (2003). Jerk-bounded manipulator trajectory planning: design

for real-time applications. IEEE Transactions on Robotics and Automation, 19(1), 42–
52.

Mansard, N., Khatib, O., & Kheddar, A. (2009). A unified approach to integrate unilateral
constraints in the stack of tasks. IEEE Transactions on Robotics, 25(3), 670–685.

Mayne, D., Seron, M., & Rakovi, S. (2005). Robust model predictive control of
constrained linear systems with bounded disturbances. Automatica, 41(2), 219–224.

Quinlan, S., & Khatib, O. (1993). Elastic bands: connecting path planning and control.
In IEEE International Conference on Robotics and Automation, ICRA.

Samson, C., Espiau, B., & Borgne, M. L. (1991). Robot Control: The Task Function
Approach. Oxford University Press.

Scheint, M., Wolff, J., & Buss, M. (2008). Invariance control in robotic applications:
Trajectory supervision and haptic rendering. In American Control Conference, 2008.

Schwarm, A. T., & Nikolaou, M. (1999). Chance-constrained model predictive control.
AIChE Journal, 45(8), 1743–1752.

Scokaert, P. O., Mayne, D. Q., & Rawlings, J. B. (1999). Suboptimal model predictive
control (feasibility implies stability). IEEE Transactions on Automatic Control,
44(3), 648–654.

Siciliano, B., & Slotine, J.J.E. (1991). A general framework for managing multiple tasks
in highly redundant robotic systems. In Advanced Robotics, 1991. Robots in
Unstructured Environments, 91 ICAR., In Proceedings of the Fifth International
Conference on, pp. 1211–1216 vol. 2.

Siciliano, B. (1990). A closed-loop inverse kinematic scheme for on-line joint-based robot
control. Robotica, 8(03), 231–243.

Simetti, E., & Casalino, G. (2016). A novel practical technique to integrate inequality
control objectives and task transitions in priority based control. Journal of

Intelligent & Robotic Systems, 1–26.
Tazaki, Y., & Suzuki, T. (2014). Constraint-based prioritized trajectory planning for

multibody systems. IEEE Transactions on Robotics, 30(5), 1227–1234.
Zanchettin, A.M., & Rocco, P., (2013). Near time-optimal and sensor-based motion

planning for robotic manipulators. In IEEE Conference on Decision and Control,
CDC.
Zanchettin, A.M., & Rocco, P., (2015). Reactive motion planning and control for

compliant and constraint-based task execution. In IEEE International Conference
on Robotics and Automation, ICRA.

Zanchettin, A. M., Bascetta, L., & Rocco, P. (2013). Acceptability of robotic manipulators
in shared working environments through human-like redundancy resolution.

Applied Ergonomics, 44(6), 982–989.
Zanchettin, A. M., Bascetta, L., & Rocco, P. (2013). Achieving humanlike motion:

resolving redundancy for anthropomorphic industrial manipulators. IEEE Robotics
and Automation Magazine, 20(4), 131–138.

achieve possibly complex behaviours by composing basic functional-
ities that are specified in terms of task constraints. The effectiveness of
the presented methodology has been experimentally verified focusing
on an image-guided grasping task, during which the robot was able to
exhibit a compliant behaviour with respect to external forces, while
robustly maintaining the visibility of the object to be grasped.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version at http://dx.doi.org/10.1016/j.conengprac.2016.11.
010.

References

Antonelli, G., Chiaverini, S., & Fusco, G. (2003). A new on-line algorithm for inverse
kinematics of robot manipulators ensuring path tracking capability under joint
limits. IEEE Transactions on Robotics and Automation, 19(1), 162–167.
Biagiotti, L., & Melchiorri, C. (2008). Trajectory planning for automatic machines and

robots. Springer.
Blanchini, F. Constrained control for uncertain linear systems, Journal of Optimization

Theory and Applications 71 (3) 465–484
Blanchini, F. (1999). Set invariance in control. Automatica, 35(11), 1747–1767. Brock,
O., & Khatib, O. (2002). Elastic strips: a framework for motion generation in
human environments. The International Journal of Robotics Research, 21(12),

1031–1052.
Caccavale, F., Chiaverini, S., & Siciliano, B. (1997). Second-order kinematic control of

