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Abstract—Campus libraries in modern universities provide
students with group study areas where they can work and
study collaboratively. In this paper, we propose a complete
solution for the creation of study groups in future smart libraries
featuring (i) a smartphone application to create study groups,
(ii) a hybrid Bluetooth Low Energy (BLE) and Wi-Fi indoor
positioning system to localize study groups and (iii) a server-based
infrastructure based on MQTT and Node-RED to advertise study
groups to other students. We describe in details all components
of the architecture and perform an experimental evaluation of
the indoor positioning system in a realistic scenario.

Index Terms—Smart Library, Indoor Localization, BLE, Wi-Fi

I. INTRODUCTION

Libraries are one of the most convenient resources that
modern universities have to offer, and they are undoubtedly
one of students’ most favourite spaces. They provide students
with an optimal place to study, either alone in absolute silence
or in groups, as well as to borrow study material such as
printed books and magazines, electronic resources (full-text
articles, journals), DVDs, etc... Most libraries also have free
Wi-Fi internet, as well as other capabilities such as inexpensive
access to printers, laptops and tablets, digital calculators and
so on. Finally, university libraries are generally open until late
at night and most of them encompass a coffee shop to provide
students with their caffeine fix. For all these reasons, campus
libraries are generally very appreciated and they are often very
crowded, at each hour of the day.

Among all facilities provided by campus libraries, group
study areas where students can work and study collaboratively
are of particular interest: although individual study allows
one to concentrate and minimizes distraction, group study
offers the opportunity to reinforce ideas and share infor-
mation, finally building and broadening the understanding
of the subject under study. Indeed, 20 years of educational
research has consistently demonstrated that cooperative class-
room groups result in greater learning than competitive or
individualistically-structured learning environments [1], [2].

With the advent of the Internet of Things paradigm, univer-
sity campuses are evolving to the new concept of smart spaces,
and libraries are no exception. According to such a vision,
smart libraries will leverage networks of intelligent sensors
and actuators connected to the internet, able to provide a vast
range of high-level services to both users and administrators.
Examples include smart lighting [3], localization of books

on bookshelves [4], quality of air monitoring [5], automatic
ventilation [6] and many others.

In this paper, we propose a complete system for the manage-
ment of study groups in smart libraries. The system includes a
smartphone application that allows a student to create a study
group anywhere in the library and to advertise it through a
server-based infrastructure to other students. Besides general
information such as the topic under study and the number
of students involved in the group, the advertisement includes
the position of the study group inside the library, so that
students willing to join can locate it easily. To this end, we
develop a hybrid Bluetooth Low Energy (BLE) and Wi-Fi
indoor positioning system whose main feature is the ability
to operate with both wireless technologies, following the user
preferred configuration. When only Bluetooth is enabled on the
user’s smartphone device, the positioning system leverages the
presence of BLE beacons deployed in the library to determine
the user location. When only Wi-Fi is enabled, the system uses
a fingerprinting approach and relies on a database of received
signal strength indicators (RSSI) fingerprints to estimate the
user’s position. When both BLE and Wi-Fi are enabled, the
system estimates the user’s location fusing the information
coming from the two technologies, with clear improvements
on the localization performance. Moreover, in this latter con-
figuration, the availability of Bluetooth positioning allows to
automatically update the Wi-Fi RSSI fingerprint database,
minimizing the cumbersome burden generally associated with
off-line Wi-Fi fingerprints collection. The system is designed
leveraging software tools widely accepted in the IoT world,
such as the Message Queueing Telemetry Transport (MQTT)
protocol for information exchange between users and IBM
Node-RED for the back-end.

The rest of the paper is organized as follows: Section
II reviews related works in the area of smart spaces and
indoor localization systems in general; Section III describes
the hybrid approach taken for implementing the localization
system. Section IV describes each component of the pro-
posed systems, while Section V reports on its performance
evaluation. Finally, Section VI comments on future research
directions and concludes the paper.

