
Building a Columnar Database on
Shared Main Memory-Based

Storage
Database Operator Placement in a Shared Main

Memory-Based Storage System that Supports Data Access
and Code Execution

Dissertation zur Erlangung des akademischen Grades

“doctor rerum naturalium” (Dr. rer. nat.)

in der Wissenschaftsdisziplin “Praktische Informatik”
eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultät
der Universität Potsdam von

Christian Tinnefeld
christian.tinnefeld@hpi.uni-potsdam.de

Hasso-Plattner-Institut für IT Systems Engineering
Fachgebiet Enterprise Platform and Integration Concepts

August-Bebel-Str. 88
14482 Potsdam, Germany

http://epic.hpi.uni-potsdam.de/

Supervisor/Examiners:
Prof. Dr. Dr. h.c. Hasso Plattner, Hasso-Plattner-Institut
Prof. Dr. Donald Kossmann, ETH Zürich
Prof. John Ousterhout, PhD, Stanford University

Hasso-Plattner-Institut
Potsdam, Germany
Date of thesis defense: 14th of November 2014

Published online at the
Institutional Repository of the University of Potsdam:
URL http://publishup.uni-potsdam.de/opus4-ubp/frontdoor/index/index/docId/7206/
URN urn:nbn:de:kobv:517-opus4-72063
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72063

Title of the Thesis

Building a Columnar Database on Shared Main Memory-Based Storage:
Database Operator Placement in a Shared Main Memory-Based Storage System

that Supports Data Access and Code Execution

Author:

Christian Tinnefeld
Hasso-Plattner-Institut

Supervisor/Examiners:

1. Prof. Dr. Dr. h.c. Hasso Plattner, Hasso-Plattner-Institut
2. Prof. Dr. Donald Kossmann, ETH Zürich

3. Prof. John Ousterhout, PhD, Stanford University

Abstract:

In the field of disk-based parallel database management systems exists a great
variety of solutions based on a shared-storage or a shared-nothing architecture. In
contrast, main memory-based parallel database management systems are domina-
ted solely by the shared-nothing approach as it preserves the in-memory perfor-
mance advantage by processing data locally on each server. We argue that this
unilateral development is going to cease due to the combination of the follow-
ing three trends: a) Nowadays network technology features remote direct memory
access (RDMA) and narrows the performance gap between accessing main me-
mory inside a server and of a remote server to and even below a single order of
magnitude. b) Modern storage systems scale gracefully, are elastic, and provide
high-availability. c) A modern storage system such as Stanford’s RAMCloud even
keeps all data resident in main memory. Exploiting these characteristics in the
context of a main-memory parallel database management system is desirable. The
advent of RDMA-enabled network technology makes the creation of a parallel main
memory DBMS based on a shared-storage approach feasible.

This thesis describes building a columnar database on shared main memory-based
storage. The thesis discusses the resulting architecture (Part I), the implications
on query processing (Part II), and presents an evaluation of the resulting solution
in terms of performance, high-availability, and elasticity (Part III).

In our architecture, we use Stanford’s RAMCloud as shared-storage, and the self-
designed and developed in-memory AnalyticsDB as relational query processor on

top. AnalyticsDB encapsulates data access and operator execution via an inter-
face which allows seamless switching between local and remote main memory, while
RAMCloud provides not only storage capacity, but also processing power. Com-
bining both aspects allows pushing-down the execution of database operators into
the storage system. We describe how the columnar data processed by AnalyticsDB
is mapped to RAMCloud’s key-value data model and how the performance advan-
tages of columnar data storage can be preserved.

The combination of fast network technology and the possibility to execute data-
base operators in the storage system opens the discussion for site selection. We
construct a system model that allows the estimation of operator execution costs
in terms of network transfer, data processed in memory, and wall time. This can
be used for database operators that work on one relation at a time — such as a
scan or materialize operation — to discuss the site selection problem (data pull vs.
operator push). Since a database query translates to the execution of several da-
tabase operators, it is possible that the optimal site selection varies per operator.
For the execution of a database operator that works on two (or more) relations
at a time, such as a join, the system model is enriched by additional factors such
as the chosen algorithm (e.g. Grace- vs. Distributed Block Nested Loop Join vs.
Cyclo-Join), the data partitioning of the respective relations, and their overlapping
as well as the allowed resource allocation.

We present an evaluation on a cluster with 60 nodes where all nodes are connected
via RDMA-enabled network equipment. We show that query processing perfor-
mance is about 2.4x slower if everything is done via the data pull operator execu-
tion strategy (i.e. RAMCloud is being used only for data access) and about 27%
slower if operator execution is also supported inside RAMCloud (in comparison
to operating only on main memory inside a server without any network commu-
nication at all). The fast-crash recovery feature of RAMCloud can be leveraged
to provide high-availability, e.g. a server crash during query execution only delays
the query response for about one second. Our solution is elastic in a way that it
can adapt to changing workloads a) within seconds, b) without interruption of the
ongoing query processing, and c) without manual intervention.

Titel der Arbeit

Building a Columnar Database on Shared Main Memory-Based Storage:
Database Operator Placement in a Shared Main Memory-Based Storage System

that Supports Data Access and Code Execution

Autor:

Christian Tinnefeld
Hasso-Plattner-Institut

Betreuer:
1. Prof. Dr. Dr. h.c. Hasso Plattner, Hasso-Plattner-Institut

2. Prof. Dr. Donald Kossmann, ETH Zürich
3. Prof. John Ousterhout, PhD, Stanford University

Zusammenfassung:

Diese Arbeit beschreibt die Erstellung einer spalten-orientierten Datenbank
auf einem geteilten, Hauptspeicher-basierenden Speichersystem. Motiviert wird
diese Arbeit durch drei Faktoren. Erstens ist moderne Netzwerktechnologie mit
“Remote Direct Memory Access” (RDMA) ausgestattet. Dies reduziert den Un-
terschied hinsichtlich Latenz und Durchsatz zwischen dem Speicherzugriff inner-
halb eines Rechners und auf einen entfernten Rechner auf eine Größenordnung.
Zweitens skalieren moderne Speichersysteme, sind elastisch und hochverfügbar.
Drittens hält ein modernes Speichersystem wie Stanford’s RAMCloud alle Daten
im Hauptspeicher vor. Diese Eigenschaften im Kontext einer spalten-orientierten
Datenbank zu nutzen ist erstrebenswert. Die Arbeit ist in drei Teile untergliedert.
Der erste Teile beschreibt die Architektur einer spalten-orientierten Datenbank auf
einem geteilten, Hauptspeicher-basierenden Speichersystem. Hierbei werden die im
Rahmen dieser Arbeit entworfene und entwickelte Datenbank AnalyticsDB sowie
Stanford’s RAMCloud verwendet. Die Architektur beschreibt wie Datenzugriff und
Operatorausführung gekapselt werden um nahtlos zwischen lokalem und entfernten
Hauptspeicher wechseln zu können. Weiterhin wird die Ablage der nach einem re-
lationalen Schema formatierten Daten von AnalyticsDB in RAMCloud behandelt,
welches mit einem Schlüssel-Wertpaar Datenmodell operiert. Der zweite Teil fokus-
siert auf die Implikationen bei der Abarbeitung von Datenbankanfragen. Hier steht
die Diskussion im Vordergrund wo (entweder in AnalyticsDB oder in RAMCloud)
und mit welcher Parametrisierung einzelne Datenbankoperationen ausgeführt wer-
den. Dafür werden passende Kostenmodelle vorgestellt, welche die Abbildung von
Datenbankoperationen ermöglichen, die auf einer oder mehreren Relationen arbei-
ten. Der dritte Teil der Arbeit präsentiert eine Evaluierung auf einem Verbund
von 60 Rechnern hinsichtlich der Leistungsfähigkeit, der Hochverfügbarkeit und
der Elastizität vom System.

Acknowledgments

When you wake up in the morning, what makes you looking forward to going to
work? Two things: challenging tasks to work on and intellectually curious and fun
colleagues to work with. I am very thankful to Prof. Hasso Plattner for creating
an environment where having both is the norm: studying, learning, and working
at the Hasso-Plattner-Institut is one the most rewarding experience of my life. I
am also very grateful for the opportunity to be part of Prof. Hasso Plattner’s
research group that is driven by his enthusiasm and energy.

Talking about intellectually curious and fun colleagues, Dr. Anja Bog, Martin
Faust, Dr. Martin Grund, Dr. Jens Krüger, Stephan Müller, Dr. Jan Schaffner,
David Schwalb, Dr. Matthias Uflacker, and Johannes Wust significantly con-
tributed to my well-being during the last five years. I want to thank my students
Daniel Taschik and Björn Wagner for helping me to implement AnalyticsDB. I
also want to thank Andrea Lange for her great administrative support.

From ETH Zürich, I am very grateful to Prof. Donald Kossmann for his guidance,
feedback, and lengthy Skype sessions shortly before paper deadline. I also thank
Simon Loesing and Markus Pilman for fruitful discussions.

From Stanford University, I thank Prof. John Ousterhout for his time, effort, and
hospitality. Working together with him as well as with the CHEC (“Cup is Half
Empty Club”) consisting of Diego Ongaro, Dr. Stephen Rumble, and Dr. Ryan
Stutsman was one of the best learning experience ever.

From SAP, I thank Dr. Vishal Sikka for his guidance and backing throughout my
Master’s and PhD program. I also thank Fredrick Chew and Dr. Norman May for
fostering the collaboration between SAP and the Hasso-Plattner-Institut.

I thank my parents Gerd and Margret for their love and support!

Contents

1 Introduction 1
1.1 Motivation . 4
1.2 Research Questions and Scope . 5
1.3 Thesis Outline and Contributions 6

2 Related Work and Background 11
2.1 Current Computing Hardware Trends 11

2.1.1 Larger and Cheaper Main Memory Capacities 13
2.1.2 Multi-Core Processors and the Memory Wall 14
2.1.3 Switch Fabric Network and Remote Direct Memory Access . 17

2.2 In-Memory Database Management Systems 21
2.2.1 Column- and Row-Oriented Data Layout 23
2.2.2 Transactional vs. Analytical vs. Mixed Workload Processing 24
2.2.3 State-of-the-Art In-Memory Database Management Systems 27

2.3 Parallel Database Management Systems 29
2.3.1 Shared-Memory vs. Shared-Disk vs. Shared-Nothing 30
2.3.2 State-of-the-Art Parallel Database Management Systems . . 33
2.3.3 Database-Aware Storage Systems 37
2.3.4 Operator Placement for Distributed Query Processing 38

2.4 Cloud Storage Systems . 43
2.4.1 State-of-the-Art Cloud Storage Systems 47
2.4.2 Combining Database Management and Cloud Storage Systems 48

2.5 Classification of this Thesis . 51

i

CONTENTS

I A Database System Architecture for a Shared Main
Memory-Based Storage 55

3 System Architecture 57
3.1 System Architecture - Requirements, Assumptions, and Overview . 57
3.2 AnalyticsDB . 60
3.3 Stanford’s RAMCloud . 62

4 Data Storage 65
4.1 Mapping from Columnar Data to RAMCloud Objects 65
4.2 Main Memory Access Costs and Object Sizing 66

5 Data Processing 77
5.1 Database Operators in AnalyticsDB 77
5.2 Operator Push-Down Into RAMCloud 78
5.3 From SQL Statement to Main Memory Access 80

II Database Operator Execution on a Shared Main Memory-
Based Storage 83

6 Operator Execution on One Relation 85
6.1 Evaluating Operator Execution Strategies 89
6.2 Optimizing Operator Execution . 91
6.3 Implications of Data Partitioning 92

7 Operator Execution on Two Relations 95
7.1 Grace Join . 98
7.2 Distributed Block Nested Loop Join 100
7.3 Cyclo Join . 102
7.4 Join Algorithm Comparison . 105
7.5 Parallel Join Executions . 108

ii

CONTENTS

III Evaluation 111

8 Performance Evaluation 113
8.1 Analytical Workload: Star Schema Benchmark 113
8.2 Mixed Workload: Point-Of-Sales Customer Data 116

9 High-Availability Evaluation 119

10 Elasticity Evaluation 121

IV Conclusions and Future Work 127

11 Conclusions 129

12 Future Work 131

Appendix 133

Abbreviations and Glossary 135

Bibliography 139

iii

CONTENTS

iv

List of Figures

2.1 Modified Von Neumann Architecture with added system bus. 12
2.2 Memory hierarchy as described by Patterson and Hennessy. 13
2.3 Evolution of main memory price and capacity. 15
2.4 Evolution of Intel processors from 1995 until 2013. 16
2.5 Two different processor interconnect architectures. 17
2.6 Memory and local area network specifications from 1995 until 2013. 18
2.7 Illustration of a row- and column-oriented data layout. 24
2.8 Comparison of query distribution in analyzed customer systems. . . 26
2.9 Three different parallel DBMS architectures. 30
2.10 Illustration of query, data, and hybrid shipping. 39
2.11 Ratio of queries which are eligible for query, hybrid or data shipping. 42
2.12 Classification of this thesis. 53

3.1 Assumptions with regards to the hardware and software stacks. . . 59
3.2 System architecture overview. 60
3.3 AnalyticsDB architecture. 61
3.4 RAMCloud architecture. 64

4.1 Mapping from AnalyticsDB columns to objects in RAMCloud. . . . 66
4.2 Illustration of data region R. 68
4.3 Single sequential traversal access pattern. 69
4.4 Single random traversal access pattern. 70
4.5 Single random block traversal access pattern. 71
4.6 Object sizing experiments. 74

5.1 From SQL statement to main memory access in RAMCloud. 80

6.1 Evaluating operator execution strategies. 90
6.2 Execution of a SQL query with different execution strategies. 92
6.3 Operator execution with a varying data partitioning. 93
6.4 Benchmark execution with a varying data partitioning. 94

v

LIST OF FIGURES

7.1 Comparisons of the execution times for different join algorithms. . . 106
7.2 Comparisons of the network transfer and amount of processed data. 107
7.3 Evaluation of join execution heuristics. 110

8.1 Operator breakdown for executing the Star Schema Benchmark . . 114
8.2 Star Schema Benchmark execution with a varying data size. 115
8.3 Star Schema Benchmark execution with a varying number of nodes. 115
8.4 Operator breakdown for executing the customer data mixed workload.117

9.1 High-availability experiment with nodes being killed. 119

10.1 Elasticity evaluation with a sinus-shaped workload. 124
10.2 Elasticity evaluation with a plateau-shaped workload. 125
10.3 Elasticity evaluation with a quadratic-shaped workload. 126

vi

List of Tables

2.1 Bandwidth and latency for accessing local and remote DRAM. . . . 20
2.2 Site selection for different classes of database operators. 40

4.1 Overview on cache parameters. 68

5.1 Database Operators in AnalyticsDB. 78
5.2 AnalyticsDB operator break-down for the Star Schema Benchmark. 79

6.1 System model symbols for operating on one relation at a time. . . . 87

7.1 System model symbols for operating on two relations at a time. . . 97
7.2 Hardware parameters. 105
7.3 Distribution of join algorithms in dependence of the chosen heuristic.110

12.1 Star Schema Benchmark relations involved in joins operations. . . . 133
12.2 Star Schema Benchmark join operations. 134

vii

Chapter 1

Introduction

Elmasri and Navathe [EN10] describe a database system as consisting of a database
and a database management system (DBMS). They define a database as “a collec-
tion of related data” and a DBMS as “a collection of programs that enables users
to create and maintain a database. The DBMS is hence a general-purpose soft-
ware system that facilitates the process of defining, constructing, manipulating,
and sharing databases among various users and applications”. According to Heller-
stein and Stonebraker [HS05], IBM DB/2 [HS13], PostgreSQL [Sto87], and Sybase
SQL Server [Kir96] are typical representatives of database management systems.
These DBMSs are optimized for the characteristics of disk storage mechanisms.
In their seminal paper Main Memory Database Systems: An Overview [GMS92]
from 1992, Garcia-Molina and Salem describe a main memory database system1

(MMDB) as a database system where data “resides permanently in main physical
memory”. Operating on data that resides in main memory results in an order of
magnitude better performance than operating on data that sits on a disk. In the
last century, main memory database systems played only a minor role in the over-
all database market as the capacities of main memory chips were small yet very
expensive. This development changed significantly in the last decade, resulting
in main memory database systems becoming more popular: for example Plattner
[Pla09, Pla11a] presents SanssouciDB as a main memory DBMS that is tailored
for supporting the execution of modern business applications.

Since the storage capacity and processing power of a single server is limited,
one motivation for deploying a distributed database system is the combination of
the hardware resources provided by many servers. Özsu and Valduriez [ÖV11]
define a distributed database as

1Throughout this thesis, the terms main memory database system and in-memory database

system are being used interchangeably.

1

Chapter 1: Introduction

“a collection of multiple, logically interrelated databases distributed
over a computer network. A distributed database management system
is then defined as the software system that permits the management of
the distributed database system and makes the distribution transparent
to the users.”

A parallel database system can be seen as a revision and extension of a dis-
tributed database system. According to DeWitt and Gray [DG92], a parallel
database system exploits the parallel nature of an underlying computing system in
order to accelerate query execution and provide high-availability. One fundamen-
tal and much debated aspect of a parallel DBMS is its architecture which deter-
mines how the available hardware resources are shared and interconnected. There
are three different parallel DBMS textbook architectures [ÖV11, DG92, DMS13]:
shared-memory, shared-storage (or shared-disk), and shared-nothing. In a shared-
memory architecture, all processors share direct access to any main memory mod-
ule and to all disks over an interconnection. This approach is not popular in the
field of parallel DBMS due to its limited extensibility and availability. Since the
physical memory space is shared by all processors, for example a memory fault will
affect many processors and potentially lead to a corrupted or unavailable database.
Shared-storage (or shared-disk or shared-data) is an architectural approach where
processors each have their own memory, but share common access to a storage
system typically in form of a storage area network (SAN) or a network-attached
storage (NAS). This approach bears the advantage of being very extendable as an
increase in the overall processing and storage capacity can be done by adding more
processors respectively increasing the capacity of the storage system and adding
more capacity to the storage system does not involve or affect the DBMS in any
way. Shared-nothing is an architectural approach where each memory and disk is
owned by some processor which acts as a server for a partition of the data. The
advantage of a shared-nothing architecture is reducing interferences and resource
conflicts by minimizing resource sharing. Operating on the data inside a local
server allows operating with full raw memory and disk performance.

A great variety of solutions exists based on a shared-storage or a shared-nothing
architecture in the field of disk-based parallel database management systems (as
illustrated in Subsection 2.3.2). In contrast, main memory-based parallel database
management systems are dominated solely by the shared-nothing approach as it
preserves the in-memory performance advantage by processing data locally on each
server. As mentioned in the abstract, we argue that this unilateral development is
going to cease due to the combination of the following three trends: a) Nowadays
network technology features remote direct memory access (RDMA) and narrows
the performance gap between accessing main memory inside a server and of a re-
mote server to and even below a single order of magnitude. b) Modern storage

2

systems scale gracefully, are elastic, and provide high-availability. c) A modern
storage system such as Stanford’s RAMCloud [OAE+11] even keeps all data res-
ident in main memory. In addition, such storage systems also provide not only
storage capacity, but also processing power which allows for code execution in the
storage system.

The subsequent creation of a shared-storage parallel DBMS that is composed of
a main memory columnar DBMS, a main memory-based storage system as well as
a RDMA-enabled interconnect, results in a number of implications and challenges:

• Current main memory DBMSs are designed to operate on the main memory
that is available inside a server. Their database operators are designed to
directly access a memory address. When using a main memory-based storage
system, these access mechanisms have to be adapted in order to access local
and remote memory alike.

• The combination of fast network technology and the possibility to execute
database operators in the storage system opens the discussion for site selec-
tion. This means that a) there exists the possibility to place the execution of
some database operators either in the DBMS or in the storage system which
allows exploiting the computing power in the storage system for accelerating
query processing. b) Exercising this option may not always be beneficial as
– depending on the database operation and its parameterization — it might
be more efficient to bring the data to the operator inside the DBMS.

• Modern storage systems are designed to scale gracefully and be elastic. One
technique that is being applied to enable these properties is the applica-
tion of a simplified, key-value based data model. Each key-value pair is a
small object that is usually stored in a hash-based data structure. However,
chopping up data into small objects and distributing them via a random-
ized technique contradicts the concept of a column store where data is being
grouped by attribute and stored sequentially. Hence it has to be ensured
that using a modern storage system in conjunction with a columnar DBMS
does not negate the advantages of column-orientation.

• Even though the storage system provides high-availability and is elastic, it is
not clear if these properties can be leveraged by a database application. The
execution of a query and the included database operators are more complex
operations than the simple retrieval of a key-value pair. The following has
to be shown: if a storage system becomes one component of a shared-storage
parallel DBMS, are then the functional guarantees made by the storage sys-
tem itself also applicable for the overall system?

3

Chapter 1: Introduction

• Although the bandwidth and latency provided by RDMA-enabled network
equipment closes the performance gap between operating on local and remote
memory, there is still a gap. It has to be shown to what extent this still
existing gap impacts the query processing execution in comparison to an
execution solely on the main memory inside a server.

1.1 Motivation

There are two distinct aspects which motivate this work: on the one hand, the
aforementioned external factors of having RDMA-enabled network technology and
the properties of modern storage systems seem to pave the way for deploying a
parallel main memory DBMS according to the principles of a shared-storage ar-
chitecture. Ideally, such a system would expose the performance characteristics of
operating on the local main memory inside a server and at the same time provide
the benefits of a modern storage system such as durability, high-availability, and
elasticity. In reality, this is not feasible as remote data access will always incor-
porate a performance penalty, distributed data processing is more complex than
a centralized one, and modern storage systems are not specifically tailored to be
used in conjunction with a DBMS. However, the motivation is to find out how
close the aforementioned external factors bring such a system to the ideal, and
if they have the potential to end the one-sidedness of the architectural landscape
for parallel main memory database systems which is currently dominated by the
shared-nothing approach.

On the other hand, there are a range of applications which would benefit from
a main memory parallel DBMS based on a shared-storage architecture. Two ex-
amples are:

• Cold Store: Garcia-Molina and Salem [GMS92] argue that it is reasonable
to assume that the entire database of some applications can fit into main
memory. For those applications where this is not the case, a hot and cold data
partitioning schema is being proposed: frequently queried, fast accessible
data which is usually of low volume is being kept in main memory (hot
store), whereas rarely accessed more voluminous data can be stored on a
slower storage medium (cold store). The different data partitions can be
realized for example by having several logical databases. With the advent
of a storage system that keeps all data resident in main memory, it seems
beneficial to use it as shared-storage for the DBMS that serves the cold data.
The performance characteristics for accessing this data may not be as good
as operating on local main memory inside a server, but the real challenge for

4

Section 1.2: Research Questions and Scope

a cold store is scaling out gracefully as the amount of cold data grows over
time and the required storage capacity increases.

• On-Demand In-Memory Computing: nowadays information technol-
ogy infrastructure, services and applications can be provisioned over the
Internet. Typical characteristics are the on-demand availability of these re-
sources, their quick adaption to changing workloads, and the billing based
on actual usage. These offerings include the provisioning of an in-memory
database such as the availability of SAP’s in-memory database HANA hosted
at Amazon Web Services [Ser13]. Solutions exist to adapt the capacity of an
in-memory database that is based on a shared-nothing architecture to fluc-
tuating workloads, as summarized and extended by the work of Schaffner
et al. [Sch13, SJK+13]. However, utilizing a shared-storage architecture
for providing on-demand in-memory computing bears the advantages that
a) storage and processing capacities can be adjusted independently, and b)
that the complexity of the DBMS software can be reduced as mechanisms
such as data redistribution in case of a scale-out are implemented and hidden
in the storage system.

1.2 Research Questions and Scope

This work focuses on the implications of building a columnar database on a shared
main memory-based storage and the resulting database operator placement prob-
lem in a shared main memory-based storage system that supports data access and
code execution. This leads to the following research questions:

1. What is a suitable architecture for a main memory database in order to
utilize a shared main memory-based storage?

2. Where to place the execution of a database operator (site selection) in a main
memory-based storage system that supports data access and code execution
(data-pull vs. operator-push)?

3. What is the performance penalty for the execution of database operators not
on the local main memory inside a server, but on a remote main memory
over a RDMA-enabled network?

4. Can the fast-recovery mechanism provided by a modern, main memory-based
storage system be leveraged by a database application, so that a hardware
failure does not interrupt query processing?

5

Chapter 1: Introduction

5. Can the elasticity provided by a modern, main memory-based storage sys-
tem that is incorporated in shared-storage parallel DBMS be leveraged to
maintain a constant query execution time under a varying workload?

While the aforementioned research questions span the scope of this work, the
following aspects are considered out of scope:

• This work does not aim to compare different parallel DBMS architectures, let
alone to try to come up with a verdict, which one is superior. As presented
in Chapter 2, this is a much discussed and long debated aspect of parallel
DBMSs and — as discussed in Subsection 2.3.1 — work already exists that
solely addresses architectural comparisons.

• This work does not consider distributed transaction processing. The aspect
of distributed transaction processing in the context of query execution, in
conjunction with a modern main memory-based storage system, is currently
under research at the ETH Zürich [SG13]. As described in Section 3.2,
we assume that there is a single, central instance that handles all write
operations.

• This work does not dive into the details or present a comparison of different
high-end network technologies. This work describes the concepts behind
RDMA-enabled network technology in Subsection 2.1.3, and takes it for the
remainder of the thesis as granted.

1.3 Thesis Outline and Contributions

The thesis is divided into three parts preceded by this introduction and the presen-
tation of related work and background in Chapter 2. Chapter 2 explains the four
major areas influencing this thesis: current computing hardware trends in Section
2.1, in-memory database management systems in Section 2.2, parallel database
management systems in Section 2.3, and cloud storage systems in Section 2.4.
The description of the related work closes with a classification of the thesis in
Section 2.5.

Part I presents a database system architecture for a shared main memory-based
storage and consists of three chapters. Chapter 3 describes the architectural re-
quirements and assumptions, presents an overview and introduces the components
AnalyticsDB and RAMCloud. Chapter 4 deals with the resulting data storage
implications and illustrates how columnar data inside AnalyticsDB is mapped to
objects in RAMCloud, and how the right sizing of these objects can uphold the

6

Section 1.3: Thesis Outline and Contributions

advantages of a columnar data layout. Chapter 5 illustrates the data processing by
describing the database operators in AnalyticsDB and how to push their execution
into RAMCloud.

Part II tackles the site selection problem in detail and presents a study of
database operator execution on a shared main memory-based storage. Chapter
6 explains the operator execution on one relation at a time, presents the related
system model in detail, evaluates the different operator execution strategies, il-
lustrates the subsequent optimization of a query execution and points out the
implications of data partitioning. Chapter 7 extends the system model to describe
the costs for the execution of an operator that works on two relations, such as
the distributed join algorithms Grace Join, Distributed Block Nested Loop Join
and Cyclo Join. The chapter continues with a comparison of these algorithms
and the influence of partitioning criteria and resource allocation on their parallel
executions.

