Skip to main content

Python wrapper around Lua and LuaJIT

Project description

Lupa

logo/logo-220x200.png

Lupa integrates the runtimes of Lua or LuaJIT2 into CPython. It is a partial rewrite of LunaticPython in Cython with some additional features such as proper coroutine support.

For questions not answered here, please contact the Lupa mailing list.

Major features

  • separate Lua runtime states through a LuaRuntime class

  • Python coroutine wrapper for Lua coroutines

  • iteration support for Python objects in Lua and Lua objects in Python

  • proper encoding and decoding of strings (configurable per runtime, UTF-8 by default)

  • frees the GIL and supports threading in separate runtimes when calling into Lua

  • tested with Python 2.7/3.6 and later

  • ships with Lua 5.1, 5.2, 5.3 and 5.4 as well as LuaJIT 2.0 and 2.1 on systems that support it.

  • easy to hack on and extend as it is written in Cython, not C

Why the name?

In Latin, “lupa” is a female wolf, as elegant and wild as it sounds. If you don’t like this kind of straight forward allegory to an endangered species, you may also happily assume it’s just an amalgamation of the phonetic sounds that start the words “Lua” and “Python”, two from each to keep the balance.

Why use it?

It complements Python very well. Lua is a language as dynamic as Python, but LuaJIT compiles it to very fast machine code, sometimes faster than many statically compiled languages for computational code. The language runtime is very small and carefully designed for embedding. The complete binary module of Lupa, including a statically linked LuaJIT2 runtime, only weighs some 800KB on a 64 bit machine. With standard Lua 5.2, it’s less than 600KB.

However, the Lua ecosystem lacks many of the batteries that Python readily includes, either directly in its standard library or as third party packages. This makes real-world Lua applications harder to write than equivalent Python applications. Lua is therefore not commonly used as primary language for large applications, but it makes for a fast, high-level and resource-friendly backup language inside of Python when raw speed is required and the edit-compile-run cycle of binary extension modules is too heavy and too static for agile development or hot-deployment.

Lupa is a very fast and thin wrapper around Lua or LuaJIT. It makes it easy to write dynamic Lua code that accompanies dynamic Python code by switching between the two languages at runtime, based on the tradeoff between simplicity and speed.

Which Lua version?

The binary wheels include different Lua versions as well as LuaJIT, if supported. By default, import lupa uses the latest Lua version, but you can choose a specific one via import:

try:
    import lupa.luajit21 as lupa
except ImportError:
    try:
        import lupa.lua54 as lupa
    except ImportError:
        try:
            import lupa.lua53 as lupa
        except ImportError:
            import lupa

print(f"Using {lupa.LuaRuntime().lua_implementation} (compiled with {lupa.LUA_VERSION})")

Examples

>>> from lupa.lua54 import LuaRuntime
>>> lua = LuaRuntime(unpack_returned_tuples=True)

>>> lua.eval('1+1')
2

>>> lua_func = lua.eval('function(f, n) return f(n) end')

>>> def py_add1(n): return n+1
>>> lua_func(py_add1, 2)
3

>>> lua.eval('python.eval(" 2 ** 2 ")') == 4
True
>>> lua.eval('python.builtins.str(4)') == '4'
True

The function lua_type(obj) can be used to find out the type of a wrapped Lua object in Python code, as provided by Lua’s type() function:

>>> lupa.lua_type(lua_func)
'function'
>>> lupa.lua_type(lua.eval('{}'))
'table'

To help in distinguishing between wrapped Lua objects and normal Python objects, it returns None for the latter:

>>> lupa.lua_type(123) is None
True
>>> lupa.lua_type('abc') is None
True
>>> lupa.lua_type({}) is None
True

Note the flag unpack_returned_tuples=True that is passed to create the Lua runtime. It is new in Lupa 0.21 and changes the behaviour of tuples that get returned by Python functions. With this flag, they explode into separate Lua values:

>>> lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = lua.globals()
>>> g.a
1
>>> g.b
2
>>> g.c is None
True

When set to False, functions that return a tuple pass it through to the Lua code:

>>> non_explode_lua = lupa.LuaRuntime(unpack_returned_tuples=False)
>>> non_explode_lua.execute('a,b,c = python.eval("(1,2)")')
>>> g = non_explode_lua.globals()
>>> g.a
(1, 2)
>>> g.b is None
True
>>> g.c is None
True

Since the default behaviour (to not explode tuples) might change in a later version of Lupa, it is best to always pass this flag explicitly.

Python objects in Lua

Python objects are either converted when passed into Lua (e.g. numbers and strings) or passed as wrapped object references.

>>> wrapped_type = lua.globals().type     # Lua's own type() function
>>> wrapped_type(1) == 'number'
True
>>> wrapped_type('abc') == 'string'
True

Wrapped Lua objects get unwrapped when they are passed back into Lua, and arbitrary Python objects get wrapped in different ways:

>>> wrapped_type(wrapped_type) == 'function'  # unwrapped Lua function
True
>>> wrapped_type(len) == 'userdata'       # wrapped Python function
True
>>> wrapped_type([]) == 'userdata'        # wrapped Python object
True

Lua supports two main protocols on objects: calling and indexing. It does not distinguish between attribute access and item access like Python does, so the Lua operations obj[x] and obj.x both map to indexing. To decide which Python protocol to use for Lua wrapped objects, Lupa employs a simple heuristic.

Pratically all Python objects allow attribute access, so if the object also has a __getitem__ method, it is preferred when turning it into an indexable Lua object. Otherwise, it becomes a simple object that uses attribute access for indexing from inside Lua.

Obviously, this heuristic will fail to provide the required behaviour in many cases, e.g. when attribute access is required to an object that happens to support item access. To be explicit about the protocol that should be used, Lupa provides the helper functions as_attrgetter() and as_itemgetter() that restrict the view on an object to a certain protocol, both from Python and from inside Lua:

>>> lua_func = lua.eval('function(obj) return obj["get"] end')
>>> d = {'get' : 'value'}

>>> value = lua_func(d)
>>> value == d['get'] == 'value'
True

>>> value = lua_func( lupa.as_itemgetter(d) )
>>> value == d['get'] == 'value'
True

>>> dict_get = lua_func( lupa.as_attrgetter(d) )
>>> dict_get == d.get
True
>>> dict_get('get') == d.get('get') == 'value'
True

>>> lua_func = lua.eval(
...     'function(obj) return python.as_attrgetter(obj)["get"] end')
>>> dict_get = lua_func(d)
>>> dict_get('get') == d.get('get') == 'value'
True

Note that unlike Lua function objects, callable Python objects support indexing in Lua:

>>> def py_func(): pass
>>> py_func.ATTR = 2

>>> lua_func = lua.eval('function(obj) return obj.ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
...     'function(obj) return python.as_attrgetter(obj).ATTR end')
>>> lua_func(py_func)
2
>>> lua_func = lua.eval(
...     'function(obj) return python.as_attrgetter(obj)["ATTR"] end')
>>> lua_func(py_func)
2

Iteration in Lua

Iteration over Python objects from Lua’s for-loop is fully supported. However, Python iterables need to be converted using one of the utility functions which are described here. This is similar to the functions like pairs() in Lua.

To iterate over a plain Python iterable, use the python.iter() function. For example, you can manually copy a Python list into a Lua table like this:

>>> lua_copy = lua.eval('''
...     function(L)
...         local t, i = {}, 1
...         for item in python.iter(L) do
...             t[i] = item
...             i = i + 1
...         end
...         return t
...     end
... ''')

>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1]   # Lua indexing
1

Python’s enumerate() function is also supported, so the above could be simplified to:

>>> lua_copy = lua.eval('''
...     function(L)
...         local t = {}
...         for index, item in python.enumerate(L) do
...             t[ index+1 ] = item
...         end
...         return t
...     end
... ''')

>>> table = lua_copy([1,2,3,4])
>>> len(table)
4
>>> table[1]   # Lua indexing
1

For iterators that return tuples, such as dict.iteritems(), it is convenient to use the special python.iterex() function that automatically explodes the tuple items into separate Lua arguments:

>>> lua_copy = lua.eval('''
...     function(d)
...         local t = {}
...         for key, value in python.iterex(d.items()) do
...             t[key] = value
...         end
...         return t
...     end
... ''')

>>> d = dict(a=1, b=2, c=3)
>>> table = lua_copy( lupa.as_attrgetter(d) )
>>> table['b']
2

Note that accessing the d.items method from Lua requires passing the dict as attrgetter. Otherwise, attribute access in Lua would use the getitem protocol of Python dicts and look up d['items'] instead.

None vs. nil

While None in Python and nil in Lua differ in their semantics, they usually just mean the same thing: no value. Lupa therefore tries to map one directly to the other whenever possible:

>>> lua.eval('nil') is None
True
>>> is_nil = lua.eval('function(x) return x == nil end')
>>> is_nil(None)
True

The only place where this cannot work is during iteration, because Lua considers a nil value the termination marker of iterators. Therefore, Lupa special cases None values here and replaces them by a constant python.none instead of returning nil:

>>> _ = lua.require("table")
>>> func = lua.eval('''
...     function(items)
...         local t = {}
...         for value in python.iter(items) do
...             table.insert(t, value == python.none)
...         end
...         return t
...     end
... ''')

>>> items = [1, None ,2]
>>> list(func(items).values())
[False, True, False]

Lupa avoids this value escaping whenever it’s obviously not necessary. Thus, when unpacking tuples during iteration, only the first value will be subject to python.none replacement, as Lua does not look at the other items for loop termination anymore. And on enumerate() iteration, the first value is known to be always a number and never None, so no replacement is needed.

>>> func = lua.eval('''
...     function(items)
...         for a, b, c, d in python.iterex(items) do
...             return {a == python.none, a == nil,   -->  a == python.none
...                     b == python.none, b == nil,   -->  b == nil
...                     c == python.none, c == nil,   -->  c == nil
...                     d == python.none, d == nil}   -->  d == nil ...
...         end
...     end
... ''')

>>> items = [(None, None, None, None)]
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]

>>> items = [(None, None)]   # note: no values for c/d => nil in Lua
>>> list(func(items).values())
[True, False, False, True, False, True, False, True]

Note that this behaviour changed in Lupa 1.0. Previously, the python.none replacement was done in more places, which made it not always very predictable.