II. RELATED WORK

In the last few years, the advent of the IoT paradigm and
the availability of low cost sensors and actuators coupled



with wireless communication have stimulated an enormous
amount of works about the so-called smart spaces. Smart
spaces include all those physical locations which are enriched
with sensing and reaction capabilities with the final goal to
offer high-level services to users. This general definition is
valid at different levels of spatial granularity, starting from
the broad concept of smart cities, narrowing the discussion
to smart buildings and even more to smart office and smart
home environments. The types of services offered by such
smart spaces is twofold: on the one hand, they are expected to
enhance the quality of life of their occupants with applications
such as air quality monitoring, noise monitoring, automation
of electronic devices (lights, VAC systems, etc.). On the
other hand, smart spaces are expected to be a great asset
for their administrators, providing services to increase their
efficiency and decrease their management cost. Examples of
such services include energy consumption monitoring and
optimization, waste management and many others [7].

Focusing to indoor spaces, the availability of the knowledge
of each user’s position is key to implement several of the
aforementioned services: for this reason, a huge amount of
work has been recently done to implement reliable indoor
positioning systems. Due to the impossibility of using the
global positioning system (GPS) indoor, researchers have
tried to use many other signals for developing positioning
techniques, including a vast range of radio signals (Wi-
Fi, Zigbee, RFID, Bluetooth, etc.), sounds and ultrasounds,
magnetic fields, images etc. [8]

Among all these, Wi-Fi has clearly attracted a lot of atten-
tion due to its widespread usage and availability, both in terms
of network infrastructure (WLANs and access points) and user
equipments (Wi-Fi enabled mobile devices). Clearly, Wi-Fi
based IPSs constitute the most cost-effective way to implement
location-aware services in smart environments, even without
the need of installing additional infrastructures.

There exist many ways in which Wi-Fi signals can be
used for positioning. A class of techniques relies on trilat-
eration or triangulation approaches, by first converting Wi-
Fi measurements to distances and then applying geometry
based algorithms to determine the position of a user. The
measurements used for such approaches include time-of-
arrival (TOA) and time-difference-of-arrival (TDOA), angle
of arrival (AOA) and received signal strength (RSS). The
latter signal in particular has been subject of many studies:
indeed, RSS measurements can be performed on off-the-shelf
mobile devices without any extra sensing unit, do not require
complex synchronization algorithms compared to time-domain
methods (TOA, TDOA) and work reasonably well in non line
of sight environments [9]. Also, RSS measurements are used
to enable a second class of location techniques known as
fingerprinting, which are based on the collection of the signal
patterns characterizing each physical position. Fingerprinting
methods are generally composed of two phases: in an off-
line phase, the space under consideration is sampled at many
known locations. For each location, the vector of received
signal strength from all the in-range Wi-Fi access points (a.k.a.

the fingerprint) is stored in a database. In the online phase, a
user measures the RSS from all the detected access points
and transmits this vector to the database: here, the closest
match in the RSS space is found, e.g., using a similarity
metric according to a k-nearest neighbour approach, and the
target position is estimated using the location of the most
similar fingerprints. Several other techniques can be applied
on the fingerprinting database to estimate the location of
the user, including machine learning tools such as neural
networks and support vector machines. Regarding the position
accuracy, many works have revealed that Wi-Fi fingerprints
allows to reach positioning accuracies in the range of 2-5
meters, depending on the number of access points available
in the area and on the fingerprinting technique chosen. A
detailed survey of Wi-Fi fingerprint-based indoor positioning
techniques can be found in [10].

Motivated by the introduction of Bluetooth Low Energy
(BLE), starting from 2010 there has been increasing interest
for indoor positioning systems based on Bluetooth signals in
addition to classical Wi-Fi solutions. In such systems, battery-
operated, low cost BLE beacons play the role of Wi-Fi access
points. Being cheap and operated with long-lasting batteries,
BLE beacons allow for quick and flexible IPS deployments,
at a smaller operation cost for the user than Wi-Fi-based
systems. However, due to Bluetooth reduced communication
range (tens of meters in indoor scenario) which would require
many beacons to be deployed to cover even small areas, BLE-
based systems generally use proximity analysis for positioning
rather then fingerprinting. That is, they assign to the user the
location of the strongest BLE beacon received by its device.
Therefore, Bluetooth-based positioning systems are often used
in hybrid configurations paired to Wi-Fi, rather than alone.
In [11], the authors propose a hybrid localization system based
on combined RSS fingerprints and using machine learning
methods. In particular, the fingerprints are vectors of Wi-Fi
and BLE RSSI and the classification method used is based
on boosting and weak-learners classifiers. The authors show
that their hybrid approach slightly improves the performance
of a BLE-only and Wi-Fi only system by 3% and 2%,
respectively. The work in [12] proposes a hybrid system
where Wi-Fi is used as the main infrastructure for fingerprints,
while Bluetooth serves to partition the indoor space and the
fingerprint database. As a result, Wi-Fi positioning is improved
in a divide-and-conquer manner. To partition the entire Wi-Fi
map optimally, the authors propose a deployment algorithm for
Bluetooth beacons taking into account the number of available
beacons and the size of the Wi-Fi database. The authors also
propose different system architectures, depending on where
the position estimation is performed (on the device or on the
server) and evaluate them with respect to client-side energy
consumption, delay and coexistence of Bluetooth and Wi-
Fi. Other examples of hybrid Wi-Fi and Bluetooth systems
can be found in the research papers [13] and [14]. All these
systems report improvements in the accuracy of the position
estimation compared to Wi-Fi only solutions, generally lower
than 3 meters on average. Recently, hybrid systems have