Part III presents an evaluation of our system with regards to performance,
high-availability, and elasticity. Chapter 8 presents a performance evaluation that
aims to quantify the gap between query execution on local and remote main mem-
ory while considering the different operator execution strategies (data pull vs.
operator push). Two different workloads are being used: an analytical workload
consisting of the Star Schema Benchmark, and a mixed workload based on point-
of-sales customer data from a large European retailer. Chapter 9 evaluates the
high-availability of our solution by provoking server crashes during query execu-
tion. Chapter 10 evaluates the elasticity by aiming to maintain a constant query
processing time under a heavily varying workload. Chapter 11 and 12 close with
the conclusions and future work.

The thesis makes the following contributions:

1. We design a distributed main memory database system architecture that
separates the query execution engine and the data access. This separation
is done via an interface which allows switching between a data pull and
operator push execution strategy per database operator execution.

2. We provide a database operator execution cost model for operating on a
shared main memory-based storage system that supports data access and
code execution: the cost model covers operators which work on one or two
relations at a time.

3. We investigate the implications of different partitioning criteria inside a
main memory-based storage system on the query processing performance
of a shared-storage parallel main memory DBMS.

7

Chapter 1: Introduction

4. We provide an extensive evaluation of the presented shared-storage parallel
main memory DBMS. This evaluation considers the performance based on
two different workloads, high-availability, elasticity as well as the operator
execution on local or on remote main memory with data pull or operator
push execution strategies.

A number of publications were created in the context of this work:

• Christian Tinnefeld, Hasso Plattner: Exploiting memory locality in dis-
tributed key-value stores, ICDE Workshops 2011, 2011 [TP11b]

• Christian Tinnefeld, Hasso Plattner: Cache-Conscious Data Placement in
an In-Memory Key-Value Store, IDEAS’11: 15th International Database
Engineering and Applications Symposium, 2011 [TP11a]

• Christian Tinnefeld, Donald Kossmann, Martin Grund, Joos-Hendrik Boese,
Frank Renkes, Vishal Sikka, Hasso Plattner: Elastic Online Analytical Pro-
cessing on RAMCloud, EDBT, 2013 [TKG+13]

• Christian Tinnefeld, Daniel Taschik, Hasso Plattner: Providing High- Avail-
ability and Elasticity for an In-Memory Database System with RAMCloud.
GI-Jahrestagung 2013: 472-486, 2013 [TTP13]

• Christian Tinnefeld, Daniel Taschik, Hasso Plattner: Quantifying the Elas-
ticity of a Database Management System, DBKDA, 2014 [TTP14]

• Christian Tinnefeld, Donald Kossmann, Joos-Hendrik Boese, Hasso Plat-
tner: Parallel Join Executions in RAMCloud, CloudDB - In conjunction
with ICDE 2014, 2014 [TKBP14]

Some content of this thesis has already been published in the previously listed
publications. Chapter 3 is based on [TKG+13], Section 4.2 is also covered in
[TP11b], Chapter 6 and Chapter 7 are partly covered in [TKG+13] and [TKBP14].
Part III is based on [TKG+13] and [TTP14]. In addition, a number of publica-
tions were written which are not directly related to this thesis, but also make
contributions in the field of in-memory data management:

• Christian Tinnefeld, Björn Wagner, Hasso Plattner: Operating on Hierarchi-
cal Enterprise Data in an In-Memory Column Store, DBKDA, 2012 [TWP12]

• Christian Tinnefeld, Stephan Müller, Hasso Plattner: Available-To-Promise
on an In-Memory Column Store, Datenbanksysteme in Business, Technologie

8

Section 1.3: Thesis Outline and Contributions

und Web (BTW 2011), 14. Fachtagung des GI-Fachbereichs Datenbanken
und Informationssysteme (DBIS), Proceedings, Kaiserslautern, Germany,
2011 [TWP12]

• Jens Krüger, Martin Grund, Christian Tinnefeld, Hasso Plattner, Franz
Faerber: Optimizing Write Performance for Read Optimized Databases,
Database Systems for Advanced Applications, Japan, 2010 [KGT+10]

• Jens Krüger, Christian Tinnefeld, Martin Grund, Hasso Plattner: A Case
for Online Mixed Workload Processing, Third International Workshop on
Testing (DBTest) - In conjunction with SIGMOD Database Systems, 2010
[KTGP10]

• Christian Tinnefeld, Stephan Müller, Jens Krüger, Martin Grund: Leverag-
ing Multi-Core CPUs in the Context of Demand Planning, 16th International
Conference on Industrial Engineering and Engineering Management (IEEM),
Beijing, China, 2009 [TMKG09]

• Christian Tinnefeld, Jens Krüger, Jan Schaffner, Anja Bog: A Database En-
gine for Flexible Real-Time Available-to-Promise, IEEE Symposium on Ad-
vanced Management of Information for Globalized Enterprises (AMIGE’08),
Tianjin, China, 2008

9

Chapter 1: Introduction

10

Chapter 2

Related Work and Background

This chapter presents the background as well as the related work for this thesis and
closes with a classification of the thesis. Instead of separating the chapters related
work and background, both topics are presented together in one chapter, giving the
reader the advantage of understanding underlying concepts and getting to know the
respective related work in one stroke. Each section and subsection is preceded by a
short summary. Additional related work is presented throughout the thesis where
appropriate for example Chapter 6 starts with discussing system models which are
related to the system model presented in remainder of this chapter, while Chapter
7 contains an overview on state-of-the-art distributed join algorithms. The four
major areas which influence the thesis are current computing hardware trends, in-
memory database management systems, parallel database management systems,
as well as cloud storage systems. The subsequent sections and subsections also
include discussions regarding how the different areas influence each other.

2.1 Current Computing Hardware Trends

Summary: This section introduces the computing hardware trends by describing
the foundation for current computer architecture.
John Von Neumann described in 1945 [vN93] a computer architecture that consists
of the following basic components: a) an Arithmetic Logic Unit (ALU), also known
as processor which executes calculations and logical operations; b) memory which
holds a program and its to be processed data; c) a Control Unit that moves program
and data into and out of the memory and executes the program instructions. For
supporting the execution of the instructions the Control Unit can use a Register
for storing intermediate values; d) an Input and Output mechanism allows the
interaction with external entities such as a user via keyboard and screen. The

11

Chapter 2: Related Work and Background

original Von Neumann architecture included the interconnection of the different
architectural components, however an explicit System Bus has been added later
to be able to connect a non-volatile memory medium for persistent data storage
[NL06]. Figure 2.1 depicts the Von Neumann Architecture with an added system
bus.

CPU
(Arithmetic Logic Unit,

Control Unit,
and Registers)

Memory
Input
and

Output

System Bus

Figure 2.1: Modified Von Neumann Architecture with added system bus.

As indicated in the description of the Von Neumann architecture, there are
different types of memory technologies which vary in properties such as cost ($ per
bit), access performance, and volatility. Inside a single computer, a combination
of different memory technologies is used with the intention of combining their
advantages. The combination of the different technologies is done by aligning
them in a hierarchy in order to create the illusion that the overall memory is
as large as the largest level of the hierarchy. Such a memory hierarchy can be
composed of multiple levels and data is transferred between two adjacent levels at
a time. As shown in Figure 2.2, the upper levels are usually smaller, faster, more
expensive, and closer to the CPU, whereas the lower levels provide more capacity
(due to the lower costs), but are slower in terms of access performance. The
textbook memory technology examples from Patterson and Hennessy [PH08] are
SRAM (static random access memory), DRAM (dynamic random access memory),
and magnetic disk which build a three-level hierarchy: SRAM provides fast access
times, but requires more transistors for storing a single bit which makes it expensive
and taking up more space [HP11]. SRAM is used in today’s computers as a cache
very close to the CPU and is the first memory level in this example. DRAM
is less costly per bit than SRAM, but also substantially slower and is the second
memory level and is used as main memory for holding currently processed data and
programs. In addition, DRAM cells need constant energy supply otherwise they
loose the stored information which makes them volatile. In order to permanently
store data, a third memory hierarchy is introduced that uses a magnetic disk.
However, the moving parts inside a magnetic disk result in a penalty with regards
to the access performance in comparison to DRAM. Two other frequently used
terms for differentiating between volatile and non-volatile memory are primary and

12

Section 2.1: Current Computing Hardware Trends

secondary memory [PH08]: primary memory is a synonym for volatile memory
such as main memory holding currently processed programs and data, whereas
secondary memory is non-volatile memory storing programs and data between
runs. A shortcoming of the Von Neumann Architecture is that the CPU can either
read an instruction or data from memory at the same time. This is addressed by
the Harvard architecture [HP11] which physically separates storage and signal
pathways for instructions and data.

Level 1

Level 2

Level n

…..

CPU

Size of Memory at each Level
Increasing C

ost ($ / bit)

D
ec

re
as

in
g

Pe
rfo

rm
an

ce

Figure 2.2: Memory hierarchy as described by Patterson and Hennessy.

Reflecting on the Von Neumann Architecture and the aspect of memory hierar-
chies, it becomes apparent that a computer is a combination of different hardware
components with unique properties and that the capabilities of those hardware
components ultimately set the boundaries of the capabilities of the to-be-run pro-
grams on that computer. Consequently, hardware trends also impact the way
computer programs are designed and utilize the underlying hardware. In the re-
mainder of this section we want to describe three hardware trends which contribute
to the motivation for writing this thesis.

2.1.1 Larger and Cheaper Main Memory Capacities

Summary: This subsection quantifies the advancements in main memory capac-
ities and the price reduction over the last 18 years.
The price for main memory DRAM modules has dropped constantly during the
previous years. As shown in Figure 2.3, the price for one megabyte of main memory
used to be $50 in 1995, and dropped to $0.03 in 2007 — a price reduction of

13

Chapter 2: Related Work and Background

three orders of magnitudes in about 20 years. In addition, chip manufacturers
managed to pack transistors and capacitors more densely, which increased the
capacity per chip. In 1995, a single DRAM chip had the capacity of 4 megabytes,
which increased to 1024 megabyte per chip in 2013. Putting 32 of those chips
on a single DRAM module gives it a capacity of 32 gigabytes. Nowadays, server
mainboards (e.g. Intel1 Server Board S4600LH2 [Int13]) can hold up to 48 of those
modules, resulting in a capacity of 1.5 terabyte of main memory per board. Such an
Intel server board equipped with 1.5 terabyte of Kingston server-grade memory can
be bought for under $25,000 (undiscounted retail price [new13]), which illustrates
the combination of price decline and advancement in capacity per chip.

Despite the previously described developments, solid-state drives (SSD) and
hard-disk drives (HDD) still have a more attractive price point — e.g. the cost
per megabyte capacity of a three terabyte hard-disk is about $0.004 [new13]. In
addition, DRAM is a volatile storage and as long as non-volatile memory is not
being mass-produced, one always needs the same capacity of SSD/HDD storage
somewhere to durably store the data being kept and processed in DRAM (the
situation is comparable to alternative energy sources – you still need the coal
power plant when the sun is not shining or the wind is not blowing). However, in
the end the performance advantage of operating on main memory outweighs the
higher cost per megabyte in the context of performance critical applications such
as large-scale web applications [mem13a] or in-memory databases [Pla11a].

2.1.2 Multi-Core Processors and the Memory Wall

Summary: This subsection describes the development of having multiple cores
per processor and the resulting main memory access bottleneck.
In 1965, Gordon Moore made a statement about the future development of the
complexity of integrated circuits in the semiconductor industry [Moo65]. His pre-
diction that the number of transistors on a single chip is doubled approximately
every two years became famous as Moore’s Law, as it turned out to be a relatively
accurate prediction.

The development of the processors clock rate and the number of processor
cores is of relevance: as depicted in Figure 2.4(a), Intel CPUs reached a clock
rate of 3000 Mhz in 2003. Until then the clock rate improved from yearly which
used to be convenient for a programmer, as he usually did not have to adjust his

1There is a great variety of computer processor and mainboard vendors such as AMD
[AMD13], GIGABYTE [GIG13] or Intel [Int13]. For the sake of better comparability throughout
the different subsections, this section cites only Intel processor and mainboard products. In ad-
dition, Intel holds a market share of over 90% in the worldwide server processor market in 2012
[RS13].

14

Section 2.1: Current Computing Hardware Trends

 0.001

 0.01

 0.1

 1

 10

 100

 1995 2000 2005 2010 2013
 1

 4

 16

 64

 256

 1024

U
S$

 p
er

 M
eg

ab
yt

e
of

 M
em

or
y

M
eg

ab
yt

e
pe

r D
RA

M
 C

hi
p

Year

US$ per Megabyte of Memory
Megabyte Capacity per DRAM Chip

Figure 2.3: Evolution of memory price development and capacity per chip advancement
[Pla11a] [PH08]. Please note that both y-axes have a logarithmic scale.

code in order to leverage the capabilities of a new generation of processors. This
changed for Intel processors between 2003 and 2006, when a further increasement
of the clock rate would have resulted in too much power consumption and heat
emission. Instead, the clock rate remained relatively stable, but having more
than one physical processing core per (multi-core) CPU was introduced. This
led to the saying that the free lunch is over [Sut05], now application developers
had to write their software accordingly to utilize the capabilities of multi-core
CPUs. This is also expressed by Amdahl’s Law, which says that the speed up
of a system can also be defined as the fraction of code that can be parallelized
[Amd67]. Reflecting on the importance of main memory as mentioned in the
previous subsection, Figure 2.4(b) shows the development of CPU processing power
and its memory bandwidth. One can observe that with the advent of multiple
cores per processor, processing power spiked significantly: an equivalent increase
in the maximum specified rate at which data can be read from or stored into a
semiconductor memory by the processor could not be realized [BGK96].

As described in the beginning of this section, a processor is not directly wired
to the main memory, but accesses it over a system bus. This system bus be-
comes a bottle neck when multiple processors or processor cores utilize it. Figure
2.5(a) shows a shared front-side bus architecture where several processors access
the memory over a shared bus. Here, the access time to data in memory is in-
dependent regardless which processor makes the request or which memory chip
contains the transferred data: this is called uniform memory access (UMA). In
order to overcome the bottleneck of having a single shared bus, for example, Intel
introduced Quick Path Interconnect as depicted in Figure 2.5(b), where every pro-
cessor has its exclusively assigned memory. In addition, each processor is directly

15

Chapter 2: Related Work and Background

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 1995 2000 2005 2010 2013

 1
 2
 4
 6
 8
 10
 12

Pr
oc

es
so

r C
lo

ck
 R

at
e

in
 M

hz

N
um

be
r o

f P
ro

ce
ss

or
 C

or
es

Year

Processor Clock Rate in Mhz
Number of Processor Cores

(a) Evolution of Intel processor clock rate and number of processor cores [Int13]. The figure
shows that Intel distributed a processor with more than 3000 Mhz clock rate (Intel Pentium 4
Xeon) already in 2003, but until 2013 the clock rate only evolved to 3900 Mhz (Intel Core i7
Extreme Edition). The first mass-produced processor from Intel with two cores (Intel Pentium
Dual-Core) came out in 2006: the number of cores per processor evolved to twelve in 2013 (Intel
Xeon E5).

 1

 100000

 200000

 300000

 400000

 1995 2000 2005 2010 2013

 1
 50000
 100000

Co
re

m
ar

k
Be

nc
hm

ar
k

Sc
or

e

M
ax

im
um

 M
em

or
y

Ba
nd

w
id

th
 in

 M
eg

ab
yt

es
/s

Year

Intel
Pentium

Intel
Pentium III

Intel
Core 2 Duo

Intel
Core i7 Intel

Xeon E5

Coremark Benchmark Score
Memory Bandwidth in Megabytes/s

(b) Comparison of Coremark Benchmark Score [The13] and memory bandwidth (maximum spec-
ified rate at which data can be read from or stored to a semiconductor memory by the processor)
of selected Intel processors [Int13] over time. The Coremark benchmark measures the perfor-
mance of a CPU by executing algorithms such as list processing or matrix manipulation and
intends to replace the Dhrystone [Wei84] benchmark. The figure illustrates that the processing
power of CPUs increased more significantly (by introducing multiple physical processing cores
per CPU) than its memory bandwidth.

Figure 2.4: Illustration of the evolution of Intel processors from 1995 until 2013.

16

Section 2.1: Current Computing Hardware Trends

Processor Processor Processor Processor

ChipsetMemory
Interface

Input and Output

(a) Shared Front-Side Bus

Processor Processor

Processor Processor

Chipset

Chipset

Memory
Interface

Memory
Interface

Memory
Interface

Memory
Interface

Input and
Output

Input and
Output

(b) Intel’s Quick Path Interconnect

Figure 2.5: Two different processor interconnect architectures.

interconnected with each other, which increases the overall bandwidth between the
different processors and the memory. A single processor can access its local mem-
ory or the memory of another processor, whereat the memory access time depends
on the memory location relative to the processor. Therefore, such an architecture
is described as NUMA, standing for non-uniform memory access.

2.1.3 Switch Fabric Network and Remote Direct Memory
Access

Summary: This subsection quantifies the advancements of network bandwidth
and latency over the last 18 years, as well as the closing performance gap between
accessing main memory inside a server and that of a remote server.
The previous subsection describes the performance characteristics when operating
on the main memory inside a single server. Although subsection 2.1.1 emphasizes
the growing main memory capacities inside a single server, the storage space re-
quirements from an application can exceed this capacity. When utilizing the main
memory capacities from several servers, the performance characteristics from the
network interconnect between the servers have to be considered as well. Modern
network technologies such as InfiniBand or Ethernet Fabrics have a switched fab-
ric topology which means that a) each network node connects with each other via
one or more switches and b) that the connection between two nodes is established
based on the crossbar switch theory [Mat01] resulting in no resource conflicts with
connections between any other nodes at the same time [GS02]: in the case of In-
finiBand, this results in full bisection bandwidth between any two nodes at any

17

Chapter 2: Related Work and Background

 1

 10

 100

 1000

 10000

 100000

 1995 2000 2005 2010 2013

Ba
nd

w
id

th
 in

 M
By

te
s/s

Year

Fast
Ethernet

Fast
Page
Mode

DRAM

Synchronous
DRAM

Gigabit
Ethernet

Double Data
Rate SDRAM

10 Gigabit
Ethernet

100 Gigabit
Ethernet

DDR3-2000 SDRAM
InfiniBand EDR 12x

DDR3-3000
SDRAM

Memory Bandwidth
Local Area Network Bandwidth

(a) Comparison of memory and local area network bandwidth specifications [HP11] [Ass13].
The figure illustrates how the bandwidth performance gap narrows down from over an order of
magnitude (1995: 267 MBytes/s Fast Page Mode DRAM vs. 12.5 MBytes/s Fast Ethernet) to a
factor of 1.3 (2010: 16 GBytes/s DDR3-2000 SDRAM vs. 12.5 GBytes/s 100 Gigabit Ethernet
) over a period of 15 years, and that today’s local area network technology specifies a higher
bandwidth than memory (2013: 24 GBytes/s DDR3-3000 SDRAM vs. 37.5 GBytes/s Enhanced
Data Rate (EDR) 12x).

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1995 2000 2005 2010 2013

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

Year

Fast Ethernet

Fast
Page
Mode

DRAM
Synchronous

DRAM

Gigabit
Ethernet

Double Data
Rate SDRAM

10 Gigabit
Ethernet

100 Gigabit Ethernet

DDR3-2000
SDRAM

InfiniBand EDR 12x

DDR3-3000
SDRAM

Memory Latency
Local Area Network Latency

(b) Comparison of memory and local area network latency specifications [HP11] [Ass13]. The
figure shows that the latency performance gap has been reduced from five orders of magnitude
(2000: 0.052 µs Double Data Rate SDRAM vs. 340 µs Gigabit Ethernet) to one to two orders
of magnitude (2013: 0.037 µs DDR3 SDRAM vs 1 µs InfiniBand).

Figure 2.6: Comparisons of memory and local area network bandwidth and latency
specifications from 1995 until 2013.

18

Section 2.1: Current Computing Hardware Trends

time. In addition the InfiniBand specification [Ass13] describes that an InfiniBand
link can be operated at five different data rates: 0.25 GBytes/s for single data rate
(SDR), 0.5 GBytes/s for double data rate, 1 GBytes/s for quad data rate (QDR),
1.7 GBytes/s for fourteen data rate (FDR), and 3.125 GBytes/s for enhanced data
rate (EDR). In addition, an InfiniBand connection between two devices can ag-
gregate several links in units of four and twelve (typically denoted as 4x or 12x).
For example, the aggregation of four quad data rate links results in 4xQDR with a
specified data rate of 4 GBytes/s. These specifications describe the effective the-
oretical unidirectional throughput, meaning that the overall bandwidth between
two hosts can be twice as high.

Figure 2.6(a) compares the bandwidth specifications of main memory and net-
work technologies. The figure shows how the bandwidth performance gap narrows
down from over an order of magnitude (1995: 267 MBytes/s Fast Page Mode
DRAM vs. 12.5 MBytes/s Fast Ethernet) to a factor of 1.3 (2010: 16 GBytes/s
DDR3-2000 SDRAM vs. 12.5 GBytes/s 100 Gigabit Ethernet) over a period of
15 years, and that today’s local area network technology specifies a higher band-
width than memory (2013: 24 GBytes/s DDR3-3000 SDRAM vs. 37.5 GBytes/s
InfiniBand Enhanced Data Rate (EDR) 12x). Figure 2.6(b) compares the latency
specifications of main memory and network technologies. The figure depicts how
the latency performance gap has been reduced from five orders of magnitude (2000:
0.052 µs Double Data Rate SDRAM vs. 340 µs Gigabit Ethernet) to two orders
of magnitude (2013: 0.037 µs DDR3 SDRAM vs 1 µs InfiniBand). The recent
improvement in network latency is the result of applying a technique called re-
mote direct memory access (RDMA). RDMA enables the network interface card
to transfer data directly into the main memory which bypasses the operating sys-
tem by eliminating the need to copy data into the data buffers in the operating
system (which is also known as zero-copy networking) — which in turn also in-
creases the available bandwidth. In addition, transferring data via RDMA can be
done without invoking the CPU [Mel13]. RDMA was originally intended to be used
in the context of high-performance computing and is currently implemented in net-
working hardware such as InfiniBand. However, three trends indicate that RDMA
can become wide-spread in the context of standardized computer server hardware:
From a specification perspective, RDMA over Converged Ethernet (RoCE) al-
lows remote direct memory access over an Ethernet network and network interface
cards supporting RoCE are available on the market. From an operating system
perspective, for example Microsoft supports RDMA in Windows 8 and Windows
Server 2012 [WW13]. From a hardware perspective, it is likely that RDMA capable
network controller chips become on-board commodity equipment on server-grade
mainboards.

The comparison of main memory and network technology specifications sug-

19

Chapter 2: Related Work and Background

Specification Measurements[3]
Intel InfiniBand[Ass13] Intel Xeon Mellanox

Nehalem[Tho11] Specification Processor ConnectX-3
Specification 4xFDR/12xEDR E5-4650 4xFDR

Bandwidth 32 GBytes/s[1] 6.75 GBytes/s[2] 10.2 GBytes/s[4] 4.7 GBytes/s[6]
Memory Bandwidth 37.5 GBytes/s[2] Memory Bandwidth

Latency 0.06 µs 1 µs 0.07 µs[5] 1.87 µs[6]
Uncached Main
Memory Access

RDMA Operation
End-to-End Latency

Uncached Main
Memory Access

RDMA Operation
End-to-End Latency

Table 2.1: Bandwidth and latency comparison for accessing local (inside a single com-
puter) and remote (between two separate computers) DRAM.
[1] Combined memory bandwidth of three memory channels per processor. [2] These are the specified actual data
rates (not signaling rates) for 4xFDR respective 12xEDR. [3] Measurements have been performed on the follow-
ing hardware: Intel Xeon E5-4650 CPU, 24GB DDR3 DRAM, Mellanox ConnectX-3 MCX354A-FCBT 4xFDR
InfiniBand NIC connected via Mellanox InfiniScale IV switch. [5] Measured via Bandwidth Benchmark from Z.
Smith [Smi13] - Sequential read of 64MB sized objects. [4] Measured via Cache-Memory and TLB Calibration
Tool from S. Manegold and S. Boncz [MBK02a]. [6] Measured via native InfiniBand Open Fabrics Enterprise
Distribution benchmarking tools ib_read_bw and ib_read_lat.

gest that the performance gap between operating on local (inside a single com-
puter) and remote (between two separate computers) memory closes. Table 2.1
presents a comparison of hardware specifications and actual measurements in order
to quantify the bandwidth and latency performance gap between main memory
and network technologies. The Intel Nehalem architecture — which is going to
be used in the context of the measurements — specifies a maximum bandwidth of
32 GBytes/s by combining its three memory channels per processor [Tho11]. The
specified access latency for retrieving a single cache line from main memory that
is not resident in the caches between the CPU and the main memory is 0.06 µs.
Actual measurements with an Intel Xeon E5-4650 processor show a memory band-
width of 10.2 GBytes/s and a memory access latency of 0.07 µs. The difference
between the bandwidth specification and the measurement is the number of mem-
ory channels: the memory traversal of a data region executed by a single processor
core usually invokes a single memory channel at a time, resulting in approximately
one third of the specified bandwidth (due to the three available memory channels).
Current typical InfiniBand equipment, such as Mellanox ConnectX-3 cards (e.g.
Mellanox ConnectX-3 MCX354A-FCBT), support 4xFDR, resulting in a unidirec-
tional data rate of 6.75 GBytes/s between two devises (as previously mentioned,
the current InfiniBand specification [Ass13] itself supports up to 37.5 GBytes/s
(12xEDR)). The end-to-end latency for a RDMA operation is specified with 1 µs.
Measurements between two machines, each equipped with a Mellanox ConnectX-3
MCX354A-FCBT card and connected via a Mellanox InfiniScale IV switch, re-
veal a unidirectional bandwidth of 4.7 GBytes/s and an end-to-end latency for a
RDMA operation of 1.87 µs. The comparison of the measurement results requires

20

Section 2.2: In-Memory Database Management Systems

a certain carefulness, as it is debatable what is the correct way and appropriate
granularity to compare the local and the remote bandwidth: should a single or
several combined memory channels be cited, a single InfiniBand link or the aggre-
gation of multiple links, and would one quote the unidirectional or bidirectional
bandwidth between two machines? Ultimately, the comparison of the measure-
ments intends to illustrate the ballpark performance gap that can be summarized
as follows: as shown in Figure 2.6, from a bandwidth perspective, local and remote
memory access are in the same order of magnitude, and depending on the chosen
performance metric, even on par. When it comes to comparing the latency of main
memory access inside a machine and between two separate machines, there is still
a gap of one to two orders of magnitude.

