Skip to main content

Fast numerical expression evaluator for NumPy

Project description

Author:

David M. Cooke, Francesc Alted, and others.

Maintainer:

Francesc Alted

Contact:
faltet@gmail.com
URL:

https://github.com/pydata/numexpr

Documentation:

http://numexpr.readthedocs.io/en/latest/

GitHub Actions:

actions

PyPi:

version

DOI:

doi

readthedocs:

docs

What is NumExpr?

NumExpr is a fast numerical expression evaluator for NumPy. With it, expressions that operate on arrays (like '3*a+4*b') are accelerated and use less memory than doing the same calculation in Python.

In addition, its multi-threaded capabilities can make use of all your cores – which generally results in substantial performance scaling compared to NumPy.

Last but not least, numexpr can make use of Intel’s VML (Vector Math Library, normally integrated in its Math Kernel Library, or MKL). This allows further acceleration of transcendent expressions.

How NumExpr achieves high performance

The main reason why NumExpr achieves better performance than NumPy is that it avoids allocating memory for intermediate results. This results in better cache utilization and reduces memory access in general. Due to this, NumExpr works best with large arrays.

NumExpr parses expressions into its own op-codes that are then used by an integrated computing virtual machine. The array operands are split into small chunks that easily fit in the cache of the CPU and passed to the virtual machine. The virtual machine then applies the operations on each chunk. It’s worth noting that all temporaries and constants in the expression are also chunked. Chunks are distributed among the available cores of the CPU, resulting in highly parallelized code execution.

The result is that NumExpr can get the most of your machine computing capabilities for array-wise computations. Common speed-ups with regard to NumPy are usually between 0.95x (for very simple expressions like 'a + 1') and 4x (for relatively complex ones like 'a*b-4.1*a > 2.5*b'), although much higher speed-ups can be achieved for some functions and complex math operations (up to 15x in some cases).

NumExpr performs best on matrices that are too large to fit in L1 CPU cache. In order to get a better idea on the different speed-ups that can be achieved on your platform, run the provided benchmarks.

Installation

From wheels

NumExpr is available for install via pip for a wide range of platforms and Python versions (which may be browsed at: https://pypi.org/project/numexpr/#files). Installation can be performed as:

pip install numexpr

If you are using the Anaconda or Miniconda distribution of Python you may prefer to use the conda package manager in this case:

conda install numexpr

From Source

On most *nix systems your compilers will already be present. However if you are using a virtual environment with a substantially newer version of Python than your system Python you may be prompted to install a new version of gcc or clang.

For Windows, you will need to install the Microsoft Visual C++ Build Tools (which are free) first. The version depends on which version of Python you have installed:

https://wiki.python.org/moin/WindowsCompilers

For Python 3.6+ simply installing the latest version of MSVC build tools should be sufficient. Note that wheels found via pip do not include MKL support. Wheels available via conda will have MKL, if the MKL backend is used for NumPy.

See requirements.txt for the required version of NumPy.

NumExpr is built in the standard Python way:

pip install [-e] .

You can test numexpr with:

python -c "import numexpr; numexpr.test()"

Do not test NumExpr in the source directory or you will generate import errors.

Enable Intel® MKL support

NumExpr includes support for Intel’s MKL library. This may provide better performance on Intel architectures, mainly when evaluating transcendental functions (trigonometrical, exponential, …).

If you have Intel’s MKL, copy the site.cfg.example that comes with the distribution to site.cfg and edit the latter file to provide correct paths to the MKL libraries in your system. After doing this, you can proceed with the usual building instructions listed above.

Pay attention to the messages during the building process in order to know whether MKL has been detected or not. Finally, you can check the speed-ups on your machine by running the bench/vml_timing.py script (you can play with different parameters to the set_vml_accuracy_mode() and set_vml_num_threads() functions in the script so as to see how it would affect performance).