Lua Tables

Lua tables mimic Python’s mapping protocol. For the special case of array tables, Lua automatically inserts integer indices as keys into the table. Therefore, indexing starts from 1 as in Lua instead of 0 as in Python. For the same reason, negative indexing does not work. It is best to think of Lua tables as mappings rather than arrays, even for plain array tables.

>>> table = lua.eval('{10,20,30,40}')
>>> table[1]
10
>>> table[4]
40
>>> list(table)
[1, 2, 3, 4]
>>> dict(table)
{1: 10, 2: 20, 3: 30, 4: 40}
>>> list(table.values())
[10, 20, 30, 40]
>>> len(table)
4

>>> mapping = lua.eval('{ [1] = -1 }')
>>> list(mapping)
[1]

>>> mapping = lua.eval('{ [20] = -20; [3] = -3 }')
>>> mapping[20]
-20
>>> mapping[3]
-3
>>> sorted(mapping.values())
[-20, -3]
>>> sorted(mapping.items())
[(3, -3), (20, -20)]

>>> mapping[-3] = 3     # -3 used as key, not index!
>>> mapping[-3]
3
>>> sorted(mapping)
[-3, 3, 20]
>>> sorted(mapping.items())
[(-3, 3), (3, -3), (20, -20)]

To simplify the table creation from Python, the LuaRuntime comes with a helper method that creates a Lua table from Python arguments:

>>> t = lua.table(10, 20, 30, 40)
>>> lupa.lua_type(t)
'table'
>>> list(t)
[1, 2, 3, 4]
>>> list(t.values())
[10, 20, 30, 40]

>>> t = lua.table(10, 20, 30, 40, a=1, b=2)
>>> t[3]
30
>>> t['b']
2

A second helper method, .table_from(), was added in Lupa 1.1 and accepts any number of mappings and sequences/iterables as arguments. It collects all values and key-value pairs and builds a single Lua table from them. Any keys that appear in multiple mappings get overwritten with their last value (going from left to right).

>>> t = lua.table_from([10, 20, 30], {'a': 11, 'b': 22}, (40, 50), {'b': 42})
>>> t['a']
11
>>> t['b']
42
>>> t[5]
50
>>> sorted(t.values())
[10, 11, 20, 30, 40, 42, 50]

Since Lupa 2.1, passing recursive=True will map data structures recursively to Lua tables.

>>> t = lua.table_from(
...     [
...         # t1:
...         [
...             [10, 20, 30],
...             {'a': 11, 'b': 22}
...         ],
...         # t2:
...         [
...             (40, 50),
...             {'b': 42}
...         ]
...     ],
...     recursive=True
... )
>>> t1, t2 = t.values()
>>> list(t1[1].values())
[10, 20, 30]
>>> t1[2]['a']
11
>>> t1[2]['b']
22
>>> t2[2]['b']
42
>>> list(t1[1].values())
[10, 20, 30]
>>> list(t2[1].values())
[40, 50]

A lookup of non-existing keys or indices returns None (actually nil inside of Lua). A lookup is therefore more similar to the .get() method of Python dicts than to a mapping lookup in Python.

>>> table = lua.table(10, 20, 30, 40)
>>> table[1000000] is None
True
>>> table['no such key'] is None
True

>>> mapping = lua.eval('{ [20] = -20; [3] = -3 }')
>>> mapping['no such key'] is None
True

Note that len() does the right thing for array tables but does not work on mappings:

>>> len(table)
4
>>> len(mapping)
0

This is because len() is based on the # (length) operator in Lua and because of the way Lua defines the length of a table. Remember that unset table indices always return nil, including indices outside of the table size. Thus, Lua basically looks for an index that returns nil and returns the index before that. This works well for array tables that do not contain nil values, gives barely predictable results for tables with ‘holes’ and does not work at all for mapping tables. For tables with both sequential and mapping content, this ignores the mapping part completely.

Note that it is best not to rely on the behaviour of len() for mappings. It might change in a later version of Lupa.

Similar to the table interface provided by Lua, Lupa also supports attribute access to table members:

>>> table = lua.eval('{ a=1, b=2 }')
>>> table.a, table.b
(1, 2)
>>> table.a == table['a']
True

This enables access to Lua ‘methods’ that are associated with a table, as used by the standard library modules:

>>> string = lua.eval('string')    # get the 'string' library table
>>> print( string.lower('A') )
a

Python Callables

As discussed earlier, Lupa allows Lua scripts to call Python functions and methods:

>>> def add_one(num):
...     return num + 1
>>> lua_func = lua.eval('function(num, py_func) return py_func(num) end')
>>> lua_func(48, add_one)
49

>>> class MyClass():
...     def my_method(self):
...         return 345
>>> obj = MyClass()
>>> lua_func = lua.eval('function(py_obj) return py_obj:my_method() end')
>>> lua_func(obj)
345

Lua doesn’t have a dedicated syntax for named arguments, so by default Python callables can only be called using positional arguments.

A common pattern for implementing named arguments in Lua is passing them in a table as the first and only function argument. See http://lua-users.org/wiki/NamedParameters for more details. Lupa supports this pattern by providing two decorators: lupa.unpacks_lua_table for Python functions and lupa.unpacks_lua_table_method for methods of Python objects.

Python functions/methods wrapped in these decorators can be called from Lua code as func(foo, bar), func{foo=foo, bar=bar} or func{foo, bar=bar}. Example:

>>> @lupa.unpacks_lua_table
... def add(a, b):
...     return a + b
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a=a, b=b} end')
>>> lua_func(5, 6, add)
11
>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b=b} end')
>>> lua_func(5, 6, add)
11

If you do not control the function implementation, you can also just manually wrap a callable object when passing it into Lupa:

>>> import operator
>>> wrapped_py_add = lupa.unpacks_lua_table(operator.add)

>>> lua_func = lua.eval('function(a, b, py_func) return py_func{a, b} end')
>>> lua_func(5, 6, wrapped_py_add)
11

There are some limitations:

  1. Avoid using lupa.unpacks_lua_table and lupa.unpacks_lua_table_method for functions where the first argument can be a Lua table. In this case py_func{foo=bar} (which is the same as py_func({foo=bar}) in Lua) becomes ambiguous: it could mean either “call py_func with a named foo argument” or “call py_func with a positional {foo=bar} argument”.

  2. One should be careful with passing nil values to callables wrapped in lupa.unpacks_lua_table or lupa.unpacks_lua_table_method decorators. Depending on the context, passing nil as a parameter can mean either “omit a parameter” or “pass None”. This even depends on the Lua version.

    It is possible to use python.none instead of nil to pass None values robustly. Arguments with nil values are also fine when standard braces func(a, b, c) syntax is used.

Because of these limitations lupa doesn’t enable named arguments for all Python callables automatically. Decorators allow to enable named arguments on a per-callable basis.

Lua Coroutines

The next is an example of Lua coroutines. A wrapped Lua coroutine behaves exactly like a Python coroutine. It needs to get created at the beginning, either by using the .coroutine() method of a function or by creating it in Lua code. Then, values can be sent into it using the .send() method or it can be iterated over. Note that the .throw() method is not supported, though.

>>> lua_code = '''\
...     function(N)
...         for i=0,N do
...             coroutine.yield( i%2 )
...         end
...     end
... '''
>>> lua = LuaRuntime()
>>> f = lua.eval(lua_code)

>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]

An example where values are passed into the coroutine using its .send() method:

>>> lua_code = '''\
...     function()
...         local t,i = {},0
...         local value = coroutine.yield()
...         while value do
...             t[i] = value
...             i = i + 1
...             value = coroutine.yield()
...         end
...         return t
...     end
... '''
>>> f = lua.eval(lua_code)

>>> co = f.coroutine()   # create coroutine
>>> co.send(None)        # start coroutine (stops at first yield)

>>> for i in range(3):
...     co.send(i*2)

>>> mapping = co.send(None)   # loop termination signal
>>> sorted(mapping.items())
[(0, 0), (1, 2), (2, 4)]

It also works to create coroutines in Lua and to pass them back into Python space:

>>> lua_code = '''\
...   function f(N)
...         for i=0,N do
...             coroutine.yield( i%2 )
...         end
...   end ;
...   co1 = coroutine.create(f) ;
...   co2 = coroutine.create(f) ;
...
...   status, first_result = coroutine.resume(co2, 2) ;   -- starting!
...
...   return f, co1, co2, status, first_result
... '''

>>> lua = LuaRuntime()
>>> f, co, lua_gen, status, first_result = lua.execute(lua_code)

>>> # a running coroutine:

>>> status
True
>>> first_result
0
>>> list(lua_gen)
[1, 0]
>>> list(lua_gen)
[]

>>> # an uninitialised coroutine:

>>> gen = co(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]

>>> gen = co(2)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0)]

>>> # a plain function:

>>> gen = f.coroutine(4)
>>> list(enumerate(gen))
[(0, 0), (1, 1), (2, 0), (3, 1), (4, 0)]

Threading

The following example calculates a mandelbrot image in parallel threads and displays the result in PIL. It is based on a benchmark implementation for the Computer Language Benchmarks Game.

lua_code = '''\
    function(N, i, total)
        local char, unpack = string.char, table.unpack
        local result = ""
        local M, ba, bb, buf = 2/N, 2^(N%8+1)-1, 2^(8-N%8), {}
        local start_line, end_line = N/total * (i-1), N/total * i - 1
        for y=start_line,end_line do
            local Ci, b, p = y*M-1, 1, 0
            for x=0,N-1 do
                local Cr = x*M-1.5
                local Zr, Zi, Zrq, Ziq = Cr, Ci, Cr*Cr, Ci*Ci
                b = b + b
                for i=1,49 do
                    Zi = Zr*Zi*2 + Ci
                    Zr = Zrq-Ziq + Cr
                    Ziq = Zi*Zi
                    Zrq = Zr*Zr
                    if Zrq+Ziq > 4.0 then b = b + 1; break; end
                end
                if b >= 256 then p = p + 1; buf[p] = 511 - b; b = 1; end
            end
            if b ~= 1 then p = p + 1; buf[p] = (ba-b)*bb; end
            result = result .. char(unpack(buf, 1, p))
        end
        return result
    end
'''

image_size = 1280   # == 1280 x 1280
thread_count = 8

from lupa import LuaRuntime
lua_funcs = [ LuaRuntime(encoding=None).eval(lua_code)
              for _ in range(thread_count) ]

results = [None] * thread_count
def mandelbrot(i, lua_func):
    results[i] = lua_func(image_size, i+1, thread_count)

import threading
threads = [ threading.Thread(target=mandelbrot, args=(i,lua_func))
            for i, lua_func in enumerate(lua_funcs) ]
for thread in threads:
    thread.start()
for thread in threads:
    thread.join()

result_buffer = b''.join(results)

# use Pillow to display the image
from PIL import Image
image = Image.frombytes('1', (image_size, image_size), result_buffer)
image.show()

Note how the example creates a separate LuaRuntime for each thread to enable parallel execution. Each LuaRuntime is protected by a global lock that prevents concurrent access to it. The low memory footprint of Lua makes it reasonable to use multiple runtimes, but this setup also means that values cannot easily be exchanged between threads inside of Lua. They must either get copied through Python space (passing table references will not work, either) or use some Lua mechanism for explicit communication, such as a pipe or some kind of shared memory setup.