2.2 In-Memory Database Management Systems

Summary: This section describes a database management system where the data
permanently resides in physical main memory.
As mentioned in Chapter 1, Elmasri and Navathe [EN10] describe a database sys-
tem as consisting of a database and a database management system (DBMS). They
define a database as “a collection of related data” and a DBMS as “a collection
of programs that enables users to create and maintain a database. The DBMS is
hence a general-purpose software system that facilitates the process of defining,
constructing, manipulating, and sharing databases among various users and ap-
plications”. According to Hellerstein and Stonebraker [HS05], IBM DB/2 [HS13],
PostgreSQL [Sto87], and Sybase SQL Server [Kir96] are typical representatives
of relational database management systems. The term relational in the context
of the aforementioned DBMSs refers to the implementation of the relational data
model by Codd [Cod70], which allows querying the database by using a Struc-
tured (English) Query Language initially abbreviated as SEQUEL then shortened
to SQL [CB74]. This led to the SQL-standard which is regularly updated [Zem12]
and is ISO-certified. Usually a SQL query is issued by an application to a DBMS.
The DBMS then parses the query and creates a query plan potentially with the
help of a query optimizer. The query plan is then executed by a query execution
engine which orchestrates a set of database operators (such as a scan or join) in
order to create the result for that query [GMUW08].

The previously mentioned DBMSs are optimized for the characteristics of disk
storage mechanisms. In their paper Main Memory Database Systems: An Overview
[GMS92] from 1992, Garcia-Molina and Salem describe a main memory database
system (MMDB) as a database system where data “resides permanently in main
physical memory”. They argue that in a disk-based DBMS the data is cached in

21

Chapter 2: Related Work and Background

main memory for access, where in a main memory database system the perma-
nently in memory residing data may have a backup copy on disk. They observe
that in both cases a data item can have copies in memory and on disk at the
same time. However, they also note the following main difference when it comes
to accessing data that resides in main memory:

1. “The access time for main memory is orders of magnitude less than for disk
storage.

2. Main memory is normally volatile, while disk storage is not. However it is
possible (at some cost) to construct nonvolatile memory.

3. Disks have a high, fixed cost per access that does not depend on the amount
of data that is retrieved during the access. For this reason, disks are block-
oriented storage devices. Main memory is not block oriented.

4. The layout of data on a disk is much more critical than the layout of data in
main memory, since sequential access to a disk is faster than random access.
Sequential access is not as important in main memories.

5. Main memory is normally directly accessible by the processor(s), while disks
are not. This may make data in main memory more vulnerable than disk
resident data to software errors. [GMS92]”

In the remainder of their paper, Garcia-Molina and Salem describe the impli-
cations of memory resident data on database system design aspects such as access
methods (e.g. index structures do not need to hold a copy of the indexed data, but
just a pointer), query processing (e.g. focus should be on processing costs rather
than minimize disk access) or recovery (e.g. use of checkpointing to and recov-
ery from disk). IBM’s Office-By-Example [AHK85], IMS/VS Fast Path [GK85] or
System M from Princeton [SGM90] are presented as state-of-the-art main memory
database systems at that time. The further development of memory technology in
the subsequent 20 years after this statement — as illustrated in detail in Subsec-
tion 2.1.1 and Figure 2.3 — led to increased interest in main memory databases.
Plattner describes in 2011 [Pla11a, Pla11b] an in-memory database system called
SanssouciDB which is tailored for business applications. SanssouciDB takes hard-
ware developments such as multi-core processors and the resulting importance of
the memory wall — as explained in Subsection 2.1.2 — into consideration and
leverages them by allowing inter- and intra-query parallelism and exploiting cache
hierarchies: an important enabler for this is the use of a columnar data layout
which will be discussed in detail in the next two subsections.

22

Section 2.2: In-Memory Database Management Systems

2.2.1 Column- and Row-Oriented Data Layout

Summary: This subsection distinguishes between two physical database table
layouts, namely storing all tuples of a record together (row-orientation) or storing
all instances of the same attribute type from different tuples together (column-
orientation).
As quoted in the previous subsection, Garcia-Molina and Salem [GMS92] stated
that “sequential access is not as important in main memories” in comparison to
disk-resident data. While the performance penalty for non-sequential data traver-
sal is higher when operating on disk, it is also exists when accessing data that is
in main memory. As described in Section 2.1 and as evaluated by Ailamaki et al.
[ADHW99] or Boncz, Manegold, and Kersten [BMK99], the access latency from
the processor to data in main memory is not truly random due to the memory
hierarchy. Since the data travels from main memory through the caches to the
processor, it is of relevance if all the data that sits on a cache line is truly be-
ing used (cache locality) by the processor and if a requested cache line is already
present in one of the caches (temporal locality). In addition, a sequential traversal
of data is a pattern that modern CPUs can detect and improve the traversal per-
formance by loading the next to be accessed cache line while the previous cache
line is still being processed: this mechanism is known as hardware prefetching
(spatial locality) [HP11].

If these mechanisms can be exploited depends on the chosen data layout and the
kind of data access thereupon. The two basic distinctions for a data layout are the
n-ary storage model (NSM) and the decomposed storage model[CK85]. In NSM, all
attributes of a tuple are physically stored together, whereas in DSM the instances
of the same attribute type from different tuples are stored together. In database
table terms, NSM is declared as a row-oriented data layout and DSM is called
a column-oriented layout. As shown in Figure 2.7, accessing a row or accessing
a column can both leverage the benefits of locality if the data layout has been
chosen accordingly. This has led to the classic distinction that databases which
are intended for workloads that center around transaction processing and operate
on a few rows at a time choose a row-oriented layout and read-only workloads
that scan over table attributes and therefore operate on columns choose a column-
oriented layout [AMH08] — the next subsection is going to discuss the classification
of workloads in detail.

Another aspect in the discussion of row- and column-oriented data layout is that
light weight data compression mechanisms work particularly well in a columnar
data layout [AMF06]. The intention for using compression mechanisms is saving
storage space and — by traversing fewer bytes for processing the same amount of
information — increasing performance. The term light-weight describes the com-

23

Chapter 2: Related Work and Background

A

Col1

A
A

B
B
B

C
C
C

Col2 Col3
Row1
Row2
Row3

A B CRow4
A B CRow5

A B C A B C A B C A B C A B C A B C A B C A B C A B C A B C

Row-Oriented Data Layout / N-Ary Storage Model (NSM)

Row Row Row Row Row Row Row Row Row Row

Accessing a Column Accessing a Row

Column-Oriented Data Layout / Decomposition Storage Model (DSM)

A A A A A B B B B B C C C C C

Column Column Column

A A A A A B B B B B C C C C C

Column Column Column

Accessing a Column Accessing a Row

Figure 2.7: Illustration of a row- and column-oriented data layout.

pression on a sequence of values (e.g. in contrast to heavy weight which refers to
the compression of an array of bytes) with techniques such as dictionary compres-
sion, run-length encoding (RLE), and bit-vector encoding: these mechanisms allow
the processing of a query on the compressed values and it is desirable to decom-
press the values as late as possible — for example, before returning the result of a
query to the user. Dictionary compression is appealing in a columnar data layout
as the values inside a single column have the same data type and similar semantics
(in contrast to the data inside a single row). The resulting low entropy inside a
column can be exploited by dictionary compression in order to reduce the required
storage space drastically. Additionally, bit-vector encoding can be used to further
reduce the needed storage space: e.g. if a column has up to 4096 different values
in total, it can be encoded with a dictionary key size of 12 bit, and the first 60 bits
of an 8-byte integer can hold five different column values. Run-length encoding
can be applied to columns if they contain sequences in which the same data value
occurs multiple times: instead of storing each occurrence separately, RLE allows
storing the value once accompanied by the number of subsequent occurrences.

2.2.2 Transactional vs. Analytical vs. Mixed Workload
Processing

Summary: This subsection explains different database workloads and how they
are being affected by the choice of the data layout.
As implied in the previous subsection, database textbooks contain a distinction
between online transaction processing (OLTP) and online analytical processing
(OLAP) [EN10]. The term online expresses the instant processing of a query
and delivering its result. The term transaction in OLTP refers to a database
transaction which, in turn, has been named after the concept of a business or

24

Section 2.2: In-Memory Database Management Systems

commercial transaction. Typical examples for OLTP applications are bank teller
processing, airline reservation processing or insurance claims processing [BN97].
OLTP workloads are characterized by operating on a few rows per query with an
equal mix of read and write operations. The term analytical in OLAP describes
the intent to perform analysis on data. These analyses consist of ad-hoc queries
which for example are issued to support a decision. Systems that are designed for
handling OLAP workloads are also referred to as decision support systems (DSS)
[Tur90]. An OLAP workload is characterized by executing aggregations over the
values of a database table issued by read-mostly queries [Tho02]. OLTP and
OLAP work on semantically the same data (e.g. sales transactions are recorded
by an OLTP system and then analyzed with an OLAP system), yet they are
typically separate systems. Initially, analytical queries were executed against the
transactional system, but at the beginning of the 1990s large corporations were
no longer able to do so as the performance of the transactional system was not
good enough for handling both workloads at the same time. This led to the
introduction of OLAP and the separation of the two systems [CCS93]. However,
the resulting duplication and separation of data introduced a series of drawbacks.
First, the duplication and transformation of data from the transactional to the
analytical system (known as extract, transform, and load (ETL) [KC04]) requires
additional processing for data denormalization and rearranging. Second, since the
execution of the ETL procedure happens only periodically (e.g. once a day), the
analytical processing happens on slightly outdated data. Third, the provisioning
of a dedicated system for analytical processing requires additional resources.

As a consequence, there are two motivational factors for a reunification of
OLTP and OLAP systems as proposed by Plattner [Pla09]: First, the elimination
of the previously explained drawbacks resulting from the separation and second,
the support of applications which cannot be clearly assigned to one of the workload
categories, but expose a mix of many analytical queries and some transactional
queries. Tinnefeld et al. [Tin09, KTGP10] elaborate that especially business ap-
plications, such as the available-to-promise (ATP) application [TMK+11], expose
a mixed workload. An ATP application evaluates if a requested quantity of a
product can be delivered to a customer at a requested date. This is done by ag-
gregating and evaluating stock levels and to-be-produced goods with analytical
queries, followed by transactional queries upon the reservation of products by the
customer.

In order to find a common database approach for OLTP and OLAP, it is logical
to reevaluate if the previously mentioned workload characterizations are accurate
[Pla09]. Krüger et al. [KKG+11] evaluated the query processing in twelve enter-
prise resource planning (ERP) systems from medium- and large-sized companies
with an average of 74,000 database tables per customer system. As shown in

25

Chapter 2: Related Work and Background
2 Background and Motivation

sys-

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100%

OLTP OLAP

W
or

kl
oa

d

W
or

kl
oa

d

Lookup
Table Scan
Range Select

Insert
Modification
Delete

Write:

Read:

2685
6290

15553
46418

(a) Analyzed customer systems

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

TPC-C

W
o
r
k
lo

a
d

Select

Insert

Modification

Delete

Write:

Read:

Lookup

Table Scan

Range Select

Modification

144
57992513852685

6290
15553

46418

Inventory Management

(b) Standard benchmark
Figure 2.3: Distribution of query types (from Krüger et al. [71])

the database, for both the customers’ OLTP and OLAP systems. The results are shown
in Figure 2.3a. The results of the analysis of the OLAP systems are in line with the
characterization of OLAP given in the previous paragraph: write queries account for
less than 10 % of the total workload. Most of the read queries are scan-intensive, i.e.
range selects or explicit table scans. The workload of the analyzed OLTP systems di�ers
from the characterization of OLTP given above: write queries account for only 17 % of
the total workload, most of which are inserts. More than 50 % of the queries are lookup
queries (similar to TPC-C [112], shown in Figure 2.3b) and more than 30 % of the queries
are range selects and table scans. TPC-C, the standard benchmark for OLTP systems,
does not contain range selects and table scans at all, as shown in Figure 2.3b.

The enterprise software on which the analysis by Krüger et al. is based on was first
released almost two decades ago. In more recent enterprise systems, there is a trend
towards providing more ad-hoc operational reporting capabilities directly on the trans-
actional data [94, 99]. Also, there are applications which cannot be clearly assigned
to either the OLTP or the OLAP category, such as “available-to-promise” or planning
applications.1 These applications frequently insert data into the database, but also per-
form complex aggregation queries as found in OLAP systems. Such applications exert
a mixed workload of transactional and analytical queries on the database [16, 25, 72].
Therefore, it is reasonable to expect that the fraction of range queries and table scans
in OLTP workloads increases in the future.

1Available-to-promise (ATP) is a process for determining whether a given quantity of a product can
be shipped to a customer by a desired delivery date. ATP occurs during order-entry transactions
and during shipment rescheduling, where certain customers or orders are prioritized in case of stock
shortages.

12

(a) Query distribution in analyzed business
customer systems.

2 Background and Motivation

sys-

0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100%

OLTP OLAP

W
or

kl
oa

d

W
or

kl
oa

d

Lookup
Table Scan
Range Select

Insert
Modification
Delete

Write:

Read:

2685
6290

15553
46418

(a) Analyzed customer systems

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

TPC-C

W
o
r
k
lo

a
d

Select

Insert

Modification

Delete

Write:

Read:

Lookup

Table Scan

Range Select

Modification

144
57992513852685

6290
15553

46418

Inventory Management

(b) Standard benchmark
Figure 2.3: Distribution of query types (from Krüger et al. [71])

the database, for both the customers’ OLTP and OLAP systems. The results are shown
in Figure 2.3a. The results of the analysis of the OLAP systems are in line with the
characterization of OLAP given in the previous paragraph: write queries account for
less than 10 % of the total workload. Most of the read queries are scan-intensive, i.e.
range selects or explicit table scans. The workload of the analyzed OLTP systems di�ers
from the characterization of OLTP given above: write queries account for only 17 % of
the total workload, most of which are inserts. More than 50 % of the queries are lookup
queries (similar to TPC-C [112], shown in Figure 2.3b) and more than 30 % of the queries
are range selects and table scans. TPC-C, the standard benchmark for OLTP systems,
does not contain range selects and table scans at all, as shown in Figure 2.3b.

The enterprise software on which the analysis by Krüger et al. is based on was first
released almost two decades ago. In more recent enterprise systems, there is a trend
towards providing more ad-hoc operational reporting capabilities directly on the trans-
actional data [94, 99]. Also, there are applications which cannot be clearly assigned
to either the OLTP or the OLAP category, such as “available-to-promise” or planning
applications.1 These applications frequently insert data into the database, but also per-
form complex aggregation queries as found in OLAP systems. Such applications exert
a mixed workload of transactional and analytical queries on the database [16, 25, 72].
Therefore, it is reasonable to expect that the fraction of range queries and table scans
in OLTP workloads increases in the future.

1Available-to-promise (ATP) is a process for determining whether a given quantity of a product can
be shipped to a customer by a desired delivery date. ATP occurs during order-entry transactions
and during shipment rescheduling, where certain customers or orders are prioritized in case of stock
shortages.

12

(b) Query distribution in the TPC-C bench-
mark.

Figure 2.8: Comparison of query distribution in analyzed business customer sys-
tems and a database benchmark (comparison by and figure taken from Krüger et al.
[KKG+11]). The comparison shows that OLTP workloads on customer enterprise re-
source planning systems are also dominated by read operations in contrast to the com-
mon understanding that OLTP exposes an equal mix of read and write operations (as
e.g. implied by the TPC-C benchmark [Raa93]).

Figure 2.8(a), the distribution of queries in the OLAP category is as expected:
over 90% of the queries are read operations dominated by range select operations.
The OLTP queries, however, also consist of over 80% read queries dominated by
lookup operations. Only 17% of the overall queries result in write operations: a
contradiction to the common understanding that OLTP consists of an equal mix
of read and write queries. This misconception can be visualized by looking at the
query distribution of the TPC-C benchmark (which is the standard benchmark for
OLTP systems [Raa93]) as shown in Figure 2.8(b): almost 50% of the queries are
write operations, while range select and table scan operations are not included at
all.

The drawbacks of the separation of OLTP and OLAP, the missing support for
applications that expose a mixed workload, and the misconception of the nature
of OLTP in the first place drove Plattner to design a common database approach
for OLTP and OLAP [Pla09, Pla11b, Pla11a]: SanssouciDB provides a common
database for OLTP and OLAP and provides adequate performance by leveraging
modern hardware technology: mainly the storage of all data in main memory and
the utilization of multi-core processors. Although it supports a column- and row-
oriented data layout, it puts heavy emphasis on the use of a columnar layout as i)
it is the best match for OLAP workloads, ii) it has been shown that even OLTP
applications have a portion of over 80% read queries, and iii) also mixed workloads

26

Section 2.2: In-Memory Database Management Systems

are dominated by analytical queries.

2.2.3 State-of-the-Art In-Memory Database Management Sys-
tems

Summary: This subsection lists state-of-the-art in-memory database manage-
ment systems.
In this subsection we present a selection of academic and industry in-memory
database management systems which are considered state-of-the-art in alphabeti-
cal order. We describe their main characteristics, starting with the systems from
academia:

• HyPer (Technical University Munich) [KNI+11, Neu11] is a main mem-
ory database hybrid system that supports row and columnar data layout
with the goal of supporting OLTP and OLAP workloads. To guarantee good
performance for both workloads simultaneously, HyPer creates snapshots of
the transactional data with the help of hardware-assisted replication mech-
anisms. Data durability is ensured via logging onto a non-volatile storage,
high-availability can be achieved by deploying a second hot-standby server.
The separate data snapshots for OLTP and OLAP workloads allow conflict-
free multi-threaded query processing as well as the deployment to several
servers to increase the OLAP throughput [MRR+13].

• HYRISE (Hasso-Plattner-Institut) [GKP+10, GCMK+12] is a main
memory storage engine that provides dynamic vertical partitioning of the
tables it stores. This means that fragments of a single table can either be
stored in a row- or column-oriented manner with the intention of supporting
OLTP, OLAP, and mixed workloads. HYRISE features a layout algorithm
based on a main memory cost model in order to find the best hybrid data
layout for a given workload.

• MonetDB (Centrum Wiskunde & Informatica) [BGvK+06, BKM08a]
is a main memory columnar database management system that is optimized
for the bandwidth bottleneck between CPU and main memory. The op-
timizations include cache-conscious algorithms, data compression, and the
modeling of main memory access costs as an input parameter for query op-
timization. MonetDB is purely intended for executing OLAP workloads and
does not support transactions or durability.

The following main memory database systems from industry are presented:

27

Chapter 2: Related Work and Background

• IBM solidDB [MWV+13] is a relational database management system that
can either be deployed as an in-memory cache for traditional database sys-
tems, such as IBM’s DB2 [HS13], or as a stand-alone database. In both cases,
it exposes an SQL interface to applications. When deployed as a stand-alone
database it offers an in-memory as well as a disk-based storage engine. The
in-memory engine uses a trie data structure for indexing, where the nodes
in the trie are optimized for modern processor cache sizes. The trie nodes
point to data stored consecutively in arrays in main memory. When using
the in-memory storage, snapshot-consistent checkpointing [WH 1] to disk is
used for ensuring durability. IBM is positioning solidDB as a database for
application areas such as banking, retail, or telecom [MWV+13].

• Microsoft SQL Server has two components which are tailored for in-
memory data management: the in-memory database engine Hekaton [DFI+13],
which is optimized for OLTP workloads, and xVelocity [Doc13], which is a
columnstore index and an analytics engine designed for OLAP workloads.
Hekaton stores data either via lock-free hash tables [Mic02] or via lock-free
B-trees [LLS13]. In order to improve transactional throughput, Hekaton
is able to compile requests to native code. xVelocity offers an in-memory
columnar index — not a memory resident columnar storage — that sup-
ports data compression and can be utilized by the xVelocity analytics en-
gine, to provide analytical capabilities in conjunction with Microsoft Excel.
However, Microsoft SQL Server also offers an updateable columnar storage
engine [LCF+13] which stores its data on SSD/disk. Microsoft SQL server
is positioned as a general-purpose database.

• SAP HANA [FCP+12] is an in-memory database that supports row- and
column-oriented storage in a hybrid engine for supporting OLTP, OLAP as
well as mixed workloads (see Subsection 2.2.2). In addition, it features a
graph and text processing engine for semi- and unstructured data manage-
ment within the same system. HANA is mainly intended to be used in the
context of business applications and can be queried via SQL, SQL Script,
MDX, and other domain-specific languages. It supports multiversion con-
currency control and ensures durability by logging to SSD. A unique aspect
of HANA is its support of transactional workloads via the column store
[KGT+10]: the highly compressed column store is accompanied by an addi-
tional write-optimized buffer called delta store. The content of the delta is
periodically merged into the column store. This architecture provides both
fast read and write performance.

• VoltDB [SW13] is an in-memory database designed for OLTP workloads and
implements the design of the academic H-Store project [KKN+08]. VoltDB
persists its data in a row-oriented data layout in main memory and applies

28

Section 2.3: Parallel Database Management Systems

checkpointing and transaction logging for providing durability. It boosts
transactional throughput by analyzing transactions at compile time, and
compiles them as stored procedures which are invoked by the user at run-
time with individual parameters. It is designed for a multi-node setup where
data is partitioned horizontally and replicated across nodes to provide high
availability. VoltDB is relatively young (first release in 2010) and positions
itself as a scalable database for transaction processing.

2.3 Parallel Database Management Systems

Summary: This section introduces parallel database management systems which
are a variation of distributed database management systems with the intention to
execute a query as fast as possible.

As mentioned in Chapter 1, Özsu and Valduriez [ÖV11] define a distributed database
as

“a collection of multiple, logically interrelated databases distributed
over a computer network. A distributed database management system
is then defined as the software system that permits the management of
the distributed database system and makes the distribution transparent
to the users.”

The two important terms in these definitions are logically interrelated and dis-
tributed over a computer network . Özsu and Valduriez mention that the typical
challenges tackled by distributed database systems include, for example, the aspect
of data placement, distributed query processing, distributed concurrency control,
and deadlock management, ensuring reliability and availability as well as the in-
tegration of heterogeneous databases.

The term distributed over a computer network makes no assumption whether
the network is a wide area or local area network. A database system that is
running on a set of nodes which are connected via a fast network inside a cabinet
or inside a data center can be classified as a parallel database system. According
to Özsu and Valduriez [ÖV11] this can be seen as an revision and extension of a
distributed database system. According to DeWitt and Gray [DG92], a parallel
database system exploits the parallel nature of an underlying computing system
in order to provide high-performance and high-availability.

29

Chapter 2: Related Work and Background

CPU1 CPUn
Main
Memory
1

Main
Memory
n

Disk1 Diskn

Interconnection
Network

(a) Shared-Memory

CPU1

Main
Memory
1

CPUn

Main
Memory
n

Disk1 Diskn

Interconnection
Network

(b) Shared-Disk

CPU1

Main
Memory
1

CPUn

Main
Memory
n

Disk1 Diskn

Interconnection
Network

(c) Shared-Nothing

Figure 2.9: Three different parallel DBMS architectures.

2.3.1 Shared-Memory vs. Shared-Disk vs. Shared-Nothing

Summary: This subsection introduces and compares different parallel database
management system architectures and reflects those in the context of main memory
databases.

As briefly summarized in Chapter 1, one fundamental and much debated as-
pect of a parallel DBMS is its architecture. The architecture influences how the
available hardware resources are shared and interconnected. As shown in Fig-
ure 2.9, there are three different parallel DBMS textbook architectures [ÖV11,
DG92, DMS13]: shared-memory, shared-storage (or shared-disk or shared-data),
and shared-nothing:

Shared-memory (or shared-everything) (see Figure 2.9(a)) is an archi-
tectural approach where all processors share direct access to any main memory
module and to all disks over an interconnection. Examples for shared-memory
DBMS are DBS3 [BCV91] and Volcano [Gra94b]. Shared-memory provides the
advantages of an architecturally simple solution: there is no need for complex dis-
tributed locking or commit protocols as the lock manager and buffer pool are both
stored in the memory system where they can be accessed uniformly by all proces-
sors [ERAEB05, DMS13]. In addition, the shared-memory approach is great for
parallel processing: inter-query parallelism is an inherent property as all proces-
sors share all underlying resources, which means that any query can be executed
by any processor. Intra-query parallelism can also be easily achieved due to the
shared resources. Shared-memory has two major disadvantages: the extensibility
is limited as all the communication between all resources goes over a shared inter-
connection. For example, a higher number of processors causes conflicts with the
shared-memory resource which degrades performance [TS90]. The biggest draw-
back of shared-memory is its limited availability. Since the memory space is shared

30

Section 2.3: Parallel Database Management Systems

by all processors, a memory fault will affect many processors and potentially lead
to a corrupted or unavailable database. Although the research community ad-
dressed this problem by work on fault-tolerant shared-memory [SMHW02], the
shared-memory architecture never had much traction outside academic work and
had its peak in the nineties (in terms of available products in industry and pub-
lished research papers).

Shared-storage (or shared-disk or shared-data) (see Figure 2.9(b)) is an
architectural approach where processors each have their own memory, but they
share access to a single collection of disks. The term shared-disk is a bit confusing
in the way that it suggests that rotating disks are an integral part. This is not the
case, but hard drive disks were the commonly used storage device when the term
was coined. Nowadays a shared-storage architecture can be realized by storing data
on disk, SSD, or even keeping it main memory resident (e.g. see Texas Memory
Systems RamSan-440 [ME13] or RAMCloud [OAE+11]), typically in the form of a
storage area network (SAN) or a network-attached storage (NAS). However, each
processor in a shared-storage approach can copy data from the database in its local
memory for query processing. Conflicting access can be avoided by global locking
or protocols for maintaining data coherence [MN92]. Examples for shared-storage
systems are IBM IMS [KLB+12] or Sybase IQ [Moo11]. Shared-storage brings the
advantage that it is very extensible as an increase in the overall processing and
storage capacity can be done by adding more processors respectively disks. Since
each processor has its own memory, interference on the disks can be minimized.
The coupling of main memory and processor results in an isolation of a memory
module from other processors which results in better availability. As each processor
can access all data, load-balancing is trivial (e.g. distributing load in a round-robin
manner over all processors). The downsides are an increased coordination effort
between the processors in terms of distributed database system protocols, and
the shared-disks becoming a bottleneck (similar to the shared-memory approach,
sharing a resource over an interconnection is always a potential bottleneck).

Shared-nothing (see Figure 2.9(c)) is an architectural approach where each
memory and disk is owned by some processor which acts as a server for that data.
The Gamma Database Machine Project [DGS+90] or VoltDB [SW13] are exam-
ples for shared-nothing architectures. The biggest advantage of a shared-nothing
architecture is reducing interferences and resource conflicts by minimizing resource
sharing. Operating on the data inside a local machine allows operating with full
raw memory and disk performance, high-availability can be achieved by replicating
data onto multiple nodes. With careful partitioning across the different machines,
a linear speed-up and scale-up can be achieved for simple workloads [ÖV11]. A
shared-nothing architecture has also its downsides: the complete decoupling of all
resources introduces a higher complexity when implementing distributed database

31

Chapter 2: Related Work and Background

functions (e.g. providing high-availability). Load balancing also becomes more
difficult as it is highly dependent on the chosen partition criteria, which makes
load balancing based on data location and not actual load of the system. This
also impacts the extensibility as adding new machines requires a reevaluation and
potentially a reorganization of the existing data partitioning.