Usage

>>> import numpy as np
>>> import numexpr as ne

>>> a = np.arange(1e6)   # Choose large arrays for better speedups
>>> b = np.arange(1e6)

>>> ne.evaluate("a + 1")   # a simple expression
array([  1.00000000e+00,   2.00000000e+00,   3.00000000e+00, ...,
         9.99998000e+05,   9.99999000e+05,   1.00000000e+06])

>>> ne.evaluate("a * b - 4.1 * a > 2.5 * b")   # a more complex one
array([False, False, False, ...,  True,  True,  True], dtype=bool)

>>> ne.evaluate("sin(a) + arcsinh(a/b)")   # you can also use functions
array([        NaN,  1.72284457,  1.79067101, ...,  1.09567006,
        0.17523598, -0.09597844])

>>> s = np.array([b'abba', b'abbb', b'abbcdef'])
>>> ne.evaluate("b'abba' == s")   # string arrays are supported too
array([ True, False, False], dtype=bool)

Free-threading support

Starting on CPython 3.13 onwards there is a new distribution that disables the Global Interpreter Lock (GIL) altogether, thus increasing the performance yields under multi-threaded conditions on a single interpreter, as opposed to having to use multiprocessing.

Whilst numexpr has been demonstrated to work under free-threaded CPython, considerations need to be taken when using numexpr native parallel implementation vs using Python threads directly in order to prevent oversubscription, we recommend either using the main CPython interpreter thread to spawn multiple C threads using the parallel numexpr API, or spawning multiple CPython threads that do not use the parallel API.

For more information about free-threaded CPython, we recommend visiting the following community Wiki <https://py-free-threading.github.io/>

Documentation

Please see the official documentation at numexpr.readthedocs.io. Included is a user guide, benchmark results, and the reference API.

Authors

Please see AUTHORS.txt.

License

NumExpr is distributed under the MIT license.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

numexpr-2.12.1.tar.gz (115.1 kB view details)

Uploaded Source

Built Distributions

numexpr-2.12.1-cp314-cp314t-win_amd64.whl (154.9 kB view details)

Uploaded CPython 3.14tWindows x86-64

numexpr-2.12.1-cp314-cp314t-win32.whl (159.8 kB view details)

Uploaded CPython 3.14tWindows x86

numexpr-2.12.1-cp314-cp314t-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ x86-64

numexpr-2.12.1-cp314-cp314t-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.14tmusllinux: musl 1.2+ ARM64

numexpr-2.12.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (426.9 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.12.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (436.9 kB view details)

Uploaded CPython 3.14tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.12.1-cp314-cp314t-macosx_11_0_arm64.whl (145.1 kB view details)

Uploaded CPython 3.14tmacOS 11.0+ ARM64

numexpr-2.12.1-cp314-cp314t-macosx_10_13_x86_64.whl (154.6 kB view details)

Uploaded CPython 3.14tmacOS 10.13+ x86-64

numexpr-2.12.1-cp314-cp314-win_amd64.whl (153.8 kB view details)

Uploaded CPython 3.14Windows x86-64

numexpr-2.12.1-cp314-cp314-win32.whl (159.0 kB view details)

Uploaded CPython 3.14Windows x86

numexpr-2.12.1-cp314-cp314-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ x86-64

numexpr-2.12.1-cp314-cp314-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.14musllinux: musl 1.2+ ARM64

numexpr-2.12.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (417.1 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.12.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (427.4 kB view details)

Uploaded CPython 3.14manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.12.1-cp314-cp314-macosx_11_0_arm64.whl (144.5 kB view details)

Uploaded CPython 3.14macOS 11.0+ ARM64

numexpr-2.12.1-cp314-cp314-macosx_10_13_x86_64.whl (154.0 kB view details)

Uploaded CPython 3.14macOS 10.13+ x86-64

numexpr-2.12.1-cp313-cp313t-win_amd64.whl (152.3 kB view details)

Uploaded CPython 3.13tWindows x86-64

numexpr-2.12.1-cp313-cp313t-win32.whl (157.6 kB view details)

Uploaded CPython 3.13tWindows x86

numexpr-2.12.1-cp313-cp313t-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ x86-64

numexpr-2.12.1-cp313-cp313t-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13tmusllinux: musl 1.2+ ARM64

numexpr-2.12.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (426.7 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.12.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (436.6 kB view details)

Uploaded CPython 3.13tmanylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.12.1-cp313-cp313t-macosx_11_0_arm64.whl (145.1 kB view details)

Uploaded CPython 3.13tmacOS 11.0+ ARM64

numexpr-2.12.1-cp313-cp313t-macosx_10_13_x86_64.whl (154.6 kB view details)

Uploaded CPython 3.13tmacOS 10.13+ x86-64

numexpr-2.12.1-cp313-cp313-win_amd64.whl (151.4 kB view details)

Uploaded CPython 3.13Windows x86-64

numexpr-2.12.1-cp313-cp313-win32.whl (157.0 kB view details)

