Note
Click here to download the full example code
Explicit horizontal fusion with foreach_map and torch.compile¶
Author: Michael Lazos
- Horizontal fusion is a key optimization in ML compilers. In eager,
this is typically expressed using the torch._foreach* ops which parallelizes operations across a list of tensors. However, supporting all possible permutations of arguments is quite difficult (e.g. mixtures of scalars and lists). Foreach_map allows conversion of any pointwise op in
torch
to a horiztonally fused foreach variant. In this tutorial, we will demonstrate how to implement the Adam optimizer withforeach_map
to generate a fully fused kernel.
Note
This recipe describes a prototype feature. Prototype features are typically at an early stage for feedback and testing and are subject to change.
Prerequisites¶
PyTorch v2.7.0 or later
Model Setup¶
For this example, we’ll use a simple sequence of linear layers. We instantiate an independent copy to compare the two optimizer implementations.
import torch
# exit cleanly if we are on a device that doesn't support ``torch.compile``
if torch.cuda.get_device_capability() < (7, 0):
print("Exiting because torch.compile is not supported on this device.")
import sys
sys.exit(0)
# Create simple model
model = torch.nn.Sequential(
*[torch.nn.Linear(1024, 1024, False, device="cuda") for _ in range(10)]
)
model_copy = torch.nn.Sequential(
*[torch.nn.Linear(1024, 1024, False, device="cuda") for _ in range(10)]
)
input = torch.rand(1024, device="cuda")
# run forward pass
output = model(input)
output_copy = model_copy(input)
# run backward to populate the grads for our optimizer below
output.sum().backward()
output_copy.sum().backward()
Helper functions for foreach_map implementation¶
In this section, we’ll begin our implementation of the Adam optimizer.
from torch._higher_order_ops.foreach_map import foreach_map
# Helper function to extract optimizer states from a torch.optim.Adam instance
def get_inputs(optim):
steps = []
params = []
grads = []
exp_avgs = []
exp_avg_sqs = []
for group in optim.param_groups:
for p in group["params"]:
params.append(p)
grads.append(p.grad)
state = optim.state[p]
exp_avgs.append(state["exp_avg"])
exp_avg_sqs.append(state["exp_avg_sq"])
steps.append(state["step"])
return steps, params, exp_avgs, exp_avg_sqs
# Functions to update the different optimizer states
def update_exp_avg_sq(exp_avg_sq, grad, beta2):
return exp_avg_sq.mul(beta2).addcmul(grad, grad, value=1 - beta2)
def update_param(param, step, exp_avg, exp_avg_sq, beta1, beta2, lr, eps):
bias_correction1 = 1 - torch.pow(beta1, step)
bias_correction2 = (1 - torch.pow(beta2, step)).sqrt()
step_size = (lr / bias_correction1).neg()
denom = (exp_avg_sq.sqrt() / (bias_correction2 * step_size)).add(eps / step_size)
return torch.add(param, torch.div(exp_avg, denom))
# Our full Adam implementation
def foreach_map_adam(
steps,
params,
exp_avgs,
exp_avg_sqs,
weight_decay=0,
beta1=0.9,
beta2=0.999,
lr=1e-3,
eps=1e-8,
):
with torch.no_grad():
grads = [param.grad for param in params]
# update step
updated_steps = foreach_map(lambda x: x + 1, steps)
torch._foreach_copy_(steps, updated_steps)
if weight_decay != 0:
foreach_map(torch.add, (grads,), alpha=weight_decay)
# Higher-order operators (HOPs) cannot have multiple outputs at the moment
# need to call foreach_map once for each output
exp_avgs_updated = foreach_map(torch.lerp, exp_avgs, grads, 1 - beta1)
exp_avgs_sq_updated = foreach_map(update_exp_avg_sq, exp_avg_sqs, grads, beta2)
params_updated = foreach_map(
update_param,
params,
steps,
exp_avgs_updated,
exp_avgs_sq_updated,
beta1,
beta2,
lr,
eps,
)
# Higher-order operators (HOPs) don't support input mutation today
# so manually update the states in-place
torch._foreach_copy_(exp_avgs, exp_avgs_updated)
torch._foreach_copy_(exp_avg_sqs, exp_avgs_sq_updated)
torch._foreach_copy_(params, params_updated)
return
Setting up and running the compiled kernel¶
In this section, we’ll run our Adam optimizer and compare the results
Note
torch.compile
is only supported on CUDA devices that have a compute capability of 7.0 or higher.
opt_eager = torch.optim.Adam(model.parameters(), lr=torch.tensor(0.01))
opt_eager_copy = torch.optim.Adam(model_copy.parameters(), lr=torch.tensor(0.01))
# warm up the optimizer state dict
opt_eager.step()
opt_eager_copy.step()
inputs = get_inputs(opt_eager_copy)
compiled_adam = torch.compile(foreach_map_adam)
# optionally view the output code
torch._logging.set_logs(output_code=True)
# Warmup runs to compile the function
for _ in range(5):
opt_eager.step()
compiled_adam(*inputs)
for eager_p, compile_p in zip(opt_eager.param_groups[0]["params"], opt_eager_copy.param_groups[0]["params"]):
torch.allclose(eager_p, compile_p)
# Benchmark performance
# Let's define a helpful benchmarking function:
import torch.utils.benchmark as benchmark
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
)
return t0.blocked_autorange().mean * 1e6
eager_runtime = benchmark_torch_function_in_microseconds(opt_eager.step)
compiled_runtime = benchmark_torch_function_in_microseconds(lambda: compiled_adam(*inputs))
assert eager_runtime > compiled_runtime
print(f"eager runtime: {eager_runtime}us")
print(f"compiled runtime: {compiled_runtime}us")
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] Output code:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] # AOT ID: ['0_inference']
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from ctypes import c_void_p, c_long, c_int
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import torch
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import math
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import random
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import os
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import tempfile
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from math import inf, nan
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from cmath import nanj
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.hooks import run_intermediate_hooks
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.utils import maybe_profile
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.codegen.memory_planning import _align as align
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch import device, empty_strided
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.async_compile import AsyncCompile
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.select_algorithm import extern_kernels
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.codegen.multi_kernel import MultiKernelCall
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton.language as tl
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime.triton_heuristics import start_graph, end_graph
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] aten = torch.ops.aten
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] inductor_ops = torch.ops.inductor
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] _quantized = torch.ops._quantized
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride = torch._C._dynamo.guards.assert_size_stride
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] alloc_from_pool = torch.ops.inductor._alloc_from_pool
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] async_compile = AsyncCompile()
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] # kernel path: /tmp/torchinductor_ci-user/ej/cejr7t4zzqo7llcoxga7clgyc6gs3676lsm4dvilpfw64kudp2ns.py
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] # Source node to ATen node mapping:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] triton_for_fused_0 = async_compile.triton('triton_for_fused_0', '''
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] import triton.language as tl
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime import triton_helpers, triton_heuristics
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] @triton_heuristics.foreach(
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_warps=8,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] triton_meta={'signature': {'in_ptr0': '*fp32', 'in_ptr1': '*fp32', 'in_ptr2': '*fp32', 'in_ptr3': '*fp32', 'in_ptr4': 'fp32', 'in_ptr5': '*fp32', 'in_ptr6': '*fp32', 'in_ptr7': '*fp32', 'in_ptr8': '*fp32', 'in_ptr9': 'fp32', 'in_ptr10': '*fp32', 'in_ptr11': '*fp32', 'in_ptr12': '*fp32', 'in_ptr13': '*fp32', 'in_ptr14': 'fp32', 'in_ptr15': '*fp32', 'in_ptr16': '*fp32', 'in_ptr17': '*fp32', 'in_ptr18': '*fp32', 'in_ptr19': 'fp32', 'in_ptr20': '*fp32', 'in_ptr21': '*fp32', 'in_ptr22': '*fp32', 'in_ptr23': '*fp32', 'in_ptr24': 'fp32', 'in_ptr25': '*fp32', 'in_ptr26': '*fp32', 'in_ptr27': '*fp32', 'in_ptr28': '*fp32', 'in_ptr29': 'fp32', 'in_ptr30': '*fp32', 'in_ptr31': '*fp32', 'in_ptr32': '*fp32', 'in_ptr33': '*fp32', 'in_ptr34': 'fp32', 'in_ptr35': '*fp32', 'in_ptr36': '*fp32', 'in_ptr37': '*fp32', 'in_ptr38': '*fp32', 'in_ptr39': 'fp32', 'in_ptr40': '*fp32', 'in_ptr41': '*fp32', 'in_ptr42': '*fp32', 'in_ptr43': '*fp32', 'in_ptr44': 'fp32', 'in_ptr45': '*fp32', 'in_ptr46': '*fp32', 'in_ptr47': '*fp32', 'in_ptr48': '*fp32', 'in_ptr49': 'fp32', 'out_ptr6': '*fp32', 'out_ptr7': '*fp32', 'out_ptr8': '*fp32', 'out_ptr15': '*fp32', 'out_ptr16': '*fp32', 'out_ptr17': '*fp32', 'out_ptr24': '*fp32', 'out_ptr25': '*fp32', 'out_ptr26': '*fp32', 'out_ptr33': '*fp32', 'out_ptr34': '*fp32', 'out_ptr35': '*fp32', 'out_ptr42': '*fp32', 'out_ptr43': '*fp32', 'out_ptr44': '*fp32', 'out_ptr51': '*fp32', 'out_ptr52': '*fp32', 'out_ptr53': '*fp32', 'out_ptr60': '*fp32', 'out_ptr61': '*fp32', 'out_ptr62': '*fp32', 'out_ptr69': '*fp32', 'out_ptr70': '*fp32', 'out_ptr71': '*fp32', 'out_ptr78': '*fp32', 'out_ptr79': '*fp32', 'out_ptr80': '*fp32', 'out_ptr87': '*fp32', 'out_ptr88': '*fp32', 'out_ptr89': '*fp32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=80, cc=86, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, warp_size=32), 'constants': {}, 'configs': [{(0,): [['tt.divisibility', 16]], (1,): [['tt.divisibility', 16]], (2,): [['tt.divisibility', 16]], (3,): [['tt.divisibility', 16]], (5,): [['tt.divisibility', 16]], (6,): [['tt.divisibility', 16]], (7,): [['tt.divisibility', 16]], (8,): [['tt.divisibility', 16]], (10,): [['tt.divisibility', 16]], (11,): [['tt.divisibility', 16]], (12,): [['tt.divisibility', 16]], (13,): [['tt.divisibility', 16]], (15,): [['tt.divisibility', 16]], (16,): [['tt.divisibility', 16]], (17,): [['tt.divisibility', 16]], (18,): [['tt.divisibility', 16]], (20,): [['tt.divisibility', 16]], (21,): [['tt.divisibility', 16]], (22,): [['tt.divisibility', 16]], (23,): [['tt.divisibility', 16]], (25,): [['tt.divisibility', 16]], (26,): [['tt.divisibility', 16]], (27,): [['tt.divisibility', 16]], (28,): [['tt.divisibility', 16]], (30,): [['tt.divisibility', 16]], (31,): [['tt.divisibility', 16]], (32,): [['tt.divisibility', 16]], (33,): [['tt.divisibility', 16]], (35,): [['tt.divisibility', 16]], (36,): [['tt.divisibility', 16]], (37,): [['tt.divisibility', 16]], (38,): [['tt.divisibility', 16]], (40,): [['tt.divisibility', 16]], (41,): [['tt.divisibility', 16]], (42,): [['tt.divisibility', 16]], (43,): [['tt.divisibility', 16]], (45,): [['tt.divisibility', 16]], (46,): [['tt.divisibility', 16]], (47,): [['tt.divisibility', 16]], (48,): [['tt.divisibility', 16]], (50,): [['tt.divisibility', 16]], (51,): [['tt.divisibility', 16]], (52,): [['tt.divisibility', 16]], (53,): [['tt.divisibility', 16]], (54,): [['tt.divisibility', 16]], (55,): [['tt.divisibility', 16]], (56,): [['tt.divisibility', 16]], (57,): [['tt.divisibility', 16]], (58,): [['tt.divisibility', 16]], (59,): [['tt.divisibility', 16]], (60,): [['tt.divisibility', 16]], (61,): [['tt.divisibility', 16]], (62,): [['tt.divisibility', 16]], (63,): [['tt.divisibility', 16]], (64,): [['tt.divisibility', 16]], (65,): [['tt.divisibility', 16]], (66,): [['tt.divisibility', 16]], (67,): [['tt.divisibility', 16]], (68,): [['tt.divisibility', 16]], (69,): [['tt.divisibility', 16]], (70,): [['tt.divisibility', 16]], (71,): [['tt.divisibility', 16]], (72,): [['tt.divisibility', 16]], (73,): [['tt.divisibility', 16]], (74,): [['tt.divisibility', 16]], (75,): [['tt.divisibility', 16]], (76,): [['tt.divisibility', 16]], (77,): [['tt.divisibility', 16]], (78,): [['tt.divisibility', 16]], (79,): [['tt.divisibility', 16]]}]},
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] inductor_meta={'grid_type': 'SequentialComboKernelGrid', 'combo_grid_meta': {'num_kernels': 10, 'min_blocks': 0, 'default_config': {'XBLOCK': 1024}, 'no_x_dim_0': False, 'xnumel_0': 1048576, 'no_x_dim_1': False, 'xnumel_1': 1048576, 'no_x_dim_2': False, 'xnumel_2': 1048576, 'no_x_dim_3': False, 'xnumel_3': 1048576, 'no_x_dim_4': False, 'xnumel_4': 1048576, 'no_x_dim_5': False, 'xnumel_5': 1048576, 'no_x_dim_6': False, 'xnumel_6': 1048576, 'no_x_dim_7': False, 'xnumel_7': 1048576, 'no_x_dim_8': False, 'xnumel_8': 1048576, 'no_x_dim_9': False, 'xnumel_9': 1048576}, 'kernel_name': 'triton_for_fused_0', 'mutated_arg_names': ['in_ptr1', 'in_ptr11', 'in_ptr12', 'in_ptr13', 'in_ptr16', 'in_ptr17', 'in_ptr18', 'in_ptr2', 'in_ptr21', 'in_ptr22', 'in_ptr23', 'in_ptr26', 'in_ptr27', 'in_ptr28', 'in_ptr3', 'in_ptr31', 'in_ptr32', 'in_ptr33', 'in_ptr36', 'in_ptr37', 'in_ptr38', 'in_ptr41', 'in_ptr42', 'in_ptr43', 'in_ptr46', 'in_ptr47', 'in_ptr48', 'in_ptr6', 'in_ptr7', 'in_ptr8', 'out_ptr15', 'out_ptr16', 'out_ptr17', 'out_ptr24', 'out_ptr25', 'out_ptr26', 'out_ptr33', 'out_ptr34', 'out_ptr35', 'out_ptr42', 'out_ptr43', 'out_ptr44', 'out_ptr51', 'out_ptr52', 'out_ptr53', 'out_ptr6', 'out_ptr60', 'out_ptr61', 'out_ptr62', 'out_ptr69', 'out_ptr7', 'out_ptr70', 'out_ptr71', 'out_ptr78', 'out_ptr79', 'out_ptr8', 'out_ptr80', 'out_ptr87', 'out_ptr88', 'out_ptr89'], 'backend_hash': '1E2C16421D4C3DBA4AD92BFC4278A3CB24C43DEDA6EE7FF9E3FBB1DBB80802DB', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] )
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] @triton.jit
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] def triton_for_fused_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, out_ptr6, out_ptr7, out_ptr8, out_ptr15, out_ptr16, out_ptr17, out_ptr24, out_ptr25, out_ptr26, out_ptr33, out_ptr34, out_ptr35, out_ptr42, out_ptr43, out_ptr44, out_ptr51, out_ptr52, out_ptr53, out_ptr60, out_ptr61, out_ptr62, out_ptr69, out_ptr70, out_ptr71, out_ptr78, out_ptr79, out_ptr80, out_ptr87, out_ptr88, out_ptr89):
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid = tl.program_id(0)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] XBLOCK: tl.constexpr = 1024
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_0 = tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_1 = num_xblocks_0 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_2 = num_xblocks_1 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_3 = num_xblocks_2 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_4 = num_xblocks_3 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_5 = num_xblocks_4 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_6 = num_xblocks_5 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_7 = num_xblocks_6 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_8 = num_xblocks_7 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] num_xblocks_9 = num_xblocks_8 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] if pid < num_xblocks_0:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x0 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp5 = tl.load(in_ptr0 + (x0), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp6 = tl.load(in_ptr1 + (x0), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp11 = tl.load(in_ptr2 + (x0), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp18 = tl.load(in_ptr3 + (x0), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp20 = in_ptr4