When comparing the different architectures one can conclude that there is
no better or worse and no clear winner. The different architectures simply offer
different trade-offs with various degrees of trading resource sharing against system
complexity. Consequently, this is a much debated topic. For example, Rahm
[Rah93] says that

“A comparison between shared-disk and shared-nothing reveals many
potential benefits for shared-disk with respect to parallel query process-
ing. In particular, shared-disk supports more flexible control over the
communication overhead for intratransaction parallelism, and a higher
potential for dynamic load balancing and efficient processing of mixed
OLTP/query workloads.”

DeWitt, Madden, and Stonebraker [DMS13] argue that

“Shared-nothing does not typically have nearly as severe bus or resource
contention as shared-memory or shared-disk machines, shared-nothing
can be made to scale to hundreds or even thousands of machines. Be-
cause of this, it is generally regarded as the best-scaling architecture.
Shared-nothing clusters also can be constructed using very low-cost
commodity PCs and networking hardware.”

Hogan [Hog13] summarizes his take on the discussion with

“The comparison between shared-disk and shared-nothing is analogous
to comparing automotive transmissions. Under certain conditions and,
in the hands of an expert, the manual transmission provides a modest
performance improvement ... Similarly, shared-nothing can be tuned to
provide superior performance ... Shared-disk, much like an automatic
transmission, is easier to set-up and it adjusts over time to accommo-
date changing usage patterns.”

When reviewing this discussion in the context of parallel main memory databases,
there is a clearer picture: most popular systems such as MonetDB, SAP HANA
or VoltDB use a shared-nothing architecture and not a shared-storage approach.

32

Section 2.3: Parallel Database Management Systems

In the past, there was a big performance gap between accessing main memory in-
side a machine and in a remote machine. Consequently, a performance advantage
that has been achieved by keeping all data in main memory should not vanish by
sending much data over a substantially slower network interconnect. As shown
in Subsection 2.1.3, the performance gap between local and remote main memory
access performance is closing, which paves the way for discussing a shared-storage
architecture for a main memory database as covered by this thesis.

2.3.2 State-of-the-Art Parallel Database Management Sys-
tems

Summary: This subsection presents state-of-the-art shared-storage and shared-
nothing parallel database management systems.
In this subsection we present a selection of disk-based and main memory-based as
well as shared-storage and shared-nothing parallel database management systems
and the different variations thereof. Some of the systems were previously intro-
duced in the thesis, but this subsection focuses on their ability to be deployed
on several servers. We start with shared-storage parallel database management
systems:

• IBM DB2 pureScale [IBM13] is a disk-based shared-storage solution for
IBM’s row-oriented DB2 [HS13]. It allows the creation of a parallel DBMS
consisting of up to 128 nodes where each node is an instance of DB2 and all
nodes share access to a storage system that is based on IBM’s General Paral-
lel File System (GPFS) [SH02]. Each database node utilizes local storage for
caching or maintaining a bufferpool. In addition to the local bufferpools per
node, there is also a global bufferpool that keeps record of all pages that have
been updated, inserted or deleted. This global bufferpool is used in conjunc-
tion with a global lock manager: before any node can make for example an
update, it has to request the global lock. After data modification, the global
lock manager invalidates all local copies of the respective page in the local
memory of the nodes. PureScale offers so called cluster services which, for
example, orchestrate the recovery process in the event of a downtime. GPFS
stores the data in blocks of a configured size and also supports striping and
mirroring to ensure high-availability and improved performance.

• MySQL on MEMSCALE [MSFD11a] [MSFD11b] is shared-storage de-
ployment of MySQL on MEMSCALE, which is a hardware-based shared-
memory system that claims to scale gracefully by not sharing cores nor
caches, and therefore working without a coherency protocol. This approach

33

Chapter 2: Related Work and Background

uses the main memory storage engine of MySQL (known as heap or memory)
and replaces the common malloc by a library function that allocates memory
from the MEMSCALE shared-memory. As a consequence, all properties of
MySQL are still present so that queries can be executed in a multithreaded,
ACID compliant manner with row-level locking.

• MySQL on RamSan [ME13] is a shared-storage solution where MySQL
utilizes the storage space provided by a storage area network that keeps
all data resident in main memory called RamSan. RamSan was originally
developed by Texas Memory Systems (now acquired by IBM). It acts as a
traditional storage area network, but depending on the configuration keeps
all data in main memory modules such as DDR, and uses additional SSDs for
non-volatile storage. RamSan provides the advantage that it is transparent
to a database system, such as MySQL, that main memory-based storage is
being used, but incorporates the downside that data access is not optimized
for main memory.

• ScaleDB [Sca13] implements a shared-storage architecture that consists of
three different entities, namely database nodes, storage nodes, and a clus-
ter manager. Each database node runs an instance of MySQL server that is
equipped with a custom ScaleDB storage engine by utilizing the MySQL fea-
ture of pluggable storage engines [MyS13a]. That results in a multithreaded,
disk-based, ACID compliant engine that supports row-level locking and op-
erates in read committed mode. All database nodes share common access
to the data inside the storage nodes. ScaledDB manages the data in block-
structured files with each individual file being broken into blocks of a fixed
size. These blocks are stored twice for providing high-availability and are
distributed randomly across the storage nodes. In addition, ScaleDB also
features a cluster manager that is a distributed lock manager that synchro-
nizes lock requests of different nodes.

• Sybase IQ [Syb13a] is a shared-storage, columnar, relational database sys-
tem that is mainly used for data analytics. As depicted in the Sybase IQ 15
sizing guide [Syb13b], a set of database nodes accesses a commonly shared
storage that holds all data. Among the database nodes is a primary server (or
coordinator node) that manages all global read-write transactions and main-
tains the global catalog and metadata. In order to maximize the throughput
when operating on the shared storage system, Sybase IQ strips data with
the intention of utilizing as many disks in parallel as possible.

The following shared-nothing parallel database management systems are pre-
sented:

34

Section 2.3: Parallel Database Management Systems

• C-Store [SAB+05] and its commercial counterpart Vertica [LFV+12] are
disk-based columnar parallel DBMSs based on a shared-nothing architecture.
The data distribution in Vertica is done by splitting tuples among nodes by
a hash-based ring style segmentation scheme. Within each node, tuples are
physically grouped into local segments which are used as a unit of transfer
when nodes are being added to or removed from the cluster in order to
speed up the data transfer. Vertica allows defining how often a data item is
being replicated across the cluster (called k-saftey), realizing thereby high-
availability, and allows the operator of the cluster to set the desired tradeoff
between hardware costs and availability guarantees.

• MySQL Cluster [DF06] enables MySQL (MySQL [MyS13b] is one of the
most popular open-source relational DBMS) to be used as a shared-nothing
parallel DBMS. MySQL Cluster partitions data across all nodes in the sys-
tem by hash-based partitioning according to the primary key of a table.
The database administrator can choose a different partitioning schema by
specifying another key of a table as partitioning criteria. In addition, data
is synchronously replicated to multiple nodes for guaranteeing availability.
Durability is ensured in a way that each node writes logs to disk in addition
to checkpointing the data regularly. In a MySQL cluster, there are three dif-
ferent type of nodes: a management node that is used for configuration and
monitoring of the cluster, a data node which stores parts of the tables, and a
SQL node that accepts queries from clients and automatically communicates
with all other nodes that hold a piece of the data needed to execute a query.

• Postgres eXtensible Cluster (Postgres-XC) [Pos13] [BS13] is a solution
to deploy PostgreSQL as a disk-based, row oriented, shared-nothing parallel
DBMS. A Postgres-XC cluster consists of three different types of entities: a
global transaction manager, a coordinator, and datanodes. The global trans-
action manager is a central instance in a Postgres-XC cluster and enables
multi-version concurrency control (e.g. by issuing unique transaction IDs).
The coordinator accepts queries from an application and coordinates their
execution by requesting a transaction ID from the global transaction man-
ager, determining which datanodes are needed for answering a query and
sending them the respective part of the query. The overall data is parti-
tioned across datanodes where each datanode executes (partial) queries on
its own data. Data can also be replicated across the datanodes in order to
provide high-availability.

• SAP HANA [FML+12] is an in-memory parallel DBMS based on a shared-
nothing architecture [LKF+13]. A database table in HANA can be split
by applying round-robin, hash- or range-based partitioning strategies: the
database administrator can assign the resulting individual partitions to indi-

35

Chapter 2: Related Work and Background

vidual HANA nodes either directly or based on the suggestions of automated
partitioning tools. There are two different types of nodes: a coordinator node
and a worker node. A database query issued by a client gets send to a coor-
dinator node first. A coordinator is responsible for compiling a distributed
query plan based on data locality or issuing global transaction tokens. The
query plan then gets executed by a set of worker nodes where each worker
node operates on its local data. HANA also features a distributed cost-based
query optimizer that lays out the execution of single database operators
which span multiple worker nodes. High-availability is ensured by hardware
redundancy which allows to provide a stand-by server for a worker node that
takes over immediately if the associated node fails [SAP13]. Durability is
ensured by persisting transaction logs, savepoints, and snapshots to SSD or
disk in order to recover from host failures or to support the restart of the
complete system.

• MonetDB [BGvK+06] is an in-memory columnar DBMS that can be de-
ployed as a shared-nothing cluster. MonetDB is a research project, it comes
with the necessary primitives such as networking support and setting up a
cluster by connecting individual nodes each running MonetDB. This founda-
tion can be used to add shared-nothing data partitioning features and dis-
tributed query optimizations for running data analytics [MC13]. MonetDB
is also used as a platform for researching novel distributed data processing
schemes: for example the Data Cyclotron [GK10] project creates a virtual
network ring based on RDMA-enabled network facilities where data is per-
petually being passed through the ring, and individual nodes pick up data
fragments for query processing.

• Teradata Warehouse [Ter13] [CC11] is a shared-nothing parallel database
system used for data analytics. The architecture consists of three major
component types: a parsing engine, an access module processor (AMP), and
the BYNET framework. The parsing engine accepts queries from the user,
creates query plans and distributes them over the network (BYNET frame-
work) to the corresponding access module processors. An AMP is a separate
physical machine that runs an instance of the Teradata Warehouse database
management system which solely operates on the disks of that machine. The
disks inside an AMP are organized in redundant arrays to prevent data loss.
The data is partitioned across all AMPs by a hash partitioning schema in
order to distribute the data evenly and reduce the risk of bottlenecks. Ter-
adata warehouse allows configuring dedicated AMPs for hot standby which
can seamlessly take over in the case of a failure of an active AMP.

• VoltDB [SW13] is a row-oriented in-memory database that can be deployed
as a shared-nothing parallel database system. In such a cluster, each server

36

Section 2.3: Parallel Database Management Systems

runs an instance of the VoltDB database management system. Tables are
partitioned across nodes by hashing the primary key values. In addition, ta-
bles can also be replicated across nodes for performance and high-availability.
For ensuring high-availability, three mechanisms are in place: k-safety which
allows to specify the number k of data replicas in the cluster. Network fault
detection evaluates in the case of a network fault which side of the cluster
should continue operation based on the completeness of the data. Live node
rejoin allows nodes when they restart after a failure to be reintroduced to
the running cluster and retrieve their copy of the data. Durability is ensured
via snapshots to disks in intervals and command logging.

2.3.3 Database-Aware Storage Systems

Summary: This subsection introduces database-aware storage systems which are
storage systems that support the execution of database operations in order to
reduce network communication.
The previous discussion of shared-storage versus shared-nothing architectures de-
scribes that each architecture has its advantages: one advantage of a shared-
nothing architecture is that a processor performs data operations on the data
that is inside the same machine without the need for transferring the data over a
network first. Database-aware storage systems [RGF98, Kee99, SBADAD05] aim
at bringing that advantage to shared-storage systems by executing database oper-
ators directly in the storage system. This approach is based on the idea of active
storage/active disks/intelligent disks [AUS98, KPH98] where the computational
power inside the storage device is being used for moving computation closer to the
data.

The American National Standards Institute (ANSI) Object-based Storage De-
vice (OSD) T10 standard describes a command set for the Small Computer System
Interface (SCSI) [sta04] that allows communication between the application and
the storage system. This, in turn, is the foundation for the work of Raghuveer,
Schlosser, and Iren [RSI07] who use this OSD interface for improving data access
for a database application by making the storage device aware of relations, in con-
trast to just returning blocks of data. However, they do not support the execution
of application/database code inside the storage device. This is done in the Dia-
mond project [HSW+04], as it applies the concept of early discard in an active
storage system. Early discard describes the rejection of to be filtered out data as
early as possible. Diamond supports the processing of such filters inside an active
disk and makes sure that not requested data is discarded before it reaches the
application, such as a database system. Riedel, Gibson, and, Faloutsos [RGF98]
evaluate the usage of active disks for a different set of application scenarios in-

37

Chapter 2: Related Work and Background

cluding nearest neighbor search in a database and data mining of frequent sets.
They conclude that the processing power of a disk drive will always be inferior to
server CPUs, but that a storage system usually consists of a lot of disks resulting
in the advantage of parallelism, and that combining their computational power
with the processors inside the server results in a higher total processing capacity.
In addition, the benefit of filtering in the disk reduces the load on the interconnect
and brought significant performance advantages for their application scenarios.

An example for a current system that exploits the possibilities of database-
aware storage systems is Oracle’s Exadata which combines a database and a storage
system inside a single appliance: the Exadata storage system supports Smart-Scan
and Offloading [SBADAD05]. Smart-Scan describes the possibility to execute col-
umn projections, predicate filtering, and index creation inside the storage system.
Offloading enables the execution of more advanced database functions inside the
storage system, such as simple joins or the execution of mathematical or analytical
functions.

2.3.4 Operator Placement for Distributed Query Processing

Summary: This subsection describes and discusses query, hybrid, and data ship-
ping which are three different approaches how the resources from client and server
can be utilized for processing a query in a distributed database management sys-
tem.
When using a database-aware storage system, the resources from the storage sys-
tem, as well as the resources from the DBMS, can be utilized for query processing.
In the field of distributed query processing, this problem is classified as the ex-
ploitation of client resources in the context of client-server database systems. As
this problem is originated in a setting where the client is an application and the
DBMS acts as a server, the remainder of this section presents a detailed descrip-
tion of the problem including the related work and discusses it in conjunction with
database-aware storage systems, where the DBMS is the client and the server is a
storage system.

Tanenbaum explains the client-server model by stating that “a client process
sends a request to a server process which then does the work and sends back the
answer” [Tan07]. Based on that definition, Kossmann gives in his seminal paper
The State of the Art in Distributed Query Processing [Kos00] (which is in form
and content the blueprint for the remainder of this subsection) a description of the
client resource exploitation problem:

“The essence of client-server computing is that the database is persis-
tently stored by server machines and that queries are initiated at client

38

Section 2.3: Parallel Database Management Systems

A B
scan scan

join

Client

Server

query

result

(a) Query Shipping

A B

A B
scan scan

join

Client

Server

(b) Data Shipping

A B

Client

Server

A
scan

join

scan

(c) Hybrid Shipping

Figure 2.10: Illustration of query, data, and hybrid shipping (Figure taken from
[Kos00]).

machines. The question is whether to execute a query at the client
machine at which the query was initiated or at the server machines
that store the relevant data. In other words, the question is whether
to move the query to the data (execution at servers) or to move the
data to the query (execution at clients).”

This results in the following three approaches:
Query shipping (see Figure 2.10(a)) is an approach where the client sends

the query in its entirety to the server, the server processes the query and sends
back the result. This is the approach that is typical for example for relational
DBMSs such as Microsoft SQL Server or IBM DB2.

Data shipping (or data pull) (see Figure 2.10(b)) is the opposite solution
where the client consumes all the needed data from the server and then processes
the query locally. This results in an execution of the query where it originated.
Object-oriented databases often work after the data shipping principle as the client
consumes the objects as a whole and then does the processing.

Hybrid shipping (see Figure 2.10(c)) is a combination of the two previous
approaches. As shown by Franklin, Jónsson, and Kossmann [FJK96], hybrid ship-
ping allows executing some query operators at the server side, but also pulling data
to and processing it at the client side. As shown in Figure 2.10(c), data region
A is being pulled and scanned at the client’s side. Data region B is scanned at

39

Chapter 2: Related Work and Background

Database Operator Query Shipping Data Shipping Hybrid Shipping
display client client client
update server client client or server

binary operators producer of consumer consumer or producer
(e.g. join) left or right input (i.e. client) of left or right input

unary operators producer consumer consumer
(e.g. sort, group-by) (i.e. client) or producer

scan server client client or server

Table 2.2: Site selection for different classes of database operators for query, data, and
hybrid shipping (Figure taken from [Kos00]).

the server’s side, and the results are then transferred to the client where they are
joined with the results from the scan on data region A.

The three different approaches imply a number of design decisions when cre-
ating a model that supports the decision where the execution of each individual
database operator that belongs to a query is being placed. Those decisions are:
a) the site selection itself which determines where each individual operator is be-
ing executed, b) where to decide the site selection, c) what parameters should
be considered when doing the site selection, and d) when to determine the site
selection.

Site selection in conjunction with the client resource exploitation problem
says that each individual database operator has a site annotation that indicates
where this operator is going to be executed [Kos00]. As shown in Table 2.2,
different annotations are possible per operator class: display operations return the
result of a query which always has to happen at the client. All other operators in
a data shipping approach are executed at the client site as well or in other words
at the site where the data is consumed. Query shipping executes all operators at
the server site or where the data is produced (e.g. by the execution of a previous
operator). Hybrid shipping supports both annotations. The question where to
make the site selection depends on several factors, most notably the number of
servers in the system: if there is only one server, it makes sense to let the server
decide the site selection as it knows its own current load [HF86]. If there are many
servers, there might be no or only little information gained by executing it at the
server site as a single server has no complete knowledge of the system. In addition,
the site selection itself is also an operation that consumes resources which can be
scaled with the number of clients if executed at the client. What information
is considered for the site selection depends on the nature of the site selection
algorithm. For example, for a cost-based approach one might want to consider
information about the database operation itself, such as the amount of data to be

40

Section 2.3: Parallel Database Management Systems

traversed or the selectivity, the hardware properties of the client, the server, as
well as the interconnect or information about the current load of the client and/or
the server. If the site selection algorithm is a heuristic, simple information such as
the class of the current database operation and the selectivity might be sufficient
(e.g. executing a scan operator at the server site if the selectivity is greater than
x). Three different approaches are possible with regards to deciding when site
selection occurs: a static, a dynamic, and a two-step optimization approach. A
static approach can be chosen if the queries are known and compiled at the same
time when the application itself is being compiled. This allows also to decide on the
site selection at compile time. Only in exceptional situations, such as a change in
the predetermined queries, doesa reevaluation of the site selection occur [CAK+81].
This approach works well if queries and workload are static, but performs poorly
with a fluctuating or changing workload. A simple dynamic approach generates
alternative site selection plans at design time and chooses the site selection plan
during query execution that for example best matches the assumptions about the
current load of the system. If that repeatedly results in poor performance, a
new set of site selection plans can be generated [CG94]. This can be especially
useful if certain servers are not responsive [UFA98] or if the initial assumptions
of e.g. the sizes of intermediate results turned out to be wrong [KD98]. Two-
step optimization is a more advanced dynamic approach that determines the site
selection just before the query execution. This is achieved by a decomposition of
the overall query execution into two steps [Kos00]. First, a query plan is generated
that specifies the join order, join methods, and access paths. This first step has the
same complexity as the query plan creation in a centralized system. Second, right
before executing the query plan, it is determined where every operator is being
executed. As the second step only carries out the site selection for a single query
at a time, its complexity is reasonably low and can also be done during query
execution. As a consequence, it is assumed that this approach reduces the overall
complexity of distributed query optimization and is hereby popular for distributed
and parallel database systems [HM95, GGS96]. The advantages of the two-step
optimization are the aforementioned low complexity and the ability to consider
the current state of the system at the time of query execution which can be used
for workload distribution [CL86] and to exploit caching [FJK96]. The downside of
decoupling query plan creation and site selection is ignoring the placement of data
across servers during query plan creation as it might result in a site selection plan
with unnecessary high communication costs [Kos00].

The previous explanations are a general take on the client resource exploitation
and the resulting site selection problem. They include the underlying assumption
that every operator in a query can be executed at the client or the server. However,
this might not be the case as not all database operators are available at both

41

Chapter 2: Related Work and Background

Query Shipping Hybrid Shipping Data Shipping

Ratio of queries
eligible for the

respective shipping
approach

Client: Application
Server: Relational Database Management System

{
{

Client: Relational Database Management System
Server: Database-Aware Storage System

Figure 2.11: Depicting the ratio of queries which are eligible for query, hybrid or data
shipping in correspondence with a relational DBMS either acting as server or client.

sites. This limits the site selection scope to a subset or a set of classes of database
operators depending on which are available at both sites. In addition, the execution
order of the operators according to the query plan also limits the site selection (e.g.
a query plan foresees that two relations are scanned and the results of the scan
operations are joined). The scan operators are available at the client and server
sites, the join operator is only available at the server. In this case, executing the
scans at the client site results in an unreasonably high communication overhead
as both relations have to be shipped in their entirety to the client and then the
scan results have to be shipped back to the server for processing the join. The
availability of operators at a site depends on which kind of system acts as the
client and the server. If the client is an application and the server is a relational
database management system, then the entirety of database operators is available
at the server site. The default mode is to ship the query to the DBMS and retrieve
the result. It is possible that some operators are also available at the client site
(e.g. a scan and a group-by operator). That allows hybrid shipping for queries that
facilitate both, and makes data shipping an option for queries that only consists of
these two types of operators. In such a setting, all possible queries can be executed
with query shipping, a subset of them with hybrid shipping and an even smaller
subset with data shipping (as depicted in Figure 2.11). The situation is reversed
when the client is a relational DBMS and the server is a database-aware storage
system. If the database-aware storage system has a scan operator implemented,
all queries can be executed with data shipping, queries which involve a scan can
be executed via hybrid shipping and queries solely consisting of scans have the
option of using a query shipping approach.

42

Section 2.4: Cloud Storage Systems

2.4 Cloud Storage Systems

Summary: This section introduces and classifies cloud storage systems and de-
scribes how they differ from traditional database and file systems.
The paradigm of cloud computing describes the provisioning of information tech-
nology infrastructure, services, and applications over the Internet. Typical charac-
teristics are the on-demand availability of such resources, their quick adaption to
changing workloads, and the billing based on actual usage. From a data manage-
ment perspective, two different types of cloud storage systems have been created
to manage and persist large amounts of data created and consumed by cloud com-
puting applications: a) So called NoSQL2 systems include distributed key-value
stores, such as Amazon Dynamo [DHJ+07] or Project Voldemort, wide column
stores such as Google Bigtable [CDG+06] or Cassandra [LM10], as well as docu-
ment and graph stores. b) Distributed file systems such as Google File System
(GFS) [GGL03] or Hadoop Distributed File System (HDFS) [SKRC10]. The re-
mainder of this section explains the motivation for building these cloud storage
systems, and their underlying concepts, as well as how they differ from traditional
database and file systems.

The previous section explains that parallel database management systems com-
bine the resources of multiple computers to accelerate the execution of queries as
well as increase the overall data processing capacity. Such systems were greatly
challenged with the advent of e-commerce and Internet-based services offered by
companies such as Amazon, eBay or Google in the mid-nineties. These companies
not only grew rapidly in their overall size, they also did it in a comparatively
short period of time with unpredictable growth bursts. This development put big
emphasis on the aspects of scalability and elasticity in the context of data storage
and processing systems. Scalability is defined as

“a desirable property of a system, which indicates its ability to either
handle growing amounts of work in a graceful manner or its ability to
improve throughput when additional resources (typically hardware) are
added. A system whose performance improves after adding hardware,
proportionally to the capacity added, is said to be a scalable system”
[AEADE11].

2There is no explicit explanation what the abbreviation NoSQL stands for, but it is most
commonly agreed that it means “not only SQL”. This term does not reject the query language
SQL, but rather expresses that the design of relational database management systems is unsuit-
able for large-scale cloud applications [Bur10] (see Eric Brewer’s CAP theorem [Bre00, Bre12] as
explained later in this Section).

43

Chapter 2: Related Work and Background

Elasticity hardens the scalability property as it focuses on the quality of the work-
load adaption process — e.g. when resources have been added — in terms such as
money or time. Elasticity can be defined as

“the ability to deal with load variations by adding more resources dur-
ing high load or consolidating the tenants to fewer nodes when the load
decreases, all in a live system without service disruption, is therefore
critical for these systems. ... Elasticity is critical to minimize operat-
ing costs while ensuring good performance during high loads. It allows
consolidation of the system to consume less resources and thus mini-
mize the operating cost during periods of low load while allowing it to
dynamically scale up its size as the load decreases” [AEADE11].3

For example, the Internet-based retailer Amazon initially used off-the-shelf
relational database management systems as the data processing backend for their
Internet platform. The Amazon Chief Technology Officer Werner Vogels explains
[Vog07] that Amazon had to perform short-cycled hardware upgrades to their
database machines in their early days. Each upgrade would only provide sufficient
data processing performance for a couple of months until the next upgrade was
due to the company’s extreme growth. This was followed by attempts to tune
their relational database systems by simplifying the database schema, introducing
various caching layers or partitioning the data differently. At some point the
engineering team at Amazon decided to evaluate the data processing needs at
Amazon and create their own data processing infrastructure accordingly. These
data processing needs reveal [Vog07] that at Amazon e.g. about 65% of the data
access is based on the primary key only, about 15% of the data access exposes
lot of writes in combination with the need for strong consistency, and 99.9% of
the data access has a need for low latency where a response time of less than 15
ms is expected. The variety in their data processing needs is covered by a set of
solutions where the most prominent one is Amazon Dynamo.

Amazon Dynamo [DHJ+07] is a distributed key-value store. Since the majority
of data operations at Amazon encompass primary key access only and require low
latency, Dynamo is designed for storing and retrieving key-value pairs (also referred
to as objects). Dynamo implements a distributed hash table where the different
nodes that hold data of that hash table are organized as a ring. The data distribu-
tion is done via consistent hashing. However, a hash-based data partitioning onto
physical nodes would lead to a non-uniform data and load distribution due to the
random position assignment of each node in the ring and the basic algorithm is

3The definitions and usage of the terms scalability and elasticity are much discussed in the
computer science community as they are not strictly quantifiable [Hil90].

