In situ hybridization was used to study expression of mRNAs for members of the nerve growth factor (NGF) family in the rat brain after 2 and 10 min of forebrain ischemia and 1 and 30 min of insulin-induced hypoglycemic coma. Two hours after the ischemic insults, the level of brain-derived neurotrophic factor (BDNF) mRNA was markedly increased in the granule cells of the dentate gyrus, and at 24 h it was still significantly elevated. NGF mRNA showed a pronounced increase 4 h after 2 min of ischemia but had returned to a control level at 24 h. Both 2 and 10 min of ischemia caused a clear reduction of the level of mRNA for neurotrophin 3 (NT-3) in the dentate granule cells and in regions CA2 and medial CA1 of the hippocampus 2 and 4 h after the insults. The increase of BDNF mRNA could be partially blocked by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist NBQX but was not influenced by the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801. Both NBQX and MK-801 attenuated the decrease of NT-3 mRNA after ischemia. One and 30 min of hypoglycemic coma also induced marked increases in BDNF and NGF mRNA in dentate granule cells with maximal levels at 2 h. If the changes of mRNA expression lead to alterations in the relative availability of neurotrophic factors, this could influence functional outcome and neuronal necrosis following ischemic and hypoglycemic insults.