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp0 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp1 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp2 = tmp0 >= tmp1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp3 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp4 = tl.where(tmp2, tmp3, tmp0)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp7 = tmp5 - tmp6
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp8 = tmp4 * tmp7
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp9 = tl.where(tmp2, tmp5, tmp6)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp10 = tmp8 + tmp9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp12 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp13 = tmp11 * tmp12
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp14 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp15 = tmp5 * tmp14
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp16 = tmp15 * tmp5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp17 = tmp13 + tmp16
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp19 = libdevice.sqrt(tmp17)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp21 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp22 = tmp20 + tmp21
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp23 = libdevice.pow(tmp12, tmp22)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp24 = tmp21 - tmp23
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp25 = libdevice.sqrt(tmp24)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp26 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp27 = libdevice.pow(tmp26, tmp22)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp28 = tmp21 - tmp27
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp29 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp30 = (tmp29 / tmp28)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp31 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp32 = tmp30 * tmp31
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp33 = -tmp32
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp34 = tmp25 * tmp33
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp35 = (tmp19 / tmp34)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp36 = (tmp29 / tmp33)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp37 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp38 = tmp36 * tmp37
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp39 = tmp35 + tmp38
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp40 = (tmp10 / tmp39)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp41 = tmp18 + tmp40
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr6 + (x0), tmp41, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr7 + (x0), tmp10, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr8 + (x0), tmp17, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_1:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x1 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp47 = tl.load(in_ptr5 + (x1), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp48 = tl.load(in_ptr6 + (x1), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp53 = tl.load(in_ptr7 + (x1), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp60 = tl.load(in_ptr8 + (x1), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp62 = in_ptr9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp42 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp43 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp44 = tmp42 >= tmp43
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp45 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp46 = tl.where(tmp44, tmp45, tmp42)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp49 = tmp47 - tmp48
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp50 = tmp46 * tmp49
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp51 = tl.where(tmp44, tmp47, tmp48)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp52 = tmp50 + tmp51
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp54 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp55 = tmp53 * tmp54
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp56 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp57 = tmp47 * tmp56
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp58 = tmp57 * tmp47
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp59 = tmp55 + tmp58
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp61 = libdevice.sqrt(tmp59)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp63 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp64 = tmp62 + tmp63
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp65 = libdevice.pow(tmp54, tmp64)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp66 = tmp63 - tmp65
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp67 = libdevice.sqrt(tmp66)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp68 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp69 = libdevice.pow(tmp68, tmp64)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp70 = tmp63 - tmp69
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp71 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp72 = (tmp71 / tmp70)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp73 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp74 = tmp72 * tmp73
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp75 = -tmp74
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp76 = tmp67 * tmp75
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp77 = (tmp61 / tmp76)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp78 = (tmp71 / tmp75)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp79 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp80 = tmp78 * tmp79
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp81 = tmp77 + tmp80
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp82 = (tmp52 / tmp81)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp83 = tmp60 + tmp82
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr15 + (x1), tmp83, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr16 + (x1), tmp52, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr17 + (x1), tmp59, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_2:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x2 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp89 = tl.load(in_ptr10 + (x2), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp90 = tl.load(in_ptr11 + (x2), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp95 = tl.load(in_ptr12 + (x2), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp102 = tl.load(in_ptr13 + (x2), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp104 = in_ptr14
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp84 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp85 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp86 = tmp84 >= tmp85
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp87 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp88 = tl.where(tmp86, tmp87, tmp84)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp91 = tmp89 - tmp90
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp92 = tmp88 * tmp91
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp93 = tl.where(tmp86, tmp89, tmp90)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp94 = tmp92 + tmp93
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp96 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp97 = tmp95 * tmp96
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp98 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp99 = tmp89 * tmp98
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp100 = tmp99 * tmp89
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp101 = tmp97 + tmp100
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp103 = libdevice.sqrt(tmp101)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp105 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp106 = tmp104 + tmp105
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp107 = libdevice.pow(tmp96, tmp106)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp108 = tmp105 - tmp107
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp109 = libdevice.sqrt(tmp108)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp110 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp111 = libdevice.pow(tmp110, tmp106)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp112 = tmp105 - tmp111
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp113 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp114 = (tmp113 / tmp112)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp115 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp116 = tmp114 * tmp115
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp117 = -tmp116
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp118 = tmp109 * tmp117
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp119 = (tmp103 / tmp118)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp120 = (tmp113 / tmp117)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp121 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp122 = tmp120 * tmp121
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp123 = tmp119 + tmp122
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp124 = (tmp94 / tmp123)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp125 = tmp102 + tmp124
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr24 + (x2), tmp125, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr25 + (x2), tmp94, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr26 + (x2), tmp101, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_3:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_2
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x3 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp131 = tl.load(in_ptr15 + (x3), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp132 = tl.load(in_ptr16 + (x3), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp137 = tl.load(in_ptr17 + (x3), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp144 = tl.load(in_ptr18 + (x3), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp146 = in_ptr19
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp126 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp127 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp128 = tmp126 >= tmp127
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp129 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp130 = tl.where(tmp128, tmp129, tmp126)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp133 = tmp131 - tmp132
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp134 = tmp130 * tmp133
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp135 = tl.where(tmp128, tmp131, tmp132)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp136 = tmp134 + tmp135
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp138 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp139 = tmp137 * tmp138
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp140 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp141 = tmp131 * tmp140
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp142 = tmp141 * tmp131
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp143 = tmp139 + tmp142
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp145 = libdevice.sqrt(tmp143)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp147 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp148 = tmp146 + tmp147
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp149 = libdevice.pow(tmp138, tmp148)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp150 = tmp147 - tmp149
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp151 = libdevice.sqrt(tmp150)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp152 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp153 = libdevice.pow(tmp152, tmp148)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp154 = tmp147 - tmp153
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp155 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp156 = (tmp155 / tmp154)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp157 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp158 = tmp156 * tmp157
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp159 = -tmp158
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp160 = tmp151 * tmp159
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp161 = (tmp145 / tmp160)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp162 = (tmp155 / tmp159)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp163 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp164 = tmp162 * tmp163
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp165 = tmp161 + tmp164
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp166 = (tmp136 / tmp165)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp167 = tmp144 + tmp166
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr33 + (x3), tmp167, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr34 + (x3), tmp136, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr35 + (x3), tmp143, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_4:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_3
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x4 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp173 = tl.load(in_ptr20 + (x4), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp174 = tl.load(in_ptr21 + (x4), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp179 = tl.load(in_ptr22 + (x4), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp186 = tl.load(in_ptr23 + (x4), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp188 = in_ptr24
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp168 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp169 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp170 = tmp168 >= tmp169
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp171 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp172 = tl.where(tmp170, tmp171, tmp168)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp175 = tmp173 - tmp174
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp176 = tmp172 * tmp175
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp177 = tl.where(tmp170, tmp173, tmp174)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp178 = tmp176 + tmp177
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp180 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp181 = tmp179 * tmp180
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp182 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp183 = tmp173 * tmp182
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp184 = tmp183 * tmp173
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp185 = tmp181 + tmp184
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp187 = libdevice.sqrt(tmp185)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp189 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp190 = tmp188 + tmp189
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp191 = libdevice.pow(tmp180, tmp190)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp192 = tmp189 - tmp191
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp193 = libdevice.sqrt(tmp192)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp194 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp195 = libdevice.pow(tmp194, tmp190)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp196 = tmp189 - tmp195
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp197 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp198 = (tmp197 / tmp196)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp199 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp200 = tmp198 * tmp199
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp201 = -tmp200
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp202 = tmp193 * tmp201