44

Section 2.4: Cloud Storage Systems

oblivious to the heterogeneity in the performance of nodes. This is addressed by
the introduction of virtual nodes (which can be thought of as namespaces), where
a single virtual node is being mapped onto different physical nodes: this allows
for providing high-availability and elasticity by changing the number of physi-
cal nodes assigned to a virtual node upon workload changes. As a result, nodes
can be added and removed from Dynamo without any need for manual partition-
ing and redistribution. Consistency is facilitated by object versioning [Lam78].
The consistency among replicas during updates is maintained by a quorum-like
technique and a decentralized replica synchronization protocol. These features
in combination make Dynamo a scalable, highly-available, completely decentral-
ized system with minimal need for manual administration. Amazon Dynamo is
just one example of a distributed key-value store, but it is conceptually similar to
other popular distributed key-value stores such as Riak [Klo10] or Project Volde-
mort [SKG+12]. Google Bigtable [CDG+06] and Cassandra [LM10] are examples
for wide column stores (also known as extensible record stores [Cat11]): for exam-
ple Google Bigtable implements a sparse, distributed, persistent multi-dimensional
map indexed by a row key, a column key, and some kind of versioning information
such as a timestamp or versioning number. This multi-dimensional map is parti-
tioned in a cluster in the following way: the rows of a map are split across nodes
with the assignment being done by ranges and based on hashing. Each column
of a map is described as a column family, the contained data is of the same type
and its data is being distributed over multiple nodes. Such a column family must
not be mistaken for a relational database column that implies that related data
is physically collocated, but can be seen more as a namespace. The motivation
for using such wide column stores over simple distributed key-value stores is the
more expressive data model, that provides a simple approach to model references
between data items [CDG+06].

How a cloud storage system such as Amazon Dynamo differs from a relational
DBMS and how it addresses the previously mentioned scalability shortcomings can
be illustrated with the Consistency, Availability, and Partition Tolerance (CAP)
theorem by Eric Brewer [Bre00, Bre12]. In this theorem

“consistency means that all nodes see the same data at the same time,
availability is a guarantee that every request receives a response about
whether it was successful or failed and partition tolerance lets the sys-
tem continue to operate despite arbitrary message loss.”

The theorem states that a distributed system can provide two properties at the
same time, but not three. Relational DBMSs provide consistency and availability,
cloud storage systems provide availability and partition tolerance. This is done by

45

Chapter 2: Related Work and Background

relaxing the ACID constraints in cloud storage systems as it significantly reduces
the communication overhead in a distributed system, providing simple data access
APIs instead of complex query interfaces, and schema-free data storage [Bur10].

Another category of cloud storage systems are distributed filesystems. Dis-
tributed filesystems in general have been available for over 30 years, their pur-
pose is to “allow users of physically distributed computers to share data and stor-
age resources by using a common file system” [LS90]. Well-cited examples are
Sun’s Network File System (NFS) [SGK+88] and the Sprite Network File System
[OCD+88]. However, a distributed file system — such as the Google File System
— which is designed to act as a cloud storage system, differs from traditional
distributed filesystems in a similar way as a distributed key-value storage differs
from a relational database management system. It weakens consistency, reduces
synchronization operations along with the introduction of replicating data multi-
ple times in order to scale gracefully and provide high-availability. This can be
illustrated by reviewing the underlying assumptions and requirements that led to
the design of the Google File System [GGL03]: the file system is built from many
inexpensive commodity components where hardware failures are the norm not the
exception, which means that fault-tolerance and auto-recovery need to be built
into the system. Files can be huge, bandwidth is more important than latency,
reads are mostly sequential and writes are dominated by append operations. The
corresponding Google File System architecture foresees that a GFS cluster has
a single master server, multiple chunkservers and they are accessed by multiple
clients. Files in GFS are divided into fixed-size chunks, where each chunk is iden-
tified by a unique 64-bit chunk handle, the size of a chunk is 64MB, and chunks
are replicated at least three times throughout the cluster. A master server main-
tains all file system metadata such as namespaces, access control information, the
mappings from files to chunks as well as the locations from the different chunks on
the chunkservers. Each chunkserver stores its chunks as separate files in a Linux
file system. If a client wants to access a file, it contacts the master server which
provides it with the chunk server locations as well as the file-to-chunk mappings:
the client is then enabled to autonomously contact the chunkservers. This allows
clients to read, write, and append records in parallel at the price of a relaxed
consistency model (e.g. it may take some time until updates are perpetuated
to all replicas): these relaxed consistency guarantees have to be covered by the
applications that run on top of GFS (e.g. by application-level checkpointing).

With the increasing popularity of cloud storage systems emerged the need to
execute more complex operations on the stored data than simple data retrieval
and modification operations. This need is addressed by Google’s MapReduce pro-
gramming model [DG08] that was built for being used in conjunction with Google
Bigtable or the Google File System. The idea of MapReduce is to process large sets

46

Section 2.4: Cloud Storage Systems

of key-value pairs with a parallel, distributed algorithm on a cluster: the algorithm
performs at first a Map() operation that performs filter operations on key-value
pairs and creates corresponding intermediate results followed by a Reduce() oper-
ation which groups the intermediate results foe example by combining all results
that share the same key. The simplicity of this approach, the ability to quickly
identify non-interleaving data partitions, and the ability to execute the respective
sub-operations independently, enable a great degree of parallelism.

2.4.1 State-of-the-Art Cloud Storage Systems

Summary: This subsection presents state-of-the-art cloud storage systems.
After describing Amazon Dynamo, Google Bigtable, and the Google File System
in the previous subsection, we discuss additional state-of-the-art cloud storage
systems.

• Amazon Dynamo [DHJ+07] see previous section 2.4.
• Google Bigtable [CDG+06] see previous section 2.4.
• Google File System [GGL03] see previous section 2.4.
• Hadoop [Whi09] and the Hadoop Distributed File System (HDFS)

[SKRC10] are open-source implementations based on the concepts of Google’s
MapReduce and the Google File System. HDFS has a similar architecture
as GFS as it deploys a central entity called namenode that maintains all
the meta information about the HDFS cluster. So called datanodes hold
the data which gets replicated across racks, and clients that directly interact
with datanodes after retrieving the needed metadata from the namenode.
HDFS differs from GFS in the details (e.g. HDFS uses 128MB blocks in-
stead of GFS’s 64MB chunks). In HDFS a client can freely choose against
which datanode it wants to write, and HDFS is aware of the concept of a
datacenter rack when it comes to data balancing. Hadoop itself is a frame-
work for executing MapReduce, it includes and utilizes HDFS for storing
data, and provides additional modules such as the MapReduce engine: this
engine takes care of scheduling and executing MapReduce jobs, and consists
of a JobTracker which accepts and dispatches MapReduce jobs from clients
and several TaskTrackers which aim to execute the individual jobs as close
to the data as possible.

• Memcached [Fit04] is a distributed key-value store which is commonly used
for caching data in the context of large web applications (e.g. Facebook
[NFG+13]). As a consequence, each server in a Memcached cluster keeps its
data resident in main memory for performance improvements. Upon a power

47

Chapter 2: Related Work and Background

or hardware failure, the main memory resident data is lost. However, this
is not considered harmful as it is cached data, which might be invalidated
after potential server recovery. Memcached itself has no support for data
recovery, it is expected to be provided by the application (e.g. Memcached
is extensively being used at Facebook and the Facebook engineering imple-
mented their own data replication mechanism [NFG+13]). The data in a
Memcached cluster is partitioned across servers based on hash values of the
to be stored keys: their ranges are mapped to buckets and each server is
assigned one or more buckets.

• Project Voldemort [SKG+12] is a distributed key-value store developed
by the social network LinkedIn and is conceptionally similar to Amazon’s
Dynamo. Project Voldemort also applies consistent hashing to partition its
data across nodes and to replicate data over multiple times with a config-
urable replication factor. Project Voldemort also does not provide strong
consistency, but facilitates a versioning system to ensure that data replicas
become consistent at some point.

• Stanford’s RAMCloud [OAE+11] is a research project that combines the
in-memory performance of a solution such as Memcached with the durable,
high-available, and gracefully scaling storage of data as realized by a project
such as Bigtable. It does so by keeping all data entirely in DRAM by ag-
gregating the main memory of multiple of commodity servers at scale. In
addition, all of these servers are connected via a high-end network such as In-
finiBand (as discussed in Section 2.1.3) which provides low latency [ROS+11]
and a high bandwidth. RAMCloud employs randomized techniques to man-
age the system in a scalable and decentralized fashion and is based on a
key-value data model. RAMCloud scatters backup data across hundreds or
thousands of disks or SSDs, and harnesses hundreds of servers in parallel to
reconstruct lost data. The system uses a log-structured approach for all its
data, in DRAM as well as on disk/SSD, which provides high performance
both during normal operation and during recovery [ORS+11]. The inner
workings are explained in detail in Section 3.3.

2.4.2 Combining Database Management and Cloud Storage
Systems

Summary: This subsection discusses different approaches of combining database
management and cloud storage systems, including the adaptation of each other’s
features, providing connectors, translating SQL to MapReduce programs, pro-
viding specialized SQL engines on top of cloud storage systems, having a hybrid

48

Section 2.4: Cloud Storage Systems

SQL/MapReduce execution, and utilizing a cloud storage system as shared-storage
for a DBMS.
The advent of cloud storage systems piqued interest in the DBMS as well as in
the cloud storage systems community to evaluate the use and adaptation of each
other’s features. Initially, this was an unstructured undertaking which for ex-
ample resulted in the statement by Michael Carey that “it is the wild west out
there again” [ACC+10]. Dean Jacobs said “I recently reviewed a large number
of ‘cloud database’ papers for various conferences. Most of these papers were ei-
ther adding features to distributed key-value stores to make them more usable
or removing features from conventional relational databases to make them more
scalable” [Jac13]. However, the adaptation of relational query processing features
in a cloud storage system eventually became a well-established area of work in
academia as demonstrated by the Stratosphere project [Mem13b], which extends
the MapReduce model with operators [BEH+10] which are common in relational
DBMS.

The advantages and growing popularity of cloud storage systems led to the
desire to execute SQL statements against data that is inside a cloud storage system.
The different approaches can be put into the following four categories:

• DBMS to cloud storage system connectors allow the bidirectional ex-
change of data between the two systems. Such an approach is commonly
used for running ad-hoc queries on the outcome of a MapReduce job by
preparing the unstructured data in the cloud storage system and then con-
vert it to structured data inside the DBMS. Those connectors are popular
with traditional DBMS vendors as they allow them to label their products as
“Hadoop compatible”. Examples for such connectors are the Microsoft SQL
Server Connector for Apache Hadoop [Cor13] and the HP Vertica Hadoop
Distributed File System Connector [Ver13]. The disadvantages of such con-
nectors are that they a) require an ETL process which forbids ad-hoc query-
ing, b) transfer the complete to be queried dataset over the network, and c)
create a redundant copy of the dataset.

• SQL translated to MapReduce allows sending an SQL query to a cloud
storage system such as Hadoop. The SQL query is translated to a set of
MapReduce jobs which are then executed by the cluster. This bears the
advantages that it a) utilizes the properties of the cloud storage system in
terms of high-availability as well as scalability and b) integrates into the
existing scheduling of MapReduce jobs (as opposed to the previous approach
where the extraction of data creates an unexpected extra load). The main
disadvantages are that a) the accepted SQL is a SQL dialect and not SQL-
standard conform and b) the translation overhead and the MapReduce batch-

49

Chapter 2: Related Work and Background

oriented execution style prevent ad-hoc queries. Facebook’s Hive [TSJ+09]
is an example of a system that uses such an approach.

• Specialized SQL engines on top of cloud storage systems accept SQL-
like queries. They execute the queries not by translating them to MapReduce
jobs, but by shipping custom database operators to the data nodes. Systems
that fall into that category are the row-oriented Google F1 [SOE+12] and
the column-oriented Google Dremel [MGL+10]. For example Google Dremel
operates on GFS and exploits the GFS interfaces that allows code execution
on chunkservers and thereby to ship and execute operators. This results in
the advantage of being able to execute ad-hoc queries as well as collocating
data and their processing. The big disadvantages of such an approach are
that a) such specialized SQL engines are not SQL-standard compliant and
b) they only provide poor coverage of the common SQL operators. These
disadvantages eliminate the use of existing tools and the ability to execute
applications which expose SQL-standard compliant queries.

• Hybrid SQL and MapReduce execution aims at combining both of the
previous approaches: an SQL query submitted to the system gets analyzed
and then parts of it are processed via MapReduce and other parts with the
execution of native database operators. That allows to determine the mix
of MapReduce and database operator execution based on the type of query:
for executing ad-hoc queries MapReduce-style execution is avoided as much
as possible whereas it is preferred for queries at massive scale in combination
with the need for fault tolerance. Examples for such systems are HadoopDB
[BPASP11] or Polybase [DHN+13].

Another category of research that focuses on the combination of database
management and cloud storage systems is the use of cloud storage systems
as shared-storage for parallel DBMS. Whereas the previously explained ap-
proaches trim the SQL coverage and sacrifice the compliance with the SQL stan-
dard, this approach takes a standard relational query processor or DBMS and
utilizes the cloud storage system instead of a classic shared-disk storage.

• Building a Database on S3 [BFG+08] by Brantner et al. demonstrates
the use of Amazon S3 as a shared-disk for persisting the data from a MySQL
database. This work maps the elements from the MySQL B-tree to key-
value objects and provides a corresponding custom MySQL storage engine
that allows for prototypical experiments. It also introduces a set of protocols
which show how different levels of consistency can be implemented using
S3. Driven by the TPC-W benchmark, the trade-offs between performance,
response time, and costs (in terms of US dollars) are discussed.

50

Section 2.5: Classification of this Thesis

• Running a transactional Database on top of RAMCloud [Pil12] by
Pilman takes a similar conceptual approach, but utilizes RAMCloud instead
of Amazon S3. The motivation for using RAMCloud is to exploit its perfor-
mance advantages provided by in-memory data storage and RDMA capabil-
ities. The work by Pilman presents two different architectures: one where a
MySQL instance runs exclusively on a RAMCloud cluster, and the other one
where several instances of MySQL run on a RAMCloud cluster. A bench-
mark is presented that executes TPC-W and uses MySQL with InnoDB as
a baseline. The experiments show that “we can run MySQL on top of a
key-value store without any loss of performance or scalability but still gain
the advantages this architecture provides. We have the desired elasticity
and several applications could run in the same network using each its own
database system, but all on the same key-value store” [Pil12].

2.5 Classification of this Thesis

Summary: This section classifies this thesis among the related work as presented
throughout the chapter.
After an extensive explanation of the background and the related work in the
previous sections of this chapter, this section presents a compact overview on the
related work and the corresponding classification of this thesis (as illustrated in
Figure 2.12).

This thesis is positioned in the field of evaluating a parallel DBMS architecture
and its implications on query processing. As explained in Subsection 2.3.1 and
illustrated in the upper half of Figure 2.12, the shared-nothing vs. shared storage
architecture trade-offs are much discussed in the context of classic storage architec-
tures (e.g. SAN/NAS storage) and a great variety of products from big vendors are
available in both markets. It is noteworthy that for main memory resident parallel
DBMSs a shared-nothing architecture is dominating: this is due to the intention
of not sacrificing the performance advantage of keeping data in main memory, but
constantly shipping it over a significantly slower network. However, with the ad-
vent of fast switch fabric communication links — as discussed in Subsection 2.1.3
— the performance gap between accessing local and remote main memory narrows
down and the implications of this development on the architecture discussion for
main memory parallel DBMS are not clear yet: as argued in Section 1.1, this is
one of the main motivations for writing this thesis.

The lower half of Figure 2.12 depicts the work for deploying a parallel DBMS
on a cloud storage system: this being a relatively new area of research leaps to the
eye immediately due to the sparseness in that part of the figure. As explained in

51

Chapter 2: Related Work and Background

Subsection 2.4.2, the cloud community has worked out several approaches how to
execute SQL-like statements against data in a cloud storage system. Specialized
SQL engines on top of cloud storage systems most closely resemble a traditional
DBMS as they just use database operators for query execution and neglect the
batch-oriented MapReduce paradigm altogether. But even those systems are not
SQL-standard compliant and provide their own SQL dialect which makes them un-
interesting for the broad range of applications that expose SQL-standard compliant
queries. This downside is not inherent to the work from the DBMS community
which takes the opposite approach by deploying a standard, SQL-standard com-
pliant DBMS on to a cloud storage system. In this field, the work co-authored
[BFG+08] and supervised by [Pil12] Donald Kossmann are the single most related
pieces of work.

In this work, we also focus on deploying a parallel DBMS on a cloud storage
system, but a) we keep all data resident in main memory all the time, b) we
apply a column-oriented data layout, and c) we use the storage system for both
— data access and code execution. As depicted in Figure 2.12, this area of work
in currently not addressed in the research community. Google works with Dremel
in the same domain, but their approach is based on disk resident data. So far, the
work co-authored [BFG+08] and supervised by [Pil12] Donald Kossmann, focuses
on the processing of transactional workloads by a row-oriented database and it
utilizes the cloud storage system solely as passive storage without considering the
possibilities of operator shipping and execution.

52

Section 2.5: Classification of this Thesis
Pa

ra
lle

l D
B

M
S

A
rc

hi
te

ct
ur

es

Row-Oriented
Data Layout

Column-Oriented
Data Layout

H
D

D
/S

D
D

R
es

id
en

t D
at

a
M

ai
n

M
em

or
y

R
es

id
en

t D
at

a
H

D
D

/S
D

D
R

es
id

en
t D

at
a

M
ai

n
M

em
or

y
R

es
id

en
t D

at
a

H
D

D
/S

D
D

R
es

id
en

t D
at

a
M

ai
n

M
em

or
y

R
es

id
en

t D
at

a

Sh
ar

ed
 N

ot
hi

ng
Sh

ar
ed

 S
to

ra
ge

C
lo

ud
 S

to
ra

ge
SA

N
/N

A
S

St
or

ag
e

Google Dremel: Interactive Analysis of
Web-Scale Datasets - Melnik et al. -

[MGL+10]

Running a
transactional

Database on top
of RamCloud -

Pilman - [Pil+12]

Building a Columnar Database on Shared
Main Memory-Based Storage (this thesis)

SAP HANA [FML+12]

IBM DB2 [IBM13b]

Row-Oriented
Data Layout

Column-Oriented
Data Layout

Data Access Data Access and
Code Execution

Data Access and
Code Execution

Data Access

Oracle Exadata [OJP11]

Building a
Database on S3 -
Brantner et al. -

[BFG+08]

MySQL on
RAMSAN

[ME13]

MySQL on
MEMSCALE

[MSFD11]

MonetDB [BGvK+06]VoltDB [SW13]

Postgres eXtensible Cluster [Pos13]

C-Store [SAB+05] / Vertica [LFV+12]

Teradata Warehouse [Ter13]

Sybase IQ
[Syb13]

IBM DB2
pureScale
[IBM13a]

no
n

SQ
L

st
an

da
rd

co

m
pl

ia
nt

no
n

SQ
L

st
an

da
rd

co

m
pl

ia
nt

SQ
L

st
an

da
rd

co

m
pl

ia
nt

SQ
L

st
an

da
rd

co

m
pl

ia
nt

F1: The fault-tolerant distributed RDBMS
supporting Google's ad business - Shute

et al. - [SOE+12]

Figure 2.12: Classification of this thesis.

53

Chapter 2: Related Work and Background

54

Part I

A Database System Architecture for
a Shared Main Memory-Based

Storage

55

Chapter 3

System Architecture

3.1 System Architecture - Requirements, Assump-
tions, and Overview

Requirements

In order to address the research questions as formulated in Section 1.2, we have
to define a system architecture that meets the following requirements:

1. The overall system architecture is composed of a parallel DBMS and a storage
system, following the principles of a shared-storage approach (as explained
in Subsection 2.3.1) resulting in:

(a) A separation of the processors belonging to the parallel DBMS and the
storage system with the processors sharing common access to the data
inside the storage system.

(b) Each processor can access all data.
(c) The capacities of the parallel DBMS as well as the storage system can

be adjusted independently.

2. The architecture of the parallel DBMS must support:

(a) Operating on data that is structured according to the relational model
and process SQL-standard conform queries (as explained in Section 2.2).

(b) Organizing data in a columnar format (as explained in Subsection 2.2.1)
and providing corresponding database operators which are able to exe-
cute workloads which benefit from column-oriented data (as explained
in Subsection 2.2.2).

57

Chapter 3: System Architecture

(c) Seamlessly switching between executing a database operator by itself
or delegating the execution to someone else (as explained in Subsection
2.3.4).

3. The storage system is required to:

(a) Keep all data resident in main memory (as explained in Subsection
2.3.1).

(b) Provide durability, high-availability, scale gracefully, and be elastic (as
explained in Section 2.4).

(c) Provide data access as well as the possibility to execute code (as ex-
plained in Section 2.3.3).

4. The different components of the architecture are connected via a network
infrastructure that supports remote direct memory access (RDMA) (as ex-
plained in Subsection 2.1.3).

Assumptions and Overview

The previously mentioned requirements can be addressed in many different ways.
As discussed in Subsections 2.3.2 and 2.4.1, there are a number of state-of-the-art
systems where each addresses a subset of the requirements. Utilizing them for
constructing our architecture introduces a set of assumptions which we want to
articulate in order to illustrate the translation from the requirements to the actual
system architecture.

We make the following assumptions about our system architecture: the paral-
lel DBMS runs on a number of servers which are referred to as nodes. Each node
is equipped with its own hardware consisting of standard server hardware (as ex-
plained in Section 2.1) and a RDMA-enabled network interface card (as illustrated
in Figure 3.11). The node is equipped with its own local storage in the form of a
disk or SSD, but this is only used for storing the operating system and the DBMS
software, but not parts of the database itself. Each node runs an instance of the
parallel DBMS software and has access to meta information about the database
such as the contained relations, attributes, data types, and foreign keys. The par-
allel DBMS is equipped with a central instance called a federator which accepts
queries from clients and distributes them in a round-robin manner among the
nodes in the parallel DBMS cluster. The number of nodes for the parallel DBMS
can be adjusted in order to meet certain performance requirements.

1The Fundamental Modeling Concepts (FMC) notation [KGT06] is being used for architec-
tural figures throughout this chapter.

58

Section 3.1: System Architecture - Requirements, Assumptions, and Overview

Storage System NodeParallel DBMS Node

Database Meta
Information

DBMS Software

Operating System

Hardware

Storage Meta
Information

Storage System
Software

Operating System

Hardware

RDMA-enabled
Interconnect

Figure 3.1: Assumptions with regards to the deployed hardware and software stacks.

The storage system also runs on its own servers which are referred to as nodes.
Again, each node is equipped with its own hardware consisting of standard server
hardware (as explained in Section 2.1) and an RDMA-enabled network interface
card. Each node keeps all to-be-stored data resident in main memory, which
implies that the overall storage capacity of the storage system cannot be greater
than the sum of the main memories of all nodes. Each node utilizes a local disk
or SSD to store also data in a non-volatile manner. For data recovery purposes,
for example in the case of a failure of an individual node, the to-be-stored data
is replicated and scattered across all nodes and can be recovered in a very short
period of time. Each node runs the storage system software, which can access
the storage meta information that describes the data it holds. The distribution
of data and their replication across the nodes is managed by a central instance in
the storage system. This central instance also distributes the information.

In this work, we use AnalyticsDB as parallel DBMS and Stanford’s RAMCloud
as storage system, and utilize them as components to construct the aforementioned
system architecture as illustrated in the system architecture overview in Figure 3.2.
Both components in combination allow fulfilling the previously stated requirements
and go along with our assumptions as their detailed description in the remainder
of this chapter shows.

59

Chapter 3: System Architecture

RAMCloud Node 1

Federator

AnalyticsDB Node 1

RAMCloud Cluster

Q
uery Processing

Storage
A

pplication

Meta
Data

Query
Engine

AnalyticsDB Operators

AnalyticsDB operators

AnalyticsDB
 Cluster

R RR

<AnalyticsDB API>
RAMCloud Client

AnalyticsDB Node n-1

Meta
Data

Query
Engine

AnalyticsDB Operators

<AnalyticsDB API>
RAMCloud Client

AnalyticsDB Node n

Meta
Data

Query
Engine

AnalyticsDB Operators

<AnalyticsDB API>
RAMCloud Client

RAMCloud Node n-1

AnalyticsDB operators

RAMCloud Node n

AnalyticsDB operators

Figure 3.2: System architecture overview.

3.2 AnalyticsDB

AnalyticsDB is our prototypical in-memory DBMS written in C++. It has been
designed and developed in the context of this work. Initially, the idea was to stand
on the shoulder of giants and utilize existing open-source in-memory columnar
database systems and their implementations such as MonetDB [BKM08b] and
HYRISE [GKP+10]: this option turned out to be cumbersome, since the operator
execution in both systems is parameterized by providing the local memory address
of the to be processed data. This makes the decoupling of operator execution and

60

Section 3.2: AnalyticsDB

data location — and in turn the switching between operator execution on local
or remote memory — difficult. Instead of reengineering those existing systems,
AnalyticsDB has been designed and built from scratch.

Q
ue

ry
 E

ng
in

e

Arithmetic Operator

HashJoin Operator

GroupBy Operator

Materialization Operator

Merge Positions Operator

Scan Operator

OrderBy Operator

Database Meta-Data

AnalyticsDB Daemon

Data StorageAnalyticsDB Operators

Database Importer

Table
Column 1

AnalyticsDB Column

AnalyticsDB API

std::vector

Table
Column n

RAMCloud Column

AnalyticsDB API

RAMCloud Client

CSV Files

R JSON-structured
 query plan

R

AnalyticsDB

Get / Set / Append

Figure 3.3: AnalyticsDB architecture.

The AnalyticsDB architecture is shown in Figure 3.3 and features the following
properties:

• A columnar data layout according to the decomposed storage model (as
explained in Subsection 2.2.1) in combination with all data residing per-
manently in main physical memory (as explained in Section 2.2).

61

Chapter 3: System Architecture

• Dictionary compression (as explained in Subsection 2.2.1) is used for com-
pressing non-numeric attributes (e.g. string) to integer values. AnalyticsDB
supports choosing between 2-,4- or 8-byte sized integers.

• The pattern of late materialization [AMDM07] is applied in order to defer
the materialization of intermediate results as long as possible. Until full ma-
terialization, AnalyticsDB operates on position lists and dictionary-encoded
values.

• A column-at-a-time execution model [Bon02] — as opposed a Volcano-
style [Gra94a] query execution — but without the policy of full column ma-
terialization (see previous point).

• The use of a storage application programming interface (API) which
encapsulates storage access as well as operator execution. The granularity
of the API is per column. This API can be implemented by using a local
data structure or for example, using the client of a separate storage system.2
Listing 3.1 shows an excerpt from a simplified version of the AnalyticsDB
storage API.

• AnalyticsDB is designed to process queries written in standard-compliant
SQL. The implementation in its current version accepts fully phrased query
plans.

• AnalyticsDB can process analytical and mixed workloads (as explained
in Subsection 2.2.2). The execution of mixed workloads is supported by
column-level locking resulting in a read committed isolation level. In
a distributed setup, one AnalyticsDB node handles all write operations while
read-only operations can be executed by all remaining nodes3: this approach
is common for scaling out an in-memory database system that handles a
mixed workload as practiced for scaling-out HyPer [MRR+13] or by SAP
HANA [LKF+13].