Restricting Lua access to Python objects

Lupa provides a simple mechanism to control access to Python objects. Each attribute access can be passed through a filter function as follows:

>>> def filter_attribute_access(obj, attr_name, is_setting):
...     if isinstance(attr_name, unicode):
...         if not attr_name.startswith('_'):
...             return attr_name
...     raise AttributeError('access denied')

>>> lua = lupa.LuaRuntime(
...           register_eval=False,
...           attribute_filter=filter_attribute_access)
>>> func = lua.eval('function(x) return x.__class__ end')
>>> func(lua)
Traceback (most recent call last):
 ...
AttributeError: access denied

The is_setting flag indicates whether the attribute is being read or set.

Note that the attributes of Python functions provide access to the current globals() and therefore to the builtins etc. If you want to safely restrict access to a known set of Python objects, it is best to work with a whitelist of safe attribute names. One way to do that could be to use a well selected list of dedicated API objects that you provide to Lua code, and to only allow Python attribute access to the set of public attribute/method names of these objects.

Since Lupa 1.0, you can alternatively provide dedicated getter and setter function implementations for a LuaRuntime:

>>> def getter(obj, attr_name):
...     if attr_name == 'yes':
...         return getattr(obj, attr_name)
...     raise AttributeError(
...         'not allowed to read attribute "%s"' % attr_name)

>>> def setter(obj, attr_name, value):
...     if attr_name == 'put':
...         setattr(obj, attr_name, value)
...         return
...     raise AttributeError(
...         'not allowed to write attribute "%s"' % attr_name)

>>> class X(object):
...     yes = 123
...     put = 'abc'
...     noway = 2.1

>>> x = X()

>>> lua = lupa.LuaRuntime(attribute_handlers=(getter, setter))
>>> func = lua.eval('function(x) return x.yes end')
>>> func(x)  # getting 'yes'
123
>>> func = lua.eval('function(x) x.put = "ABC"; end')
>>> func(x)  # setting 'put'
>>> print(x.put)
ABC
>>> func = lua.eval('function(x) x.noway = 42; end')
>>> func(x)  # setting 'noway'
Traceback (most recent call last):
 ...
AttributeError: not allowed to write attribute "noway"

Restricting Lua Memory Usage

Lupa provides a simple mechanism to control the maximum memory usage of the Lua Runtime since version 2.0. By default Lupa does not interfere with Lua’s memory allocation, to opt-in you must set the max_memory when creating the LuaRuntime.

The LuaRuntime provides three methods for controlling and reading the memory usage:

  1. get_memory_used(total=False) to get the current memory usage of the LuaRuntime.

  2. get_max_memory(total=False) to get the current memory limit. 0 means there is no memory limitation.

  3. set_max_memory(max_memory, total=False) to change the memory limit. Values below or equal to 0 mean no limit.

There is always some memory used by the LuaRuntime itself (around ~20KiB, depending on your lua version and other factors) which is excluded from all calculations unless you specify total=True.

>>> from lupa import lua52
>>> lua = lua52.LuaRuntime(max_memory=0)  # 0 for unlimited, default is None
>>> lua.get_memory_used()  # memory used by your code
0
>>> total_lua_memory = lua.get_memory_used(total=True)  # includes memory used by the runtime itself
>>> assert total_lua_memory > 0  # exact amount depends on your lua version and other factors

Lua code hitting the memory limit will receive memory errors:

>>> lua.set_max_memory(100)
>>> lua.eval("string.rep('a', 1000)")   # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
 ...
lupa.LuaMemoryError: not enough memory

LuaMemoryError inherits from LuaError and MemoryError.

Importing Lua binary modules

This will usually work as is, but here are the details, in case anything goes wrong for you.

To use binary modules in Lua, you need to compile them against the header files of the LuaJIT sources that you used to build Lupa, but do not link them against the LuaJIT library.

Furthermore, CPython needs to enable global symbol visibility for shared libraries before loading the Lupa module. This can be done by calling sys.setdlopenflags(flag_values). Importing the lupa module will automatically try to set up the correct dlopen flags if it can find the platform specific DLFCN Python module that defines the necessary flag constants. In that case, using binary modules in Lua should work out of the box.

If this setup fails, however, you have to set the flags manually. When using the above configuration call, the argument flag_values must represent the sum of your system’s values for RTLD_NEW and RTLD_GLOBAL. If RTLD_NEW is 2 and RTLD_GLOBAL is 256, you need to call sys.setdlopenflags(258).

Assuming that the Lua luaposix (posix) module is available, the following should work on a Linux system:

>>> import sys
>>> orig_dlflags = sys.getdlopenflags()
>>> sys.setdlopenflags(258)
>>> import lupa
>>> sys.setdlopenflags(orig_dlflags)

>>> lua = lupa.LuaRuntime()
>>> posix_module = lua.require('posix')     # doctest: +SKIP

Building with different Lua versions

The build is configured to automatically search for an installed version of first LuaJIT and then Lua, and failing to find either, to use the bundled LuaJIT or Lua version.

If you wish to build Lupa with a specific version of Lua, you can configure the following options on setup:

Option

Description

--lua-lib <libfile>

Lua library file path, e.g. --lua-lib /usr/local/lib/lualib.a

--lua-includes <incdir>

Lua include directory, e.g. --lua-includes /usr/local/include

--use-bundle

Use bundled LuaJIT or Lua instead of searching for an installed version.

--no-bundle

Don’t use the bundled LuaJIT/Lua, search for an installed version of LuaJIT or Lua, e.g. using pkg-config.

--no-lua-jit

Don’t use or search for LuaJIT, only use or search Lua instead.

Installing lupa

Building with LuaJIT2

  1. Download and unpack lupa

    http://pypi.python.org/pypi/lupa

  2. Download LuaJIT2

    http://luajit.org/download.html

  3. Unpack the archive into the lupa base directory, e.g.:

    .../lupa-0.1/LuaJIT-2.0.2
  4. Build LuaJIT:

    cd LuaJIT-2.0.2
    make
    cd ..

    If you need specific C compiler flags, pass them to make as follows:

    make CFLAGS="..."

    For trickier target platforms like Windows and MacOS-X, please see the official installation instructions for LuaJIT.

    NOTE: When building on Windows, make sure that lua51.lib is made in addition to lua51.dll. The MSVC build produces this file, MinGW does NOT.

  5. Build lupa:

    python setup.py build_ext -i

    Or any other distutils target of your choice, such as build or one of the bdist targets. See the distutils documentation for help, also the hints on building extension modules.

    Note that on 64bit MacOS-X installations, the following additional compiler flags are reportedly required due to the embedded LuaJIT:

    -pagezero_size 10000 -image_base 100000000

    You can find additional installation hints for MacOS-X in this somewhat unclear blog post, which may or may not tell you at which point in the installation process to provide these flags.

    Also, on 64bit MacOS-X, you will typically have to set the environment variable ARCHFLAGS to make sure it only builds for your system instead of trying to generate a fat binary with both 32bit and 64bit support:

    export ARCHFLAGS="-arch x86_64"

    Note that this applies to both LuaJIT and Lupa, so make sure you try a clean build of everything if you forgot to set it initially.

Building with Lua 5.x

It also works to use Lupa with the standard (non-JIT) Lua runtime. The easiest way is to use the bundled lua submodule:

  1. Clone the submodule:

    $ git submodule update --init third-party/lua
  2. Build Lupa:

    $ python3 setup.py bdist_wheel --use-bundle --with-cython

You can also build it by installing a Lua 5.x package, including any development packages (header files etc.). On systems that use the “pkg-config” configuration mechanism, Lupa’s setup.py will pick up either LuaJIT2 or Lua automatically, with a preference for LuaJIT2 if it is found. Pass the --no-luajit option to the setup.py script if you have both installed but do not want to use LuaJIT2.

On other systems, you may have to supply the build parameters externally, e.g. using environment variables or by changing the setup.py script manually. Pass the --no-luajit option to the setup.py script in order to ignore the failure you get when neither LuaJIT2 nor Lua are found automatically.

For further information, read this mailing list post:

https://www.freelists.org/post/lupa-dev/Lupa-with-normal-Lua-interpreter-Lua-51,2

Installing lupa from packages

Debian/Ubuntu + Lua 5.2

  1. Install Lua 5.2 development package:

    $ apt-get install liblua5.2-dev
  2. Install lupa:

    $ pip install lupa

Debian/Ubuntu + LuaJIT2

  1. Install LuaJIT2 development package:

    $ apt-get install libluajit-5.1-dev
  2. Install lupa:

    $ pip install lupa

Depending on OS version, you might get an older LuaJIT2 version.

OS X + Lua 5.2 + Homebrew

  1. Install Lua:

    $ brew install lua
  2. Install pkg-config:

    $ brew install pkg-config
  3. Install lupa:

    $ pip install lupa

Lupa change log

2.4 (2025-01-10)

  • The windows wheels now bundle LuaJIT 2.0 and 2.1. (patch by Michal Plichta)

  • Failures in the test suite didn’t set a non-zero process exit value.

2.3 (2025-01-09)

  • The bundled LuaJIT versions were updated to the latest git branches.

  • The bundled Lua 5.4 was updated to 5.4.7.

  • Removed support for Python 2.x.

  • Built with Cython 3.0.11.

2.2 (2024-06-02)

  • A new method LuaRuntime.gccollect() was added to trigger the Lua garbage collector.