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp203 = (tmp187 / tmp202)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp204 = (tmp197 / tmp201)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp205 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp206 = tmp204 * tmp205
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp207 = tmp203 + tmp206
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp208 = (tmp178 / tmp207)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp209 = tmp186 + tmp208
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr42 + (x4), tmp209, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr43 + (x4), tmp178, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr44 + (x4), tmp185, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_5:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_4
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x5 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp215 = tl.load(in_ptr25 + (x5), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp216 = tl.load(in_ptr26 + (x5), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp221 = tl.load(in_ptr27 + (x5), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp228 = tl.load(in_ptr28 + (x5), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp230 = in_ptr29
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp210 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp211 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp212 = tmp210 >= tmp211
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp213 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp214 = tl.where(tmp212, tmp213, tmp210)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp217 = tmp215 - tmp216
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp218 = tmp214 * tmp217
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp219 = tl.where(tmp212, tmp215, tmp216)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp220 = tmp218 + tmp219
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp222 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp223 = tmp221 * tmp222
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp224 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp225 = tmp215 * tmp224
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp226 = tmp225 * tmp215
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp227 = tmp223 + tmp226
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp229 = libdevice.sqrt(tmp227)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp231 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp232 = tmp230 + tmp231
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp233 = libdevice.pow(tmp222, tmp232)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp234 = tmp231 - tmp233
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp235 = libdevice.sqrt(tmp234)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp236 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp237 = libdevice.pow(tmp236, tmp232)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp238 = tmp231 - tmp237
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp239 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp240 = (tmp239 / tmp238)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp241 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp242 = tmp240 * tmp241
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp243 = -tmp242
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp244 = tmp235 * tmp243
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp245 = (tmp229 / tmp244)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp246 = (tmp239 / tmp243)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp247 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp248 = tmp246 * tmp247
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp249 = tmp245 + tmp248
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp250 = (tmp220 / tmp249)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp251 = tmp228 + tmp250
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr51 + (x5), tmp251, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr52 + (x5), tmp220, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr53 + (x5), tmp227, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_6:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x6 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp257 = tl.load(in_ptr30 + (x6), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp258 = tl.load(in_ptr31 + (x6), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp263 = tl.load(in_ptr32 + (x6), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp270 = tl.load(in_ptr33 + (x6), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp272 = in_ptr34
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp252 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp253 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp254 = tmp252 >= tmp253
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp255 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp256 = tl.where(tmp254, tmp255, tmp252)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp259 = tmp257 - tmp258
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp260 = tmp256 * tmp259
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp261 = tl.where(tmp254, tmp257, tmp258)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp262 = tmp260 + tmp261
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp264 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp265 = tmp263 * tmp264
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp266 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp267 = tmp257 * tmp266
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp268 = tmp267 * tmp257
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp269 = tmp265 + tmp268
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp271 = libdevice.sqrt(tmp269)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp273 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp274 = tmp272 + tmp273
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp275 = libdevice.pow(tmp264, tmp274)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp276 = tmp273 - tmp275
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp277 = libdevice.sqrt(tmp276)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp278 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp279 = libdevice.pow(tmp278, tmp274)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp280 = tmp273 - tmp279
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp281 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp282 = (tmp281 / tmp280)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp283 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp284 = tmp282 * tmp283
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp285 = -tmp284
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp286 = tmp277 * tmp285
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp287 = (tmp271 / tmp286)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp288 = (tmp281 / tmp285)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp289 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp290 = tmp288 * tmp289
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp291 = tmp287 + tmp290
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp292 = (tmp262 / tmp291)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp293 = tmp270 + tmp292
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr60 + (x6), tmp293, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr61 + (x6), tmp262, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr62 + (x6), tmp269, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_7:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_6
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x7 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp299 = tl.load(in_ptr35 + (x7), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp300 = tl.load(in_ptr36 + (x7), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp305 = tl.load(in_ptr37 + (x7), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp312 = tl.load(in_ptr38 + (x7), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp314 = in_ptr39
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp294 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp295 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp296 = tmp294 >= tmp295
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp297 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp298 = tl.where(tmp296, tmp297, tmp294)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp301 = tmp299 - tmp300
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp302 = tmp298 * tmp301
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp303 = tl.where(tmp296, tmp299, tmp300)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp304 = tmp302 + tmp303
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp306 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp307 = tmp305 * tmp306
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp308 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp309 = tmp299 * tmp308
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp310 = tmp309 * tmp299
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp311 = tmp307 + tmp310
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp313 = libdevice.sqrt(tmp311)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp315 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp316 = tmp314 + tmp315
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp317 = libdevice.pow(tmp306, tmp316)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp318 = tmp315 - tmp317
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp319 = libdevice.sqrt(tmp318)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp320 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp321 = libdevice.pow(tmp320, tmp316)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp322 = tmp315 - tmp321
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp323 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp324 = (tmp323 / tmp322)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp325 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp326 = tmp324 * tmp325
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp327 = -tmp326
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp328 = tmp319 * tmp327
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp329 = (tmp313 / tmp328)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp330 = (tmp323 / tmp327)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp331 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp332 = tmp330 * tmp331
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp333 = tmp329 + tmp332
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp334 = (tmp304 / tmp333)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp335 = tmp312 + tmp334
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr69 + (x7), tmp335, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr70 + (x7), tmp304, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr71 + (x7), tmp311, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_8:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_7
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x8 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp341 = tl.load(in_ptr40 + (x8), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp342 = tl.load(in_ptr41 + (x8), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp347 = tl.load(in_ptr42 + (x8), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp354 = tl.load(in_ptr43 + (x8), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp356 = in_ptr44
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp336 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp337 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp338 = tmp336 >= tmp337
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp339 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp340 = tl.where(tmp338, tmp339, tmp336)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp343 = tmp341 - tmp342
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp344 = tmp340 * tmp343
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp345 = tl.where(tmp338, tmp341, tmp342)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp346 = tmp344 + tmp345
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp348 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp349 = tmp347 * tmp348
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp350 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp351 = tmp341 * tmp350
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp352 = tmp351 * tmp341
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp353 = tmp349 + tmp352
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp355 = libdevice.sqrt(tmp353)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp357 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp358 = tmp356 + tmp357
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp359 = libdevice.pow(tmp348, tmp358)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp360 = tmp357 - tmp359
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp361 = libdevice.sqrt(tmp360)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp362 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp363 = libdevice.pow(tmp362, tmp358)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp364 = tmp357 - tmp363
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp365 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp366 = (tmp365 / tmp364)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp367 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp368 = tmp366 * tmp367
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp369 = -tmp368
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp370 = tmp361 * tmp369
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp371 = (tmp355 / tmp370)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp372 = (tmp365 / tmp369)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp373 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp374 = tmp372 * tmp373
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp375 = tmp371 + tmp374
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp376 = (tmp346 / tmp375)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp377 = tmp354 + tmp376
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr78 + (x8), tmp377, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr79 + (x8), tmp346, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr80 + (x8), tmp353, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] elif pid < num_xblocks_9:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pid_offset = pid - num_xblocks_8
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xnumel = 1048576
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] r0_numel = 1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] x9 = xindex
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp383 = tl.load(in_ptr45 + (x9), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp384 = tl.load(in_ptr46 + (x9), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp389 = tl.load(in_ptr47 + (x9), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp396 = tl.load(in_ptr48 + (x9), None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp398 = in_ptr49
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp378 = 0.09999999999999998
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp379 = 0.5
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp380 = tmp378 >= tmp379
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp381 = -0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp382 = tl.where(tmp380, tmp381, tmp378)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp385 = tmp383 - tmp384
