
 
 

Delft University of Technology

CLEF NewsREEL 2017 Overview
Contextual Bandit News Recommendation
Liang, Yu; Loni, Babak; Larson, Martha

Publication date
2017
Document Version
Final published version
Published in
CLEF 2017 Working Notes

Citation (APA)
Liang, Y., Loni, B., & Larson, M. (2017). CLEF NewsREEL 2017 Overview: Contextual Bandit News
Recommendation. In L. Cappellato, N. Ferro, L. Goeuriot, & T. Mandl (Eds.), CLEF 2017 Working Notes :
Conference and Labs of the Evaluation Forum (pp. 1-13). (CEUR Workshop Proceedings; Vol. 1866).
CEUR-WS.
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



CLEF NewsREEL 2017: Contextual Bandit
News Recommendation

Yu Liang1, Babak Loni1 and Martha Larson1,2

1 Delft University of Technology, Netherlands
2 Radboud University Nijmegen, Netherlands

Y.Liang-2@student.tudelft.nl, b.loni@tudelft.nl, m.a.larson@tudelft.nl

Abstract. In the CLEF NewsREEL 2017 challenge, we build a dele-
gation model based on the contextual bandit algorithm. Our goal is to
investigate whether a bandit approach combined with context extracted
from the user side, from the item side and from user-item interaction can
help choose the appropriate recommender from a recommender algorithm
pool for the incoming recommendation requests. We took part in both
tasks: NewsREEL Live and NewsREEL Replay. In the experiment, we
test several bandit approaches with two types of context features. The
result from NewsREEL Replay suggests that delegation model based
on the contextual bandit algorithm can improve the click through rate
(CTR). In NewsREEL Live, a similar delegation model is implemented.
However, the delegation model from NewsREEL Live is trained by the
data stream from NewsREEL Replay. This is due to the fact that the
low volume of data received from the online scenario is not enough to
support the training of the delegation model. For our future work, we
will add more recommender algorithms to the recommender algorithm
pool and explores other context features.

Keywords: Recommender System, Context, Contextual Bandit, News,
Evaluation

1 Introduction

The CLEF NewsREEL Challenge [1, 2] is a challenge in which participants are
asked to provide effective real-time news recommendation. The challenge pro-
vides participants with a platform to evaluate their recommender algorithms
with millions of real-world users. We took part in both tasks [3]: Task 1 (News-
REEL Live) [4] and Task 2 (NewsREEL Replay) [5]. In the Live task, the rec-
ommendation requests are distributed to all participants of the challenge and
thus not all traffic is sent to a single participant. This makes it more challenging
than the Replay task. In the Live task, we use a trained delegation model that
is implemented for the Replay task.

Our work was initially inspired by Lommatzsch and Albayrak, who, in their
work [6], combine several recommender algorithms with one delegation model
responsible for delegating the incoming recommendation request to the appro-
priate recommender algorithm. In our work, we also build a similar delegation



model with the objective to improve recommendation performance, in other
words, to maximize Click Through Rate (CTR). We find that a multi-armed
bandit (MAB) algorithm is suited for the purpose. Multi-armed bandit algo-
rithms address the problem of a gambler at a row of slot machines who has to
decide which machine to play, in what sequence to play and how many times to
play in order to maximize the rewards collecting from the slot machines. The
model has been widely used in website optimization [7] for choosing the right
ads for users [8] and selecting the right advertisement format [9]. All of these
models involve optimization problems, e.g., selecting the suitable ad format in
order to maximize the CTR received from users. Another good property of MAB
algorithms is that they can continuously learn from the past, such as from user
feedback, and then adjust its decisions about which arm to choose. With the
feedback, it is able to balance the exploration and exploitation dilemma. Ex-
ploitation means the MAB algorithm chooses the arm with the currently best
performance from the previous plays, while exploration means it chooses the
arm with lower performance in order to learn more from these arms. This kind
of trade-off is missing in A/B testing, in which a pure exploration is applied at
the initial phase followed by a pure exploitation in a very long period [7]. The
exploration and exploitation trade-off makes MAB algorithm works well for the
news recommendation [10], in which it is able to recommend popular items most
of the time and also explore the news items in the long tail. Further, combined
with context, the model works even better. Context is proved to be useful for
the optimization [7–10].