  • A new context manager LuaRuntime.nogc() was added to temporarily disable the Lua garbage collector.

  • Freeing Python objects from a thread while running Lua code could run into a deadlock.

  • The bundled LuaJIT versions were updated to the latest git branches.

  • Built with Cython 3.0.10.

2.1 (2024-03-24)

  • GH#199: The table_from() method gained a new keyword argument recursive=False. If true, Python data structures will be recursively mapped to Lua tables, taking care of loops and duplicates via identity de-duplication.

  • GH#248: The LuaRuntime methods “eval”, “execute” and “compile” gained new keyword options mode and name that allow constraining the input type and modifying the (chunk) name shown in error messages, following similar arguments in the Lua load() function. See https://www.lua.org/manual/5.4/manual.html#pdf-load

  • GH#246: Loading Lua modules did not work for the version specific Lua modules introduced in Lupa 2.0. It turned out that it can only be enabled for one of them in a given Python run, so it is now left to users to enable it explicitly at need. (original patch by Richard Connon)

  • GH#234: The bundled Lua 5.1 was updated to 5.1.5 and Lua 5.2 to 5.2.4. (patch by xxyzz)

  • The bundled Lua 5.4 was updated to 5.4.6.

  • The bundled LuaJIT versions were updated to the latest git branches.

  • Built with Cython 3.0.9 for improved support of Python 3.12/13.

2.0 (2023-04-03)

  • GH#217: Lua stack traces in Python exception messages are now reversed to match the order of Python stack traces.

  • GH#196: Lupa now ships separate extension modules built with Lua 5.3, Lua 5.4, LuaJIT 2.0 and LuaJIT 2.1 beta. Note that this is build specific and may depend on the platform. A normal Python import cascade can be used.

  • GH#211: A new option max_memory allows to limit the memory usage of Lua code. (patch by Leo Developer)

  • GH#171: Python references in Lua are now more safely reference counted to prevent garbage collection glitches. (patch by Guilherme Dantas)

  • GH#146: Lua integers in Lua 5.3+ are converted from and to Python integers. (patch by Guilherme Dantas)

  • GH#180: The python.enumerate() function now returns indices as integers if supported by Lua. (patch by Guilherme Dantas)

  • GH#178: The Lua integer limits can be read from the module as LUA_MAXINTEGER and LUA_MININTEGER. (patch by Guilherme Dantas)

  • GH#174: Failures while calling the __index method in Lua during a table index lookup from Python could crash Python. (patch by Guilherme Dantas)

  • GH#137: Passing None as a dict key into table_from() crashed. (patch by Leo Developer)

  • GH#176: A new function python.args(*args, **kwargs) was added to help with building Python argument tuples and keyword argument dicts for Python function calls from Lua code.

  • GH#177: Tables that are not sequences raise IndexError when unpacking them. Previously, non-sequential items were simply ignored.

  • GH#179: Resolve some C compiler warnings about signed/unsigned comparisons. (patch by Guilherme Dantas)

  • Built with Cython 0.29.34.

1.14.1 (2022-11-16)

  • Rebuild with Cython 0.29.32 to support Python 3.11.

1.13 (2022-03-01)

  • Bundled Lua source files were missing in the source distribution.

1.12 (2022-02-24)

  • GH#197: Some binary wheels in the last releases were not correctly linked with Lua.

  • GH#194: An absolute file path appeared in the SOURCES.txt metadata of the source distribution.

1.11 (2022-02-23)

  • Use Lua 5.4.4 in binary wheels and as bundled Lua.

  • Built with Cython 0.29.28 to support Python 3.10/11.

1.10 (2021-09-02)

  • GH#147: Lua 5.4 is supported. (patch by Russel Davis)

  • The runtime version of the Lua library as a tuple (e.g. (5,3)) is provided via lupa.LUA_VERSION and LuaRuntime.lua_version.

  • The Lua implementation name and version string is provided as LuaRuntime.lua_implementation.

  • setup.py accepts new command line arguments --lua-lib and --lua-includes to specify the

  • Use Lua 5.4.3 in binary wheels and as bundled Lua.

  • Built with Cython 0.29.24 to support Python 3.9.

1.9 (2019-12-21)

  • Build against Lua 5.3 if available.

  • Use Lua 5.3.5 in binary wheels and as bundled Lua.

  • GH#129: Fix Lua module loading in Python 3.x.

  • GH#126: Fix build on Linux systems that install Lua as “lua52” package.

  • Built with Cython 0.29.14 for better Py3.8 compatibility.

1.8 (2019-02-01)

  • GH#107: Fix a deprecated import in Py3.

  • Built with Cython 0.29.3 for better Py3.7 compatibility.

1.7 (2018-08-06)

  • GH#103: Provide wheels for MS Windows and fix MSVC build on Py2.7.

1.6 (2017-12-15)

  • GH#95: Improved compatibility with Lua 5.3. (patch by TitanSnow)

1.5 (2017-09-16)

  • GH#93: New method LuaRuntime.compile() to compile Lua code without executing it. (patch by TitanSnow)

  • GH#91: Lua 5.3 is bundled in the source distribution to simplify one-shot installs. (patch by TitanSnow)

  • GH#87: Lua stack trace is included in output in debug mode. (patch by aaiyer)

  • GH#78: Allow Lua code to intercept Python exceptions. (patch by Sergey Dobrov)

  • Built with Cython 0.26.1.

1.4 (2016-12-10)

  • GH#82: Lua coroutines were using the wrong runtime state (patch by Sergey Dobrov)

  • GH#81: copy locally provided Lua DLL into installed package on Windows (patch by Gareth Coles)

  • built with Cython 0.25.2

1.3 (2016-04-12)

  • GH#70: eval() and execute() accept optional positional arguments (patch by John Vandenberg)

  • GH#65: calling str() on a Python object from Lua could fail if the LuaRuntime is set up without auto-encoding (patch by Mikhail Korobov)

  • GH#63: attribute/keyword names were not properly encoded if the LuaRuntime is set up without auto-encoding (patch by Mikhail Korobov)

  • built with Cython 0.24

1.2 (2015-10-10)

  • callbacks returned from Lua coroutines were incorrectly mixing coroutine state with global Lua state (patch by Mikhail Korobov)

  • availability of python.builtins in Lua can be disabled via LuaRuntime option.

  • built with Cython 0.23.4

1.1 (2014-11-21)

  • new module function lupa.lua_type() that returns the Lua type of a wrapped object as string, or None for normal Python objects

  • new helper method LuaRuntime.table_from(...) that creates a Lua table from one or more Python mappings and/or sequences

  • new lupa.unpacks_lua_table and lupa.unpacks_lua_table_method decorators to allow calling Python functions from Lua using named arguments

  • fix a hang on shutdown where the LuaRuntime failed to deallocate due to reference cycles

  • Lupa now plays more nicely with other Lua extensions that create userdata objects

1.0.1 (2014-10-11)

  • fix a crash when requesting attributes of wrapped Lua coroutine objects

  • looking up attributes on Lua objects that do not support it now always raises an AttributeError instead of sometimes raising a TypeError depending on the attribute name

1.0 (2014-09-28)

  • NOTE: this release includes the major backwards incompatible changes listed below. It is believed that they simplify the interaction between Python code and Lua code by more strongly following idiomatic Lua on the Lua side.

    • Instead of passing a wrapped python.none object into Lua, None return values are now mapped to nil, making them more straight forward to handle in Lua code. This makes the behaviour more consistent, as it was previously somewhat arbitrary where none could appear and where a nil value was used. The only remaining exception is during iteration, where the first returned value must not be nil in Lua, or otherwise the loop terminates prematurely. To prevent this, any None value that the iterator returns, or any first item in exploded tuples that is None, is still mapped to python.none. Any further values returned in the same iteration will be mapped to nil if they are None, not to none. This means that only the first argument needs to be manually checked for this special case. For the enumerate() iterator, the counter is never None and thus the following unpacked items will never be mapped to python.none.

    • When unpack_returned_tuples=True, iteration now also unpacks tuple values, including enumerate() iteration, which yields a flat sequence of counter and unpacked values.

    • When calling bound Python methods from Lua as “obj:meth()”, Lupa now prevents Python from prepending the self argument a second time, so that the Python method is now called as “obj.meth()”. Previously, it was called as “obj.meth(obj)”. Note that this can be undesired when the object itself is explicitly passed as first argument from Lua, e.g. when calling “func(obj)” where “func” is “obj.meth”, but these constellations should be rare. As a work-around for this case, user code can wrap the bound method in another function so that the final call comes from Python.

  • garbage collection works for reference cycles that span both runtimes, Python and Lua

  • calling from Python into Lua and back into Python did not clean up the Lua call arguments before the innermost call, so that they could leak into the nested Python call or its return arguments

  • support for Lua 5.2 (in addition to Lua 5.1 and LuaJIT 2.0)

  • Lua tables support Python’s “del” statement for item deletion (patch by Jason Fried)

  • Attribute lookup can use a more fine-grained control mechanism by implementing explicit getter and setter functions for a LuaRuntime (attribute_handlers argument). Patch by Brian Moe.

  • item assignments/lookups on Lua objects from Python no longer special case double underscore names (as opposed to attribute lookups)

0.21 (2014-02-12)

  • some garbage collection issues were cleaned up using new Cython features

  • new LuaRuntime option unpack_returned_tuples which automatically unpacks tuples returned from Python functions into separate Lua objects (instead of returning a single Python tuple object)

  • some internal wrapper classes were removed from the module API

  • Windows build fixes

  • Py3.x build fixes

  • support for building with Lua 5.1 instead of LuaJIT (setup.py –no-luajit)

  • no longer uses Cython by default when building from released sources (pass --with-cython to explicitly request a rebuild)

  • requires Cython 0.20+ when building from unreleased sources

  • built with Cython 0.20.1

0.20 (2011-05-22)

  • fix “deallocating None” crash while iterating over Lua tables in Python code

  • support for filtering attribute access to Python objects for Lua code

  • fix: setting source encoding for Lua code was broken

0.19 (2011-03-06)

  • fix serious resource leak when creating multiple LuaRuntime instances

  • portability fix for binary module importing

0.18 (2010-11-06)

  • fix iteration by returning Py_None object for None instead of nil, which would terminate the iteration

  • when converting Python values to Lua, represent None as a Py_None object in places where nil has a special meaning, but leave it as nil where it doesn’t hurt

  • support for counter start value in python.enumerate()

  • native implementation for python.enumerate() that is several times faster

  • much faster Lua iteration over Python objects

0.17 (2010-11-05)

  • new helper function python.enumerate() in Lua that returns a Lua iterator for a Python object and adds the 0-based index to each item.