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp386 = tmp382 * tmp385
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp387 = tl.where(tmp380, tmp383, tmp384)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp388 = tmp386 + tmp387
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp390 = 0.999
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp391 = tmp389 * tmp390
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp392 = 0.0010000000000000009
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp393 = tmp383 * tmp392
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp394 = tmp393 * tmp383
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp395 = tmp391 + tmp394
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp397 = libdevice.sqrt(tmp395)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp399 = 1.0
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp400 = tmp398 + tmp399
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp401 = libdevice.pow(tmp390, tmp400)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp402 = tmp399 - tmp401
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp403 = libdevice.sqrt(tmp402)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp404 = 0.9
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp405 = libdevice.pow(tmp404, tmp400)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp406 = tmp399 - tmp405
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp407 = tl.full([1], 1, tl.int32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp408 = (tmp407 / tmp406)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp409 = 0.001
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp410 = tmp408 * tmp409
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp411 = -tmp410
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp412 = tmp403 * tmp411
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp413 = (tmp397 / tmp412)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp414 = (tmp407 / tmp411)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp415 = 1e-08
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp416 = tmp414 * tmp415
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp417 = tmp413 + tmp416
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp418 = (tmp388 / tmp417)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tmp419 = tmp396 + tmp418
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr87 + (x9), tmp419, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr88 + (x9), tmp388, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] tl.store(out_ptr89 + (x9), tmp395, None)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] else:
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] pass
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] ''', device_str='cuda')
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] cpp_fused__foreach_copy_1 = async_compile.cpp_pybinding(['const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*'], '''
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] #include "/tmp/torchinductor_ci-user/pi/cpicxudqmdsjh5cm4klbtbrvy2cxwr7whxl3md2zzdjdf3orvfdf.h"
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] extern "C" void kernel(const float* in_ptr0,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr1,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr2,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr3,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr4,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr5,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr6,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr7,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr8,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] const float* in_ptr9,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr1,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr3,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr5,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr7,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr9,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr11,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr13,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr15,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr17,
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] float* out_ptr19)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr0[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr1[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr1[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr3[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr2[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr5[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr3[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr7[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr4[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr9[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr5[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr11[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr6[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr13[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr7[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr15[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr8[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr17[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] {
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp0 = in_ptr9[static_cast<int64_t>(0L)];
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] out_ptr19[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] }
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] ''')
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] async_compile.wait(globals())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del async_compile
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] def call(args):
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1 = args
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] args.clear()
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg0_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg1_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg2_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg3_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg4_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg5_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg6_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg7_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg8_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg9_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg10_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg11_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg12_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg13_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg14_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg15_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg16_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg17_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg18_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg19_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg20_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg21_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg22_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg23_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg24_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg25_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg26_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg27_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg28_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg29_1, (), ())
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg30_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg31_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg32_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg33_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg34_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg35_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg36_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg37_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg38_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg39_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg40_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg41_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg42_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg43_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg44_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg45_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg46_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg47_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg48_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] assert_size_stride(arg49_1, (1024, 1024), (1024, 1))
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] with torch.cuda._DeviceGuard(0):
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] torch.cuda.set_device(0)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] stream0 = get_raw_stream(0)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] triton_for_fused_0.run(arg1_1, arg30_1, arg40_1, arg0_1, arg20_1.item(), arg3_1, arg31_1, arg41_1, arg2_1, arg21_1.item(), arg5_1, arg32_1, arg42_1, arg4_1, arg22_1.item(), arg7_1, arg33_1, arg43_1, arg6_1, arg23_1.item(), arg9_1, arg34_1, arg44_1, arg8_1, arg24_1.item(), arg11_1, arg35_1, arg45_1, arg10_1, arg25_1.item(), arg13_1, arg36_1, arg46_1, arg12_1, arg26_1.item(), arg15_1, arg37_1, arg47_1, arg14_1, arg27_1.item(), arg17_1, arg38_1, arg48_1, arg16_1, arg28_1.item(), arg19_1, arg39_1, arg49_1, arg18_1, arg29_1.item(), arg0_1, arg30_1, arg40_1, arg2_1, arg31_1, arg41_1, arg4_1, arg32_1, arg42_1, arg6_1, arg33_1, arg43_1, arg8_1, arg34_1, arg44_1, arg10_1, arg35_1, arg45_1, arg12_1, arg36_1, arg46_1, arg14_1, arg37_1, arg47_1, arg16_1, arg38_1, arg48_1, arg18_1, arg39_1, arg49_1, stream=stream0)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg0_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg10_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg11_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg12_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg13_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg14_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg15_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg16_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg17_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg18_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg19_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg1_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg2_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg30_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg31_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg32_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg33_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg34_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg35_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg36_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg37_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg38_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg39_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg3_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg40_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg41_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg42_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg43_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg44_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg45_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg46_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg47_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg48_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg49_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg4_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg5_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg6_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg7_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg8_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg9_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] cpp_fused__foreach_copy_1(arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg20_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg21_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg22_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg23_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg24_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg25_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg26_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg27_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg28_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] del arg29_1
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] return ()
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] def benchmark_compiled_module(times=10, repeat=10):
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._dynamo.testing import rand_strided
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.utils import print_performance
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg0_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg1_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg2_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg3_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg4_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg5_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg6_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg7_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg8_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg9_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg10_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg11_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg12_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg13_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg14_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg15_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg16_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg17_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg18_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg19_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg20_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg21_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg22_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg23_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg24_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg25_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg26_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg27_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg28_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg29_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg30_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg31_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg32_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg33_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg34_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg35_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg36_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg37_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg38_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg39_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg40_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg41_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg42_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg43_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg44_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg45_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg46_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg47_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg48_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] arg49_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1])