However, our consideration is not directly related to news items, but the
recommender algorithms. Given the effective recommender algorithms from pre-
vious years, we believe the contextual bandit algorithm is able to combine them
in a wise way and ultimately improve the recommendation performance. Our
research interest comes with the assumption that given the context of a user,
item and user-item interaction, contextual bandit algorithms can help choose ap-
propriate recommender algorithm for each recommendation request and thereby
improve the CTR.

This paper is structured as follows: in Section 2, we discuss the work related
to the contextual multi-armed bandit algorithm. In Section 3, we introduce the
method that we implemented in this work. Section 4 describes our evaluation
methods, including NewsREEL Replay and NewsREEL Live. In Section 5, we
analyze the evaluation results. In the last section, we summarize the results and
discuss future work.

2 Background and Related Work

2.1 Multi-armed Bandit Algorithms

epsilon-Greedy Epsilon-Greedy is the simplest algorithm to solve the multi-
armed bandit problem. The only parameter in the model is ε. In the standard
settings, ε is fixed. With probability 1 − ε, the policy plays the currently best



arm, and with probability ε, it plays a random arm. The algorithms also have
several variations, e.g., ε-decreasing in which ε decreases over time [11].

Upper Confidence Bound Unlike epsilon-greedy, UCB is not only concerned
about the reward from the previous plays, but also about how much it knows
about the available arms. At the initial phase, UCB explores each arm at least
once. After the initial phase, each time it plays the arm with the highest value
from the formula rα + b, where rα is the estimated reward for arm α, and b is
a special bonus for the arm α. One widely used UCB variation is UCB1 [12], in

which b is set to be

√
2ln
∑n

i=1
ti

tα
, ti is the number of plays arm i has been chosen,

and tα is the number of plays arm α has been chosen. In UCB, arms that are
explored less in the previous plays would receive higher bonus value, while arms
that are explored more would receive lower bonus value. This can prevent the
under-exploration of potential rewarding arms.

Thompson Sampling Another widely used multi-armed bandit algorithm is
Thompson Sampling. Thompson sampling models the probability distribution of
each arm’s reward. The reward of arm α follows a probability distribution with
mean θ∗α [13]. In the case where bandits are binary, a Beta-Bernoulli distribution
[14] is used. The algorithms repeatedly draw a sample from the distribution of
each arm, and it plays the arm with the largest value.

2.2 Contextual Bandit Algorithms

Contextual bandit algorithms combine MABs with context features. In our set-
tings, users and news articles are always represented by feature vectors, such
as domains. The contextual bandit algorithm chooses arms in such a way that
the most appropriate arm for each context is played to maximize the reward. A
trivial implementation is to build a MAB model for each context. Another idea
is assuming there is a relationship between the expected reward and the context.
We implement both ideas.

Linear UCB Linear UCB is a contextual bandit algorithm first proposed in [10].
The algorithm assumes that there is a linear relationship between the expected
reward and the context. In this algorithm, the context is used to update the re-
wards and improve its arm selection strategy. In each trial (play) t, the expected
payoff of arm α is equal to E[rt,α|xt,α] = xt,αθ

∗
α, where rt,α specifies the reward

of arm α at trial t, xt,α specifies the feature vector for arm α at trial t and θ∗α
is a coefficient that can be learned from the previous trials. In each trial, the
algorithm plays the arm with the highest final score. The final score of each arm
is calculated as:

αt = argmaxα∈A

(
xt,αθ̂α + β

√
xTt,αA

−1
α xt,α

)
(1)



where A is the set of arms, θ̂α is an estimate of coefficients, β is a hyper-parameter
and A is the covariance matrix of coefficients.

3 Framework

Our framework is designed to validate the hypothesis that contextual bandit
algorithms can choose the appropriate recommender algorithm from the recom-
mender algorithm pool for the incoming recommendation requests given context
from users and items. In NewsREEL Replay, we consider two types of training:
the training of the delegation model and the training of the recommender algo-
rithms. The delegation model is trained and updated in batches (a more detailed
discussion is presented in Section 3.2). In contrast, the recommender algorithms
are trained and are able to update continuously regardless of the batches. The
delegation model implemented in the Live task is also trained in the same way,
but the data stream for training is from the offline dataset due to the low vol-
ume received from the online scenario. The recommender algorithms in the Live
scenario also update continuously.