  • new helper function python.iterex() in Lua that returns a Lua iterator for a Python object and unpacks any tuples that the iterator yields.

  • new helper function python.iter() in Lua that returns a Lua iterator for a Python object.

  • reestablished the python.as_function() helper function for Lua code as it can be needed in cases where Lua cannot determine how to run a Python function.

0.16 (2010-09-03)

  • dropped python.as_function() helper function for Lua as all Python objects are callable from Lua now (potentially raising a TypeError at call time if they are not callable)

  • fix regression in 0.13 and later where ordinary Lua functions failed to print due to an accidentally used meta table

  • fix crash when calling str() on wrapped Lua objects without metatable

0.15 (2010-09-02)

  • support for loading binary Lua modules on systems that support it

0.14 (2010-08-31)

  • relicensed to the MIT license used by LuaJIT2 to simplify licensing considerations

0.13.1 (2010-08-30)

  • fix Cython generated C file using Cython 0.13

0.13 (2010-08-29)

  • fixed undefined behaviour on str(lua_object) when the object’s __tostring() meta method fails

  • removed redundant “error:” prefix from LuaError messages

  • access to Python’s python.builtins from Lua code

  • more generic wrapping rules for Python objects based on supported protocols (callable, getitem, getattr)

  • new helper functions as_attrgetter() and as_itemgetter() to specify the Python object protocol used by Lua indexing when wrapping Python objects in Python code

  • new helper functions python.as_attrgetter(), python.as_itemgetter() and python.as_function() to specify the Python object protocol used by Lua indexing of Python objects in Lua code

  • item and attribute access for Python objects from Lua code

0.12 (2010-08-16)

  • fix Lua stack leak during table iteration

  • fix lost Lua object reference after iteration

0.11 (2010-08-07)

  • error reporting on Lua syntax errors failed to clean up the stack so that errors could leak into the next Lua run

  • Lua error messages were not properly decoded

0.10 (2010-07-27)

0.9 (2010-07-23)

  • fixed Python special double-underscore method access on LuaObject instances

  • Lua coroutine support through dedicated wrapper classes, including Python iteration support. In Python space, Lua coroutines behave exactly like Python generators.

0.8 (2010-07-21)

  • support for returning multiple values from Lua evaluation

  • repr() support for Lua objects

  • LuaRuntime.table() method for creating Lua tables from Python space

  • encoding fix for str(LuaObject)

0.7 (2010-07-18)

  • LuaRuntime.require() and LuaRuntime.globals() methods

  • renamed LuaRuntime.run() to LuaRuntime.execute()

  • support for len(), setattr() and subscripting of Lua objects

  • provide all built-in Lua libraries in LuaRuntime, including support for library loading

  • fixed a thread locking issue

  • fix passing Lua objects back into the runtime from Python space

0.6 (2010-07-18)

  • Python iteration support for Lua objects (e.g. tables)

  • threading fixes

  • fix compile warnings

0.5 (2010-07-14)

  • explicit encoding options per LuaRuntime instance to decode/encode strings and Lua code

0.4 (2010-07-14)

  • attribute read access on Lua objects, e.g. to read Lua table values from Python

  • str() on Lua objects

  • include .hg repository in source downloads

  • added missing files to source distribution

0.3 (2010-07-13)

  • fix several threading issues

  • safely free the GIL when calling into Lua

0.2 (2010-07-13)

  • propagate Python exceptions through Lua calls

0.1 (2010-07-12)

  • first public release

License

Lupa

Copyright (c) 2010-2017 Stefan Behnel. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Lua

(See https://www.lua.org/license.html)

Copyright © 1994–2017 Lua.org, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lupa-2.4.tar.gz (7.2 MB view details)

Uploaded Source

Built Distributions

lupa-2.4-pp310-pypy310_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

lupa-2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

lupa-2.4-pp310-pypy310_pp73-macosx_11_0_x86_64.whl (836.8 kB view details)

Uploaded PyPy macOS 11.0+ x86-64

lupa-2.4-pp39-pypy39_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

lupa-2.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

lupa-2.4-pp39-pypy39_pp73-macosx_11_0_x86_64.whl (835.9 kB view details)

Uploaded PyPy macOS 11.0+ x86-64

lupa-2.4-pp38-pypy38_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

lupa-2.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

lupa-2.4-pp38-pypy38_pp73-macosx_11_0_x86_64.whl (837.3 kB view details)

Uploaded PyPy macOS 11.0+ x86-64

lupa-2.4-pp37-pypy37_pp73-win_amd64.whl (1.7 MB view details)

Uploaded PyPy Windows x86-64

lupa-2.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

lupa-2.4-pp37-pypy37_pp73-macosx_11_0_x86_64.whl (837.1 kB view details)

Uploaded PyPy macOS 11.0+ x86-64

lupa-2.4-cp313-cp313-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.13 Windows x86-64

lupa-2.4-cp313-cp313-win32.whl (1.5 MB view details)

Uploaded CPython 3.13 Windows x86

lupa-2.4-cp313-cp313-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

lupa-2.4-cp313-cp313-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

lupa-2.4-cp313-cp313-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ ARM64

lupa-2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

lupa-2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

lupa-2.4-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

lupa-2.4-cp313-cp313-macosx_11_0_x86_64.whl (993.0 kB view details)

Uploaded CPython 3.13 macOS 11.0+ x86-64

lupa-2.4-cp313-cp313-macosx_11_0_universal2.whl (1.9 MB view details)

Uploaded CPython 3.13 macOS 11.0+ universal2 (ARM64, x86-64)

lupa-2.4-cp313-cp313-macosx_11_0_arm64.whl (931.0 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

lupa-2.4-cp312-cp312-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

lupa-2.4-cp312-cp312-win32.whl (1.5 MB view details)

Uploaded CPython 3.12 Windows x86

lupa-2.4-cp312-cp312-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

lupa-2.4-cp312-cp312-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

lupa-2.4-cp312-cp312-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ ARM64

lupa-2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

lupa-2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

lupa-2.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

lupa-2.4-cp312-cp312-macosx_11_0_x86_64.whl (995.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

lupa-2.4-cp312-cp312-macosx_11_0_universal2.whl (1.9 MB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

lupa-2.4-cp312-cp312-macosx_11_0_arm64.whl (932.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

lupa-2.4-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

lupa-2.4-cp311-cp311-win32.whl (1.4 MB view details)

Uploaded CPython 3.11 Windows x86

lupa-2.4-cp311-cp311-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

lupa-2.4-cp311-cp311-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

lupa-2.4-cp311-cp311-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ ARM64

lupa-2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

lupa-2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

lupa-2.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

lupa-2.4-cp311-cp311-macosx_11_0_x86_64.whl (985.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

lupa-2.4-cp311-cp311-macosx_11_0_universal2.whl (1.9 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

lupa-2.4-cp311-cp311-macosx_11_0_arm64.whl (927.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

lupa-2.4-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

lupa-2.4-cp310-cp310-win32.whl (1.4 MB view details)

Uploaded CPython 3.10 Windows x86

lupa-2.4-cp310-cp310-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

lupa-2.4-cp310-cp310-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

lupa-2.4-cp310-cp310-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ ARM64

lupa-2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lupa-2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

lupa-2.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

lupa-2.4-cp310-cp310-macosx_11_0_x86_64.whl (980.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

lupa-2.4-cp310-cp310-macosx_11_0_universal2.whl (1.9 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

lupa-2.4-cp310-cp310-macosx_11_0_arm64.whl (924.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lupa-2.4-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

lupa-2.4-cp39-cp39-win32.whl (1.4 MB view details)

Uploaded CPython 3.9 Windows x86

lupa-2.4-cp39-cp39-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

lupa-2.4-cp39-cp39-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

lupa-2.4-cp39-cp39-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ ARM64

lupa-2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lupa-2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

lupa-2.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

lupa-2.4-cp39-cp39-macosx_11_0_x86_64.whl (981.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

lupa-2.4-cp39-cp39-macosx_11_0_universal2.whl (1.9 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

lupa-2.4-cp39-cp39-macosx_11_0_arm64.whl (925.1 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lupa-2.4-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

lupa-2.4-cp38-cp38-win32.whl (1.4 MB view details)

Uploaded CPython 3.8 Windows x86

lupa-2.4-cp38-cp38-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

lupa-2.4-cp38-cp38-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

lupa-2.4-cp38-cp38-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ ARM64

lupa-2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lupa-2.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

lupa-2.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

lupa-2.4-cp38-cp38-macosx_11_0_x86_64.whl (978.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

lupa-2.4-cp38-cp38-macosx_11_0_arm64.whl (923.9 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lupa-2.4-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

lupa-2.4-cp37-cp37m-win32.whl (1.4 MB view details)

Uploaded CPython 3.7m Windows x86

lupa-2.4-cp37-cp37m-musllinux_1_2_x86_64.whl (2.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

lupa-2.4-cp37-cp37m-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

lupa-2.4-cp37-cp37m-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ ARM64

lupa-2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lupa-2.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

lupa-2.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

lupa-2.4-cp37-cp37m-macosx_11_0_x86_64.whl (966.6 kB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

lupa-2.4-cp36-cp36m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.6m Windows x86-64

lupa-2.4-cp36-cp36m-win32.whl (1.5 MB view details)

Uploaded CPython 3.6m Windows x86

lupa-2.4-cp36-cp36m-musllinux_1_2_x86_64.whl (2.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ x86-64

lupa-2.4-cp36-cp36m-musllinux_1_2_i686.whl (1.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ i686

lupa-2.4-cp36-cp36m-musllinux_1_2_aarch64.whl (1.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.2+ ARM64

lupa-2.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

lupa-2.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

lupa-2.4-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl (1.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ i686 manylinux: glibc 2.17+ i686

File details

Details for the file lupa-2.4.tar.gz.