appeared also in commercially available solutions for indoor
localization, such as [15], [16] and [17]. Broadly speaking,
most of the existing works on hybrid localization tends to
concatenate the Wi-Fi and Bluetooth RSS in a single vector
to be used as fingerprint. Differently, we propose a novel
approach in which the information of the two localization
systems are fused together using an a-priori information on
their accuracy.

III. INDOOR LOCALIZATION SYSTEM

Knowing the position of a student in the library with
high accuracy is key to the success of the proposed system.
To this end we propose three approaches, detailed in the
following subsections: (i) Bluetooth-only localization, (ii) Wi-
Fi fingerprints localization and (iii) hybrid Bluetooth and Wi-
Fi localization. As a general notation, let x be the position
of a student in the library. Differently from other works, we
assume that the set of possible positions in which a student
may be located is a finite discrete set X , that is x ∈ X ⊂ R2.
The set X = {x1, . . . ,xM} contains M known locations in
the library, such as single desks, tables or study rooms. The
goal of the localization system is to compute x̂ ∈ X , i.e., the
estimated location of a student in the library.

A. Bluetooth-only localization

In this scenario, we leverage the presence of N BLE beacon
devices deployed in the library. Given their small size, such
beacons can be deployed practically everywhere: a natural
deployment strategy is to place them so that the set X is
covered as much as possible: when N ≥ M the solution
is trivial. When N < M , one may choose to deploy them
in the most important spots (e.g., only in study rooms) at
the cost of reduced performance. Once the BLE beacons
are deployed, they periodically broadcast beacon messages
which are received by any BLE-enabled mobile device in their
communication range. Here we rely on a proximity algorithm,
and the estimated location x̂ of a student carrying such a
mobile device is considered to be collocated with the BLE
beacon from which it receives the strongest signal. Although
such a method may appear simplistic, Section V will show
that it performs remarkably well when the number of available
beacons is enough to cover all possible locations. Clearly, this
behaviour is due to the particular application and assumptions
under consideration and cannot be easily generalized to other
scenarios.

B. Wi-Fi fingerprint localization

When the mobile device carried by a student is not
Bluetooth-enabled, we leverage the presence of any exist-
ing Wi-Fi infrastructure to perform localization. Given the
widespread availability of Wi-Fi networks (both public and
private), a mobile device in any location receives a great num-
ber of beacon frames from L different access points, denoted
with l = 1, . . . , L. Each beacon frame carries information on
the Wi-Fi network served by the l-th access point, such as the
network Basic Service Set Identifier (BSSID), the capability

of the network, the supported rates, etc.. Depending on the
relative position of the l-th access point compared to the
mobile device, its beacons will be received with a signal
strength sl, usually expressed in dBm. The m-th location of
the set X can be therefore described with one or more signal
strength vectors, or fingerprints, sm,i = {s1, . . . , sL}T, where
i is used to denote different signal strength measurements
taken at the same location. Such measurements are collected
for each location in an offline phase and stored in a database,
together with the location at which they were collected. In
the online phase, a user measures a signal strength vector s̃,
known as query, and transmits it to the database. Here, several
strategies can be adopted to estimate the location x̂ of the user:

1) k-Nearest Neighbour (k-NN): The Euclidean distance
between the query s̃ and each entry sm,i in the database is
computed. The k vectors with shortest distances are retained
and the estimated location x̂ is assigned to the most common
location among the k nearest neighbours.