3.1 Recommender Algorithms

We build up our delegation recommender based on the recommender developed
by recommenders.net. The recommender algorithm pool consists of five simple
recommender algorithms:

– Recent : Recommend the most recently created or updated articles. For the
realization, a ring buffer is implemented to store the most recently created
or updated articles. The size of the ring buffer is set to 100. When there is
a new item, it will be inserted into the ring buffer. If the ring buffer reaches
its size, it will drop the least recent news articles.

– Path: Given the news articles that the user is currently reading, recommend
the most popular3 news articles requested next by users, referring to the
Most Popular Sequence in the work [6]. In the default settings, for each
news article, 100 most recently requested articles are kept. The popularity
scores are then computed from the 100 articles.

– Click : Similar to the algorithm Path, but the popularity algorithm considers
only the clicks4 of the user.

– Imp: Similar to the algorithm Path, but the popularity algorithm considers
only the impressions from users.

– PRCate: Popularity and category based Recommender. Recommend the
news article with most impressions and clicks within a certain category. The
popularity scores only consider 100 most recently requested news articles
within the category.

3 The popularity is computed from the weighted combination of impressions and clicks.
4 A click is different from an impression: a click means the user clicks on the rec-

ommendation, while an impression means the user clicks on articles that were not
necessarily recommended [15]



3.2 Delegation Framework

Our proposed delegation framework is trained and updates only in the Replay
task. The low volume of data from the Live task is not enough for training such
a framework. However, in NewsREEL Live, we implement the delegation model
trained from the NewsREEL Replay. More details about NewsREEL Live can be
found in Section 4.1. It is not trivial to implement MAB algorithm in the real-
world settings. We first define the reward. In our settings, the reward is defined
as clicks received from recommendations. If a user clicks on a recommendation,
the reward is 1, otherwise, the reward is 0. Therefore, the reward is a binary
value. Given the context, the recommender algorithm, and its corresponding
reward, the delegation model is able to update. However, unlike what is imple-
mented in [9, 10], where rewards can be obtained immediately after each action,
rewards in real-world settings are delayed. Specifically, in our case, there would
be hundreds of incoming recommendation requests between a recommendation
and its corresponding reward. It is unrealistic to suspend the delegation model
before receiving the reward or to update the whole delegation model each time a
reward is observed. We implement a similar batch update as used in the work [8]
for our delegation model. The basic underlying idea is to update the delegation
model in batches, in other words, the model updates only after receiving enough
amount of reward.

Batch update and assignment The whole recommendation process is divided
into batches. The contextual bandit algorithm is updated at the end of each batch
with the rewards collected in each batch, as illustrated in Figure 1. After each
update, the delegation model will preassign appropriate recommender for each
context to serve incoming requests in the next batch.

Initialization In the first batch, there is no historical data from which the
contextual bandit algorithm can learn the model. Therefore, at the initial phase
of recommendation, recommender algorithms are randomly selected to serve the
incoming recommendation requests. At the end of the first batch, the contextual
bandit algorithm is able to update for the first time with the rewards collected
in the first batch.

Rewards Rewards are defined as ‘clicks’ received from the recommendations.
However, in both tasks, we cannot directly track whether our previous recom-
mendations are successful or not. Making use of the evaluator from NewsREEL
Replay, the reward is defined, for a given recommendation, based on whether
the user interacts with the item in the next 10 minutes.

3.3 Exploiting Context

We exploit context with two different methods. In the first method, the context
is used to filter the model. For example, if the recommendation request belongs



Fig. 1. Illustration of updates and the end of each batch.

to a domain A, the method chooses the model that is trained from items in A.
We refer to this method as context pre-filtering. Our second approach exploits
context for training the model. We refer to this method as context modeling. We
use the Linear UCB algorithm [10] to exploit context in the model. We use a
special case of general contextual bandit algorithm known as K-armed bandit,
where the set of arms remains the same in all trials. In our framework, the five
algorithms introduced earlier in this section are served as the arms. The score of
arms is calculated according to Eq.(1) where the feature vectors xt,α are built
based on the given context.