File metadata

  • Download URL: lupa-2.4.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4.tar.gz
Algorithm Hash digest
SHA256 5300d21f81aa1bd4d45f55e31dddba3b879895696068a3f84cfcb5fd9148aacd
MD5 71cd0dd32b51167e84509b93dbac436a
BLAKE2b-256 4db067735b16f6c3e5c738a8b16a35d18f09b962b449a2726949bebd3e326b4b

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 2708eb13b7c0696d9c9e02eea1717c4a24812395d18e6500547ae440da8d7963
MD5 c9305a4da8cc4f7f54e0e75af6122624
BLAKE2b-256 fc6a4a63557e4067189179cbff8b49864fdc967aa5537c64394cc66d557c39d9

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 84d58aedec8996065e3fc6d397c1434e86176feda09ce7a73227506fc89d1c48
MD5 c0fa212cb77797030116fc11035ed20a
BLAKE2b-256 c5a9363b3f6fffcb53ecc43f3b8162fdd6fbe382d75e22f3c29b9eae66bc0b19

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp310-pypy310_pp73-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp310-pypy310_pp73-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 889329d0e8e12a1e2529b0258ee69bb1f2ea94aa673b1782f9e12aa55ff3c960
MD5 0a5a0530c63d19963abe71c2ccc169e5
BLAKE2b-256 e3c731fc94b83cee28b68bb6236c7c52c875e7564f3d6a81973f1682a797116b

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 71e9cfa60042b3de4dd68f00a2c94dd45e03d3583fb0fc802d9fbbb3b32dd2f7
MD5 79316ff5111cb29d266a34b289877539
BLAKE2b-256 a461c1bd15a1b79205bec95569ebbefffcc1900dcc774b58263e1986e82acd70

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fdda690d24aa55e00971bc8443a7d8a28aade14eb01603aed65b345c9dcd92e3
MD5 3f6786e5bbcaedecbcb26b9a4a4db247
BLAKE2b-256 31bc7b3c38b9b75fa81c4d817a411254a2aed03facf1346d12e5f6eb187a9822

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp39-pypy39_pp73-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp39-pypy39_pp73-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 cc521f6d228749fd57649a956f9543a729e462d7693540d4397e6b9f378e3196
MD5 3b81f89dc52b03e5376ffbd14d51b7e4
BLAKE2b-256 5a5e6c78742e7a694206140c00a4dd3ef7f4a70c2fa21d6b36956b4f44e8c75f

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 a1a5206eb870b5d21285041fe111b8b41b2da789bbf8a50bc45600be24d7a415
MD5 24655876d0a61d81734f6bcad06c94eb
BLAKE2b-256 a202a5bbf681e92bfe9d54a8bfba00bb90faa0e1cc98827448668150a911a834

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03fc9263ed07229aaa09fa93a2f485f6b9ce5a2364e80088c8c96376bada65ad
MD5 ea9c6e0bfd3a5e20a3c87bab03af6aa9
BLAKE2b-256 91eda58d5b699bbec9a8bd15de9f6936eb6d6a17012a999c3405c07e0cf661f8

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp38-pypy38_pp73-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp38-pypy38_pp73-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 eb122ed5a987e579b7fc41382946f1185b78672a2aded1263752b98a0aa11f06
MD5 f6ed2bb15ddfc603d3a004c8d4b71e11
BLAKE2b-256 aab9ffe7209d66262de2a17df66d0d45329fb511faa0b8f5567f189961725ecc

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp37-pypy37_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp37-pypy37_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 6e758c5d7c1ed9adca15791d24c78b27f67fa9b0df0126f4334001c94e2742a2
MD5 f778f64f32ec18b97b98e4312fb9d1f7
BLAKE2b-256 40cc84217bc601a5478f1375568a4268b5449ad7b053012fb0740c7df7e436ec

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5beeb9ee39877302b85226b81fa8038f3a46aba9393c64d08f349bf0455efb73
MD5 3bd8afee0a24775451852742772b3077
BLAKE2b-256 6af3d5133b78d31753a1b5cf5fb17fb9fb1ada1eff405b8c5a1e74549cac70ef

See more details on using hashes here.

File details

Details for the file lupa-2.4-pp37-pypy37_pp73-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-pp37-pypy37_pp73-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 834f81a582eabb2242599a9ed222f14d4b17ffff986d42ef8e62cae3e45912c0
MD5 df0816d33a8abfc9062682b27aa6cd2a
BLAKE2b-256 5c7b7844281d237a65716a3eed72bbf23536276d85f94e045aef24066f7e46cf

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 203a11122bd11366e5b836590ea11bf2ebfb79bfdaf0ffd44b6646cea51cb255
MD5 9deadbbb1bc33e6c58afda0a9a352cea
BLAKE2b-256 25672b7c4bee52b90c3906dc32c03644eee39f1c441bc94fd3939c8dcab08f40

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 18e12e714a2f633bf3583f23ec07904a0584e351889eff7f98439d520255a204
MD5 c9c54d2ba33716984b9e51a5ffc17291
BLAKE2b-256 1b9143e08f1226c6bf10f64a5d10f780accad77ac5afec4913467195e301d7a9

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ba0649579b0698ce4841106ec7eee657995b8c13e9f5e16bbf93e8afb387d59b
MD5 7a1fd76e534deab3be8bca4b3bdb9c9c
BLAKE2b-256 c0b3989ecae1f05018946fd745b102feadcdca328a41b71d35b6cecfdb25d472

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2b32202a1244b6c7aaa6d2a611b5a842de4b166703388db66265b37074e255fd
MD5 8b680a65619c12109ac5d46a2bbd5bd2
BLAKE2b-256 8794f4f90a93401ad667136dcb2bf5b58431065ac51e18ba501aeedbcd83eac5

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 52efeef1e632c5edff61bd6d79b0f393e515ea2a464f6f0d4276ecc565279f04
MD5 b78013a5e8db9c599c5081bd2c89bcd9
BLAKE2b-256 a12cfb2b6977fdc9d38d9eb833097697e72b723aa6d658642d1f53e54206de18

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4842759d027db108f605dc895c9afc4011d12eac448e0d092a4d0b21e79ba1c5
MD5 f759aa9d0154dcc5af4e1035931eaefb
BLAKE2b-256 6b5c3913239d86846aa78bc878f25df8ea0eb3744ae0dd0f7507707ba85b9666

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f16fbaa68ec999ee5e8935d517df8d8a6bfcaa8fb2fe5b9c60131be15590d0c0
MD5 41064dec355b1d34e82d41e704824bd3
BLAKE2b-256 5a0e7146c2f669e075d663b389e7cf3368aa487a5e55b7db4c22955a64a9ab2b

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 41f2b0d0b44e1c94814f69ba82ef25b7e47a7f3edcd47d220a11ee3b64514452
MD5 1cee4e49df31e7a07239eb2844f0d116
BLAKE2b-256 18ec7a6f772cf881397d186299515f7d8851d576f89cd23713d01e21cbf638fc

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 ed71a89d500191f7d0ad5a0b988298e4d9fde8445fbac940e0996e214760a5c5
MD5 5d4f401957930540dca4821d9df3bfcc
BLAKE2b-256 71b156e5d773c196abb5d88060ae56ad60f03c60dd9dcff00dc54b9699d215f2

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 0fce2487f9d9199e0d78478ecd1ba47d1779850588a8e0b7def4f3adf25e943c
MD5 97d7f31ad65a217143e2b56f39f385be
BLAKE2b-256 bf5bb0ae2750146c3d18eb74f95a30c99c3ff57afc28096f0247a8ea15d0a085

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 12b30ea0586579ecde0e13bb372010326178ff309f52b5e39f6df843bd815ba7
MD5 46f749e510051c1f388ca727485ebdfc
BLAKE2b-256 9fdef7c8b3a8b5a6cc7abd445e4f334711dfd365f50c61a53f24d0933ca029b1

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a89ed97ea51c093cfa0fd00669e4d9fdda8b1bd9abb756339ea8c96cb7e890f7
MD5 8f060f8d07464926283b0bf845c83dd4
BLAKE2b-256 7aa60fb9342ceee18bc9058615bfdeaf002ce836e61ed77d2c37046227619187

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 bb41e63ca36ba4eafb346fcea2daede74484ef2b70affd934e7d265d30d32dcd
MD5 e9bf04d25b331677df3fb35ba8d92d52
BLAKE2b-256 bde14f603f393f0f33321bd97c7faf27c5ffaba3eb996fafa53e1adfff93064f

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 41286859dc564098f8cc3d707d8f6a8934540127761498752c4fa25aea38d89b
MD5 6990abc9bf41bd11d1e401866143f1c4
BLAKE2b-256 1b789d8b359e60d56871d8e069683ac45bb25d7f3c5d5daf1d92c96a4b1932e8

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1b4cfa0fd7f666ad1b56643b7f43925445ccf6f68a75ae715c155bc56dbc843d
MD5 773213d916d13e26aa46771ead4facb5
BLAKE2b-256 091a6c80b015037b7b23283ea661ce9a11a06e8f8a9dd5615db2cf205210f0c2

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 34992e172096e2209d5a55364774e90311ef30fe002ca6ab9e617211c08651de
MD5 2dd10e4c6c0c27a4ec21299c4014d9ed
BLAKE2b-256 2a5f6907445d3f00fffdbe3a169540b4d1ed34bd7756bd26eb85f66196c9aec4

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cdbb1213a20a52e8e2c90f473d15a8a9c885eaf291d3536faf5414e3a5c3f8e6
MD5 3069a481baee61717b13865b49cb3e29
BLAKE2b-256 5df033ca4267759b59630a1d06c9664db5608fa9ae586cb747fb9279df135da3

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6732f4051f982695a87db69539fd9b4c2bddf51ee43cdcc1a2c379ca6af6c5b2
MD5 2a49f8a85ddb9eb61bb8c995d6a990dd
BLAKE2b-256 fbef4eba9db0e5ec536f28a879b3dcd1d0a35aa1804acdfad21e41f3de351ac4

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c803c8a5692145024c20ce8ee82826b8840fd806565fa8134621b361f66451d8
MD5 6c23dbcbf58aa5b28a3e7834211ed4cc
BLAKE2b-256 6a65c6829a22f51465ba7825ce93b66345746e27dbe7962be85d9a9354b573ac

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 81f3a4d471e2eb4e4db3ae9367d1144298f94ff8213c701eee8f9e8100f80b4a
MD5 26b9e9b62d2f0f7c94e9813ae5a76afb
BLAKE2b-256 134f3814b2666b149d82dfe163eeb098565d86634d7ec2ff9d8eec8a982894e8