2) k-Means clustering: Although widely used, the k-NN
approach suffers from two main drawbacks: first, different
fingerprints from the same location can be influenced by large
signal noise, which may lead to localization errors. Second, k-
NN requires pairwise matching with all fingerprints, which can
be computationally intensive for large databases. To overcome
both problems, k-means clustering can be used: first, the
fingerprint database is partitioned in k different clusters where
fingerprints are characterized by the nearest mean. Each cluster
has a cluster-head fingerprint, which serves as a “prototype”
for the cluster itself. Generally, the number of clusters to
be created is a free parameter and must be tuned according
to the specific application. In our scenario, we set k = M
and we create cluster-heads by averaging together different
observations belonging to the same location, that is:

sm =
1

Nm

∑
i

sm,i (1)

where Nm is the number of observation corresponding to
the m-th location. This operation filters the noise in the
observations and reduces the size of the database. After this
step, 1-NN is performed on the reduced database composed
by cluster-heads only, and the estimated location x̂ is returned.

3) PCA-based fingerprinting: Each fingerprint is composed
of L signal strength measurements from different access
points. However, only a subset of size P < L of such access
points may provide useful information. As an example, if
one of the access points is far from every location in X ,
the corresponding received signal strength will be very low
(or even not detected) in every fingerprint. Similarly, two
collocated access points will generate correlated entries in the
fingerprints. To overcome such problems, principal component
analysis (PCA) can be applied to the fingerprint database.
PCA is a very popular technique used in machine learning for
dimensionality reduction: it finds an orthogonal transformation
that converts the original observations in a set of linearly un-
correlated principal components. Such principal components
are also sorted in decreasing order of their variance, naturally



identifying a “ranking” among them. Operatively, we learn the
PCA transformation T from the fingerprint database after the
offline phase and communicate it to the mobile devices. In the
online phase, a mobile device transforms the query s̃ in the
PCA domain by multiplication with T, that is:

w̃ = Ts̃ (2)

Then, only the first P < L elements of w̃ (the first P principal
components) are retained and transmitted to the database,
where either k-NN matching or k-Means clustering can be
applied on the PCA-transformed and reduced database.

C. Hybrid Bluetooth and Wi-Fi localization

When both Bluetooth and Wi-Fi are enabled on a student’s
smartphone, it is possible to set up a hybrid localization
framework that fuses together the information coming from the
two systems. In particular, we observe that the error probability
density function P (E) of the BLE or Wi-Fi systems is not
uniform with respect to space, but estimation errors of the
two systems always occur in particular locations. The reason of
this non-uniformity is clearly due to the particular propagation
characteristics of the environment under consideration, paired
with the specific deployment of the BLE beacons and Wi-
Fi access points. Since the position of beacons and access
points is generally fixed and does not change after the first
deployment, one may estimate the spatial distribution of the
location errors P (E | x̂) in an offline phase, and use it a-
posteriori to correct the estimation.

In details, the process is as follows: first, two users’ loca-
tions x̂BLE and x̂Wi-Fi are estimated independently using Blue-
tooth and Wi-Fi, respectively. Then, a new location estimation
x̂H is produced according to the following:

x̂H =

{
x̂BLE if P (E | x̂BLE) < P (E | x̂Wi-Fi)

x̂Wi-Fi otherwise.
(3)

As an example, Figure 1 shows the estimated conditional
probabilities P (E | x̂BLE) and P (E | x̂Wi-Fi) for twenty
locations of the set X . Assume that the BLE and Wi-Fi local-
ization systems compute as estimated positions x̂BLE = 8 and
x̂Wi-Fi = 14. Since P (E | x̂Wi-Fi = 14) < P (E | x̂BLE = 8),
the newly estimated location according to the hybrid system
is x̂H = 14.

D. Online fingerprints collection

One of the most time-consuming steps of the fingerprint
based approach is the offline phase in which the fingerprint
database is constructed. This requires to put a device on each
of the locations in X and to collect many fingerprint vectors to
build the database. Moreover, the process should be repeated
periodically to avoid that possible changes in the monitored
area (e.g., movement or addition of furniture) impact on the
signal propagation environment making the already-collected
fingerprints obsolete.