For the contextual bandit algorithm, it is important to find useful context
features. Unlike other work [8, 10], where the user profile is available, we do not
have any information about the user profile. Users can only be tracked by their
cookies, and some users even do not allow any tracking. All contextual informa-
tion is encoded in the incoming messages. In addition, not all context features
can contribute to the performance of recommender algorithms. We consider two
context features, one is Domain, which is also considered as an important con-
text feature in the work [6] and the other is User-Domain Impressions. Domain
refers to different publishers, and User-Domain Impressions refers to the number
of impressions the user has with the domain.

Figure 2 shows the recommender algorithms’ performance with respect to
different context features using the CTR metric. In domain ‘418’, a general news
portal, the recommender Click performs the best. This recommender also shows
a good performance in domain ‘1677’, which is also a general news portal. How-
ever, the popularity based algorithm does not perform well in domain ‘35774’,
a sports news portal. The recommender algorithm Recent shows the best per-
formance in this domain. This can be explained by the fact that people always
prefer the newest sports news. Also, the bad performance of PRCate might be
due to the reason the sports domain is already very specific, and further spe-
cific category would not help. The findings are consistent with the findings in
previous work. Figure 3 shows the algorithms performance with respect to the
number of user-domain impressions in domain ‘418’. Normally, with the increase
of the number of user-domain impressions, CTR should also be increased as
users with more interactions with the publishers would be more willing to click



on the recommendations. However, there are some exceptions. With the increase
of User-Domain Impressions, CTR observed from the Click algorithm experi-
ence a sharp decrease. The decrease can be explained by the fact people with
enough interactions with the publisher have already seen the popular articles and
prefer the newest news. In context modeling, the categorical context features are
encoded by one-hot coding. The context Domain is already a categorical feature
by itself. For the context User-Domain Impressions, we implement some trans-
formation. Specifically, we classifies the number of User-Domain Impressions
into three groups: 0 ≤ number of User-Domain Impressions < 5, 5 ≤ number of
User-Domain Impressions < 10 and 10 ≤ number of User-Domain Impressions
< 15.

Fig. 2. Recommender Algorithms Performance w.r.t. Different Domains

4 Experiment

In both online and offline scenario, there are four types of messages: recommenda-
tion request, item update, event notification and error notification. Specifically,
in the Live task, the recommender needs to give recommendations within 100ms,
otherwise the recommendations will be regarded as invalid. As the data volume
redirected to our recommender is too low in the Live task, the delegation model
implemented online is the one with the best performance in NewsREEL Replay.
Thus, in the following sections, we will first discuss our experiment in NewsREEL
Replay, and then NewsREEL Live.

4.1 NewsREEL Replay

Our recommendation framework that is used in NewsREEL Replay is described
in Section 3. For this task, we are provided with a month-long dataset collected



Fig. 3. Recommender Algorithms Performance w.r.t. User-Domain Impressions in Do-
main “418”

during February 2016. Normally, a replay of a daily dump takes about 3-4 hours.
Due to the time constraints, data collected from 2016-02-01 to 2016-02-03 is re-
played for evaluation. The dataset is not evenly distributed: about 75% traffic
is from the domain ‘35774’, a sports domain, followed by two general news do-
mains ‘1677’ and ‘418’. In the evaluation phase, we only consider the results
from the above three domains since a majority of traffic comes from these three
domains. The evaluation phase is as follows: Firstly, the daily dump from 2016-
02-01 is replayed to prevent the cold-start problem. Then the evaluation phase
is implemented in the following way: The rest of the dataset (data from 2016-
02-02 to 2016-02-03) is split into N smaller mutually exclusive datasets with
the same size. The dataset is replayed in batches. See Figure 1 for clarification.
There are two different batch sizes, one containing 100000 line messages, and the
other containing 300000 line messages. Next, as explained in Section 3.1, for each
batch, rewards are computed at the end of the batch. After that, the contextual
bandit algorithm is able to update the model. Finally, the chosen recommender
algorithm is assigned for the incoming requests in the next batch. In Table 1,