3.3 Stanford’s RAMCloud

As mentioned in Subsection 2.4.1, RAMCloud [OAE+11] is a storage system that
combines DRAM-based data storage with a RDMA-enabled network. A RAM-
Cloud consists of three different types of software components: a coordinator, a

2The introduction of such an API creates a penalty of a couple of CPU cycles per operator
execution. However, since the ultimate goal is the evaluation of local vs. remote operator
execution this penalty is negligible.

3As mentioned in Section 1.2, distributed transaction processing is out of scope in this work.

62

Section 3.3: Stanford’s RAMCloud

1 ColumnPosition append(ColumnValue value);
ColumnValue get(ColumnPosition position);
void set(ColumnPosition position , ColumnValue value);

ColumnPositionList scan(SCAN_COMPARATOR comparator ,
6 ColumnValue value ,

ColumnPositionList positionList);
Array <ColumnValue > materialize(ColumnPositionList positionList);
ColumnPositionList joinProbe(ArrayRef probingValues ,

ColumnPositionList positionList);
11 size_t size();

void restore(ArrayRef values);

Listing 3.1: Excerpt from a simplified version of the AnalyticsDB storage API

master, and a backup. Instances thereof are deployed on nodes of a RAMCloud
whereat instances of different components can be deployed on the same physical
machine at the same time. A master stores a set of objects in main memory,
replicates these objects and corresponding changes synchronously over network
into the main memory of a number of backups which asynchronously persist the
data on disk/SSD. In addition, a central coordinator keeps track of all master and
backup instances and the partitioning of the objects’ address ranges across the
different master instances. Clients can utilize the provided storage capabilities of
a RAMCloud by using a RAMCloud library which enables them to communicate
with the central coordinator and the master instances.

A coordinator is a central instance in RAMCloud as it maintains a global view
on the locations of stored objects and the available master and backup servers.
For doing so, it employs two different data structures: a tablet map which keeps
track of the address ranges of stored objects, and the corresponding master that
stores the objects within a certain address range, and a host list that keeps track
of the locations of the different servers, their IP address, and their status. The
coordinator is contacted by other entities to find out which master stores a certain
object.

Each master stores a number of objects. The address range of all objects to
be stored — as maintained in the tablet map of the coordinator — is partitioned
among the different masters, where each master is considered as the owner of all
objects that fall into a certain span of the global address range. Each master
is responsible for populating updates on its objects to the corresponding backup
servers. A master uses two different data structures to store its objects: a log-
based data structure that stores the actual objects and an object map that keeps
track of which object is placed at what position in the log. The look-up of an

63

Chapter 3: System Architecture

Tablet
Map

Host
List

Coordinator Server

Coordinator

Backup Client

Tablet
Map

RAMCloud Library

RAMCloud Client

Coordinator Client

R

Client Code

R

Master

Master
Server

Object
Map

Log

Coordinator
Client

Backup
Client

R

R

Coordinator
Client

Backup
Server

Segments
Map

R

Backup

In-Memory
Storage

Single File
Storage

Master Client

RR

RAMCloud Infrastructure

R R

R

R

R

R

R

Figure 3.4: RAMCloud architecture.

object has a complexity of O(1) since the object map uses a hash function to look
up the position of an object.

A backup keeps copies of the objects which are stored in a master. Whenever
an object in a master is created or gets modified, the changes are synchronously
dispatched to a number of backups which also keep the objects in main memory.
Besides that in-memory storage, a backup also has a file storage which persists
the data on disk/SSD. The writes to disk happen asynchronously. The in-memory
storage as well as the disk/SSD-based storage is log-structured in order to exploit
sequential I/O during the write operations. A segments map provides a hash table
lookup in order to find objects in the log.

64

Chapter 4

Data Storage

4.1 Mapping from Columnar Data to RAMCloud
Objects

Using RAMCloud with its key-value based data model as storage system for a
columnar DBMS results in the question how to map the columnar data to objects
in RAMCloud. RAMCloud provides the concept of namespaces. A namespace
defines a logical container for a set of objects, where each object key occurs only
once. Upon the creation of a new namespace, the parameter server span is set to
define how many storage nodes will be used to store the objects of the namespace.
These namespaces are assigned to nodes in a round-robin manner. Assignment of
key-value pairs across nodes is done by partitioning the range of the hashes of the
object keys contained in that namespace.

To map an AnalyticsDB table, we create a namespace for each database table
attribute with the naming convention “dbname::dbtablename::attributename”. In
each namespace we create a number of objects, while each object stores a chunk of
the corresponding attribute column. How many column values are held by a single
object is configurable via a parameter object size. The object size parameter and
the actual size of the column determine how many objects have to be created for
storing the complete column. Figure 4.1 depicts this concept for a table consisting
of two columns id and name with object size=3. We discuss the importance
and determination of the object size parameter in the next section. To store the
complete example table, we create a namespace for each attribute and create three
objects with keys 0-2 for every column. In the example depicted in Figure 4.1, we
define server span=3 for namespace “db1::cust:id" and “db1:cust:name" resulting
in the shown distribution for a three node RAMCloud cluster.

65

Chapter 4: Data Storage

id
Smith

5

3

1
2

4

6
7
8
9

name

Jones
Miller
Moore

Jones

Jones
Miller

Moore
Smith

db1::cust::name
key 2

db1::cust::id
key 0

RAMCloud Node 1

db1::cust::name
key 0

db1::cust::id
key 1

RAMCloud Node 2

db1::cust::name
key 1

db1::cust::id
key 2

RAMCloud Node 3

value

Smith

entry
Jones
Miller

Moore

100
101

102

103

table cust from database db1

dictionary

logical data view in AnalyticsDB

data storage in RAMCloud

partitioning of a single column across three storage nodes:
server span = 3

putting three column
values into a single

 object in RAMCloud:
 object size = 3

1
2
3

4
5
6

7
8
9

103
100
101

102
101
100

103
102
103

Figure 4.1: Mapping from AnalyticsDB columns to objects in RAMCloud. Partitioning
of two columns across four storage nodes with a server span=3.

Putting this partitioning mechanism in context with the aforementioned data
mapping has the following implication: the partition granularity is on AnalyticsDB
column level, meaning it is not possible to enforce placing an entire AnalyticsDB
table consisting of several columns on a single RAMCloud storage node (except
when the RAMCloud cluster has only one node).

4.2 Main Memory Access Costs and Object Sizing

The introduction of splitting columnar data to key-value pairs raises the question if
it ruins the advantages of columnar data storage? As explained in Subsection 2.2.1,
the sequential data alignment of columnar data placement in main memory allows
exploiting cache and spatial locality: we have to clarify if chopping the columnar
data into small key-value pairs lets these advantages vanish and how much data

66

Section 4.2: Main Memory Access Costs and Object Sizing

has to be held sequentially to enable the advantages of columnar data storage?
In order to address those questions we a) formally describe main memory access
costs in dependence of the size and sequential alignment of the to be accessed
data and b) present a set of corresponding experiments and micro-benchmarks.
The foundation for our formal description is the generic database cost models for
hierarchical memory systems from Manegold et al. [MBK02b, MBK02c] that we
extend by a data access pattern that represents our problem.

In the model from Manegold et al., the multiple cascading levels of cache mem-
ories between the main memory and the CPU are referred to as individual caches
(Level 1 Cache, Level 2 Cache etc.) and are denoted in this work with a sub-
script i. Caches are characterized by three major characteristics: the capacity C
defines the total capacity of a cache in bytes, the cache line or cache block size
B describes the smallest unit of transfer between adjacent cache levels, and the
cache associativity A influences the cache replacement policy. Additionally, the
cache latency l describes the time span (in CPU cycles or in nanoseconds (ns))
that passes between requesting data and having it available. The bandwidth b
is a metric that notes the data volume (in megabytes per seconds (MB/s)) that
can be transferred between two levels of the hierarchy within a certain period of
time. When it comes to measuring the latency and the bandwidth, there is a
distinction between sequential and random access due to Extended Data Output
(EDO). Another relevant concept is address translation which is used to translate
virtual memory addresses to physical page address. The Translation Lookaside
Buffer (TLB) holds the most recently used pages and is treated as another layer in
the memory hierarchy. As a summary, the aforementioned cache parameters are
listed in Table 4.1.

Data Access Patterns and their Costs

The total time T needed for a computing task that works on data persisted in
main memory can be expressed by the sum of the needed CPU time TCPU and the
corresponding memory access time TMem.

T = TCPU + TMem (4.1)

Deriving TCPU is straightforward as it is the pure CPU time that is needed once
the data has traveled through the memory hierarchies to the CPU. Modeling TMem

is more sophisticated, though, as it has to take the memory hierarchies and the
different latencies associated with the respective access patterns into consideration.

67

Chapter 4: Data Storage

Table 4.1: Overview on cache parameters (i 2 {1, ..., N})3 (taken from [MBK02b])

Description Unit Symbol
cache name (level) - Li

cache capacity [bytes] Ci

cache block size [bytes] Bi

number of cache lines - #i = Ci/Bi

cache associativity - Ai

sequential access
access bandwidth [bytes/ns] bsi+1

access latency [ns] lsi+1

= Bi/b
s
i+1

random access
access latency [ns] lri+1

access bandwidth [bytes/ns] bri+1

= Bi/l
r
i+1

2 31 R.n-1 R.nR.n-2

u
R.w

 ||R||

Blk.w

Figure 4.2: Illustration of data region R.

TMem =

NX

i=1

(M s
i · lsi+1

+M r
i · lri+1

) (4.2)

As shown in Equation (4.2), the memory access time is modeled by adding the
product of the sequential cache misses M s, and the sequential access latency ls,
and the product of the random cache misses M r and random access latency lr.
This is done for all memory hierarchies i independently, whereat the latency always
describes the latency needed for accessing the next memory hierarchy. In order to
be able to apply this model, Manegold et al. introduced a unified description of
data structures referred to as data regions and the corresponding data operations
thereupon which are referred to as data access patterns.

A data region R consists of R.n data items where each data item has a size
of R.w bytes. Consequently, the product R.n · R.w expresses the size ||R|| of a
data region R. A data region R spans |R|B cache lines and |C|R.w data items fit

68

Section 4.2: Main Memory Access Costs and Object Sizing

2 31 R.n54

u
R.w

 ||R||

6 7 8

Figure 4.3: Single sequential traversal access pattern (taken from [MBK02b]).

in the cache. A tuple u specifies how many bytes are actually used out of every
data region R.n (e.g. if all bytes are used then u equals R.n). We extend the
description of a data region by adding the concept of a block where a data region
R consists of Blk.n blocks and each block covers Blk.w data items, as illustrated
in Figure 4.2. The product Blk.n · Blk.w equals R.n.

Data access patterns describe the different ways of sweeping over data and
vary in their referential locality. Therefore, not only the access latency and the
resulting costs per cache miss, but also the number of cache misses differ between
access patterns. Cache misses can be divided into random and sequential misses,
the different associated costs depend on the performance optimization features
of the underlying hardware. A sequential miss is a miss of data which is closely
located to the previously read data, whereas a random miss describes accessing
data which is not closely located to the previously accessed data. A random
miss always causes the full costs of memory access, whereat a sequential miss
can benefit from hardware that exploits data locality. Based on the two different
kinds of cache misses, Manegold et al. [MBK02b] introduced different data access
patterns. Consecutively, we describe the two most relevant — namely the single
sequential traversal and the single random traversal — and then introduce the
single random block traversal pattern.
Single Sequential Traversal. As illustrated in Figure 4.3, a single sequential
traversal s_tra(R[, u]) accesses R.n data items in a data region R. It does so
by processing the data items in the same order as they are stored in memory.
Hence, a single sequential traversal produces exactly one random miss which is
the first access. After that, it reads or writes u consecutive bytes out of every
data item R.n. Consequently, if the length R.w of a data item equals u, then the
whole data item gets loaded. If u is smaller than R.w, a constant part is skipped
between two values which is defined by R.w� u. When describing the costs TMem

associated with a single sequential traversal within a data region R, it is essential
to differentiate if the gap R.w � u between two adjacent accesses is smaller or
greater than or equal to the size B of a single cache line. If the gap is smaller,
each loaded cache line serves at least one adjacent access. Consequently, when
going over data region R, all covered cache lines B have to be loaded as modeled

69

Chapter 4: Data Storage

2 73 461

u
R.w

 ||R||

R.n 58

Figure 4.4: Single random traversal access pattern (taken from [MBK02b]).

in Equation 4.3.

M s
i (s_tras(R, u)) = |R|B

i

(4.3)

If the gap between two adjacent accesses is greater than or equal to a single
cache line, not all cache lines covered by R have to be loaded. Additionally, if
a tuple u is not placed in correspondence with the cache line size, reading or
writing it could result in the necessity to load two separate cache lines. Taking
both additional constraints into account, the costs can be modeled as noted in
Equation 4.4.

M s
i (s_tras(R, u)) = R.n ·

✓
u

Bi

�
+

(u� 1) mod Bi

Bi

◆
(4.4)

Single Random Traversal. As illustrated in Figure 4.4, a single random traver-
sal r_tra(R[, u]) accesses each data item R.n in R exactly once, whereas the data
items not accessed in the sequence are stored in memory, but completely at ran-
dom. Out of every data item R.n, u consecutive bytes are read or written. A single
random traversal does not produce any sequential misses. The memory costs asso-
ciated with a single random traversal r_tra(R[, u]) depend again on the size of the
gap R.w�u between two adjacent accesses. If the gap is equal or larger to the size
B of a single cache line, then no adjacent access can benefit from an already loaded
cache line ,which makes the same formula applicable as for the single sequential
traversal in such a case (see Equation 4.5).

M r
i (r_trar(R, u)) = R.n ·

✓
u

Bi

�
+

(u� 1) mod Bi

Bi

◆
(4.5)

If the gap between two adjacent accesses is smaller than a single cache line,
a single cache line may have to be loaded several times throughout the sweep, as
locally adjacent data is not accessed in the same order. As it is possible that a
cache line has been purged out of the cache before all accesses to it are completed,
the probability of an early eviction has to be modeled. The likelihood of an early

70

Section 4.2: Main Memory Access Costs and Object Sizing

2 31 R.n-1 R.nR.n-2 5 64

u
R.w

 ||R||

Blk.w

Figure 4.5: Single random block traversal access pattern.

eviction depends on ||R|| and the cache capacity C. As an eviction only occurs
once, the available cache capacity is filled, the number #i of cache lines that can
be stored in the cache — and in case of having tuple that spans several cache lines
— the number of data items R.w that fit into cache are of relevance. Putting it
all together, the cache misses can be derived by applying Equation 4.6 below.

M r
i (r_trar(R, u)) = |R|B

i

+

(R.n�min {#i, |Ci|R.w}) ·
✓
1�min

⇢
1,

Ci

||R||

�◆ (4.6)

Single Random Block Traversal. We define a single random block traversal
rb_tra(Blk,R[, u]) as a sweep over a data region R where every data item R.n in
R is accessed exactly once, whereas the data items are grouped in Blk.n blocks.
Within each block the data items are traversed sequentially, however the blocks
themselves are randomly placed in the memory. Hence, a single random block
traversal starts with a random access in order to get the first data item of the
first block, followed by a number of sequential accesses depending on the number
of data items Blk.w per block, followed again by a random access for retrieving
the first data item out of the next block. This implies the following two extreme
cases: if Blk.w equals R.n and all data items are stored in one single block, the
sweep equals a single sequential traversal and the resulting cache misses can be
described through the Equations 4.3 and 4.4. In contrast, if Blk.w equals R.w
and each block contains just a single data item, the sweep equals a single random
traversal and the resulting cache misses can be described through the Equations
4.5 and 4.6.

Disregarding the extreme cases, one can observe that the block sizing influences
the ratio of random and sequential misses. When describing the random access
for retrieving the first data item out of each block, one can differentiate if the
block size Blk.w is greater than or equal to or smaller than the size B of a single
cache line. If the block size is greater than or equal, a distinct cache line has to be

71

Chapter 4: Data Storage

touched for every block Blk.n in R. Hence, the number of cache misses per cache
hierarchy level equals the number of blocks, as shown in Equation 4.7.

M r
i (rb_trar(Blk,R, u)) = Blk.ni (4.7)

If the block size is smaller than a cache line, again we have at least as many
cache misses as we have blocks. Additionally, there is the chance that a cache line
has to be accessed several times, as it stores two or more disjunct blocks, but since
locally adjacent access is not temporally adjacent, the cache line must be loaded
again into the cache for every block access in a worst case scenario. Consequently,
depending on block sizing and cache capacity, each access to a different block which
is stored in the same cache line may result in an additional cache miss as described
in Equation 4.8.

M r
i (rb_trar(Blk,R, u)) = Blk.n+

(Blk.n�min {#i, |Ci|Blk.w}) ·
✓
1�min

⇢
1,

Ci

||R||

�◆ (4.8)

The sequential access in the context of the single random block traversal covers
the sequential sweep over the remaining Blk.w � 1 data items in every block.
Having a block size Blk.w smaller than the cache line size B also implies that
the gap R.w � u between two data items is smaller than B and all cache lines
covering the remaining data items have to be loaded as noted in Equation 4.9.
This equation is also applicable if the block size Blk.w is larger than B, but the
gaps between two data items are still smaller than B.

M s
i (rb_tras(Blk,R, u)) = |Blkn · (Blkw � 1)|B

i

(4.9)

If the block size Blk.w as well as the gap R.w � u is bigger than or equal to
the cache line size B, not all cache lines covered by a block have to be loaded.
Similar to a single sequential traversal, a suboptimal placement of a tuple u can
result in accessing separate cache lines. The resulting number of cache misses is
the product of the number of remaining data items per block over all blocks and
the occurrence of cache misses in correspondence with the tuple size u and the
cache line size Bi as shown in Equation 4.10.

M s
i (rb_tras(Blk,R, u)) =

(Blkn · (Blkw � 1)) ·
✓

u

Bi

�
+

(u� 1) mod Bi

Bi

◆ (4.10)

72

Section 4.2: Main Memory Access Costs and Object Sizing

Experiments

After formally describing the occurring cache misses when traversing block-wise
grouped data in main memory, we present a set of experiments. Through the
experiments we want to gain insights to what extent bandwidth-bound operations
can be accelerated by a block-wise grouping of data, and in the correlation between
data item and block size.

The experiments are based on a prototypical implementation of a hashtable
which can be partitioned into blocks. When initializing the hashtable, one can
define the size of a block which implicitly determines into how many blocks the
hashtable will be partitioned. If the block size is chosen to equal a single data
item, the block mechanism has no further impact, as all data items will be placed
randomly — according to the hash value of their key — within in the hashtable.
An IBM Blade-Server H21 XM with a Intel Xeon E5450 CPU (the CPU has a L1
cache capacity of 32KB, a L2 cache capacity of 6MB, and a L1 + L2 cache line
size of 64 bytes) was used for the experiments.

The experiment executes a data traversal which touches 10 million data items in
total — such an operation underlies a scan operation in AnalyticsDB. Throughout
the experiments we vary three different factors: the data item size R.w, the block
size Blk.w, and the type of operation on the data. The data item size R.w is set
to 16,64, or 1024 bytes in order to have data items which are smaller than the L1
or L2 data cache size as well as significantly bigger than both. The block size or
the number of consecutive data items per block are increased in steps throughout
the experiments. The data that is used in the experiments has the following
characteristics: each data item consists of at least of one integer value making the
minimum size of a data item 4 bytes. This integer value is the only data that is
actually touched during our experiments and is therefore u. Consequently, data
items with a size R.w of 16, 64 or 1024 bytes have all the same 4 byte u, but
they vary in their padding. The padding is done with additional integer, boolean,
and string values. In every experiment run, 10 millions of such data items are
traversed. Consequently, the size ||R|| of the data region is 153, 610, or 9766
megabytes depending on whether the data item size R.w is set to 16, 64, or 1024
bytes.

Figure 4.6(b) illustrates the number of L1 and L2 cache data and TLB misses
during the data traversal. The three graphs vary in the data item size R.w
(16,64,1024 bytes). When having a data item size of 16 bytes, one can observe
that the number of L1 cache data misses is reduced by 50%, the number of L2
cache misses is reduced by 13%, and the number of TLB misses is reduced by 86%
when eight data items are grouped in a block compared to one data item per block
(Blk.w = 8 vs Blk.w = 1). When having a data item size of 64 bytes, one can

73

Chapter 4: Data Storage

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

10 1000 100000 1e+06 1e+07 1 100 10000

 5e+08
 1e+09
 1.5e+09
 2e+09
 2.5e+09
 3e+09
 3.5e+09
 4e+09
 4.5e+09

N
um

be
r o

f C
ac

he
/B

uf
fe

r
D

at
a

M
iss

es

N
um

be
r o

f C
PU

 C
yc

le
s

Number of Consecutive 16-Byte Data Items in DRAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses
CPU Cycles

(a) Detailed Breakdown of Data Traversal with Varying Block Size (Blk.w =

{1, 10, 100, 1000, 10000, 106, 107}R.n

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

1 4 8 16 128 1024 1e+07

N
um

be
r o

f C
ac

he
/B

uf
fe

r
D

at
a

M
iss

es

Number of Consecutive
16-Byte Data Items in DRAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

1 4 8 16 128 1024 1e+07

N
um

be
r o

f C
ac

he
/B

uf
fe

r
D

at
a

M
iss

es

Number of Consecutive
64-Byte Data Items in RAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses

 0
 1e+07
 2e+07
 3e+07
 4e+07
 5e+07
 6e+07
 7e+07
 8e+07

1 4 8 16 128 1024 1e+07
N

um
be

r o
f C

ac
he

/B
uf

fe
r

D
at

a
M

iss
es

Number of Consecutive
1024-Byte Data Items in RAM

L1 Cache Data Misses
L2 Cache Data Misses

TLB Data Misses

(b) Data Traversal with Varying Data Item (R.w = {16, 64, 1024}Bytes) and Block Size (Blk.w =

{1, 4, 8, 16, 128, 1024, 107}R.n)

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

1 4 8 16 64 128 1024 1e+07

N
um

be
r o

f C
PU

 C
yc

le
s

Number of Consecutive 16-Byte Data Items in RAM

Data Prefetching On
Data Prefetching Off

(c) Impact of Prefetching and Block Sizing on CPU Cycles spent for Data Traversal

Figure 4.6: Object sizing experiments.

74

Section 4.2: Main Memory Access Costs and Object Sizing

observe that the number of L1 cache data misses is reduced by 27%, the number
of L2 cache misses remains constant, and the number of TLB misses is reduced
by 86% when eight data items are grouped in a block compared to one data item
per block. When having a data item size of 1024 bytes, one can observe that the
number of L1 cache data misses is reduced by 36%, the number of L2 cache misses
remains constant, and the number of TLB misses is reduced by 74% when eight
data items are grouped in a block compared to one data item per block. Although
the exact numbers vary, one can see a similar drop in cache misses during the
disaggregation task, once the block size is increased. Additionally, one can observe
that at a block size of around 128 data items, the minimum number of cache misses
for all hierarchy levels is reached. This observation matches with Figure 4.6(a).

The calculations and experiments so far have been made with activated data
prefetching as it is the CPU chipset’s default mode. As indicated in Subsection
2.2.1, prefetching has an impact on sequential data traversal. In this paragraph, we
want to experimentally quantify that impact. Figure 4.6(c) compares the needed
CPU cycles for executing the data traversal with a data item size R.w of 16
bytes, and with activated and deactivated data prefetching. One can see that the
bigger the block size is set, the more performance improvements can be achieved.
Starting from a block size with 128 data items, activated prefetching can speed-up
the aggregation task by a factor two. Figure 4.6(c) shows that for a block size
Blk.w = 1, the execution with deactivated prefetching is actually faster. This
is due to incorrect prefetching which describes the blocking of the memory and
the bus for fetching the next adjacent cache line. Yet this cache line will not be
used, as all values are placed randomly in memory, but while it is prefetched, the
transmission of the correct cache line is prevented.

In conclusion, the micro benchmarks in Figure 4.6 illustrate that the required
number of CPU cycles becomes minimal if a relatively small amount of data items
are placed consecutively in DRAM and, therefore, the maximum data traversal
or scan speed has already been reached. In the shown micro benchmarks a block
size of around 1000 data items is sufficient to reach the maximum data traversal
speed. Reflecting these insights on the object sizing in RAMCloud, we choose the
allowed upper limit of 1MB for RAMCloud objects which results in an object size
of 131.072 (as an AnalyticsDB column value is 8 bytes). Given the results of our
benchmark above, we conclude that we still achieve maximum scan performance
with this partitioning schema, which is validated in the subsequent Chapter 6 with
a scan operation micro benchmark shown in Figure 6.1(a).

75

Chapter 4: Data Storage

76

Chapter 5

Data Processing

5.1 Database Operators in AnalyticsDB

AnalyticsDB processes queries with the help of eight different database operators.
Each database operator O accepts as input a single or several column(s) C and/or
(a) position list(s) P . Each operator O evaluates a condition D and outputs a
single value or column(s) or a position list. A position list can be seen as a filter
on a column, as it references a subset of the total entries in a column. Since
AnalyticsDB applies the pattern of late materialization (see Section 3.2), it tries
to work with position lists as long as possible during the processing of a query
for performance improvements. Table 5.1 presents an overview of the operators.
Although the table shows that most operators accept one or more columns as
input, they also accept a position list as input if the to be processed column is
not materialized yet. Similar to the input, the output can also be a materialized
column or just a position list. A database table from an operator’s perspective is
just a collection of columns.

The Arithmetic Operator allows mathematical operations such as addition,
subtraction, multiplication, or division between the tuples of two columns. The
GroupBy Operator can reduce a table by a certain criteria which is denoted by
the GroupBy Columns. The reduction is done by aggregating the corresponding
tuples in the aggregation column, for example, by calculating the sum. After the
execution of a GroupBy operation, only the distinct combinations of the partic-
ular GroupBy Columns are being returned. A HashJoin Operation identifies the
matching tuples of two or more columns. If two tuples are considered to match
is defined via the join criteria which can express that the two tuples e.g. should
have the same value. The HashJoin Operation utilizes a hash table as an auxiliary
data structure for executing the join by inserting the tuples from one column into

77

Chapter 5: Data Processing

Operator Input Output
Arithmetic Columns Operation (add,sub,mult,div) Column
GroupBy Column(s) Aggregation Column Column(s)

Type (sum,average,count)
GroupBy Column(s)

HashJoin Columns Join Criteria Column(s) or
Position List

Materialize Column Position List Column
Merge Position Position Lists — Position List

Lists
OrderBy Column(s) OrderBy Column(s) Table

Scan Column Operand(s) Column or
Comparator(s) (>,�,=,,<) Position List
Logical Combination (& , k)

Table 5.1: Database Operators in AnalyticsDB.

the hash table, and then probing with each value from the other relation. The
Materialize Operator accepts as input a position list and a column, and returns
the tuples as specified in the position list. The Merge Position List Operator
merges two or more position lists. The OrderBy Operator sorts by (a) to be spec-
ified OrderBy Column(s), and the tuples of additional columns are rearranged
accordingly. A Scan Operator traverses a column and evaluates for each tuple if a
condition matches. This condition can contain one or two operand(s), one or two
comparator(s), and a logical combination.

