The aims of the study were to describe the differences between the ski skating techniques V1 and V2 and evaluate reproducibility in complex cyclic hip movements measured by accelerometers. Fourteen elite senior male cross-country skiers rollerskied twice for 1 min (V1 and V2) at 4° inclination and 3 m/s. Tests were repeated after 20 min and again 4 months later. Five triaxial accelerometers were attached to the subject's hip (os sacrum), poles, and ski boots. Post-processing included transforming to an approximately global coordinate system, normalization for cycle time, double integration for displacement, and revealing temporal patterns. Different acceleration patterns between techniques and large correlation coefficients (Pearson's r = 0.6-0.9) between repeated trials were seen for most parameters. In V2, the hip was lowered [-10.9 (1.2) cm], whereas in V1, the hip was elevated [4.8 (1.5) cm] during the pole thrust. In conclusion, V2 but not V1 showed similarities to double poling in the way that potential energy is gained between poling strokes and transferred to propulsion during the poling action. Elite skiers reproduce their own individual patterns. One triaxial accelerometer on the lower back can distinguish techniques and might be useful in field research as well as in providing individual feedback on daily technique training.
Keywords: biomechanics; cross-country skiing; cyclic movements; inertial sensors; reproducibility.
© 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.