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 085f104ec8e4a848177c16691724da45d0bb8c79deef331fd21c36bdc53e941b
MD5 2358dec9fa19ca3ae32492fbc2800489
BLAKE2b-256 cbd5266290f3645d2fc075aec47eccd0ff9237346ab7824efd388391a288baf3

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bbf9b26bd8e4f28e794e3572bfcff4489a137747de26bdfe3df33b88370f39cc
MD5 f74bbe4bb19a73a385f67cf6f35bf9a7
BLAKE2b-256 d3203219de87052c60dd9094315dfe380b815c9dbbfc1cfb267e857f16dd735f

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c8ceb7beb0d6f42d8a20bfa880f986f29ba8ad162ac678d62a9b2628e8ee6946
MD5 67d5e0c2f91dad20811b04577f3df190
BLAKE2b-256 7f8229462a1dc14c37937cd67ae59f0a7d8b3d6fd9afc8c7483951a8fd4b21de

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 8a917b550db751419bd7ec426e26605ad8934a540d376d253b6c6ab1570ce58a
MD5 df78d939eee9064a50a6c79e1a0316ae
BLAKE2b-256 8ce8643cdd2448de9e8d17d81d8d45792eb9982b5c74b003bb25a0fc53ed1566

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fd0266968ade202b45747e932fb2e1823587eee2b0983733841325a0ade272ed
MD5 f670cf47ca2131b9f7fb5b9f5ef98ff8
BLAKE2b-256 247921c4715684132d3a3dd2b04de6d5d105bada246f82a9f025cfe139c30414

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c6f38b65bb16ce9c92c6d993c60aca1d700326a513ce294635a67a1553689e64
MD5 e439ac2ffc8fc2213d221b80dcde88a2
BLAKE2b-256 b0677fff5f3096af6e273ea49e7ab64f6c38b2966f2cce85caddd78a9173fa8a

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 4b2a360db05c66cf4cca0e07fe322a3b2fe2209a46f8e9d8ff2f4b93b5368b35
MD5 033627dc9039db144844884045a58a16
BLAKE2b-256 9ec48298009088c7a3a82b5360af50aa91b8ab0c55af43855f97123f4864138b

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 795d047b85363b8f9123cb87bd590d177f7c31a631cc6e0a9de2dbb7f92cf6d5
MD5 ca2a4210231c8dd4abbe33b7b9ad7937
BLAKE2b-256 94d32243770a225e077e3aead8c23effc93782d9e529df5fad85cf96e3f4e89d

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 63c74c457e52d6532795e60e3f3ad87ae38a833d2a427abd55d98032701b0d39
MD5 104364b6ee3985f13c7a13c55e217efc
BLAKE2b-256 b6c4ee4bb6e3678122cd5e39a7e8cadd727aa669d20a5592a6dd521bbd1764ad

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 db0b331de8dcdc6540e6a62500fcbfb1e3d9887c6ff5fb146b8713018ea7c102
MD5 5e18cb4f6f39a7ba9e60d8084fea4189
BLAKE2b-256 d343eec7cc79c5d1af03bbdba0dabe764d2336166e07cfa1e689814949126696

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 fdcf8ae011e2e631dd1737cdf705219eb797063f0455761c7046c2554f1d3f8c
MD5 9112bdc477b949f4bf304e7543fc2f87
BLAKE2b-256 905349e83074147c9c89a654a9c075e34c7df1bd15b63678f30603ac914ea034

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 dae6006214974192775d76bee156cee42632320f93f9756d2763f4aa90090026
MD5 b200432239311fc5628a4416d95ed255
BLAKE2b-256 c447654775f4c53f6691f6e6fd97e6fb376961dd5af466ac0ad4631b710eedf4

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5ae945bb9b6fd84bfa4bd3a3caabe54d05d2514da16e1f45d304208c58819ebd
MD5 6126ffa716412aaed692b0ddac746b7c
BLAKE2b-256 482b5a007c3ebb6a3025b2fb4c8b11be3c6ce434a9c1428ce41e64197a36ae38

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f1a0cee956c929f09aa8af36d2b28f1a39170ef8673deaf7b80a5dd8a30d1c54
MD5 a2ea1f96dc4e135b0c19f1f2daec03a3
BLAKE2b-256 3ec56bda7e0e7d47a45465ffc7053758ac1a26cb8a74e122f6623e1b600eb8ca

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 98c3160f5d1e5b9e976f836ca9a97e51ad3b52043680f117ba3d6c535309fef0
MD5 e0733a42089be07fe56f78cef4c3a33f
BLAKE2b-256 e2bb718cbd6a45cc44e8d3ad88fed294525fa9f5a10698d402d8d6abea4a63d9

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 815071e5ef2d313b5e69f5671a343580643e2794cc5f38e22f75995116df11e8
MD5 657f97250e871fd2fe9f18d815b9515a
BLAKE2b-256 d96741b23f5bfa237417a8313a240e4c8f82287efad18e3ea022f231788ce402

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b38ce88bfef9677b94bd5ab67d1359dd87fa7a78189909e28e90ada65bb5064b
MD5 d0c9a35466f1310478f1608484af2a64
BLAKE2b-256 176c5c770c5d340777ebe632427c4a14d4ae7408a6dab676cb8a46282eb50231

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 bc4bfd7abc63940e71d46ef22080ff02315b5c7619341daca5ea37f6a595edc6
MD5 3a95c111894a99059c485dd12834de19
BLAKE2b-256 bb65110f60b83aa829d55a0a6cf59bcf1a8425227a6f4c267f314cf82285c380

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2a35e974e9dce96217dda3db89a22384093fdaa3ea7a3d8aaf6e548767634c34
MD5 5ba7c15674d430c76de9c7985bceae8a
BLAKE2b-256 034419884f2d0f978367a29c03a968cb0ae448ace58f2125b6eb3d86a818edbd

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 e166d81e6e39a7fedd5dd1d6560483bb7b0db18e1fe4153cc92088a1a81d9035
MD5 390f4d67320cdbdbbad301add74fbe7d
BLAKE2b-256 6212676022c3b5e4edb2713d05da113fc5ffbcb0d8cfdab3d2d0ea1bdf19eb6b

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d7f7dc548c35c0384aa54e3a8e0953dead10975e7d5ff9516ba09a36127f449
MD5 649074a78906b0e7e0d1dc03c1c3014a
BLAKE2b-256 c2907abc9cf951859e2f8215997641e3c00f2e4f828cffb2607a6b68e974df28

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 aea832d79931b512827ab6af68b1d20099d290c7bd94b98306bc9d639a719c6f
MD5 8d0d077dd38b3adfdd80b383bee5a6b0
BLAKE2b-256 ed27367c7179be56125ef0944487d30af9e9aed539201c6279c1b8b3a9b2c434

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 15ce18c8b7642dd5b8f491c6e19fea6079f24f52e543c698622e5eb80b17b952
MD5 482acc89b21ec1cf188a0b0b25e27f10
BLAKE2b-256 51117ff41d9f399b2f0ca427e99551ca34130c152be502c4daa31c02e383c913

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 518822e047b2c65146cf09efb287f28c2eb3ced38bcc661f881f33bcd9e2ba1f
MD5 e9fd2ab523a2e74b86da8629b6394577
BLAKE2b-256 55e6e8f5322ee71a1d839e29e53f9f172c999c32a419ea43ebd17c6156e8c769

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ff91e00c077b7e3fc2c5a8b4bcc1f62eaf403f435fc801f32dd610f20332dc0a
MD5 03080acd2a8218ef68e52054494217b8
BLAKE2b-256 0683da6db515e4beff52356f6189305c08216df29b806579f054e33b6c82a177

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 b53f91cbcd2673a25754bc65b4224ffa3e9cd580a4c7cf2659db7ca432d1b69b
MD5 feb316ae23872d94b526a4fad1d88fd5
BLAKE2b-256 e6b60963fd94a14fb8809dd0c4d0a778f94ee5c6e5cf7edcc85bfa20a88475cc

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 761491befe07097a07f7a1f0a6595076ca04c8b2db6071e8dedbbbf4cf1d5591
MD5 4d23b8299182c4c3d1ef995f71092922
BLAKE2b-256 074fdd2206809f5ff1923a1863bcf982d9729e0418ea9d9b88bb0fb8f74c2142

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

  • Download URL: lupa-2.4-cp39-cp39-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.9, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0df511db2bf0a4e7c8bb5c0092a83e0c217a175f10dba59297b2b903b02e243f
MD5 b7bf74e3ca211365043c5a5474549e82
BLAKE2b-256 1b06152a77361e25a6f3464352e143901c19f0b94ed4701f18f4a8eb235bb71b

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp39-cp39-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 00f7fb8ae883a25bc17058dae19635da32dd79b3c43470f4267d57f7bd2d5a93
MD5 1103d33141c437800347fa02571441c0
BLAKE2b-256 a2551948bc96439201dc0574fd54e2ce71cf2f57c75d9d205511e4b2d4d4dc4e

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6a4f6483c55a6449bd95b0c0b17683b0fde6970b578da4f5de37892884b4d353
MD5 f4b2c1229e4089eaa716f90796931318
BLAKE2b-256 107edee3b66e56730dd4372dcdd3a69d36699409d57e30295d3e061238898b8f

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6218c0dead8d85ff716969347273af3abf29fa520e07a0fc88079a8cefd58faf
MD5 08cae2086d53372a45939fe3048f1ba0
BLAKE2b-256 85498190a7d60a2c133039afdd5c6cf471141009e11690897e0a039ee948d14b

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 599764acf3db817b1623ef82988c85d0c361b564108918658079eca1dcd2cc8b
MD5 53f17eb1df23b7238f1267dbf8c6b76e
BLAKE2b-256 3761a6a700bf56af1c5963746380e6bed8de232a3fed1b873aad2f6200378990

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

  • Download URL: lupa-2.4-cp39-cp39-macosx_11_0_x86_64.whl
  • Upload date:
  • Size: 981.4 kB
  • Tags: CPython 3.9, macOS 11.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 79ff99c6a3493c2eb69a932e034d0e67fa03ef50e235c0804393ca6040ab9a90
MD5 fa5afcd7eee5a4239cda64a4bc78d866
BLAKE2b-256 84c5988e5ff1708931aa2f0fab62a0f198fb40d2b860405a362508b9f63ae650