Hybrid localization can be used to alleviate the cumbersome
task of updating the fingerprints database. In particular, when
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Fig. 1. The conditional error probability P (E | x̂) estimated for Bluetooth
and Wi-Fi (6-NN with PCA) for 20 locations of the set X

hybrid localization is enabled, the query vector transmitted by
a user is added to the database and labeled with the estimated
location returned by the Bluetooth-only system. To avoid that a
wrong location label is appended to the fingerprint, the system
may explicitly ask the mobile device owner to confirm the
estimated location.

Note that the same explicit notification may be used to up-
date the conditional probability density functions P (E | x̂BLE)
and P (E | x̂Wi-Fi) online.

IV. PROPOSED SYSTEM

In this section we provide a detailed description of the
proposed system, which is illustrated in Figure IV. As one can
see, the system is composed by four main building blocks: (i)
the hybrid BLE and Wi-Fi network infrastructure, described
in Section IV-A; (ii) the mobile client application (Section
IV-B); (iii) the back-end server application and (iv) the front-
end graphical interface, described in Section IV-C.

A. Hybrid Network Infrastructure

As aforementioned, the proposed system uses BLE beacons
and Wi-Fi access points for localizing students in a library.

1) BLE infrastructure: Several battery-operated Bluetooth
beacons are deployed in the area of interest, one per location
in the set X . Each beacon periodically broadcasts advertising
packets carrying the transmitter identifier, with a transmission
interval of one second. Recalling that the BLE localization
system works by assigning to a user the position of the beacon
with strongest received signal, the transmission power of the
beacons is set to the lowest value, which corresponds to a
transmission range of about 2 meters. By doing this we obtain
a twofold positive effect on the performance of the system:
(i) we minimize the probability of localization errors due to
shadowing/multi-path fading and (ii) we prolong the battery
lifetime of the BLE beacons.



Fig. 2. Architecture of the proposed system

2) Wi-Fi infrastructure: For what concerns the Wi-Fi in-
frastructure, we leverage the network of access points already
installed in the proximity of the library to implement the
fingerprint-based localization system. As explained in Section
III-B, we create fingerprints by measuring RSS from beacons
emitted by L different access points. However, the number
of access points covering the library may be greater than
L: operatively, we chose the L access points with strongest
average observed RSS and we store their BSSID in a whitelist
which is disseminated to each client device. In the online
localization phase, if a client device does not receive beacons
from one of the L access points, a value of smin = −80
dBm is inserted in the query vector before transmission to the
database. At the same time, all beacons received from access
points not present in the whitelist are discarded.

B. Mobile Client Application

Each student in the library uses its smartphone to access the
localization service. To this end, we develop an Android appli-
cation which is responsible for measuring the signals coming
from BLE beacons and Wi-Fi access points for localization
purposes and to offer the student smart library services. At
start-up, the application checks the network interfaces enabled
on the device and asks the user to activate at least the Wi-Fi
interface, if not already active. If the user also activates the
BLE interface, all localization techniques presented in Section
III can be performed. After that, the application connects to
the public back-end server via Wi-Fi or 3G/LTE protocol and
downloads the Wi-Fi access point whitelist and other useful
application data such as the PCA transformation matrix T,
and is ready to transmit to the server the Wi-FI or BLE
measurements for localization. Data transfer between the client

and the server is done through the Message Queuing Telemetry
Transport (MQTT) protocol, which can be considered the de-
facto standard for low-power IoT and Machine-to-Machine
(M2M) applications due to its simplicity, efficiency and scala-
bility. MQTT works according to the publish/subscribe pattern:
each device can publish messages with a particular topic, and
only subscribers of that topic will receive the messages. All
messages pass through an MQTT broker (the back-end server
in our case), which filters messages based on their topics.
To publish a message, a single TCP/IP connection from a
client to the broker is required, without the need of knowing
the set of subscribers. In our application the client device
publishes packets with two topics: measurements and whitelist.
The former packet contains the Wi-Fi and BLE measurements
made by the mobile device and a study subject field which
contains the textual description of the subject under study at
the student’s desk. The latter MQTT packet is used by the
client device to retrieve from the server the whitelist of access
points to be included in the measurements packet.