136

http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://dx.doi.org/10.1016/j.conengprac.2016.11.010
http://refhub.elsevier.com/S0967-16)30259-sbref1
http://refhub.elsevier.com/S0967-16)30259-sbref1
http://refhub.elsevier.com/S0967-16)30259-sbref1
http://refhub.elsevier.com/S0967-16)30259-sbref2
http://refhub.elsevier.com/S0967-16)30259-sbref2
http://refhub.elsevier.com/S0967-16)30259-sbref3
http://refhub.elsevier.com/S0967-16)30259-sbref4
http://refhub.elsevier.com/S0967-16)30259-sbref4
http://refhub.elsevier.com/S0967-16)30259-sbref4
http://refhub.elsevier.com/S0967-16)30259-sbref5
http://refhub.elsevier.com/S0967-16)30259-sbref5
http://refhub.elsevier.com/S0967-16)30259-sbref5
http://refhub.elsevier.com/S0967-16)30259-sbref6
http://refhub.elsevier.com/S0967-16)30259-sbref6
http://refhub.elsevier.com/S0967-16)30259-sbref6
http://refhub.elsevier.com/S0967-16)30259-sbref7
http://refhub.elsevier.com/S0967-16)30259-sbref7
http://refhub.elsevier.com/S0967-16)30259-sbref7
http://refhub.elsevier.com/S0967-16)30259-sbref8
http://refhub.elsevier.com/S0967-16)30259-sbref8
http://refhub.elsevier.com/S0967-16)30259-sbref9
http://refhub.elsevier.com/S0967-16)30259-sbref9
http://refhub.elsevier.com/S0967-16)30259-sbref9
http://refhub.elsevier.com/S0967-16)30259-sbref10
http://refhub.elsevier.com/S0967-16)30259-sbref10
http://refhub.elsevier.com/S0967-16)30259-sbref10
http://refhub.elsevier.com/S0967-16)30259-sbref11
http://refhub.elsevier.com/S0967-16)30259-sbref11
http://refhub.elsevier.com/S0967-16)30259-sbref12
http://refhub.elsevier.com/S0967-16)30259-sbref12
http://refhub.elsevier.com/S0967-16)30259-sbref12
http://refhub.elsevier.com/S0967-16)30259-sbref13
http://refhub.elsevier.com/S0967-16)30259-sbref13
http://refhub.elsevier.com/S0967-16)30259-sbref14
http://refhub.elsevier.com/S0967-16)30259-sbref14
http://refhub.elsevier.com/S0967-16)30259-sbref15
http://refhub.elsevier.com/S0967-16)30259-sbref15
http://refhub.elsevier.com/S0967-16)30259-sbref15
http://refhub.elsevier.com/S0967-16)30259-sbref16
http://refhub.elsevier.com/S0967-16)30259-sbref16
http://refhub.elsevier.com/S0967-16)30259-sbref16
http://refhub.elsevier.com/S0967-16)30259-sbref17
http://refhub.elsevier.com/S0967-16)30259-sbref17
http://refhub.elsevier.com/S0967-16)30259-sbref18
http://refhub.elsevier.com/S0967-16)30259-sbref18
http://refhub.elsevier.com/S0967-16)30259-sbref19
http://refhub.elsevier.com/S0967-16)30259-sbref19
http://refhub.elsevier.com/S0967-16)30259-sbref20
http://refhub.elsevier.com/S0967-16)30259-sbref20
http://refhub.elsevier.com/S0967-16)30259-sbref21
http://refhub.elsevier.com/S0967-16)30259-sbref21
http://refhub.elsevier.com/S0967-16)30259-sbref21
http://refhub.elsevier.com/S0967-16)30259-sbref22
http://refhub.elsevier.com/S0967-16)30259-sbref22
http://refhub.elsevier.com/S0967-16)30259-sbref23
http://refhub.elsevier.com/S0967-16)30259-sbref23
http://refhub.elsevier.com/S0967-16)30259-sbref23
http://refhub.elsevier.com/S0967-16)30259-sbref24
http://refhub.elsevier.com/S0967-16)30259-sbref24
http://refhub.elsevier.com/S0967-16)30259-sbref25
http://refhub.elsevier.com/S0967-16)30259-sbref25
http://refhub.elsevier.com/S0967-16)30259-sbref25
http://refhub.elsevier.com/S0967-16)30259-sbref26
http://refhub.elsevier.com/S0967-16)30259-sbref26
http://refhub.elsevier.com/S0967-16)30259-sbref26

	Motion planning for robotic manipulators using robust constrained control
	Introduction
	Motivations and problem setting
	Motivations and key concepts
	Contributions and comparisons

	Proposed method
	Symbols and notation
	Robot behaviour in the joint space
	Trajectory generation and task constraints
	Development of the method
	Possible implementations

	Kinematic redundancy and compliant behaviour
	Redundant degrees of freedom
	Compliant motion

	Robust constraints specification
	Robust bounds on configuration dependent variables
	Robust bounds on velocity dependent variables and actuation torques

	Experimental case study
	Task constraints and redundancy resolution
	Implementation and experiments
	Experiment without robustness
	Experiment with robustness

	Discussion

	Conclusions
	Supplementary data
	References