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

  • Download URL: lupa-2.4-cp39-cp39-macosx_11_0_universal2.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, macOS 11.0+ universal2 (ARM64, x86-64)
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 7bb03be049222056ae344b73a2a3c6d842c55c3a69b5c5acea0f9f5a0f1dddc1
MD5 2de3dc21315b0b94f27b01ccfde94d27
BLAKE2b-256 7b9bd0567191e1ea78a084a5ff434b64d342a6a54b7b527863538038bf350554

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: lupa-2.4-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 925.1 kB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 74a3747bcd53b9f1b6adf44343a614cf0d03a4f11d2e9dee08900a2c18f1266a
MD5 46882ef0d9ae400e56bc2aec412dbabc
BLAKE2b-256 093a81b5e89ebf25929a293757894cf50dd3c08b2ca6252f14cc54e03d66c68d

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a468c6fe8334af1a5c5881e54afc39c3ebbef0e1d4af1a9ceaf04a4c95edfb9a
MD5 79b686facfaaf93f859005043a997546
BLAKE2b-256 d3a56407e02ca3a9c95237db38c5d9ded087c4554a48cbd743696e372a6d7339

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9c803d22bdfd0e0de7b43793b10d1e235defdbfbb99dbf12405dfb7e34d004d6
MD5 5ad0f1b7f601a6b2a3bf67f549230cbe
BLAKE2b-256 4d3d5c83fe1ad30360927fd9b79bbdb95b6245b5b81446548e4cf0c351960980

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a1c9fed2ee9ce6c117fe78f987617a8890c09d19476ec97aa64ce2c6cbb507f0
MD5 d079e8f9ea09c0929ec6e72151fbaaa7
BLAKE2b-256 52d8c5591290ce2f52e100e0c6eda120ea2152da7fcda668c4442f13846a3d47

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

  • Download URL: lupa-2.4-cp38-cp38-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.8, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6ed59e6ed08c4ddae4bbf317b37af5ee2253c5ff14dc3914a5f3d3c128535d90
MD5 32102bb3bf039d35db060ad80a948b83
BLAKE2b-256 9a2b550f7edd68b0dae7accfa79aba0b3f0ea5593ca73dd656d4410953506b1e

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp38-cp38-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 073bf02f31fa60cff0952b0f4c41a635b3a63d75b4d6afdf2380520efad78241
MD5 ec138debcb1489d64259954be93ef1c5
BLAKE2b-256 c780f9375a51a723eb46dd10a18b5cc2839a0b75a5deb1487237333bdc5a5292

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 579fae5adf99f6872379c585def71e502312072ec8bdf04244dc6c875f2b10c4
MD5 fb56a3f1f46eb4ce1b93655232fb499a
BLAKE2b-256 1eeadd0c5ad6f936d89be1f9b377fba51e5c8c0261229b0800d83e669e7dcb6f

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03fca7715493efc98db21686e225942dba3ca1683c6c501e47384702871d7c79
MD5 6faabeee1253bb4895725d08f8aea7f5
BLAKE2b-256 b776b1bc1360546d529f6ec2bbff682c0c3ee487512e16c3661ed9517387ece0

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d1737a54ac93b0bfe22762506665b7ac433fd161a596aee342e4dae106198349
MD5 1dd60d39cde0b3a89c24c717fffad39e
BLAKE2b-256 0457a6a4798bdeea78c659ce34a3fe321540cb21aeeaff6d282853db3a4280cc

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

  • Download URL: lupa-2.4-cp38-cp38-macosx_11_0_x86_64.whl
  • Upload date:
  • Size: 978.5 kB
  • Tags: CPython 3.8, macOS 11.0+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 27cafb9bbe5a4869a50dcb7aca068e1cc68e233d54cd6093116ffb868f7083e3
MD5 fed4673c9eb2f48a9966fb427085ca25
BLAKE2b-256 8b0a6f4eb22cb2cde0e2a27ea975393e93c68d02230b129e21d92d283f838ff4

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

  • Download URL: lupa-2.4-cp38-cp38-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 923.9 kB
  • Tags: CPython 3.8, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 76bae9285a26d1a1cacb630d1db57e829f3f91d1e8c0760acabd0e9d04eb65f3
MD5 34e1d8683337357fcd0419f4d88e2376
BLAKE2b-256 af82cd0c52a402652441b0e97a76042342daeb77591b82397e5e5b09cae9a612

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ea439dbd6c3e9895f986fff57a4617140239ad3f0b60ca4ccff0b32b3401b8d5
MD5 e1760650b5d07c0ea1cfc045113a1ecb
BLAKE2b-256 e63900c7092a3f46781d05be2c44f481e93e054155d8b3ce73b17c7d1ef466f8

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.4 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 829bfb692fee181d275c0d24dafe2c2273794f438469d0fd32f0127652f57e7a
MD5 9823c6b2f12e705432c99a12fea8f8d0
BLAKE2b-256 d7d2cf3d234b93d459cb34e2be25bd8250d97a8cc215a86fc26264627d981b62

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7ca47a1ac55c8f5cc0043b9fee195b2f6f3b9435fde71a0e035546b9410731e9
MD5 d0d4f45f7afd0bd54b9cc1cf19593ebd
BLAKE2b-256 5db5ae72f7030792829a7c0f01027b394f164962a868e78cfde137bd84539f66

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

  • Download URL: lupa-2.4-cp37-cp37m-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.7m, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f70d9d7e2fd38a3124461cb3a2d10494c4fbea0ee9fa801e6066b79f0a75e5f0
MD5 dd8699712f13a84fb7ceb99fe65cbf45
BLAKE2b-256 1a68725462e9b27f3fbbbe41eba8131e4aa2d8f26b78f628ac940b2ee1f14d89

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp37-cp37m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 e84b388356fe392d787e6a8aed182bd5b807de8965aa9ef6f10d0eb5e47ddca5
MD5 993e3b950286705089ac7514dc41c98f
BLAKE2b-256 0de2db9d71801d0c313594185a9f63f9162b0d98200e664663a36db370772b38

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89d802cd78da75262477148ef5aea14c8da76f356329f69b44bc3b31dd3d64a1
MD5 d6bdeff0843416a044a81df4d2d5d021
BLAKE2b-256 5f096a6678884e4240e1bf279331cef9d75b2093d027c1a37383ddf2201e2d87

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c3feb9d8af4c5cda2f1523ce6b40cadc96b8de275d84f7d64e1a35b8ecd7f62
MD5 c3e9f92e9684516341a6654706abfebe
BLAKE2b-256 707e3356110fea706be9d4ed98664baa1e44c2511b144ebf61e27fe208f76088

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 710067765c252328ba2d521a3ab7dfef3a6b89293b9ed24254587db5210612ca
MD5 cb3baa78736393511589ae9c7f6d94f8
BLAKE2b-256 ec5d4bfd03cddc87c75d76e5e4114029814f1c4b7802c246e3413980a3c623d7

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 31e522dcd53cb2a8c53161465f3d20dc9672241b2c4f5384ebda07f30d35d7f7
MD5 9169c9ed2d7dc572953df330d7166710
BLAKE2b-256 cd44a09e0b84e4559c29acb912745c1771fbab89ae476820bccfd9126480708e

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lupa-2.4-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 4e12cfc3005fcd2a5424449a7d989d1820b7e17a06d65dfe769255278122b69e
MD5 8c1746e20341a3f1c484c1c496541340
BLAKE2b-256 c8bdf811fc0440d2034f04f292d50a133f4b6632d5bf5d22d6d26106d79bfcf1

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-win32.whl.

File metadata

  • Download URL: lupa-2.4-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.5 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 0f95747c40156a77b4336f1bb42f1e29e42cfb46c57b978b50db6980025b528c
MD5 32c0cb5947be43d6c12837f79fc5cb68
BLAKE2b-256 773f1cf76dc2292072e91b6c315eb6507750069f48104c21d89063f109f57945

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp36-cp36m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1247453e4b95dfbf88a13065e49815992db16485398760951425a29df7b5e2dc
MD5 d27b103db1f065292be023243dd3ea34
BLAKE2b-256 a8ce5a38b9a5a0b4b2e7dc69c6184828dcc4a4f6f0ef74a01d76111842f5350b

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-musllinux_1_2_i686.whl.

File metadata

  • Download URL: lupa-2.4-cp36-cp36m-musllinux_1_2_i686.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, musllinux: musl 1.2+ i686
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.12.3

File hashes

Hashes for lupa-2.4-cp36-cp36m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b250cd39639fff9a842a138f18343c579a993e56c9dea8914398e5c9775f6b0d
MD5 c20d105f1b99e597e8a7901f752d1c06
BLAKE2b-256 303673720e680caedc8fdd63b7f650c9cf8c7c67ebcceae65e7c6c9d4e3f1e9a

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-musllinux_1_2_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp36-cp36m-musllinux_1_2_aarch64.whl
Algorithm Hash digest
SHA256 34994926045e66fea6b93b2caab3ac66f5de4218055fd4dd2b98198b2c3765ee
MD5 fb30e3ee5676de3ec56aceca5864fd5b
BLAKE2b-256 1613f221943badda1033dc67b1cdf24d59181019f12627fa83b9d4bb7af078e9

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 90a41c0f2744be3b055dec0b9f65cd87c52fb7a86891df43292369ee8e4ea111
MD5 06f87879130f4288176b3c81f65fa034
BLAKE2b-256 a52d8aaf8ced3ff9e2c9ec63e9c027cc579a6456eeea03d2c00483cc147cbb0a

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f2d5c732f4fe8a4f1577f49e7a31045294019c731208ecee6f194bb03ee4c186
MD5 156b61a1b055a03fa872a7921941ce3f
BLAKE2b-256 02e2607e4429c3d8413dee0e63ac0155977389652c4b471c7c76a950b8cfecfe

See more details on using hashes here.

File details

Details for the file lupa-2.4-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lupa-2.4-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 07f55b6c30f9e03f63ca7c4037b146110194ab0f89021a9923b817a01aa1c3bc
MD5 41d278605ea7ca8f9baf765f5b5b8bcc
BLAKE2b-256 be8ca33e90aa1ff1fefb738ff1411c1cdc53abd09db3d83a1eab720301b333d3

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page