C. Back-end and Front-end Server Application

The back-end server is the core of the system and it is
responsible of (i) running the localization engine and (ii)
managing the smart library service. The back-end system is
entirely implemented using IBM Node-RED, a visual tool
built on top of the Node.js server-side framework [18] that
has recently become very popular in the development of IoT
applications, due to its flexibility in creating quick software
prototypes. Node-RED is an event-processing engine that
already includes building blocks for MQTT and MySQL
connections, as well as the possibility of writing ad-hoc
Javascript functions to process the incoming/outgoing data,



thus greatly simplifying the development process. As shown
in Figure IV, the back-end server acts as a MQTT broker
for mobile clients: upon reception of a MQTT measurements
message from a client, the server runs the localization engine
to estimate the position of the client. If Wi-Fi localization is
performed, the back-end server performs customized queries
on the MySQL database of fingerprints to estimate the user’s
location. Once the location is computed, the server uses the
study subject field of the measurements message to update
the front-end, a simple HTML/CSS web page which features
a map of the library with rooms and desks highlighted with
occupancy information and topic under study. The front-end
page can be displayed on a big screen at the entrance of the
library or directly from students on their mobile phone, thus
providing quick information on the topics under study in the
library and their location, the location of free desks, etc.

V. EXPERIMENTS

To evaluate the performance of the system in a realistic
indoor scenario, we have implemented a proof-of-concept in a
100 m2 indoor space of our university. The space has 23 desks
positioned as shown in Figure 5: each desk is 1.2 m long and
0.5 m wide, and is used by one single student/researcher. For
what concerns the Bluetooth infrastructure, we deployed one
BLE beacon per desk, setting its transmission power to the
lowest value of -70 dBm. As for the Wi-Fi infrastructure, the
space is covered by 18 different access points deployed in its
proximity, whose BSSID are stored in a whitelist which is
disseminated to each client. The mobile device used for the
experiments is a Samsung Galaxy Ace Style LTE G357, with
BLE communication running Android 4.4.4 (KitKat). On the
device we installed the mobile client application described in
Section IV-B.

A. Scenario and accuracy metrics

The experiments are performed as follows: for each one
of the 23 desks, the mobile application is used to measure
the received signal strength from all whitelisted access points
and BLE beacon devices. To mimic a realistic scenario the
measurements are performed during working hours, when
desks in the indoor space are occupied by users. For each
desk, 40 measurements are performed for a total of 920
measurements: each measurement lasts one second and two
consecutive measurements are spaced by 100ms. Multiple
received signal strength measurements from the same Wi-Fi
access point or BLE beacon device are averaged during the
same one-second measurement interval. Finally, each measure-
ment is also labeled with its ground truth position xGT. We
divide the complete set of 920 measurements in two sets: 70%
of the data is used for training purposes and 30% for testing.
The test set is used to compute an accuracy metric defined as:

A =
1

N

N∑
i=1

ei, (4)
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Fig. 3. Accuracy of different localization methods on the test set

where ei is defined as:

ei =

{
1 if x̂ = xGT

0 otherwise.
(5)

and N is the number of queries in the test set. The training
data is used for building the fingerprint database and estimate
the conditional probabilities P (E | x̂BLE) and P (E | x̂Wi-Fi).
To estimate these probabilities, the training set is further
divided in two sets (again in 70:30 proportion) and the smaller
set is used as a new test set for computing the conditional
probabilities as:

P (E | x̂) = 1−A(x̂), (6)

where A(x̂) denotes the accuracy measure computed only for
those locations estimated as x̂ by the localization system.

B. Performance comparison

Figure 3 shows the performance of the different localization
methods as computed on the test set, where we varied the
number of access points or principal components to be used
for fingerprints, i.e., the fingerprint vector dimension. Such di-
mension impacts on the storage requirements of the fingerprint
database and the time needed for estimating a location using
k-NN based approaches, and it is therefore good practice to
keep it low. For methods in the original RSS domain (shown as
blue curves), we sorted the access points in descending order
of their average signal strength, while for PCA-based methods
(shown in red) the principal components are naturally sorted.
For all methods based on k-NN matching, we only show the
curve corresponding to the best performance, which in our
case is obtained for k=6.