5.2 Operator Push-Down Into RAMCloud

So far we have described how RAMCloud is used as shared storage in our system.
With a standard configuration of RAMCloud, query execution can only happen on
an AnalyticsDB node by loading the required data from RAMCloud into the query
processing engine of an AnalyticsDB node. In this section we describe how we
extend the RAMCloud system to allow for execution of database operators directly
in the storage close to the data. Specifically, we first identify which operators are
most significant for a database system designed for read-mostly workloads, such as
AnalyticsDB, and then describe how we designed and implemented these operators
in RAMCloud.

We analyze the queries of the Star-Schema-Benchmark (SSB) [O’N] to identify
which operators benefit from a push-down into the storage system. Table 5.2 shows

78

Section 5.2: Operator Push-Down Into RAMCloud

Arithmetic GroupBy Hash- Materialize Merge OrderBy Scan
Join Positions

% 0.0003 0.0754 0.6657 0.0693 0.0283 0.0017 0.1594

Table 5.2: AnalyticsDB operator break-down when executing the Star Schema Bench-
mark, normalized by the contribution of the operator to the overall query runtime

the AnalyticsDB operator break-down for one execution cycle of the SSB with a
sizing factor of 10 in local main memory on an Intel Xeon E5620. The complete
execution time is normalized to highlight the contribution of each operator to the
total execution time. To identify operators which should be considered for a push-
down, two questions are of interest: to what extent does an operator contribute
to the overall execution time? Does the operator usually work on data as stored
in the storage system or on intermediate results?

Table 5.2 shows that the Hash-Join and Scan operator accumulate 82% of the
total execution time in the SSB. From our query execution plans for the SSB,
we derived that these operators are always the first to touch the raw data and
consume it sequentially. The Materialization Operator also works directly on the
data as stored in the persistence, for example when retrieving the actual values in
a column based on a position list. Consequently, we decided to implement support
for these operators in the storage layer.

As a first approach, we want to push-down the execution of operators which
operate on one relation at a time. This simplifies the push-down, as it avoids
the synchronization of two separate operator executions in the storage system.
However, the HashJoin Operator works on two or more relations at a time, and
in order to supports its execution in the storage system, we dissect its execution
into three parts (S on R with S <= R): building the hash table from relation S
(hashBuild), probing against relation R (joinProbe), and optionally materializing
the tuples that meet the join condition (materialize). Pushing down the execu-
tion of the hashBuild seems impractical as a) each RAMCloud node sees only a
fraction of the data which would introduce the extra effort to merge the different
hash tables and b) the execution of this merge operation in RAMCloud would re-
quire additional synchronization. Therefore, it is favorable to send the data from
relation S to the AnalyticsDB node and build the hash table there. Instead the
join probing is eligible for a push-down, as each probing operation can happen
separately at each respective RAMCloud node. The same applies to a potentially
subsequent materialization operation. Consequently, we added support for the
Scan, Materialization, and JoinProbing operation in RAMCloud. The Group-By,
Merge Position Lists, Sort, and Arithmetic operators work mostly on intermediate
results which are processed inside the query engine of an AnalyticsDB node and,

79

Chapter 5: Data Processing

RAMCloud NodeAnalyticsDB Node

AnalyticsDB Column

RAMCloud Client

ScanRPC

0x7fff9575c05f
Memory Address

Hash Table

Scan Operator

RPC Handler
RDMA-enabled

Interconnect

Scan Operator

SQL query:

select town_id
from cities
where zip_code = 11011

zip_code = 11011

de::cities::zip_code
 = 11011

1.2.3.4:41000,
namespace_id 10,

 = 11011

namespace_id 10,
 = 11011

keys 1-30values = 01000-
99998

position = 224position = 224

position = 224

position = 224

Figure 5.1: From SQL statement in AnalyticsDB to the corresponding main memory
access in RAMCloud.

therefore, are not eligible for being pushed down to RAMCloud.

5.3 From SQL Statement to Main Memory Access

To allow for the push-down of the Scan and Materialization Operators as well as
Join-Probing to RAMCloud nodes, we implement support for these operators in
RAMCloud and add their operator signatures to the AnalyticsDB storage API as
shown in Listing 3.1. To implement the AnalyticsDB storage API for RAMCloud,
we added the corresponding RAMCloud client code in AnalyticsDB for invoking
the operators in RAMCloud. The RAMCloud client component is responsible for
mapping the columnar data to RAMCloud namespaces and objects.

Figure 5.1 illustrates how the processing of a SQL query in an AnalyticsDB
node results in a main memory access in a RAMCloud node. The presented query
includes the execution of a Scan Operator which scans through the column zip code
and aims to find tuples whose value equals 11011. The Scan Operator is executed
on the respective AnalyticsDB column which then invokes the RAMCloud client:
the invocation passes the fully qualified namespace of the column in RAMCloud as
well as the scan operand. The RAMCloud client maps the namespace to a RAM-
Cloud namespace ID (called RAMCloud internally tablet, see Section 3.3) and in

80

Section 5.3: From SQL Statement to Main Memory Access

our example the data belonging to this namespace sits on a single RAMCloud
node. The RAMCloud client also resolves the corresponding IP address and port,
and invokes a SCAN remote procedure call (RPC). The incoming RPC is handled
by a RPC handler in the RAMCloud node which passes the to-be-scanned names-
pace id and the scan operand to its Scan Operator. The Scan Operator reads the
key-value pairs which belong to this namespace from the hash table: in our exam-
ple there are 1000 column tuples stored per key-value pair. Since there are 30000
different zip codes in the zip code column (with the lowest value being 01000 and
the highest 99998), the scan operator has to traverse 30 key value pairs and finds
the zip code 11011 at the position 224. This position information is then passed
back to AnalyticsDB. In a next step, the town id resolves to position 224 in the
cities table.

81

Chapter 5: Data Processing

82

Part II

Database Operator Execution on a
Shared Main Memory-Based

Storage

83

Chapter 6

Operator Execution on One Relation

In this chapter we introduce an execution cost model for AnalyticsDB to analyze
the impact of different parameters that have been induced by the data mapping,
column partitioning, and the design of the operators itself. We first derive an
abstract system model which is later used to predict execution costs analytically
for different scenarios. Afterwards, we use our cost model to evaluate operator
push-down and data pull execution strategies and show how the cost model can
be used to decide on different execution strategies. We start with operators that
operate on one relation at a time, continuing with two or more relations in the
next chapter.

Related System Models

There are a number of system models available that can be applied to model the
operator execution costs in a parallel DBMS. For example, Culler et al. from
University of California, Berkeley present LogP [CKP+93] as a step towards a
realistic model of distributed and parallel computation. LogP intends to be a
general model that can be applied in the context of portable and parallel algo-
rithms. L defines the latency introduced by communicating a message, o identifies
the overhead for transmitting and receiving a message, g defines the gap between
consecutive message transmissions, and P describes the number of processor and
memory modules. Although an approach as LogP is generally applicable, system
models in the context of distributed query processing and database operator ex-
ecution take additional query processing-related aspects into consideration. This
is demonstrated by Lanzelotte et al. who present a cost model [LVZ93] for query
execution in a parallel DBMS. They consider the number of tuples in a relation
R, the size of one tuple of a relation R, the CPU and network speed, the size of
a packet as well as the time needed for sending and receiving messages. Based on

85

Chapter 6: Operator Execution on One Relation

these input parameters, they define cost functions for the various database oper-
ations. Özsu and Valduriez [ÖV11] describe a cost model for the query optimizer
for a parallel DBMS. They define the cost of a plan as three components: total
work, response time, and memory consumption. This model also operates on a
higher level of abstraction, as total work and response time are expressed in sec-
onds (wall time) and memory consumption in bytes. However, we want to address
a very specific aspect of operator execution, namely, the site selection problem.
As presented and discussed in Subsection 2.3.4, there is a great amount of related
work that also incorporates several system models. Carey and Lu [CL86] include
DB site and communication-related parameters as well as query-related parame-
ters such as the query type or the result size of a query. Franklin et al. [FJK96]
differentiate between operator specific characteristics by modeling the number of
instructions that are needed to perform underlying functions such as comparing
values or calculating a hash value.

System Model

We abstract the following system model: a column C is defined by the number
of contained records SC and the size of a single record Sr in bytes. It may be
partitioned among n RAMCloud nodes RN

1

, . . . , RNn, resulting in disjoint non-
overlapping partitions C

1

, . . . , Cn with sizes SC,1, . . . , SC,n. All nodes are connected
by network channels with constant bandwidth BWNet, measured in bytes per sec-
ond. The execution of an operation O for a column C is coordinated by a single
AnalyticsDB node AN , while O is executed by evaluating the position list P and
condition D on C. Our system allows for two execution strategies:

1. ship all partitions C
1

, . . . , Cn from nodes RN
1

, . . . , RNn to AN and evaluate
P and D locally at AN . We denote this strategy data pull (DP).

2. ship P and D to RAMCloud nodes and evaluate them remotely at
RN

1

, . . . , RNn. Here, P has to be split-up into sub-partition lists P
1

, . . . , Pn

to ship a specific position lists to each RAMCloud node. We denote this
strategy operator push-down (OP).

To push-down an operation O to RAMCloud nodes, it is split-up into sub-
operations O

1

, . . . , On. These sub-operations Oi take a condition D and a specific
position list Pi as input to be evaluated on all values in Ci. Since we measure the
network traffic in bytes, we have to distinguish different cases for each operator:

86

Table 6.1: Symbols in the system model for operating on one relation at a time.

Symbol Parameter
C A column
O An operator executed on C
O

1

, . . . , On O split-up into sub-operations
P Position list (input parameter for O)
SP # of entries in P
Sp Size of a single record in bytes
P
1

, . . . , Pn Partitioned position list
D Condition (Evaluated by O on C)
SC # of contained records in C
Sr Size of a single record in bytes
n # of RAMCloud nodes
AN AnalyticsDB node
RN

1

, . . . , RNn Individual RAMCloud nodes
C

1

, . . . , Cn Partitions of C
SC,1, . . . , SC,n Sizes of the partitions in bytes
BWNet Network bandwidth in bytes/second
BWMem In-memory processing speed in bytes/second

for a scan operation, D is the selection condition and usually only a few bytes
large (e.g. the size of two scan comparators and two comparative values). In case
of a materialization operation, we set D = ; to return all values defined in P . For
a join operation, D denotes the probing data and has a significant size. We denote
the size of D in bytes by SD. The output of Oi is a list of column values or column
positions where D evaluates to true. In our model, the fraction of values referenced
in Pi for which D evaluates to true is defined by the selectivity parameter s. In
case Pi = ;, then D is applied to all values at Ci. We denote the number of entries
in P by SP and the size of one entry in bytes by Sp.

Execution Cost

To derive the overall time EO required to execute an operation O for DP and OP
analytically, we first derive the delay induced by network transfers and afterwards
the time required to execute operators in local DRAM.

For operation O applied to a column C partitioned over n RAMCloud nodes,
we derive network costs M as follows: for DP the network costs are simply given

87

Chapter 6: Operator Execution on One Relation

by
MDP =

SC · Sr

BWNet

(6.1)

because their only dependency is the amount of data that is pulled from RN
1

, . . . , RNn

to the local execution on AN .
For OP network costs MOP depend on the size of D and P , as well as the

selectivity of the predicate s. We derive MOP in (6.2):

MOP =

(SP · Sr + SD · n) + (SP · s · Sr)

BWNet

(6.2)

The time required to execute an Oi on a RAMCloud node RNi depends in case
of OP on the scan speed in DRAM at RNi, and in case of DP on the scan speed at
AN . In our system model we define the in-memory processing speed by parameter
BWMem. We abstract the execution time of an operation TO as the sum of the
time required to traverse the data and the time to write results as follows:

TO =

SP · Sr + SP · Sr · s
BWMem

(6.3)

If the operation is a sub-operation Oi the execution time TO,i at RNi is derived
similar to (6.3) by using node specific position list sizes SP,i instead of SP .

In case of OP, we have to consider the overhead time Tovh required to split
P , and later merge results received from RAMCloud nodes RN

1

, . . . , RNn. This
results in an in-memory traversal over the operators input and output data. We
define Tovh as

Tovh =

SP · n
BWMem · Sp

+

SP · s · Sr

BWMem

(6.4)

We now derive the overall execution time EO in seconds of operation O by
the sum of required network transfer time M and the time for operator execution,
distribution and merge overhead. For DP we derive (6.5).

EO,DP = MDP + TO (6.5)

For OP, we have to consider the overhead for computing n specific position lists as
well as the merge of Oi results. Hence, we derive (6.6) as execution time for OP.

EO,OP = MOP + Tovh +max(TO,i) (6.6)

While our cost model abstracts from numerous system parameters, we found this
abstraction accurate enough to evaluate the impact of our operator execution
parameters.

88

Section 6.1: Evaluating Operator Execution Strategies

6.1 Evaluating Operator Execution Strategies

After introducing the AnalyticsDB execution cost model, we validate it with a
set of micro benchmarks. Each micro benchmark represents a single operator
execution. We vary the previously described cost model parameters throughout
the micro benchmarks, so that they allow for a discussion about the relation of
the execution strategies data shipping and operator push-down. We execute the
micro benchmarks on a cluster of 50 nodes in total, where each node has an Intel
Xeon X3470 CPU, 24GB DDR3 DRAM, and a Mellanox ConnectX-2 InfiniBand
HCA network interface card. The nodes are connected via a 36-port Mellanox
InfiniScale IV (4X QDR) switch. We use one node for running AnalyticsDB and
vary the number of RAMCloud nodes between one and 20. As the chosen number
of nodes is sufficient for demonstrating the impact of the cost model parameters
on the operator execution, we will use the full cluster capacity in the subsequent
Part III. In addition, we will also provide a baseline where the respective micro
benchmark is executed on local DRAM on a single AnalyticsDB node.

Figure 6.1(a) shows a scan operation on the entire column with an increasing
selectivity and a fixed RAMCloud cluster size of one. The operator push execution
time for a scan with a low selectivity is close to the local DRAM variant, and data
pull takes almost twice as long due to the initial full column copy over network.
With an increasing selectivity, the execution time of the operator push-down strat-
egy approaches the data pull variant as the same amount of data travels over the
network.

Figure 6.1(b) illustrates a full column scan with a fixed selectivity of 0.5, but
with a varying number of nodes in the RAMCloud cluster. One can see that
with an increasing number of nodes, the operator push-down execution becomes
accelerated due to the parallel execution of the scan operator, but reaches a limit
at around 10 nodes: at that point TO,i is minimized and the execution time is
dominated by MOP + Tovh which cannot be reduced by adding more nodes. Tovh

even grows with an increasing number of nodes which causes the operator execution
time to slightly increase towards a cluster size of 20 nodes. The execution time of
data pull is not affected by a larger cluster size and is constant.

Figure 6.1(c) depicts a materialization operation with an increasing position list
size. The operator push-down execution time increases gradually with a growing
position list size and at some point exceeds the execution time of data pull. This
is caused by the addition of the size of the position list and the returned column
values which exceeds the column size. In such a case, the data pull execution time
is faster than the operator push execution time.

Figure 6.1(d) shows a join probing with an increasing probing data size on a

89

Chapter 6: Operator Execution on One Relation

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0.1 0.5 1

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Selectivity

DRAM (Model)
Data Shipping (Model)

Operator Shipping (Model)
DRAM (Actual)

Data Shipping (Actual)
Operator Shipping (Actual)

(a) Scan with increasing selectivity. SD=2, SP=0, s={0.1...1},
n=1, BWMem=2GB/s

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 20

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Number of RC Nodes

DRAM (Model)
Data Shipping (Model)

Operator Shipping (Model)
DRAM (Actual)

Data Shipping (Actual)
Operator Shipping (Actual)

(b) Scan with increasing number of nodes. SD=2, SP=0, s=0.5,
n={1...20}, BWMem=2GB/s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 30 60

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Mio. Entries in Position List

DRAM (Model)
Data Shipping (Model)

Operator Shipping (Model)
DRAM (Actual)

Data Shipping (Actual)
Operator Shipping (Actual)

(c) Materialization with increasing position list size. SD=0,
SP={0...60 Mio.}, s=1, n=1, BWMem=2GB/s

 0

 0.5

 1

 1.5

 2

 2.5

 3

0 30 60

Ex
ec

ut
io

n
Ti

m
e

in
 S

ec
on

ds

Mio. Entries in Probing Data

DRAM (Model)
Data Shipping (Model)

Operator Shipping (Model)
DRAM (Actual)

Data Shipping (Actual)
Operator Shipping (Actual)

(d) Join Probing with increasing probing data size. Sd={0...60
Mio.}, SP=10 Mio., s=0.5, N=20, BWMem=0.4GB/s

Figure 6.1: Evaluating operator execution strategies.
90

Section 6.2: Optimizing Operator Execution

RAMCloud cluster with 20 nodes. BWMem is smaller here than in the previous
micro benchmarks since the creation of and the probing against a hash map takes
longer than a scan or a materialization operation. The graph illustrates that oper-
ator push-down can benefit from parallel execution on 20 nodes and is faster than
execution on local DRAM when the probing data is small. When the probing data
becomes bigger, the operator push-down execution time increases as the probing
data has to be sent to all 20 nodes. At a certain probing data size, the operator
push-down execution time exceeds the data pull execution time and makes data
pull preferable.

Summarizing the gained insights based on the micro benchmarks, the data pull
execution strategy is two to three times slower than operating on local DRAM.
The performance of the operator push strategy varies: if the to-be-accessed data
is on a single RAMCloud node, the performance is only a few percent worse than
operating on local DRAM if the selectivity or the number of entries in the position
list is small. If these parameter grow, the operator push performance gradually
approximates the data pull performance and can even become worse. If the to-
be-processed data is partitioned across several nodes, the operator push execution
time can be up to five times faster than on local DRAM. But node parallelism can
also worsen the operator push execution time to an extent that it becomes slower
than data pull: this is the case if the input parameter Sd becomes large and must
be dispatched to all involved nodes.

6.2 Optimizing Operator Execution

The previous subsection demonstrated that the optimal operator execution strat-
egy depends on a set of parameters. In this section, we show that the optimal
execution strategy within a single query can vary for each involved operator. We
use the same cluster setup as in the previous subsection.

Figure 6.2 depicts the execution times for different execution strategies based
on the query shown in the figure. The join probing operation (Sd=200.000, SP=6
Mio., s=1) can benefit from the parallelism of the ten nodes and is fastest with
a operator push strategy. The materialization operation (Sd=0, SP=6 Mio., s=1)
has a position list size that is as large as the column itself: the data pull strategy
performs better for this operator execution. Consequently, the optimal execution
time can be reached with a mix of the data pull and operator push strategies as
illustrated by the last column in Figure 6.2.

91

Chapter 6: Operator Execution on One Relation

select sum(lo_revenue)
from lineorder , part

3 where lo_partkey = p_partkey
and p mfgr between MFGR#1 and MFGR#5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

D
ata Pull

O
perator Push

M
ixed Execution

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

on
ds GroupBy Operator

Join Probing Operator
Materialize Operator

Scan Operator

Figure 6.2: Execution of a SQL query on the Star Schema Benchmark data set with
SF=1, SC=6 Mio., Sr=8bytes, N=10 and different execution strategies. The figure il-
lustrates that for this query a mix of data pull and operator push execution strategies is
preferable.

6.3 Implications of Data Partitioning

Section 6.1 illustrates that the partitioning criteria of the data in RAMCloud in-
fluences the execution time of a pushed-down operator as it can benefit from a
parallel execution on several RAMCloud nodes. As shown in the micro bench-
mark in Figure 6.1(b), the parallel execution can be leveraged until the execution
time of each operator is minimized to an extent that the overall execution time is
dominated by the data transfer over network and overhead costs such as merging
the results from all nodes. We further explore this causality by executing a set
of 42 scan operations on three different columns. The scan operations vary in
their selectivity, the columns vary in their size (60 million values, 800,000 values,
and 2556 values). We execute the scan operations multiple times, but vary across
how many RAMCloud nodes each column is being partitioned (via the RAMCloud
server span parameter as explained in Section 4.1). The variation includes storing
each column on a single RAMCloud node (server span=1) up to partitioning each
column across 20 RAMCloud nodes (server span=20). Figure 6.3 depicts the scan
operations on the column with 60 million values benefit up to a factor 5 from being
distributed, the scan operations on the column with 800,000 values get accelerated
up to factor 1.6, but the scan operations performance on the column with 2556

92

Section 6.3: Implications of Data Partitioning

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 6 8 10 12 14 16 18 20
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Sc
an

 E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds

Sc
an

 E
xe

cu
tio

n
Ti

m
e

in
 M

ill
ise

co
nd

s

Server Span

Execution Time on Column with 60 Million Values in s
Execution Time on Column with 800.000 Values in ms

Execution Time on Column with 2556 Values in ms

Figure 6.3: AnalyticsDB runs on a single node with a operator push execution strategy,
the RAMCloud cluster has a size of 20 nodes, the server span varies.

values decreases with every additional node up to a factor 4.5.
So far, we have only covered the aspect of data partitioning when one An-

alyticsDB instance operates exclusively on a RAMCloud cluster. Now we cover
the aspect of partitioning in combination with a variable number of AnalyticsDB
nodes: we have a constant number of 20 nodes in the RAMCloud cluster, but
vary the number of AnalyticsDB nodes between 1 and 30. If a new AnalyticsDB
node is added, it is instructed by the federator to continuously execute the SSB:
this results in an load increase. Figure 6.4 shows the corresponding experiment:
in Figure 6.4(a) the server span is 10 and in Figure 6.4(b) the server span is 20.
In Figure 6.4(a) the throughput increases until 15 AnalyticsDB nodes and then
begins to flatten out, which means the operator throughput is saturated in RAM-
Cloud. The maximum throughput is 2607 SSB cycles per hour. In Figure 6.4(b)
the throughput increases until 20 AnalyticsDB nodes and then begins to flatten
out. The maximum throughout is 3280 SSB cycles per hour.

The following two insights can be derived from the experiments: a) we demon-
strated that a server span of 10 delivers the optimal SSB execution time when a
single AnalyticsDB node uses a RAMCloud cluster with 20 nodes. This statement
is valid if there are up to ten AnalyticsDB nodes running. More than ten Analyt-
icsDB nodes per server span of 20 results in a better SSB execution time as the
to-be-accessed data is distributed across more RAMCloud nodes and therefore the
operator throughput in RAMCloud is saturated at a later point. b) Even in the
case of over-provisioning (e.g. 30 AnalyticsDB nodes vs. 20 RAMCloud nodes) the
SSB throughput remains constant, but the execution time increases over linearly
(due to the operator throughput saturation in RAMCloud), but it does not result

93

Chapter 6: Operator Execution on One Relation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Th
ro

ug
hp

ut
 in

 S
ta

r S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
ns

 p
er

 H
ou

r

A
ve

ra
ge

 S
ta

r S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Ti
m

e
in

 S
ec

on
ds

Number of Nodes running AnalyticsDB

Throughput
Average Execution Time

(a) RAMCloud running on 20 Nodes with Server Span=10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5 10 15 20 25 30
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Th
ro

ug
hp

ut
 in

 S
SB

 C
yc

le
s/H

ou
r

A
ve

ra
ge

 S
SB

 E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds

Number of Nodes running AnalyticsDB

Throughput
Average Execution Time

(b) RAMCloud running on 20 Nodes with Server Span=20

Figure 6.4: RAMCloud cluster with a constant number of 20 nodes and a varying
number (1-30) of nodes running AnalyticsDB with a operator push execution strategy
and a Star Schema Benchmark data scale factor of 10.

in a reduction of the SSB throughput. In addition, the increasing throughput in
both experiments can either be leveraged for performing a higher number of SSB
executions in parallel or for reducing the execution time of a single SSB execution
by dispatching its queries across the different AnalyticsDB nodes via the federator.

94

Chapter 7

Operator Execution on Two
Relations

The previous Chapter describes the possibility of pushing-down the execution of
database operators into RAMCloud, but the corresponding model is limited to op-
erating on a single database column or relation at a time. This is practical for the
execution of a scan operation, but necessitates breaking up a join operation into
two separate operations. This comes along with the previously mentioned draw-
backs of a) limiting the maximum size of a join-relation by the client’s available
main memory and b) bringing up the bottleneck of the client’s network link. In
addition, it makes pre- or post-join projections in the context of a join very expen-
sive as the intermediate results always have to be transferred to the client instead
of leaving them in the storage system. Motivated by avoiding those drawbacks,
we describe in this chapter the execution and comparison of different distributed
join algorithms inside RAMCloud.

Before we describe the choice of the to-be-evaluated join algorithms, we extend
the existing system model and define the following assumptions with regards to the
distributed join execution within RAMCloud: we execute a join operation between
two relations S on R with SSize <= RSize. The data of a relation is partitioned
across a number of RAMCloud nodes (npartR/S), but among those nodes the data
distribution is considered to be even. As explained previously, the data from a
relation is distributed on a fine granular level in a round-robin manner across
the respective RAMCloud nodes. Consequently, we also assume that the data is
partitioned evenly across the nodes even after filtering or a pre-join projection. For
the execution of our models a pre-join projection results in a smaller SSize/RSize.

It is possible that a number of RAMCloud nodes hold some data from R as
well as S (npartOvl). The RAMCloud nodes used for executing the join (njoin) are

95

Chapter 7: Operator Execution on Two Relations

either a sub- or superset of npartR/S. In order to reduce the amount of data to be
transferred, joins are executed as semi-joins which results in transferring only the
join predicate containing relations, and is succeeded by a materialization of the
remaining relations as defined by the query. However, this potentially necessary
materialization is out of our scope as we define a join execution as finished when
the matching tuples from both relations are derived across all RAMCloud nodes
that executed the join (njoin). Table 7.1 explains the parameters and their notation
used within join algorithms and our analytical model.

There is a great variety of different join algorithms in the field of parallel
database systems. However, when comparing the different algorithms, there are
two aspects which strongly characterize such an algorithm: the way the data is
partitioned and transferred across the participating nodes for the join execution,
and the mechanism to perform the actual comparison between elements of the
two join-relations on each node. Since we implement and execute the joins in
a storage system with switched fabric communication links, we want to focus
on the implications of data partitioning and transfer, and not on the different
options for performing the data item comparisons. Therefore, we only consider
hashing and probing for the comparison (and not e.g. sort-merge), since it is a
well-established technique, especially in the context of main memory data access
[BLP11, BTAÖ13]. As for the aspect of partitioning and data transfer we want to
evaluate the following three strategies:

1. Partitioning of both relations equally across all njoin nodes. This results in a
constant amount of data to be transferred. This can be done with the Grace Join.