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] return print_performance(fn, times=times, repeat=repeat)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] if __name__ == "__main__":
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] from torch._inductor.wrapper_benchmark import compiled_module_main
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code] compiled_module_main('None', benchmark_compiled_module)
V0602 15:35:29.877000 28384 torch/_inductor/graph.py:2104] [0/0] [__output_code]
V0602 15:35:29.918000 28384 torch/_inductor/graph.py:2115] [0/0] [__output_code] Output code written to: /tmp/torchinductor_ci-user/bx/cbxwuspm7iljtlkypwgm5a6rrandaew4wqmdmng4lzas4ogomxpw.py
I0602 15:35:31.448000 28384 torch/_inductor/graph.py:2149] [0/0] [__output_code] Output code written to: /tmp/torchinductor_ci-user/bx/cbxwuspm7iljtlkypwgm5a6rrandaew4wqmdmng4lzas4ogomxpw.py
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] Output code:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] # AOT ID: ['1_inference']
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from ctypes import c_void_p, c_long, c_int
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import torch
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import math
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import random
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import os
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import tempfile
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from math import inf, nan
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from cmath import nanj
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.hooks import run_intermediate_hooks
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.utils import maybe_profile
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.codegen.memory_planning import _align as align
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch import device, empty_strided
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.async_compile import AsyncCompile
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.select_algorithm import extern_kernels
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.codegen.multi_kernel import MultiKernelCall
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton.language as tl
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime.triton_heuristics import start_graph, end_graph
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._C import _cuda_getCurrentRawStream as get_raw_stream
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] aten = torch.ops.aten
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] inductor_ops = torch.ops.inductor
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] _quantized = torch.ops._quantized
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride = torch._C._dynamo.guards.assert_size_stride
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] alloc_from_pool = torch.ops.inductor._alloc_from_pool
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] async_compile = AsyncCompile()
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] empty_strided_p2p = torch._C._distributed_c10d._SymmetricMemory.empty_strided_p2p
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] # kernel path: /tmp/torchinductor_ci-user/ej/cejr7t4zzqo7llcoxga7clgyc6gs3676lsm4dvilpfw64kudp2ns.py
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] # Source node to ATen node mapping:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] triton_for_fused_0 = async_compile.triton('triton_for_fused_0', '''
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] import triton.language as tl
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime import triton_helpers, triton_heuristics
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, DeviceProperties
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] @triton_heuristics.foreach(
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_warps=8,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] triton_meta={'signature': {'in_ptr0': '*fp32', 'in_ptr1': '*fp32', 'in_ptr2': '*fp32', 'in_ptr3': '*fp32', 'in_ptr4': 'fp32', 'in_ptr5': '*fp32', 'in_ptr6': '*fp32', 'in_ptr7': '*fp32', 'in_ptr8': '*fp32', 'in_ptr9': 'fp32', 'in_ptr10': '*fp32', 'in_ptr11': '*fp32', 'in_ptr12': '*fp32', 'in_ptr13': '*fp32', 'in_ptr14': 'fp32', 'in_ptr15': '*fp32', 'in_ptr16': '*fp32', 'in_ptr17': '*fp32', 'in_ptr18': '*fp32', 'in_ptr19': 'fp32', 'in_ptr20': '*fp32', 'in_ptr21': '*fp32', 'in_ptr22': '*fp32', 'in_ptr23': '*fp32', 'in_ptr24': 'fp32', 'in_ptr25': '*fp32', 'in_ptr26': '*fp32', 'in_ptr27': '*fp32', 'in_ptr28': '*fp32', 'in_ptr29': 'fp32', 'in_ptr30': '*fp32', 'in_ptr31': '*fp32', 'in_ptr32': '*fp32', 'in_ptr33': '*fp32', 'in_ptr34': 'fp32', 'in_ptr35': '*fp32', 'in_ptr36': '*fp32', 'in_ptr37': '*fp32', 'in_ptr38': '*fp32', 'in_ptr39': 'fp32', 'in_ptr40': '*fp32', 'in_ptr41': '*fp32', 'in_ptr42': '*fp32', 'in_ptr43': '*fp32', 'in_ptr44': 'fp32', 'in_ptr45': '*fp32', 'in_ptr46': '*fp32', 'in_ptr47': '*fp32', 'in_ptr48': '*fp32', 'in_ptr49': 'fp32', 'out_ptr6': '*fp32', 'out_ptr7': '*fp32', 'out_ptr8': '*fp32', 'out_ptr15': '*fp32', 'out_ptr16': '*fp32', 'out_ptr17': '*fp32', 'out_ptr24': '*fp32', 'out_ptr25': '*fp32', 'out_ptr26': '*fp32', 'out_ptr33': '*fp32', 'out_ptr34': '*fp32', 'out_ptr35': '*fp32', 'out_ptr42': '*fp32', 'out_ptr43': '*fp32', 'out_ptr44': '*fp32', 'out_ptr51': '*fp32', 'out_ptr52': '*fp32', 'out_ptr53': '*fp32', 'out_ptr60': '*fp32', 'out_ptr61': '*fp32', 'out_ptr62': '*fp32', 'out_ptr69': '*fp32', 'out_ptr70': '*fp32', 'out_ptr71': '*fp32', 'out_ptr78': '*fp32', 'out_ptr79': '*fp32', 'out_ptr80': '*fp32', 'out_ptr87': '*fp32', 'out_ptr88': '*fp32', 'out_ptr89': '*fp32'}, 'device': DeviceProperties(type='cuda', index=0, multi_processor_count=80, cc=86, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=1536, warp_size=32), 'constants': {}, 'configs': [{(0,): [['tt.divisibility', 16]], (1,): [['tt.divisibility', 16]], (2,): [['tt.divisibility', 16]], (3,): [['tt.divisibility', 16]], (5,): [['tt.divisibility', 16]], (6,): [['tt.divisibility', 16]], (7,): [['tt.divisibility', 16]], (8,): [['tt.divisibility', 16]], (10,): [['tt.divisibility', 16]], (11,): [['tt.divisibility', 16]], (12,): [['tt.divisibility', 16]], (13,): [['tt.divisibility', 16]], (15,): [['tt.divisibility', 16]], (16,): [['tt.divisibility', 16]], (17,): [['tt.divisibility', 16]], (18,): [['tt.divisibility', 16]], (20,): [['tt.divisibility', 16]], (21,): [['tt.divisibility', 16]], (22,): [['tt.divisibility', 16]], (23,): [['tt.divisibility', 16]], (25,): [['tt.divisibility', 16]], (26,): [['tt.divisibility', 16]], (27,): [['tt.divisibility', 16]], (28,): [['tt.divisibility', 16]], (30,): [['tt.divisibility', 16]], (31,): [['tt.divisibility', 16]], (32,): [['tt.divisibility', 16]], (33,): [['tt.divisibility', 16]], (35,): [['tt.divisibility', 16]], (36,): [['tt.divisibility', 16]], (37,): [['tt.divisibility', 16]], (38,): [['tt.divisibility', 16]], (40,): [['tt.divisibility', 16]], (41,): [['tt.divisibility', 16]], (42,): [['tt.divisibility', 16]], (43,): [['tt.divisibility', 16]], (45,): [['tt.divisibility', 16]], (46,): [['tt.divisibility', 16]], (47,): [['tt.divisibility', 16]], (48,): [['tt.divisibility', 16]], (50,): [['tt.divisibility', 16]], (51,): [['tt.divisibility', 16]], (52,): [['tt.divisibility', 16]], (53,): [['tt.divisibility', 16]], (54,): [['tt.divisibility', 16]], (55,): [['tt.divisibility', 16]], (56,): [['tt.divisibility', 16]], (57,): [['tt.divisibility', 16]], (58,): [['tt.divisibility', 16]], (59,): [['tt.divisibility', 16]], (60,): [['tt.divisibility', 16]], (61,): [['tt.divisibility', 16]], (62,): [['tt.divisibility', 16]], (63,): [['tt.divisibility', 16]], (64,): [['tt.divisibility', 16]], (65,): [['tt.divisibility', 16]], (66,): [['tt.divisibility', 16]], (67,): [['tt.divisibility', 16]], (68,): [['tt.divisibility', 16]], (69,): [['tt.divisibility', 16]], (70,): [['tt.divisibility', 16]], (71,): [['tt.divisibility', 16]], (72,): [['tt.divisibility', 16]], (73,): [['tt.divisibility', 16]], (74,): [['tt.divisibility', 16]], (75,): [['tt.divisibility', 16]], (76,): [['tt.divisibility', 16]], (77,): [['tt.divisibility', 16]], (78,): [['tt.divisibility', 16]], (79,): [['tt.divisibility', 16]]}]},
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] inductor_meta={'grid_type': 'SequentialComboKernelGrid', 'combo_grid_meta': {'num_kernels': 10, 'min_blocks': 0, 'default_config': {'XBLOCK': 1024}, 'no_x_dim_0': False, 'xnumel_0': 1048576, 'no_x_dim_1': False, 'xnumel_1': 1048576, 'no_x_dim_2': False, 'xnumel_2': 1048576, 'no_x_dim_3': False, 'xnumel_3': 1048576, 'no_x_dim_4': False, 'xnumel_4': 1048576, 'no_x_dim_5': False, 'xnumel_5': 1048576, 'no_x_dim_6': False, 'xnumel_6': 1048576, 'no_x_dim_7': False, 'xnumel_7': 1048576, 'no_x_dim_8': False, 'xnumel_8': 1048576, 'no_x_dim_9': False, 'xnumel_9': 1048576}, 'kernel_name': 'triton_for_fused_0', 'mutated_arg_names': ['in_ptr1', 'in_ptr11', 'in_ptr12', 'in_ptr13', 'in_ptr16', 'in_ptr17', 'in_ptr18', 'in_ptr2', 'in_ptr21', 'in_ptr22', 'in_ptr23', 'in_ptr26', 'in_ptr27', 'in_ptr28', 'in_ptr3', 'in_ptr31', 'in_ptr32', 'in_ptr33', 'in_ptr36', 'in_ptr37', 'in_ptr38', 'in_ptr41', 'in_ptr42', 'in_ptr43', 'in_ptr46', 'in_ptr47', 'in_ptr48', 'in_ptr6', 'in_ptr7', 'in_ptr8', 'out_ptr15', 'out_ptr16', 'out_ptr17', 'out_ptr24', 'out_ptr25', 'out_ptr26', 'out_ptr33', 'out_ptr34', 'out_ptr35', 'out_ptr42', 'out_ptr43', 'out_ptr44', 'out_ptr51', 'out_ptr52', 'out_ptr53', 'out_ptr6', 'out_ptr60', 'out_ptr61', 'out_ptr62', 'out_ptr69', 'out_ptr7', 'out_ptr70', 'out_ptr71', 'out_ptr78', 'out_ptr79', 'out_ptr8', 'out_ptr80', 'out_ptr87', 'out_ptr88', 'out_ptr89'], 'backend_hash': '1E2C16421D4C3DBA4AD92BFC4278A3CB24C43DEDA6EE7FF9E3FBB1DBB80802DB', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] )
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] @triton.jit
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] def triton_for_fused_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, in_ptr29, in_ptr30, in_ptr31, in_ptr32, in_ptr33, in_ptr34, in_ptr35, in_ptr36, in_ptr37, in_ptr38, in_ptr39, in_ptr40, in_ptr41, in_ptr42, in_ptr43, in_ptr44, in_ptr45, in_ptr46, in_ptr47, in_ptr48, in_ptr49, out_ptr6, out_ptr7, out_ptr8, out_ptr15, out_ptr16, out_ptr17, out_ptr24, out_ptr25, out_ptr26, out_ptr33, out_ptr34, out_ptr35, out_ptr42, out_ptr43, out_ptr44, out_ptr51, out_ptr52, out_ptr53, out_ptr60, out_ptr61, out_ptr62, out_ptr69, out_ptr70, out_ptr71, out_ptr78, out_ptr79, out_ptr80, out_ptr87, out_ptr88, out_ptr89):
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid = tl.program_id(0)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] XBLOCK: tl.constexpr = 1024
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_0 = tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_1 = num_xblocks_0 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_2 = num_xblocks_1 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_3 = num_xblocks_2 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_4 = num_xblocks_3 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_5 = num_xblocks_4 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_6 = num_xblocks_5 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_7 = num_xblocks_6 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_8 = num_xblocks_7 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] num_xblocks_9 = num_xblocks_8 + tl.cdiv(1048576, XBLOCK)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] if pid < num_xblocks_0:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x0 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp5 = tl.load(in_ptr0 + (x0), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp6 = tl.load(in_ptr1 + (x0), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp11 = tl.load(in_ptr2 + (x0), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp18 = tl.load(in_ptr3 + (x0), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp20 = in_ptr4
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp0 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp1 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp2 = tmp0 >= tmp1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp3 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp4 = tl.where(tmp2, tmp3, tmp0)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp7 = tmp5 - tmp6
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp8 = tmp4 * tmp7
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp9 = tl.where(tmp2, tmp5, tmp6)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp10 = tmp8 + tmp9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp12 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp13 = tmp11 * tmp12
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp14 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp15 = tmp5 * tmp14
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp16 = tmp15 * tmp5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp17 = tmp13 + tmp16
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp19 = libdevice.sqrt(tmp17)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp21 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp22 = tmp20 + tmp21
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp23 = libdevice.pow(tmp12, tmp22)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp24 = tmp21 - tmp23
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp25 = libdevice.sqrt(tmp24)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp26 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp27 = libdevice.pow(tmp26, tmp22)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp28 = tmp21 - tmp27
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp29 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp30 = (tmp29 / tmp28)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp31 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp32 = tmp30 * tmp31
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp33 = -tmp32
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp34 = tmp25 * tmp33
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp35 = (tmp19 / tmp34)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp36 = (tmp29 / tmp33)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp37 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp38 = tmp36 * tmp37
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp39 = tmp35 + tmp38
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp40 = (tmp10 / tmp39)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp41 = tmp18 + tmp40
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr6 + (x0), tmp41, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr7 + (x0), tmp10, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr8 + (x0), tmp17, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_1:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x1 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp47 = tl.load(in_ptr5 + (x1), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp48 = tl.load(in_ptr6 + (x1), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp53 = tl.load(in_ptr7 + (x1), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp60 = tl.load(in_ptr8 + (x1), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp62 = in_ptr9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp42 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp43 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp44 = tmp42 >= tmp43