Table 1. NewsREEL Replay Evaluation Results: Single Recommender Algorithm
Baselines

Algorithm Average CTR Domain ‘418’ Domain ‘1677’ Domain ‘35774’

Random 0.645 (0%) 0.187 (0%) 0.401 (0%) 0.749 (0%)

Path 0.632 (−2.02%) 0.137 (−26.74%) 0.357 (−10.97%) 0.748 (−0.13%)

Recent 1.213 (88.06%) 0.224 (19.79%) 0.478 (19.20%) 1.487 (98.53%)

Click 0.256 (−60.31%) 0.264 (41.18%) 0.419 (4.49%) 0.220 (−70.63%)

Imp 0.618 (−4.19%) 0.114 (−39.04%) 0.330 (−17.71%) 0.738 (−1.74%)

PRCate 0.064 (−90.08%) 0.159 (−14.97%) 0.294 (−26.68%) 0.03 (−99.60%)



results with the best performance in each domain are highlighted. In Table 2
and 3, results with similar or better performance than the results in Table 1
are also highlighted. For all algorithms, we measure their performance based on
average CTR and CTR in the three domains. We also further compare the CTR
with the random baseline. The percentage in the tables shows the CTR change
comparing to the baseline.

Table 2. NewsREEL Replay Evaluation Results: Context Pre-filtering

Algorithm Average CTR CTR ‘418’ CTR ‘1677’ CTR ‘35774’

random 0.645 (0%) 0.187 (0%) 0.401 (0%) 0.749 (0%)

epsilon 0.5 b3 0.954 (47.91%) 0.239 (27.81%) 0.437 (8.98%) 1.148 (53.27%)

epsilon 0.3 b3 1.070 (65.89%) 0.252 (34.75%) 0.468 (16.71%) 1.294 (72.76%)

epsilon 0.1 b3 1.163 (80.31%) 0.235 (25.67%) 0.456 (13.72%) 1.423 (89.99%)

ucb1 b3 1.197 (85.58%) 0.200 (6.95%) 0.420 (4.74%) 1.474 (96.80%)

ts b3 1.213 (88.06%) 0.224 (19.79%) 0.480 (19.70%) 1.486 (98.40%)

epsilon 0.5 b1 0.958 (48.53%) 0.232 (24.06%) 0.449 (11.97%) 1.151 (53.67%)

epsilon 0.3 b1 1.060 (64.34%) 0.249 (33.16%) 0.458 (14.21%) 1.283 (71.30%)

epsilon 0.1 b1 1.160 (79.84%) 0.266 (42.25%) 0.456 (13.72%) 1.415 (88.92%)

ucb1 b1 1.195 (85.27%) 0.199 (6.42%) 0.405 (1.00%) 1.475 (96.93%)

1 Algorithm labels: epsilon 0.5 b3: epsilon greedy with ε = 0.5 with context
Domain and batch size 300000, ucb1 b3: UCB1 with context Domain and
batch size 300000, ts b3: Thompson Sampling with context Domain and batch
size 300000

With the context given in Section 3.2, we propose two different delegation
models in the Replay task. In the first method, referred as context pre-filtering,
we only consider the context Domain and implement a separate bandit model
in each of the three news domains. In the second approach, referred as context-
modeling, we encode context (Domain and User-domain Impressions) as feature
vectors. Then we build a contextual bandit model based on the linucb (Lin-
ear UCB) model. The results of the simple baseline recommender algorithms
are presented in Table 1, the results of the context pre-filtering model in Ta-
ble 2, and the results of the context-modeling approach is listed in Table 3.
The random algorithm, which randomly selects a recommender algorithm to
serve the incoming requests, is set as the baseline, referred to as random in
Table 1. The names of the contextual bandit algorithms in Table 2 contain
algorithm hyperparamter value batch size. There are three different bandit al-
gorithms in context pre-filtering: epsilon-greedy (epsilon), ucb1 and Thompson
Sampling (ts). For epsilon-greedy, we tried three different ε value: 0.5, 0.3 and
0.1. In the experiment, we also tried two batch sizes: b3 means each batch con-
taining 300000 messages and b1 indicating 100000 messages. Contextual bandit
algorithms in Table 3 are formatted as algorithm hyperparamter value context
used batch size. The only algorithm used in context-modeling is linear UCB. In
the model, linear UCB is implemented with three different β value in Eq.(1): 1,