Uploaded CPython 3.13Windows x86

numexpr-2.12.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ x86-64

numexpr-2.12.1-cp313-cp313-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.13musllinux: musl 1.2+ ARM64

numexpr-2.12.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (417.0 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.12.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (427.3 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.12.1-cp313-cp313-macosx_11_0_arm64.whl (144.4 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

numexpr-2.12.1-cp313-cp313-macosx_10_13_x86_64.whl (153.9 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

numexpr-2.12.1-cp312-cp312-win_amd64.whl (151.4 kB view details)

Uploaded CPython 3.12Windows x86-64

numexpr-2.12.1-cp312-cp312-win32.whl (156.9 kB view details)

Uploaded CPython 3.12Windows x86

numexpr-2.12.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ x86-64

numexpr-2.12.1-cp312-cp312-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.12musllinux: musl 1.2+ ARM64

numexpr-2.12.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (413.6 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.12.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (423.8 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.12.1-cp312-cp312-macosx_11_0_arm64.whl (144.4 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

numexpr-2.12.1-cp312-cp312-macosx_10_13_x86_64.whl (153.9 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

numexpr-2.12.1-cp311-cp311-win_amd64.whl (151.2 kB view details)

Uploaded CPython 3.11Windows x86-64

numexpr-2.12.1-cp311-cp311-win32.whl (156.8 kB view details)

Uploaded CPython 3.11Windows x86

numexpr-2.12.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ x86-64

numexpr-2.12.1-cp311-cp311-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.11musllinux: musl 1.2+ ARM64

numexpr-2.12.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (411.9 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.12.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (422.1 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.12.1-cp311-cp311-macosx_11_0_arm64.whl (144.2 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

numexpr-2.12.1-cp311-cp311-macosx_10_9_x86_64.whl (154.2 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

numexpr-2.12.1-cp310-cp310-win_amd64.whl (151.2 kB view details)

Uploaded CPython 3.10Windows x86-64

numexpr-2.12.1-cp310-cp310-win32.whl (156.8 kB view details)

Uploaded CPython 3.10Windows x86

numexpr-2.12.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ x86-64

numexpr-2.12.1-cp310-cp310-musllinux_1_2_aarch64.whl (1.4 MB view details)

Uploaded CPython 3.10musllinux: musl 1.2+ ARM64

numexpr-2.12.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl (410.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ x86-64manylinux: glibc 2.28+ x86-64

numexpr-2.12.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl (420.3 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.27+ ARM64manylinux: glibc 2.28+ ARM64

numexpr-2.12.1-cp310-cp310-macosx_11_0_arm64.whl (144.2 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

numexpr-2.12.1-cp310-cp310-macosx_10_9_x86_64.whl (154.2 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

File details

Details for the file numexpr-2.12.1.tar.gz.

File metadata

  • Download URL: numexpr-2.12.1.tar.gz
  • Upload date:
  • Size: 115.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1.tar.gz
Algorithm Hash digest
SHA256 e239faed0af001d1f1ea02934f7b3bb2bb6711ddb98e7a7bef61be5f45ff54ab
MD5 0eb937e73289fca7338cf32a2c7c219b
BLAKE2b-256 7c08211c9ae8a230f20976f3b0b9a3308264c62bd05caf92aba7c59beebf6049

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp314-cp314t-win_amd64.whl
  • Upload date:
  • Size: 154.9 kB
  • Tags: CPython 3.14t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-win_amd64.whl
Algorithm Hash digest
SHA256 0d90b23af17719d9f6ca674fab90b3cd8d625dfbf994fd1c4c2ad2b1056584c5
MD5 fbeba56b62023b2a2f5365e5d00c746a
BLAKE2b-256 951f6f0f22b18fc29c2ce790afad05f35212052364a2c4949ceb9d09f834fe70

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-win32.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp314-cp314t-win32.whl
  • Upload date:
  • Size: 159.8 kB
  • Tags: CPython 3.14t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-win32.whl
Algorithm Hash digest
SHA256 faa76167b6e91e6e9186bef821ca5814d396ab635075c07af548ac8aadbb6097
MD5 ec7288acb993070c8bb45fd685f4cbca
BLAKE2b-256 6f40b0b6addcfd97bb7edbdf4c3cc139df307c08bb84dbb85e3dc2d517312d36