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp45 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp46 = tl.where(tmp44, tmp45, tmp42)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp49 = tmp47 - tmp48
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp50 = tmp46 * tmp49
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp51 = tl.where(tmp44, tmp47, tmp48)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp52 = tmp50 + tmp51
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp54 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp55 = tmp53 * tmp54
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp56 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp57 = tmp47 * tmp56
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp58 = tmp57 * tmp47
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp59 = tmp55 + tmp58
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp61 = libdevice.sqrt(tmp59)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp63 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp64 = tmp62 + tmp63
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp65 = libdevice.pow(tmp54, tmp64)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp66 = tmp63 - tmp65
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp67 = libdevice.sqrt(tmp66)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp68 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp69 = libdevice.pow(tmp68, tmp64)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp70 = tmp63 - tmp69
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp71 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp72 = (tmp71 / tmp70)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp73 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp74 = tmp72 * tmp73
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp75 = -tmp74
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp76 = tmp67 * tmp75
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp77 = (tmp61 / tmp76)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp78 = (tmp71 / tmp75)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp79 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp80 = tmp78 * tmp79
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp81 = tmp77 + tmp80
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp82 = (tmp52 / tmp81)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp83 = tmp60 + tmp82
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr15 + (x1), tmp83, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr16 + (x1), tmp52, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr17 + (x1), tmp59, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_2:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x2 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp89 = tl.load(in_ptr10 + (x2), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp90 = tl.load(in_ptr11 + (x2), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp95 = tl.load(in_ptr12 + (x2), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp102 = tl.load(in_ptr13 + (x2), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp104 = in_ptr14
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp84 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp85 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp86 = tmp84 >= tmp85
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp87 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp88 = tl.where(tmp86, tmp87, tmp84)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp91 = tmp89 - tmp90
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp92 = tmp88 * tmp91
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp93 = tl.where(tmp86, tmp89, tmp90)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp94 = tmp92 + tmp93
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp96 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp97 = tmp95 * tmp96
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp98 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp99 = tmp89 * tmp98
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp100 = tmp99 * tmp89
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp101 = tmp97 + tmp100
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp103 = libdevice.sqrt(tmp101)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp105 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp106 = tmp104 + tmp105
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp107 = libdevice.pow(tmp96, tmp106)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp108 = tmp105 - tmp107
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp109 = libdevice.sqrt(tmp108)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp110 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp111 = libdevice.pow(tmp110, tmp106)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp112 = tmp105 - tmp111
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp113 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp114 = (tmp113 / tmp112)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp115 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp116 = tmp114 * tmp115
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp117 = -tmp116
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp118 = tmp109 * tmp117
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp119 = (tmp103 / tmp118)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp120 = (tmp113 / tmp117)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp121 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp122 = tmp120 * tmp121
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp123 = tmp119 + tmp122
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp124 = (tmp94 / tmp123)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp125 = tmp102 + tmp124
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr24 + (x2), tmp125, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr25 + (x2), tmp94, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr26 + (x2), tmp101, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_3:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_2
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x3 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp131 = tl.load(in_ptr15 + (x3), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp132 = tl.load(in_ptr16 + (x3), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp137 = tl.load(in_ptr17 + (x3), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp144 = tl.load(in_ptr18 + (x3), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp146 = in_ptr19
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp126 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp127 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp128 = tmp126 >= tmp127
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp129 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp130 = tl.where(tmp128, tmp129, tmp126)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp133 = tmp131 - tmp132
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp134 = tmp130 * tmp133
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp135 = tl.where(tmp128, tmp131, tmp132)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp136 = tmp134 + tmp135
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp138 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp139 = tmp137 * tmp138
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp140 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp141 = tmp131 * tmp140
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp142 = tmp141 * tmp131
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp143 = tmp139 + tmp142
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp145 = libdevice.sqrt(tmp143)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp147 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp148 = tmp146 + tmp147
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp149 = libdevice.pow(tmp138, tmp148)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp150 = tmp147 - tmp149
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp151 = libdevice.sqrt(tmp150)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp152 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp153 = libdevice.pow(tmp152, tmp148)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp154 = tmp147 - tmp153
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp155 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp156 = (tmp155 / tmp154)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp157 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp158 = tmp156 * tmp157
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp159 = -tmp158
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp160 = tmp151 * tmp159
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp161 = (tmp145 / tmp160)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp162 = (tmp155 / tmp159)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp163 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp164 = tmp162 * tmp163
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp165 = tmp161 + tmp164
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp166 = (tmp136 / tmp165)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp167 = tmp144 + tmp166
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr33 + (x3), tmp167, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr34 + (x3), tmp136, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr35 + (x3), tmp143, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_4:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_3
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x4 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp173 = tl.load(in_ptr20 + (x4), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp174 = tl.load(in_ptr21 + (x4), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp179 = tl.load(in_ptr22 + (x4), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp186 = tl.load(in_ptr23 + (x4), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp188 = in_ptr24
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp168 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp169 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp170 = tmp168 >= tmp169
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp171 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp172 = tl.where(tmp170, tmp171, tmp168)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp175 = tmp173 - tmp174
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp176 = tmp172 * tmp175
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp177 = tl.where(tmp170, tmp173, tmp174)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp178 = tmp176 + tmp177
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp180 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp181 = tmp179 * tmp180
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp182 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp183 = tmp173 * tmp182
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp184 = tmp183 * tmp173
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp185 = tmp181 + tmp184
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp187 = libdevice.sqrt(tmp185)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp189 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp190 = tmp188 + tmp189
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp191 = libdevice.pow(tmp180, tmp190)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp192 = tmp189 - tmp191
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp193 = libdevice.sqrt(tmp192)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp194 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp195 = libdevice.pow(tmp194, tmp190)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp196 = tmp189 - tmp195
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp197 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp198 = (tmp197 / tmp196)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp199 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp200 = tmp198 * tmp199
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp201 = -tmp200
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp202 = tmp193 * tmp201
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp203 = (tmp187 / tmp202)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp204 = (tmp197 / tmp201)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp205 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp206 = tmp204 * tmp205
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp207 = tmp203 + tmp206
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp208 = (tmp178 / tmp207)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp209 = tmp186 + tmp208
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr42 + (x4), tmp209, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr43 + (x4), tmp178, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr44 + (x4), tmp185, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_5:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_4
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x5 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp215 = tl.load(in_ptr25 + (x5), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp216 = tl.load(in_ptr26 + (x5), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp221 = tl.load(in_ptr27 + (x5), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp228 = tl.load(in_ptr28 + (x5), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp230 = in_ptr29
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp210 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp211 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp212 = tmp210 >= tmp211
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp213 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp214 = tl.where(tmp212, tmp213, tmp210)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp217 = tmp215 - tmp216
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp218 = tmp214 * tmp217
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp219 = tl.where(tmp212, tmp215, tmp216)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp220 = tmp218 + tmp219
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp222 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp223 = tmp221 * tmp222
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp224 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp225 = tmp215 * tmp224
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp226 = tmp225 * tmp215
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp227 = tmp223 + tmp226
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp229 = libdevice.sqrt(tmp227)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp231 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp232 = tmp230 + tmp231
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp233 = libdevice.pow(tmp222, tmp232)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp234 = tmp231 - tmp233
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp235 = libdevice.sqrt(tmp234)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp236 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp237 = libdevice.pow(tmp236, tmp232)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp238 = tmp231 - tmp237
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp239 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp240 = (tmp239 / tmp238)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp241 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp242 = tmp240 * tmp241