Table 3. NewsREEL Replay Evaluation Results: Context-Modeling

Algorithm Average CTR CTR ‘418’ CTR ‘1677’ CTR ‘35774’

linucb 1 d b3 1.202 (86.36%) 0.220 (17.65%) 0.403 (0.50%) 1.483 (98.00%)

linucb 0.5 d b3 1.207 (87.13%) 0.246 (31.55%) 0.423 (5.49%) 1.483 (98.00%)

linucb 0.2 d b3 1.204 (86.67%) 0.257 (37.43%) 0.414 (3.24%) 1.484 (98.13%)

linucb 1 di b3 1.211 (87.75%) 0.259 (38.50%) 0.451 (12.47%) 1.485 (98.26%)

linucb 0.5 di b3 1.206 (86.98%) 0.279 (49.20%) 0.415 (3.49%) 1.485 (98.26%)

linucb 0.2 di b3 1.214 (88.22%) 0.268 (43.32%) 0.467 (16.46%) 1.485 (98.26%)

linucb 1 d b1 0.992 (53.80%) 0.244 (30.48%) 0.452 (12.72%) 1.180 (57.54%)

linucb 0.5 d b1 1.205 (86.82%) 0.231 (23.53%) 0.457 (13.97%) 1.478 (97.33%)

linucb 0.2 d b1 1.196 (85.43%) 0.263 (40.64%) 0.393 (−2.00%) 1.478 (97.33%)

linucb 1 di b1 1.196 (85.43%) 0.253 (25.29%) 0.395 (−1.50%) 1.478 (97.33%)

linucb 0.5 di b1 1.196 (85.43%) 0.207 (10.70%) 0.426 (6.23%) 1.477 (97.20%)

linucb 0.2 di b1 1.197 (85.58%) 0.150 (−19.79%) 0.456 (13.72%) 1.479 (97.46%)

1 Algorithm annotation: linucb 1 d b3: LinUCB with β = 1 with context Domain
and batch size 300000, linucb 1 di b3: LinUCB with β = 1 with context Domain,
User-Domain Impressions and batch size 300000

0.5 and 0.2, and two context: Domain and User-Domain Impressions. In Table
2 and Table 3, d stands for the context Domain. In Table 3, di indicates the use
of both contexts.

4.2 NewsREEL Live

The online evaluation of NewsREEL Live is from 24 April to 7 May 2017. The
Open Recommendation Platform (ORP) is responsible for redirecting the traffic
from the publishers and monitoring different recommender algorithms’ perfor-
mance. With ORP, participants are able to deploy their recommender services
and receive recommendation requests. The low volume of data refers to the small
number of recommendation requests, user clicks and user impressions, redirected
to our recommender from plista. Comparing with the data stream in the Replay
dataset, the data stream redirected in the Live task consists only a small portion
of the whole plista data stream and is not enough to support training or updat-
ing of our contextual bandit algorithm. In the Live task, we deployed the best
delegation recommender model trained from the NewsREEL Replay, referring
to linucb 0.2 di b3 in Table 3, to serve the incoming recommendation requests.
In addition, a portion of data from the Live task comes from a domain that is
not included in the Replay dataset. This also gives rise to a challenge for us.
Our solution is that for all the recommendation requests from that domain, we
redirect them to the PRCate recommender. Table 4 shows our online evalua-
tion results. There are two types of impressions created by ORP. The first type
considers the impressions from the recommendation list, which are referred to
as ‘widget impressions’, and the second type considers the impressions from in-
dividual items, which are referred to as ‘item impressions’. ORP also creates a



Table 4. NewsREEL Live Evaluation Results from 24 April to 7 May 2017 (delegation
model: linucb 0.2 di b3 trained from offline)

Metric Click Num Impression Num CTR

Widget 747 60814 0.012

Individual item 747 192207 0.0039

‘click’ for each click on the recommended articles from users. The final metric
for the recommender performance is measured by the CTR, which equals to the
number of clicks divided by the number of impressions.