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bcc9147402fcd182d64392bb63534fb05919476226289c778ef2e3703604337e
MD5 7231ccb7d3b7341e08ea5055833012c6
BLAKE2b-256 b43eeda6efca94b792fce3659f3110bbbfc46d160a6e4f131d8f782130171d6f

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 b3d40fc207e1941eb0f777e99729d8fb6322c42d40c1eec13d415aa67e400bd6
MD5 88a5d2b8fc54aa60c16504bebc2feac8
BLAKE2b-256 99c0cbd8c24b56af202703852a47ca832c19401391f60b8c998e66873e01d537

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ddd3213f323ce5a9c6fd2adb68e875e5e87d407e3f4d24c005ee2735b834142d
MD5 34aa905f86e6ed6a0b76f267ae0fb66d
BLAKE2b-256 6b499023d70cda5000a44c363426cdcc7243afb35533d1ab9406746b147576cc

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4582114b782ad64527a528cdae1bf2a6e022f5afc0c59f35c135142fc5f0062b
MD5 49a3e920c7cf3af2d53744eaa95060eb
BLAKE2b-256 c413fda532440c335b6ac190b24547339be59463b783f3ff0a93fcfa074289bd

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8d8ac7a9860d67054857616b0e679259653120fe790c9156c1032e902df39559
MD5 fbb3bd1617529ee182f4dc00d018c0c7
BLAKE2b-256 92e23308099dac61fdb6df7282fd4f0b5a95716bba04c1e9a35cd6991c017710

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 5a5b3331fce3b90d8031c67c854b5306c01608334053b04e6de6bebe3d2393b5
MD5 7b5ecd383268de227df9cdedb451d376
BLAKE2b-256 bd17bcbb07dc49624c18a53a6c59e3e9f55c5f611f3888a536e9337144c96305

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp314-cp314-win_amd64.whl
  • Upload date:
  • Size: 153.8 kB
  • Tags: CPython 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 c87188f9fa81b22c5f1133304151875bc36477f779f857286df2331ebd3680ef
MD5 facfe32a2f0f290b3354dcf8eeccfc8a
BLAKE2b-256 d65c62055866ea480b81d6e58896256a7ba2cffc6ef6ac6481ffc0b44a8ae8ef

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-win32.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp314-cp314-win32.whl
  • Upload date:
  • Size: 159.0 kB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 abf6e100bfe341724e626507e38fd6f6910f73ded7a9193447471abcd94ab380
MD5 3a660d1505bfffcfe65d0ef1b3d9b815
BLAKE2b-256 6815742392b89d224593c149017cb2062442ba3ab173dd28119e0a1f5740f015

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7dd53e96559896f7f09127f7c8ca7f179d6fe58a4a52799bb45a2bc8a2c8c9e9
MD5 a38bd807d4eeaec51a3154fdc754205b
BLAKE2b-256 adcc9a4ee92ef12d8fc95c4f727efd9f846f9b7d7e04c0f5bcb730f8c1c591a4

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 113c8dccd663e66986c36f248f050b9f640d4c015d8201d900f29dbcf2a7dd6d
MD5 b7fb0e12c44c254e341f9d99a8808558
BLAKE2b-256 ad38e64a94aa796d2dd44617b4b3643bf8f885965845aba679849fc8f86d71ca

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 61cf86fe377f30a34ffeeb6ab065a6586f682260f7ffd155a2c5072f9a8ce11d
MD5 e9e26367c14ea571082aeb0c51bb872d
BLAKE2b-256 5ea4240516dc9b9664d14ab9f0ea900a31939c379917526b35e06eedb84a179c

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 03b9cc6da21c821524c9348bc29e5c0376a794fb68d5be9c2648e63bce651340
MD5 42eb6dfba92a687c002f819d40c98613
BLAKE2b-256 b19ed0c66f503d87a9f9581c176bc538a1ca2b0f9a4bcc88da01937ed14ba13e

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38add87c9e683e5fafd1b331a64d39b8a5b8a08b893447ef363fc5c23b74f6cf
MD5 57b2cbb583d1655de2c963a41d5f99a4
BLAKE2b-256 88d06517d2c9e1dba160727080a2dbc94d6daadb540322283eecf8b014b6e88a

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp314-cp314-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp314-cp314-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 f0fb16c9e58728e89e6519bb8be94113b813141152bb210d43f7e55aae5004ef
MD5 2b3b72cfdfe958effc1e4b5dd7afe7c3
BLAKE2b-256 32a5987991b483099951a9f6674211e600f51ac3ac6d001215052be38ab6be63