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp243 = -tmp242
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp244 = tmp235 * tmp243
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp245 = (tmp229 / tmp244)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp246 = (tmp239 / tmp243)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp247 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp248 = tmp246 * tmp247
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp249 = tmp245 + tmp248
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp250 = (tmp220 / tmp249)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp251 = tmp228 + tmp250
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr51 + (x5), tmp251, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr52 + (x5), tmp220, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr53 + (x5), tmp227, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_6:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x6 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp257 = tl.load(in_ptr30 + (x6), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp258 = tl.load(in_ptr31 + (x6), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp263 = tl.load(in_ptr32 + (x6), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp270 = tl.load(in_ptr33 + (x6), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp272 = in_ptr34
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp252 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp253 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp254 = tmp252 >= tmp253
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp255 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp256 = tl.where(tmp254, tmp255, tmp252)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp259 = tmp257 - tmp258
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp260 = tmp256 * tmp259
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp261 = tl.where(tmp254, tmp257, tmp258)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp262 = tmp260 + tmp261
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp264 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp265 = tmp263 * tmp264
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp266 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp267 = tmp257 * tmp266
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp268 = tmp267 * tmp257
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp269 = tmp265 + tmp268
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp271 = libdevice.sqrt(tmp269)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp273 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp274 = tmp272 + tmp273
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp275 = libdevice.pow(tmp264, tmp274)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp276 = tmp273 - tmp275
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp277 = libdevice.sqrt(tmp276)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp278 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp279 = libdevice.pow(tmp278, tmp274)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp280 = tmp273 - tmp279
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp281 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp282 = (tmp281 / tmp280)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp283 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp284 = tmp282 * tmp283
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp285 = -tmp284
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp286 = tmp277 * tmp285
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp287 = (tmp271 / tmp286)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp288 = (tmp281 / tmp285)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp289 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp290 = tmp288 * tmp289
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp291 = tmp287 + tmp290
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp292 = (tmp262 / tmp291)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp293 = tmp270 + tmp292
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr60 + (x6), tmp293, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr61 + (x6), tmp262, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr62 + (x6), tmp269, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_7:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_6
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x7 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp299 = tl.load(in_ptr35 + (x7), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp300 = tl.load(in_ptr36 + (x7), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp305 = tl.load(in_ptr37 + (x7), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp312 = tl.load(in_ptr38 + (x7), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp314 = in_ptr39
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp294 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp295 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp296 = tmp294 >= tmp295
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp297 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp298 = tl.where(tmp296, tmp297, tmp294)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp301 = tmp299 - tmp300
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp302 = tmp298 * tmp301
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp303 = tl.where(tmp296, tmp299, tmp300)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp304 = tmp302 + tmp303
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp306 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp307 = tmp305 * tmp306
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp308 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp309 = tmp299 * tmp308
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp310 = tmp309 * tmp299
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp311 = tmp307 + tmp310
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp313 = libdevice.sqrt(tmp311)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp315 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp316 = tmp314 + tmp315
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp317 = libdevice.pow(tmp306, tmp316)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp318 = tmp315 - tmp317
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp319 = libdevice.sqrt(tmp318)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp320 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp321 = libdevice.pow(tmp320, tmp316)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp322 = tmp315 - tmp321
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp323 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp324 = (tmp323 / tmp322)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp325 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp326 = tmp324 * tmp325
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp327 = -tmp326
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp328 = tmp319 * tmp327
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp329 = (tmp313 / tmp328)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp330 = (tmp323 / tmp327)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp331 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp332 = tmp330 * tmp331
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp333 = tmp329 + tmp332
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp334 = (tmp304 / tmp333)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp335 = tmp312 + tmp334
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr69 + (x7), tmp335, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr70 + (x7), tmp304, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr71 + (x7), tmp311, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_8:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_7
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x8 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp341 = tl.load(in_ptr40 + (x8), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp342 = tl.load(in_ptr41 + (x8), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp347 = tl.load(in_ptr42 + (x8), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp354 = tl.load(in_ptr43 + (x8), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp356 = in_ptr44
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp336 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp337 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp338 = tmp336 >= tmp337
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp339 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp340 = tl.where(tmp338, tmp339, tmp336)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp343 = tmp341 - tmp342
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp344 = tmp340 * tmp343
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp345 = tl.where(tmp338, tmp341, tmp342)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp346 = tmp344 + tmp345
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp348 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp349 = tmp347 * tmp348
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp350 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp351 = tmp341 * tmp350
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp352 = tmp351 * tmp341
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp353 = tmp349 + tmp352
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp355 = libdevice.sqrt(tmp353)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp357 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp358 = tmp356 + tmp357
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp359 = libdevice.pow(tmp348, tmp358)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp360 = tmp357 - tmp359
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp361 = libdevice.sqrt(tmp360)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp362 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp363 = libdevice.pow(tmp362, tmp358)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp364 = tmp357 - tmp363
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp365 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp366 = (tmp365 / tmp364)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp367 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp368 = tmp366 * tmp367
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp369 = -tmp368
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp370 = tmp361 * tmp369
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp371 = (tmp355 / tmp370)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp372 = (tmp365 / tmp369)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp373 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp374 = tmp372 * tmp373
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp375 = tmp371 + tmp374
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp376 = (tmp346 / tmp375)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp377 = tmp354 + tmp376
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr78 + (x8), tmp377, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr79 + (x8), tmp346, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr80 + (x8), tmp353, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] elif pid < num_xblocks_9:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pid_offset = pid - num_xblocks_8
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xnumel = 1048576
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] r0_numel = 1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xoffset = pid_offset * XBLOCK
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xindex = xoffset + tl.arange(0, XBLOCK)[:]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] xmask = tl.full([XBLOCK], True, tl.int1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] x9 = xindex
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp383 = tl.load(in_ptr45 + (x9), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp384 = tl.load(in_ptr46 + (x9), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp389 = tl.load(in_ptr47 + (x9), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp396 = tl.load(in_ptr48 + (x9), None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp398 = in_ptr49
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp378 = 0.09999999999999998
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp379 = 0.5
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp380 = tmp378 >= tmp379
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp381 = -0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp382 = tl.where(tmp380, tmp381, tmp378)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp385 = tmp383 - tmp384
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp386 = tmp382 * tmp385
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp387 = tl.where(tmp380, tmp383, tmp384)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp388 = tmp386 + tmp387
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp390 = 0.999
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp391 = tmp389 * tmp390
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp392 = 0.0010000000000000009
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp393 = tmp383 * tmp392
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp394 = tmp393 * tmp383
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp395 = tmp391 + tmp394
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp397 = libdevice.sqrt(tmp395)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp399 = 1.0
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp400 = tmp398 + tmp399
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp401 = libdevice.pow(tmp390, tmp400)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp402 = tmp399 - tmp401
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp403 = libdevice.sqrt(tmp402)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp404 = 0.9
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp405 = libdevice.pow(tmp404, tmp400)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp406 = tmp399 - tmp405
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp407 = tl.full([1], 1, tl.int32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp408 = (tmp407 / tmp406)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp409 = 0.001
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp410 = tmp408 * tmp409
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp411 = -tmp410
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp412 = tmp403 * tmp411
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp413 = (tmp397 / tmp412)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp414 = (tmp407 / tmp411)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp415 = 1e-08
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp416 = tmp414 * tmp415
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp417 = tmp413 + tmp416
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp418 = (tmp388 / tmp417)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tmp419 = tmp396 + tmp418
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr87 + (x9), tmp419, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr88 + (x9), tmp388, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] tl.store(out_ptr89 + (x9), tmp395, None)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] else:
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] pass
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] ''', device_str='cuda')
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] cpp_fused__foreach_copy_1 = async_compile.cpp_pybinding(['const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'const float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*', 'float*'], '''