5 Discussion

5.1 NewsREEL Replay

The NewsREEL Replay evaluation results are summarized in Table 1, Table 2
and Table 3. Table 1 shows the recommendation performance of the five basic
recommenders from which the delegation model is able to choose an appropriate
recommender. A random algorithm, which randomly selects a recommender for
the incoming recommendation requests, is served as the baseline. Table 2 shows
the evaluation results from the contextual bandit delegation model in which a
MAB model is set up for each context. Table 3 shows the evaluation results
from the contextual bandit delegation model in which the linear UCB model
is implemented. The only context in Table 2 is Domain, while in Table 3, two
contexts Domain and User-Domain Impressions are considered. From both Ta-
ble 2 and Table 3, we can see the evaluation results from the delegation model
outperform the random baseline. This indicates the delegation model is able
to learn from the past and chooses appropriate recommender for the incoming
recommendation requests in order to maximize the CTR.

To further explain the results, we first describe two facts with respect to
the domain ‘35774’: Firstly, as explained in the previous section, about 70% of
the traffic is from this domain. Therefore, a CTR increase in domain ‘35774’
leads to an increase of average CTR. Secondly, as shown in Table 1, the rec-
ommender Recent performs much better than any other recommender in this
domain. For the performance of different MAB algorithms, UCB1 works better
than epsilon-greedy in domain ‘35774’, but worse in domain ‘418’ and domain
‘1677’. This result is a little bit unexpected since UCB1 explores under the guid-
ance of a confidence bound [10], while epsilon-greedy explores randomly without
any guidance. The reason might be the parameter that is used to balance the ex-
ploration and exploitation is fixed in UCB1. In the future, we will try UCB with
other value of the parameter. Thompson Sampling also works well in the evalu-
ation, and in domain ‘1677’ it shows the best performance. For domain ‘35774’,
further exploration does not benefit the CTR since the Recent recommender
always performs best in the domain. The exploration leads to a CTR decrease
in domain ‘35774’ but CTR increases in domain ‘418’ and domain ‘1677’. For



epsilon-greedy, smaller ε value shows better results. From the side of epsilon-
greedy, exploring too much is also not a good idea. The fixed parameter ε is
served to balance the exploration and exploitation. In Table 3, in addition to
the context Domain, another context User-domain Impressions, which measures
the number of interactions the user has with the domain, is also taken into con-
sideration. The results in Table 3 are in general better than the results from Table
2. The contextual bandit delegation model based on linear UCB works better
than the one in which there is a MAB model for each context. In addition, the
context User-domain Impression is a useful context concerning CTR. Average
CTR from the delegation model based on the linucb 0.2 di b3 algorithm even
outperforms the Recent Recommender in Table 1. One interesting observation
is that CTR does not increase in domain ‘35774’ and ‘1677’ indicating that the
exploration is less useful, but it does increase in domain ‘418’, in which explo-
ration is much more useful. This is due to some recommender algorithms always
achieving the best performance in some domains (e.g., Recent recommender in
domain ‘35774’), making exploration is unnecessary. The findings also indicate
the performance of a single recommender algorithm appears to depend on the
publishers.

5.2 NewsREEL Live

For NewsREEL Live we test our recommender for 14 days. There are two chal-
lenges in the Live task: Firstly, as discussed before, the low volume of data from
the ORP to our account makes it hard for us to train the contextual bandit
algorithm online. A delegation model trained from the Replay task is deployed
to serve the incoming recommendation requests. Secondly, publishers in the Live
task are different from the publishers in the Replay task. In NewsREEL Live,
a portion of requests comes from domain ‘17614’, which is not included in the
Replay dataset. As the result, the corresponding requests from that domain are
delegated to the PRCate recommender. The two challenges might lower our rec-
ommendation performance in the Live task. In total 19 teams which participate
in NewsREEL Live, our delegation model ranked 10th.