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp313-cp313t-win_amd64.whl
  • Upload date:
  • Size: 152.3 kB
  • Tags: CPython 3.13t, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-win_amd64.whl
Algorithm Hash digest
SHA256 98705e8b70c5ab4a35df7ae8a4fb42b5e71f8fed92b5c46672c4324ce866eaee
MD5 b8874f8bae886b6d10a1f8793c97608e
BLAKE2b-256 8f32de4a48816f414557f0c40747ab049d757dc73fdc94624bbf28147959526d

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-win32.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp313-cp313t-win32.whl
  • Upload date:
  • Size: 157.6 kB
  • Tags: CPython 3.13t, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-win32.whl
Algorithm Hash digest
SHA256 7c0acb6c13687998679ecffa8cef83c85ada82a53db6aac820267f51814395e9
MD5 0f5ca7483429e00ffc879c3004706cb1
BLAKE2b-256 53e3e2902b257088a4d227f594a756228d48c498950a28a71f60dc557d34e4bb

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6fe868309608190234be1f4d7ca33f10806129061180c57a22cdce7b26f5a426
MD5 ab3ac2b03eafb72f0ce1d9ac9b3c41c4
BLAKE2b-256 19d1ec5e2d25ce304818dd06d28649acf3aa1a4d324ea2bb30c35c52be7adea8

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 1bf294d1d1ca8a35a9ea03d42559e1aa9d34c386fbc2b17bf0713313dacd32fe
MD5 1fae9eb63b13c35ff0a9e25eb35e2598
BLAKE2b-256 f7df927b57271c1bb39a826eb24f7a70ef511a7736fed060fb7ed944aadfb67f

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 e59cf1570404b7d733c14f6a5601358990106864e6f4463ec061e6a82c1a3117
MD5 c023ded8d5a18daf3f888d98662cadda
BLAKE2b-256 7d4c3ed2a76e864acbd3aa8699423c5a2cc58665d4b1c016498c7c60f1388d5e

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 68ad1af4a7846dbf87ceff09304a7b4d58acbce4b36f250ec83cab8f48278322
MD5 64f3804ede3969df039582a7d2aca56f
BLAKE2b-256 f949801aae47bf453951cf557c1954c6de39ce4b53c98e55d0c30dfa52b6aefd

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00f9f238e624a9cf9b252a09e8e596577cc31d532d9405d338baa91c6f5f579a
MD5 49e372489baf011b7e043df5b3d7816b
BLAKE2b-256 a8b76231b560b1a31385a5df98eb3bda354332f58ef6ef3a1121e550c47918f6

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313t-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313t-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 adbeb49b6eb6a98a81053a07adb8f72de6829d48aca3004a5b3da696e18c6245
MD5 9114e5d981c0132acf223af5dca57aa8
BLAKE2b-256 f25406a7ece842cb0f231e0560700ca569961ccaaeb56bc25d8100e36ae4affb

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 151.4 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 30e259e8bd192a0a1b9bb9952510a8146eb1a603c62b9d727ab50d6e562dcb36
MD5 192c2a14bf086ee94f2abcaa12e196a9
BLAKE2b-256 9aaecc0e5a0d93210da1cad4d44ef690c60f673d134394c186a4a68f01e17c2e

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-win32.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp313-cp313-win32.whl
  • Upload date:
  • Size: 157.0 kB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 20152d269e36888f5968ad7bc1cfc3ff6bf23279d2879f4c7d803041f4000f73
MD5 b5067795642fd6aa3e5b8be382403331
BLAKE2b-256 08d579978f126209d7fff8bff2e54cecd3ee5dc660b77150c42510973c52f5fd

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c56bfbf29fd1212cd49fc41fc18314b18469e9e018fc7bf7cd372c4e9f22e92
MD5 1c24a3f2d537ac2441f9d8a285e662c1
BLAKE2b-256 bf8db3eb251f72c926a40db2e2119150abe6f4093150be92cf9663813eec6253

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 771a2475044ae0e7e919217c411eec6c1d44d443d00678ee3135266f738feee3
MD5 1b8e1a19b27732e666abc4c586b2e36f
BLAKE2b-256 6cd398175c655d00dd59b7fa71a8b4a2ec25c6ffa6a449cefa6bdff179367718