From the inspection of Figure 3, several considerations can
be made:

1) we observe that the performance of the bluetooth-only
system are surprisingly good, with a correct position
returned almost 87% of the times. Considering the size of



Fig. 4. The indoor area used for the experiments: 23 desks are present
(each one with a BLE beacon), represented as blue dots. The three additional
scenarios composed of 11, 6 and 2 locations are represented as well, in blue,
green and red dashed lines, respectively.

the desks, this means that the average localization error
of the BLE-only system is below 1.2 meters 87% of the
times.

2) the accuracy of Wi-Fi methods generally increase as
the size of the fingerprints increase. For methods in the
RSS domain, the accuracy tends to saturate after 13-14
used access points, while for PCA-based methods 8-10
principal components are enough to obtain the maximum
performance.

3) PCA-based methods outperform methods in the original
RSS domain in terms of maximum accuracy for small size
of the fingerprints. The gap is as high as 8% for k-Means
approaches, while it is limited to 4% for approaches
based on k-NN. This means that the PCA transformation
learnt from the available data is able to identify the
most important components and to filter out noisy and
correlated ones.

4) k-nearest neighbours matching generally outperforms k-
Means based matching in terms of localization accuracy.
The gap can be as high as 6% for small size of the fin-
gerprints, while it is limited to 4% for high-dimensional
fingerprints. The drawback of k-NN methods compared
to k-Means is their high complexity: this issue should be
taken into account when using large fingerprint databases
and when computational resources on the central server
are scarce.

5) Finally, hybrid methods always show the best perfor-
mance, demonstrating that fusing together the informa-
tion coming from the two independent systems allows
for almost perfect location estimation. In particular, the
hybrid method obtaining the best performance is the one
fusing BLE with PCA fingerprints and k-NN matching,
which allows to obtain almost perfect location estimation
(99.74%) with as few as 10 principal components.
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Fig. 5. Accuracy of different localization methods on the test set

In addition to testing the scenario composed by 23 desks,
we also analyze how the localization accuracy varies when
grouping together different nearby desks: this allows to obtain
some insights on the performance of the system when the
spatial granularity of the locations in X varies. In particular
we tested three additional scenarios in which the number of
locations in X is varied in the range {23,11,6,2} as illustrated
in Figure 4. Figure 5 reports the performance of the BLE-only
system, the 6-NN PCA Wi-Fi fingerprint system and the 6-NN
PCA hybrid system on these new scenarios. For the two latter
methods, we computed the performance when using 3,5,8 or
10 principal components in the fingerprints. As expected, the
performance of all systems increase as the number of locations
in X is decreased. In particular, the hybrid approach always
allows to obtain an accuracy equal or greater than 94% for all
tested scenarios even using as low as 3 principal components in
the fingerprint. When using 10 principal components, perfect
recognition is obtained for all scenarios.

C. Online fingerprint collection

As explained before, the system requires an offline phase in
which the Wi-Fi fingerprint database is created. Such a cum-
bersome step should be repeated from time to time to ensure
that the information in the database is up-to-date compared
with the localization queries coming from the mobile devices.
As an example, in Figure 6 we compare the performance
of the best performing hybrid localization system (PCA 6-
NN) obtained in two cases in which the information in the
fingerprint database is up-to-date or 2 weeks old. During these
two weeks, the indoor space has been subject to some changes
in terms of furniture and people usually occupying it. These
changes impact on the accuracy of Wi-Fi localization, with a
clear decrease in the accuracy, as high as 70%. Instead of re-
populating the database with updated groundtruth fingerprints,
we use a new database obtained with the fingerprints coming
from the hybrid localization system. Although these finger-
prints are affected by the error of the bluetooth-only system,
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Fig. 6. Accuracy of hybrid localization when using different Wi-Fi fingerprints
database: up-to-date, out-of-date and BLE labeled

Figure 6 shows that using such an approach allows to avoid
the cumbersome procedure of repopulating the database, still
achieving acceptable accuracy performance.

VI. CONCLUSIONS

We have presented a system for the creation of study groups
in a smart library. The core of the system is an hybrid BLE
and Wi-Fi indoor localization system able to work in different
configuration, namely BLE-only, Wi-FI-only or fusing the
information coming from the two technologies. The complete
system has been implemented and evaluated in a realistic
scenario, demonstrating promising performance for the task
at hand. Future research directions will investigate the client-
side and server-side performance (e.g., energy consumption
and computational overhead of the application running on the
mobile device, end-to-end delay, etc..) as well as a large-scale
deployment in a real library.
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