5.3 Conclusion and Future Work

In conclusion, our results have verified our assumption the contextual bandit
algorithm is able to select the appropriate recommender algorithm given the
context. However, the balance between exploration and exploitation is impor-
tant. If one particular recommender algorithm is performing significantly better,
then exploitation does not necessarily help. For future work, firstly, we will add
more recommender algorithms to our recommender algorithm pool, such as col-
laborative filtering since the performance of the contextual bandit algorithm is
to some extent limited by the single recommender algorithm. Secondly, we will
explore more contexts in order to further improve the recommendation CTR.
Last but not least, we would like to evaluate the contextual bandit algorithm on
a dataset with a more equally distributed traffic among different domains.



References

1. Hopfgartner, F., Brodt, T., Seiler, J., Kille, B., Lommatzsch, A., Larson, M., Tur-
rin, R., Serény, A.: Benchmarking news recommendations: The CLEF NewsREEL
use case. In: ACM SIGIR Forum, ACM (2016) 129–136

2. Lommatzsch, A., Kille, B., Hopfgartner, F., Larson, M., Brodt, T., Seiler, J.,
Özgöbek, Ö.: CLEF 2017 NewsREEL overview: A stream-based recommender
task for evaluation and education. In: Proceedings of CLEF 2017, Dublin, Ireland,
2017. (2017)

3. Kille, B., Lommatzsch, A., Gebremeskel, G.G., Hopfgartner, F., Larson, M., Seiler,
J., Malagoli, D., Serény, A., Brodt, T., De Vries, A.P.: Overview of NewsREEL’16:
Multi-dimensional evaluation of real-time stream-recommendation algorithms. In:
International Conference of the Cross-Language Evaluation Forum for European
Languages, Springer (2016) 311–331

4. Hopfgartner, F., Kille, B., Lommatzsch, A., Plumbaum, T., Brodt, T., Heintz, T.:
Benchmarking news recommendations in a living lab. In: International Conference
of the Cross-Language Evaluation Forum for European Languages, Springer (2014)
250–267

5. Kille, B., Lommatzsch, A., Turrin, R., Serény, A., Larson, M., Brodt, T., Seiler, J.,
Hopfgartner, F.: Stream-based recommendations: Online and offline evaluation as
a service. In: International Conference of the Cross-Language Evaluation Forum
for European Languages, Springer (2015) 497–517

6. Lommatzsch, A., Albayrak, S.: Real-time recommendations for user-item streams.
In: Proceedings of the 30th Annual ACM Symposium on Applied Computing, ACM
(2015) 1039–1046

7. White, J.: Bandit algorithms for website optimization. O’Reilly (2012)
8. Tang, L., Rosales, R., Singh, A., Agarwal, D.: Automatic ad format selection via

contextual bandits. In: Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management, ACM (2013) 1587–1594

9. Li, W., Wang, X., Zhang, R., Cui, Y., Mao, J., Jin, R.: Exploitation and exploration
in a performance based contextual advertising system. In: Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining,
ACM (2010) 27–36

10. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to per-
sonalized news article recommendation. In: Proceedings of the 19th international
conference on World Wide Web, ACM (2010) 661–670

11. Burtini, G., Loeppky, J., Lawrence, R.: A survey of online experiment design with
the stochastic multi-armed bandit. arXiv preprint arXiv:1510.00757 (2015)

12. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine learning 47(2-3) (2002) 235–256

13. Chapelle, O., Li, L.: An empirical evaluation of Thompson sampling. In: Advances
in neural information processing systems. (2011) 2249–2257

14. Agrawal, S., Goyal, N.: Analysis of Thompson sampling for the multi-armed bandit
problem. In: COLT. (2012) 39–1

15. Yuan, J., Lommatzsch, A., Kille, B.: Clicks pattern analysis for online news recom-
mendation systems. In Balog, K., Cappellato, L., Ferro, N., Macdonald, C., eds.:
Working Notes of CLEF 2016 - Conference and Labs of the Evaluation forum,
Évora, Portugal, 5-8 September, 2016. Volume 1609 of CEUR Workshop Proceed-
ings., CEUR-WS.org (2016) 679–690