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0af94d9f13ff76101793b6e4a9f56681f09b11a37dc86ed38749f4cbefceaa64
MD5 0611dd9071a04a08410737505d198934
BLAKE2b-256 daeac8387c867715d9035f160d95f8b93ad6adf5c089ff7a9cdbd737f2dd0fb6

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 149f194a9234675f4ae541ef56b7e45d596ad8f5d015ff252005d07a08235576
MD5 b70ff90c455e3763dd6009e3ecaef552
BLAKE2b-256 b7fd3c4617c2440be58b2ff8937b874f07e11e11c8a48ab5410f0f87165b7129

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e04e657ad1c2c735a4d6966e89b1b151036c94a25e096cc74fd16465224c7d21
MD5 8e3a0f240414b41d75cb4b5a092e2168
BLAKE2b-256 4c369418c31ddf65a8ef1d1f2defc5a97c0914ad6822617bb2005cd7db60a8bd

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 593bdffe14fdd2df05d46668cff75d5a6d899c47820e97335d08670b96fb3eef
MD5 e983417f26f93505bd18f8849726baf6
BLAKE2b-256 1181d5e66670aec3bf4c1d90766b7e885e9f7ecf4efaceedf5a17873dd19dc4a

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 151.4 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 c32f934066608a32501e06d99b93e6f2dded33606905f9af40e1f4649973ae6e
MD5 fc1d808eebcf31ff196c1e73f9c6239f
BLAKE2b-256 f5cac9bc0f460d352ab5934d659a4cb5bc9529e20e78ac60f906d7e41cbfbd42

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 156.9 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 713410f76c0bbe08947c3d49477db05944ce0094449845591859e250866ba074
MD5 f826949aed306a5ded9a6f56957a5f46
BLAKE2b-256 fc31c1863597c26d92554af29a3fff5b05d4c1885cf5450a690724c7cee04af9

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 69ba864878665f4289ef675997276439a854012044b442ce9048a03e39b8191e
MD5 0b5ae0a29ba6e50d49a4e5479257191f
BLAKE2b-256 8d582913b7938bd656e412fd41213dcd56cb72978a72d3b03636ab021eadc4ee

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 5e579d9a4a183f09affe102577e757e769150c0145c3ee46fbd00345d531d42b
MD5 2411e588669ebfa4beedecbecb420e38
BLAKE2b-256 d06191b85d42541a6517cc1a9f9dabc730acc56b724f4abdc5c84513558a0c79

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 12bb47518bfbc740afe4119fe141d20e715ab29e910250c96954d2794c0e6aa4
MD5 a5084fedbd9e5ceff8b8fea47bf0fdb1
BLAKE2b-256 ba4aa16aba2aa141c6634bf619bf8d069942c3f875b71ae0650172bcff0200ec

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 59958402930d13fafbf8c9fdff5b0866f0ea04083f877743b235447725aaea97
MD5 a8f45336d8f0ddef4523b1e7b6d18632
BLAKE2b-256 641d8d349126ea9c00002b574aa5310a5eb669d3cf4e82e45ff643aa01ac48fe

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33e5f20bc5a64c163beeed6c57e75497247c779531266e255f93c76c57248a49
MD5 fa97ac8679b65125f406375a1f7a05c5
BLAKE2b-256 0a1165d9d918339e6b9116f8cda9210249a3127843aef9f147d50cd2dad10d60

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 cba7e922b813fd46415fbeac618dd78169a6acb6bd10e6055c1cd8a8f8bebd6e
MD5 e4a86bdea9d75b4431ecaf5e94e3c0df
BLAKE2b-256 7b17817f21537fc7827b55691990e44f1260e295be7e68bb37d4bc8741439723

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 151.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 4c3d6e524c4a386bc77cd3472b370c1bbe50e23c0a6d66960a006ad90db61d4d
MD5 a355dc3c0ffe702a71b17d05b2a3e828
BLAKE2b-256 ce7b6ea78f0f5a39057cc10057bcd0d9e814ff60dc3698cbcd36b178c7533931

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 156.8 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 d77311ce7910c14ebf45dec6ac98a597493b63e146a86bfd94128bdcdd7d2a3f
MD5 cf2be50fa123b343b64347fd5836d7f0
BLAKE2b-256 090e7996ad143e2a5b4f295da718dba70c2108e6070bcff494c4a55f0b19c315