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] #include "/tmp/torchinductor_ci-user/pi/cpicxudqmdsjh5cm4klbtbrvy2cxwr7whxl3md2zzdjdf3orvfdf.h"
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] extern "C" void kernel(const float* in_ptr0,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr1,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr2,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr3,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr4,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr5,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr6,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr7,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr8,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] const float* in_ptr9,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr1,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr3,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr5,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr7,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr9,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr11,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr13,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr15,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr17,
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] float* out_ptr19)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr0[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr1[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr1[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr3[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr2[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr5[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr3[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr7[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr4[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr9[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr5[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr11[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr6[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr13[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr7[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr15[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr8[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr17[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] {
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp0 = in_ptr9[static_cast<int64_t>(0L)];
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp1 = static_cast<float>(1.0);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] auto tmp2 = decltype(tmp0)(tmp0 + tmp1);
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] out_ptr19[static_cast<int64_t>(0L)] = tmp2;
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] }
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] ''')
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] async_compile.wait(globals())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del async_compile
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] def call(args):
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1 = args
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] args.clear()
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg0_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg1_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg2_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg3_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg4_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg5_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg6_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg7_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg8_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg9_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg10_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg11_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg12_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg13_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg14_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg15_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg16_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg17_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg18_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg19_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg20_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg21_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg22_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg23_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg24_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg25_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg26_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg27_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg28_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg29_1, (), ())
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg30_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg31_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg32_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg33_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg34_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg35_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg36_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg37_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg38_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg39_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg40_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg41_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg42_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg43_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg44_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg45_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg46_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg47_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg48_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] assert_size_stride(arg49_1, (1024, 1024), (1024, 1))
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] with torch.cuda._DeviceGuard(0):
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] torch.cuda.set_device(0)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] # Unsorted Source Nodes: [], Original ATen: []
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] stream0 = get_raw_stream(0)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] triton_for_fused_0.run(arg1_1, arg30_1, arg40_1, arg0_1, arg20_1.item(), arg3_1, arg31_1, arg41_1, arg2_1, arg21_1.item(), arg5_1, arg32_1, arg42_1, arg4_1, arg22_1.item(), arg7_1, arg33_1, arg43_1, arg6_1, arg23_1.item(), arg9_1, arg34_1, arg44_1, arg8_1, arg24_1.item(), arg11_1, arg35_1, arg45_1, arg10_1, arg25_1.item(), arg13_1, arg36_1, arg46_1, arg12_1, arg26_1.item(), arg15_1, arg37_1, arg47_1, arg14_1, arg27_1.item(), arg17_1, arg38_1, arg48_1, arg16_1, arg28_1.item(), arg19_1, arg39_1, arg49_1, arg18_1, arg29_1.item(), arg0_1, arg30_1, arg40_1, arg2_1, arg31_1, arg41_1, arg4_1, arg32_1, arg42_1, arg6_1, arg33_1, arg43_1, arg8_1, arg34_1, arg44_1, arg10_1, arg35_1, arg45_1, arg12_1, arg36_1, arg46_1, arg14_1, arg37_1, arg47_1, arg16_1, arg38_1, arg48_1, arg18_1, arg39_1, arg49_1, stream=stream0)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg0_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg10_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg11_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg12_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg13_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg14_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg15_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg16_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg17_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg18_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg19_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg1_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg2_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg30_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg31_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg32_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg33_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg34_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg35_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg36_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg37_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg38_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg39_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg3_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg40_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg41_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg42_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg43_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg44_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg45_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg46_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg47_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg48_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg49_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg4_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg5_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg6_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg7_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg8_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg9_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] cpp_fused__foreach_copy_1(arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg20_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg21_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg22_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg23_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg24_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg25_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg26_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg27_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg28_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] del arg29_1
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] return ()
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] def benchmark_compiled_module(times=10, repeat=10):
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._dynamo.testing import rand_strided
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.utils import print_performance
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg0_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg1_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg2_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg3_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg4_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg5_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg6_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg7_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg8_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg9_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg10_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg11_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg12_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg13_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg14_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg15_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg16_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg17_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg18_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg19_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg20_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg21_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg22_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg23_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg24_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg25_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg26_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg27_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg28_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg29_1 = rand_strided((), (), device='cpu', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg30_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg31_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg32_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg33_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg34_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg35_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg36_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg37_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg38_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg39_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg40_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg41_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg42_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg43_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg44_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg45_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg46_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg47_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg48_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] arg49_1 = rand_strided((1024, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, arg5_1, arg6_1, arg7_1, arg8_1, arg9_1, arg10_1, arg11_1, arg12_1, arg13_1, arg14_1, arg15_1, arg16_1, arg17_1, arg18_1, arg19_1, arg20_1, arg21_1, arg22_1, arg23_1, arg24_1, arg25_1, arg26_1, arg27_1, arg28_1, arg29_1, arg30_1, arg31_1, arg32_1, arg33_1, arg34_1, arg35_1, arg36_1, arg37_1, arg38_1, arg39_1, arg40_1, arg41_1, arg42_1, arg43_1, arg44_1, arg45_1, arg46_1, arg47_1, arg48_1, arg49_1])
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] return print_performance(fn, times=times, repeat=repeat)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] if __name__ == "__main__":
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] from torch._inductor.wrapper_benchmark import compiled_module_main
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code] compiled_module_main('None', benchmark_compiled_module)
V0602 15:35:34.091000 28384 torch/_inductor/graph.py:2104] [0/1] [__output_code]
V0602 15:35:34.141000 28384 torch/_inductor/graph.py:2115] [0/1] [__output_code] Output code written to: /tmp/torchinductor_ci-user/65/c655isihixkazmceuwbfqagiscwkui2zsppjfrucnr3s5l4gahqw.py
I0602 15:35:34.181000 28384 torch/_inductor/graph.py:2149] [0/1] [__output_code] Output code written to: /tmp/torchinductor_ci-user/65/c655isihixkazmceuwbfqagiscwkui2zsppjfrucnr3s5l4gahqw.py
eager runtime: 1213.6094699997102us
compiled runtime: 753.8517142904338us
Conclusion¶
In this tutorial, we successfully implemented a custom fully-fused Adam optimizer using foreach_map. By leveraging the power of foreach_map and torch.compile, we were able to create an optimized version of the Adam optimizer that can be used in various machine learning applications. This tutorial provides a comprehensive guide on how to use foreach_map and torch.compile to optimize machine learning models, and serves as a valuable resource for developers looking to improve the performance of their models with horizontal fusion.
See also:
Compiled optimizer tutorial - an intro into the compiled optimizer.
Compiling the optimizer with PT2 - deeper technical details on the compiled optimizer.
Total running time of the script: ( 0 minutes 12.373 seconds)