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aa47f6d3798e9f9677acdea40ff6dd72fd0f2993b87fc1a85e120acbac99323b
MD5 9c4ce7648b90f33bc5c27167ad87732f
BLAKE2b-256 a81f61c7d82321face677fb8fdd486c1a8fe64bcbcf184f65cc76c8ff2ee0c19

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 c6a16946a7a9c6fe6e68da87b822eaa9c2edb0e0d36885218c1b8122772f8068
MD5 1155cb1404e7eeeddf22001a4570c22e
BLAKE2b-256 4920c00814929daad00193e3d07f176066f17d83c064dec26699bd02e64cefbd

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 09375dbc588c1042e99963289bcf2092d427a27e680ad267fe7e83fd1913d57f
MD5 26ead8d2219cd3f162e330c1dc469539
BLAKE2b-256 4e4226432c6d691c2534edcdd66d8c8aefeac90a71b6c767ab569609d2683869

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 05ec71d3feae4a96c177d696de608d6003de96a0ed6c725e229d29c6ea495a2e
MD5 a4e936e1050441b17fc4ba3759cb0418
BLAKE2b-256 3d3a4ea9dca5d82e8654ad54f788af6215d72ad9afc650f8f21098923391b8a8

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ea09d6e669de2f7a92228d38d58ca0e59eeb83100a9b93b6467547ffdf93ceeb
MD5 b91a127262b7aa0cd1ed25383b662562
BLAKE2b-256 a2fc8e30453e82ffa2a25ccc263a69cb90bad4c195ce91d2c53c6d8699564b95

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b8ac38131930d6a1c4760f384621b9bd6fd8ab557147e81b7bcce777d557ee81
MD5 66e0dd573da5d83555791a739dbcd4f3
BLAKE2b-256 dfa1e10d3812e352eeedacea964ae7078181f5da659f77f65f4ff75aca67372c

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 151.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 420dae7b304e26b6ab682726ca6e00c738f5bb34f76783518b042729416ec498
MD5 b4029e91e73fbe63a1fa8df25ef978d2
BLAKE2b-256 3a18974732ddb4c564c72687d858ab572c3f091e4a63b4c5d79466c870ebc863

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: numexpr-2.12.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 156.8 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.10

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 69b61ab3c02ee276c5553e97354bc271acc8fa3d44b51c8a65b176b4a8f99038
MD5 0dc9f10235ba289c487214b9c073aba6
BLAKE2b-256 21f0605b4a3b01b43d04513477648d622f38c96182b2446d4d63893f68504546

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 35eb4b77db1762264c3ca32c264ef2afc578166d8fb42021485424b9d3c69ef0
MD5 9e1d4ccbcc533f6f4c8b3a6a50a22567
BLAKE2b-256 f482d8a9620a57cb24c38a6a661fe69b69525a74e65640bafdae0132cb9af200

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 f12d66814dcaeddfc0602d0dc8810be526d78744fe5d86af14080e4bd68b838b
MD5 830bec224c4abea24e49d0bd13af533b
BLAKE2b-256 69405021b5f249b060245f38f245ddd7bb23559c74d042bd8a2cdd2b6aaaa3db

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3e95e37e65bfb67d86e23dd543c8286b32cbb5e0175ecd5304b0db5bc6dac379
MD5 4736d9250d1e2e254a2595c9f7e3f0b4
BLAKE2b-256 d1299b5b4754b53ccd20cc52784448e3cb8cd7a3913ed4dee89da03daf4b260e

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9007152ffc242312672065d1b3db3e5bd1507f7199e4b21b7228fdf8b5ceaa47
MD5 fb11f73ab94edcb238fe6a2ba29ea7bb
BLAKE2b-256 bd70695135e9d4f244d7337be136e3e372251000af1d0e70b0c2ec484522cb9b

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e1e0db698ee448ecdb9223d004c38c3e75e2848795fb8e5b1900396c373ca8b
MD5 73b33918741bef29b9aa52ac9a20016d
BLAKE2b-256 92f49dcaacdcbb799313d3d2d80e06ae7afca71f67299ac249cfdd29be935fe9

See more details on using hashes here.

File details

Details for the file numexpr-2.12.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for numexpr-2.12.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56f045d76196a77dccffda1341b1998ca54a58c61ceac7601c30092e528fb012
MD5 b320f981259dc19d6267b1c3aa4d1067
BLAKE2b-256 dfc84d676f867703ab26fda148c4a7bc7a1488a1e1be8e07872aaa1b3a70ef8d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page