2. Replication of the smaller relation across all njoin nodes. This results in a data
amount to be transferred which grows linearly with njoin nodes. After the com-
pletion of the data transfer, we want to execute the data item comparison which
results in a minimal probing effort, at the price of a decreased degree of parallelism.
This can be done with the distributed block-nested loop join (DBNLJ).

3. Replication of the smaller relation across all njoin nodes. This results in a data
amount to be transferred which grows linearly with njoin nodes. During the data
transfer, we want to execute the data item comparison which results in an increased
probing effort, but enables data transfer and probing happening in parallel. This
can be done with the Cyclo Join.

96

Table 7.1: System model symbols for operating on two relations at a time.

Symbol Parameter
n # of nodes in the cluster
R/S To be joined relations R/S
npartR # of nodes relation R is partitioned across
npartS # of nodes relation S is partitioned across
npartOvl # of nodes where relations R and S overlap
njoin # of nodes used for processing a join
N

partR/S
1...i Individual nodes with a partition of R/S

N join
1...i Individual nodes used for processing a join

|R| / |S| Individual records of R/S
R

1...i/S1...i Individual partitions of R/S
|Ri| / |Si| Individual records of a partition of R/S
Rsize/Ssize Size of relations R/S in bytes
BWnet Network throughput between two nodes

in bytes/sec
BWhash In-memory throughput for building an hash

table on a single node in bytes/sec
BWprobe In-memory throughput for probing against

an hash table on a single node in bytes/sec

97

Chapter 7: Operator Execution on Two Relations

7.1 Grace Join

Grace Join algorithm: the Grace Join is described by Schneider and DeWitt
[SD89] and is one of the standard join algorithms in the Gamma Database Machine
Project [DGS+90]. The Grace Join can be divided into two phases as shown in
Algorithm 1 and 2. The first phase partitions the data across all nodes N join

1...i used
for executing the join. This happens by creating a number of buckets on each
node Npart

1...i that hold some data of a to-be-joined relation. The number of created
buckets on each node matches the number of nodes that will be used for executing
the join. The data from relation R and S on each node Npart

i is then hashed into
the buckets. In a next step, those buckets are sent to the nodes executing the join.
This hash partitioning of R and S across all nodes that execute the join ensures
that all records which potentially match the join criteria are on the same node.

In the second phase (Algorithm 2), each node N join
1...i executes locally a simple

hash join by hashing its data from S (which is considered to be smaller or equal
than its data from R). A probing is then done against the resulting hash table by
iterating over the data from R.

1 foreach |Ri| / |Si| do
2 hash |Ri| / |Si| into bucket

R/S
i mod n

join

;

3 foreach bucket
R/S
i do

4 send bucket
R/S
i to host N join

i ;

Algorithm 1: Grace Join partitioning phase at every N
partR/S
i

1 foreach
��bucketSi

�� in bucketSi do
2 hash

��bucketSi
�� into hashtableS;

3 foreach
��bucketRi

�� in bucketRi do
4 probe

��bucketRi
�� against hashtableS;

Algorithm 2: Grace Join processing phase at every N join
i

Grace Join system model: the Grace Join distributes the relations S and
R over all nodes that participate in the join. This results in the transfer of both
relations over the network minus the data of relations that does not have to be
moved as the initial partitioning data placement equals the placement for join
execution (Eq.7.1). The total amount of bytes to be processed by hashing and
probing (Eq.7.4) consists of the initial hashing of the data for partitioning (Eq.7.5
and 7.6) and the hashing (Eq.7.7) and probing (Eq.7.8) of the partitioned data on

98

Section 7.1: Grace Join

each node for executing the simple hash-join. The total execution time (Eq.7.9) is
the sum of the time for partitioning the data and the join execution of each node.
The time for hash-partitioning the data (Eq.7.10-7.11) is influenced by the initial
partitioning of R and S and to what extent their data overlaps on nodes. The
hashing of the data for partitioning and the transmission over the network to the
join nodes (Eq.7.13-7.15) can be done in parallel. After the data distribution, the
execution time is determined by executing the simple hash-join (Eq.7.16). The
partitioning phase and the join processing phase are modelled as non-overlapping
as a) the processing capabilities of the nodes can be fully utilized during the hash
partitioning with the data being stored in memory and b) to keep the number of
probing operations constant during the join processing phase.

Ntot = Nr +Ns (7.1)

Nr = Rsize � (

Rsize

npartR ⇤ njoin

⇤min(npartR, njoin)) (7.2)

Ns = Ssize �
npartOvl

npartS

⇤ (7.3)

(

Ssize

npartS ⇤ njoin

⇤min(npartS, njoin))

Jtot = JhashPartR + JhashPartS + Jhash + Jprobe (7.4)
JhashPartR = Rsize (7.5)
JhashPartS = Ssize (7.6)

Jhash = Rsize (7.7)
Jprobe = Ssize (7.8)

99

Chapter 7: Operator Execution on Two Relations

Ttot = max(ThashPart, Tnet) + Tjoin (7.9)

ThashPart = max(

JhashPartR

npartR ⇤BWhash

,
JhashPartS

npartS ⇤BWhash

) (7.10)

if npartOvl = 0

=

J
hashPartR

n
partR

+

J
hashPartS

n
partS

BWhash

(7.11)

if npartOvl > 0

Tnet = max(Tsend, Trecv) (7.12)

Tsend = max(

Nr

npartR ⇤BWnet

,
Ns

npartS ⇤BWnet

) (7.13)

if npartOvl = 0

=

N
r

n
partR

+

N
s

n
partS

BWnet

(7.14)

if npartOvl > 0

Trecv =
Ns +Nr

njoin ⇤BWnet

(7.15)

Tjoin =

Jhash
njoin ⇤BWhash

+

Jprobe
njoin ⇤BWprobe

(7.16)

7.2 Distributed Block Nested Loop Join

Distributed Block Nested Loop Join algorithm: a Distributed Block Nested
Loop Join performs a join between R and S by scanning every block of S tuples
once for every block of R tuples. In a cluster, the data of R and S is distributed
across a set of nodes and for processing the join, the blocks of R and S have to
be exchanged between the respective nodes. The resulting network traffic can be
reduced only by running the outer loop on each node by supplying each node N join

1...i

with the entire relation S.
As depicted in Algorithm 3, each node N join

i receives the complete relation S
from Npart

1...i . If the number of nodes where the partitions S and R are partitioned
across and the number of nodes used for join processing are not equal, then R
also has to be distributed. However, each node N join

i only receives a part of R
where the size of the part depends on the number of nodes participating in the
join. Once the data has been distributed, the join can be processed. Whether S or
the respective part of R will be hashed or probed against, depends on their sizes.

100

Section 7.2: Distributed Block Nested Loop Join

1 foreach N
partR/S
1...i do

2 if npart = njoin then
3 receive Si from NpartS

i ;
4 else
5 receive Si,Ri mod n

join

from N
partR/S
i ;

6 compute Ri on Si in memory;
Algorithm 3: BNLJ algorithm for every N join

i

Distributed Block Nested Loop Join system model: the DBNLJ — as
specified in Algorithm 3 — replicates the relation S on and distributes the relation
R equally over every node that participates in the join. The resulting network
transfer Ntot is the sum of both operations (Eq.7.17). The network transfer for
R is the distribution of R over all nodes that participates in the join (Eq.7.18).
The network transfer for S is the replication of parts of the relation to nodes that
already hold some data of S and the full replication to extra nodes which might
be added to the join execution (Eq.7.19-7.20). The total amount of bytes to be
processed in memory for the join execution (Eq.7.21) is the sum of hashing and
probing. Since S is being replicated to all nodes, but each node only holds a part
of R, it might be cheaper to hash R and probe over S (Eq.7.22-Eq.7.25). The total
execution time (Eq.7.26) is the sum of the time needed for partitioning the data
(Eq.7.27) as well as hashing and probing the data (Eq.7.31). The time needed for
partitioning the data across the nodes is determined by sending and receiving the
data over the network (Eq.7.28-7.30).

Ntot = Ns +Nr (7.17)

Nr =
Rsize

npartR

⇤max(npartR � njoin, 0)+ (7.18)

Rsize

njoin

⇤max(njoin � npartR, 0)

Ns = Ssize ⇤ (njoin � 1) (7.19)
if njoin � (npartR + npartS � npartOvl)

= Ssize ⇤ (njoin �
njoin

npartR + npartS � npartOvl

) (7.20)

if njoin < (npartR + npartS � npartOvl)

101

Chapter 7: Operator Execution on Two Relations

Jtot = Jhash + Jprobe (7.21)

Jhash = Ssize ⇤ njoin if
Rsize

njoin

� Ssize (7.22)

= Rsize if
Rsize

njoin

< Ssize (7.23)

Jprobe = Rsize if
Rsize

njoin

� Ssize (7.24)

= Ssize ⇤ njoin if
Rsize

njoin

< Ssize (7.25)

Ttot = Tpart + Tjoin (7.26)
Tpart = max(Tsend, Trecv) (7.27)

Tsend = max(

Nr

npartR ⇤BWnet

,
Ns

npartS ⇤BWnet

) (7.28)

if npartOvl = 0

=

N
r

n
partR

+

N
s

n
partS

BWnet

(7.29)

if npartOvl > 0

Trecv =
Ns +Nr

njoin ⇤BWnet

(7.30)

Tjoin =

Jhash
njoin ⇤BWhash

+

Jprobe
njoin ⇤BWprobe

(7.31)

7.3 Cyclo Join

Cyclo Join algorithm: Frey, Goncalves, Kersten, and Teubner introduced the
Cyclo Join [FGKT10] as a way to exploit inter-node bandwidth for join processing
by creating a virtual ring between the nodes that participate in the processing of a
join. During the join processing, data is continuously being pumped through that
ring, thereby allowing for a greater degree of parallelism. In order to minimize
the impact of the network processing overhead and to utilize the in-memory data
storage performance characteristics at the same time, RDMA is chosen as network
technology of choice for Cyclo Join. Goncalves and Kersten describe the Data
Cyclotron [GK11] as a complete ring-centered data processing architecture.

102

Section 7.3: Cyclo Join

Algorithm 4 describes the Cyclo Join, where the algorithm is similar to the
Distributed BNLJ algorithm as introduced in the previous subsection, except for
the distribution of S. Before the join execution starts, relation R is equally dis-
tributed across all nodes N join

1...i . Then each node N join
i can in parallel calculate

the join between Ri on Si and ship parts of S to the next node in the virtual ring.
Whether S or R will be hashed or probed against, depends on their sizes as well
as on njoin. After completion of the Cyclo Join, relation S has traversed in its
entirety each node N join

i .

1 if npart 6= njoin then
2 receive Ri mod n

join

from NpartR
i

3 foreach block Si received from N join
(i�1) mod n

join

do
4 compute Ri on Si in memory;
5 forward Si to host N

(i+1) mod n
join

;

Algorithm 4: Cyclo Join algorithm for every N join
i

Cyclo Join system model: the total network transfer (Eq.7.32) for a Cyclo
Join execution consists of the data transfer before the join execution and the cyclic
data transfer during the join. Before the join execution, S and R are equally
distributed across all nodes that participate in the join processing (Eq.7.33-7.35).
During the join execution, S is fully replicated to every node via the virtual network
ring (Eq.7.36). The total amount of bytes to be processed in memory for the
join execution (Eq.7.37) is the sum of hashing and probing. Since the number of
probing operations grows with the number of nodes participating in the join, either
the hashing or the probing operations can dominate the join execution. Therefore,
two helper equations (Eq.7.38-7.39) are being introduced to determine if the total
execution time of the join processing is smaller if S or R are being hashed or
probed against. Equations (Eq.7.40-7.43) use these functions and provide the
resulting amount of bytes to be processed in-memory for hashing and probing.
The total execution time for a Cyclo Join (Eq.7.44) consists of the initial data
partitioning as well as the cyclic data transfer and the join processing. The time
for the initial data partitioning (Eq. 7.45) includes the time for distributing S
and R equally (Eq.7.46-7.48) and for hashing either S or R. Since the cyclic data
transfer of S and the probing can happen in parallel, Tcyc (Eq.7.49) is dominated
by the more time-consuming operation of the two.

103

Chapter 7: Operator Execution on Two Relations

Ntot = NpartR +NpartS +Ncyc (7.32)

NpartR =

Rsize

npartR

⇤max(npartR � njoin, 0)+ (7.33)

Rsize

njoin

⇤max(njoin � npartR, 0)

NpartS =

Ssize

njoin

⇤max(npartS � njoin, 0) (7.34)

if njoin � (npartR + npartS � npartOvl)

= Ssize �
Ssize

npartS

⇤max(npartR � njoin, 0) (7.35)

if njoin < (npartR + npartS � npartOvl)

NCyc = (njoin � 1) ⇤ Ssize (7.36)

Jtot = Jhash + Jprobe (7.37)

T s
hash =

Ssize

BWhash

+

Rsize ⇤ njoin

BWprobe

(7.38)

T r
hash =

Rsize

BWhash

+

Ssize ⇤ njoin

BWprobe

(7.39)

Jhash = Ssize if T s
hash < T r

hash (7.40)
= Rsize if T s

hash � T r
hash (7.41)

Jprobe = Rsize ⇤ njoin if T s
hash < T r

hash (7.42)
= Ssize ⇤ njoin if T s

hash � T r
hash (7.43)

104

Section 7.4: Join Algorithm Comparison

Table 7.2: Hardware parameters.

Parameter Value
CPU Intel Xeon X3470 CPU
NIC Mellanox ConnectX-2 InfiniBand HCA
BWnet 3.142 GB/sec network bandwidth two nodes
BWhash 0.107 GB/sec throughput for inserting

into std::unordered_set
BWprobe 0.731 GB/sec throughput for probing

against std::unordered_set

Ttot = Tpart + Tcyc (7.44)

Tpart = max(Tsend, Trecv) +
Jhash

BWhash ⇤ njoin

(7.45)

Tsend = max(

NpartR

npartR ⇤BWnet

,
NpartS

npartS ⇤BWnet

) (7.46)

if npartOvl = 0

=

N
partR

n
partR

+

N
partS

n
partS

BWnet

(7.47)

if npartOvl > 0

Trecv =
NpartS +NpartR

njoin ⇤BWnet

(7.48)

Tcyc = max(

Ncyc

BWnet ⇤ njoin

,
Jprobe

BWprobe ⇤ njoin

) (7.49)

7.4 Join Algorithm Comparison

We implemented the system model from the previous section in the statistical
language R and prototypically implemented the join algorithms in RAMCloud in
order to compare the different algorithms. Figure 7.1 illustrates a set of compar-
isons based on the parameters shown in Table 7.2. The comparisons reveal the
execution times of a single join operation in a RAMCloud cluster with 16 nodes.
Figures 7.1(a) and 7.1(c) are calculations based on the system model, Figures

105

Chapter 7: Operator Execution on Two Relations

 0
 1
 2
 3
 4
 5
 6
 7

 4 8 16

Ex
ec

ut
io

n
tim

e
in

 se
co

nd
s

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(a) Calculation with system model: npartR/S

= 16 nodes, npartOvl = 16 nodes, Rsize = 1
GB, Ssize = 1 GB

 0
 1
 2
 3
 4
 5
 6
 7

 4 8 16

Ex
ec

ut
io

n
tim

e
in

 se
co

nd
s

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(b) Experiment with implementation:
npartR/S = 16 nodes, npartOvl = 16 nodes,
Rsize = 1 GB, Ssize = 1 GB

 0

 1

 2

 3

 4

 5

 4 8 16

Ex
ec

ut
io

n
tim

e
in

 se
co

nd
s

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(c) Calculation with system model: npartR/S

= 16 nodes, npartOvl = 16 nodes, Rsize = 1
GB, Ssize = 0.1 GB

 0

 1

 2

 3

 4

 5

 4 8 16

Ex
ec

ut
io

n
tim

e
in

 se
co

nd
s

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(d) Experiment with implementation:
npartR/S = 16 nodes, npartOvl = 16 nodes,
Rsize = 1 GB, Ssize = 0.1 GB

Figure 7.1: Four comparisons of the execution times for different join algorithms. Figure
7.1(a) and 7.1(c) are calculations based on the system model, Figures 7.1(b) and 7.1(d)
are the respective experiments based on the prototypical implementations.

106

Section 7.4: Join Algorithm Comparison

 0
 2
 4
 6
 8

 10
 12
 14
 16

 4 8 16N
et

w
or

k
tra

ffi
c

in
 g

ig
ab

yt
es

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(a) Ntot based on the system model for:
npartR/S = 16 nodes, npartOvl = 16 nodes,
Rsize = 1 GB, Ssize = 1 GB

 0

 0.5

 1

 1.5

 2

 4 8 16N
et

w
or

k
tra

ffi
c

in
 g

ig
ab

yt
es

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(b) Ntot based on the system model for:
npartR/S = 16 nodes, npartOvl = 16 nodes,
Rsize = 1 GB, Ssize = 0.1 GB

 0

 5

 10

 15

 20

 4 8 16D
at

a
pr

oc
es

se
d

in
 m

em
or

y
in

 g
ig

ab
yt

es

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(c) Jtot based on the system model for:
npartR/S = 16 nodes, npartOvl = 16 nodes,
Rsize = 1 GB, Ssize = 1 GB

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 4 8 16D
at

a
pr

oc
es

se
d

in
 m

em
or

y
in

 g
ig

ab
yt

es

Number of nodes njoin used for join execution

Grace Join
DBNLJ

Cyclo Join

(d) Jtot based on the system model for:
npartR/S = 16 nodes, npartOvl = 16 nodes,
Rsize = 1 GB, Ssize = 0.1 GB

Figure 7.2: Four comparisons of the network transfer and data processed in memory for
different join algorithms. Figures 7.2(a)+7.2(b) depict the network transfer Ntot, Figures
7.2(c)+7.2(d) illustrate the data amount processed in memory Jtot.

107

Chapter 7: Operator Execution on Two Relations

7.1(b) and 7.1(d) are the respective experimental validations based on the proto-
typical implementations. The size of relation S is changed between the first and
the second calculation and validation.

Figures 7.1(a) and 7.1(b) indicate that the Grace Join is preferable when joining
evenly sized relations. At njoin = 16 nodes, the Grace Join produces an Ntot of
1.8GB where the DBNLJ and the Cyclo Join each transfer 15GB over the network
for executing the join due to their replication of the complete relation S to all
nodes. This also spikes the amount of data to be processed (e.g. Jtot Grace Join
= 4GB vs Cyclo Join = 17GB) as the full relation S is traversed at every node (as
shown in Figure 7.2). Figures 7.1(c) and 7.1(d) show that the Cyclo Join performs
best when one relation is substantially smaller than the other one. In addition,
a small relation S lets the Cyclo Join benefit from its high degree of parallelism
without introducing a noteworthy penalty for the additional probing (as shown in
Figures 7.2(c) and 7.2(d)). Concluding the comparison, the Grace Join and the
Cyclo Join are the winners in the context of our chosen execution strategies when
one join is executed at a time. We observe that choosing the right algorithm is
heavily influenced by the sizes of the joined relations.

With regards to the validation of the system model, we observe that the mea-
surements are about 20-25% off in comparison to the system model. The reasons
for that are, on the one hand, that our system model abstracts from resource con-
flicts and assumes a perfect distribution of network bandwidth among clients. On
the other hand, our implementation in RAMCloud is not fully optimized, as we
currently are working with dynamically growing data structures instead of esti-
mating the data structure size and preallocating memory accordingly.

7.5 Parallel Join Executions

After comparing the execution of one join operation at a time, we now address
the execution of many join operations in parallel via a simulation based on the
previously created R-model. We take the join operations from the Star Schema
Benchmark [O’N] at a sizing factor 100 (which has 600 million records in its main
table) as workload as they vary in to-be-joined relations, relation sizes, and selec-
tivity (as shown in the Tables 12.1,12.2 in the Appendix). Our goal is to execute
this workload as fast as possible. The execution of the join operations in the
workload happens sequentially (no change in the execution order), although join
operations from different queries can run in parallel. Furthermore, we execute one
join operation per RAMCloud node at a time. We introduce a set of heuristics
that can decide at run-time how to parameterize the execution of a join operation.
These parameters include the number of nodes to be used for executing the join

108

Section 7.5: Parallel Join Executions

(njoin) and the choice of the algorithm. The heuristics are:

• Greedy Heuristic. The Greedy Heuristic uses all nodes in the cluster for
every join. This results in a sequential execution of all join operations in the
workload. For each join operation the fastest algorithm is determined via
the system model (with njoin = n).

• Modest Heuristic. This heuristic uses one-fourth of the nodes in the cluster
for every join. This results in up to four join executions being executed in
parallel. For each join operation the fastest algorithm is determined via the
system model (with njoin =

n
4

).

• Graceful Heuristic. The Graceful Heuristic monitors the current load
of the cluster and takes half of the currently idling nodes (where idling is
defined as not currently executing a join) for the join execution. For each
join operation the optimal algorithm is determined via the system model
(with njoin =

idling n
2

).

• Smart Heuristic. This heuristic calculates for every join the to-be-used
number of nodes and algorithm with the most efficient hardware utilization
based on the cost model (minimal T

tot

n
join

).

In addition to the above heuristics we also introduce a set of different parti-
tioning strategies:

• All Relations Uniform. All relations are uniformly partitioned across all
nodes.

• All Relations Round-Robin. All relations are distributed in a round-
robin manner over four nodes at a time.

• Small Relations Pinned - Large Relations Uniform. Small relations
are pinned on one node, large relations are partitioned uniformly across the
remaining nodes.

Figure 7.3 illustrates the resulting execution times, showing that the partition-
ing of the large relations across all nodes in the cluster is preferable over placing
them on only a few nodes each. The choice of the partitioning criteria has poten-
tially more impact than the choice of the heuristic. When comparing the heuristics,
one can see that the Modest Heuristic always performs best while the Smart and

109

Chapter 7: Operator Execution on Two Relations

 0

 40

 80

All Relations
Uniform

All Relations
Round-Robin

Small Relations Pinned
Large Relations Uniform

SS
B

Jo
in

s E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds

Greedy Heuristic
Modest Heuristic

Graceful Heuristic
Smart Heuristic

Figure 7.3: Evaluation of join execution heuristics on a cluster with 32 nodes and
hardware parameters shown in Table 7.2

All
Relations
Uniform

All
Relations
Round-
Robin

Small
Pinned,
Large

Uniform

G
ra

ce

D
B

N
LJ

C
yc

lo

G
ra

ce

D
B

N
LJ

C
yc

lo

G
ra

ce

D
B

N
LJ

C
yc

lo
Greedy 36 0 0 36 0 0 19 0 17
Modest 30 0 6 11 0 25 30 0 6

Graceful 36 0 0 36 0 0 36 0 0
Smart 32 0 4 17 0 19 34 0 2

Table 7.3: Distribution of join algorithms for Star Schema Benchmark execution as
shown in Figure 7.3 in dependence of the chosen heuristic. Illustration how many of the
36 joins are executed with which algorithm.

the Graceful Heuristics perform worse. This is due to executing each join very
efficiently, but resulting in an overall bad cluster utilization. When looking at the
chosen algorithms, Table 7.3 reports that the Grace Join and the Cyclo Join were
chosen exclusively. Depending on the heuristic, either only the Grace Join has
been used or in conjunction with the Cyclo Join. The winning Modest Heuristic
always picked a mix of the Grace Join and the Cyclo Join. Concluding this section,
the evaluation shows that a) it is preferable to partition the data across as many
nodes as possible and b) perform the join operations with a mix of the Grace and
the Cyclo Join. Furthermore, it is preferable to allocate a fixed number of nodes
for the execution of each join as choosing the number of nodes based on efficient
join execution or cluster load leads to under utilization of the cluster.

110

Part III

Evaluation

111

Chapter 8

Performance Evaluation

This chapter presents a performance evaluation to quantify the gap between query
execution on local and remote main memory while considering the different oper-
ator execution strategies (data pull vs. operator push). Two different workloads
are being used: an analytical workload consisting of the Star Schema Benchmark
in Section 8.1 and a mixed workload based on point-of-sales customer data from
a large European retailer in Section 8.2. The used hardware is the same as in the
previous part. Each node has an Intel Xeon X3470 CPU, 24GB DDR3 DRAM,
and a Mellanox ConnectX-2 InfiniBand HCA network interface card with the nodes
connected via a 36-port Mellanox InfiniScale IV (4X QDR) switch.

8.1 Analytical Workload: Star Schema Benchmark

Figure 8.1 shows an AnalyticsDB operator breakdown for each query of the Star
Schema Benchmark (SSB). AnalyticsDB runs on a single node, the RAMCloud
cluster has 20 nodes. The execution on RAMCloud happens either via data pull
or operator push strategy and each AnalyticsDB column is either being stored on
one storage node (server span=1) or partitioned across all nodes (server span=20).
The figure illustrates that the partitioning criteria has only very little impact
(2.8%) on the data pull execution strategy and that data pull is on average 2.6
times slower than the execution on local DRAM. With a server span of one, the
operator push execution strategy is on average 11% slower than the execution on
local DRAM. With a server span of 20, the operator execution strategy can be
accelerated by a factor of 3.4. The figure does not show the execution times of the
local AnalyticsDB operators such as Sort in detail, but summarizes them as Other
Operators.

113

Chapter 8: Performance Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

on
ds

Other Operators
Join Probing Operator

Materialize Operator
Scan Operator

Query 2.3Query 2.2Query 2.1Query 1.3Query 1.2Query 1.1

(a) Star Schema Benchmark Queries 1.1-2.3

 0

 1

 2

 3

 4

 5

 6

 7

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Local D
RA

M
RC, D

ata Pull, Span=1
RC, D

ata Pull, Span=20
RC, O

P Push, Span=1
RC, O

P Push, Span=20

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

on
ds

Other Operators
Join Probing Operator

Materialize Operator
Scan Operator

Query 4.3Query 4.2Query 4.1Query 3.4Query 3.3Query 3.2Query 3.1

(b) Star Schema Benchmark Queries 3.1-4.3

Figure 8.1: Operator breakdown for AnalyticsDB executing Star Schema Benchmark
queries with a data scale factor of 10 and different storage options and operator execution
strategies. AnalyticsDB runs on a single node, the RAMCloud (RC) cluster has size of
20 nodes. The figure illustrates that the data pull execution strategy is on average 2.6
times (or 260%) slower than the execution on local DRAM and that the operator push
execution strategy is on average 11% slower than the execution on local DRAM.

114

Section 8.1: Analytical Workload: Star Schema Benchmark

 1
 2
 3
 4
 5
 6
 7

Local D
RA

M

D
ata Pull, Span=1

D
ata Pull, Span=20

O
P Push, Span=1

O
P Push, Span=20

St
ar

 S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Ti
m

e
in

 S
ec

on
ds

(a) Sizing Factor = 1

 0
 10
 20
 30
 40
 50
 60
 70

Local D
RA

M

D
ata Pull, Span=1

D
ata Pull, Span=20

O
P Push, Span=1

O
P Push, Span=20

St
ar

 S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Ti
m

e
in

 S
ec

on
ds

(b) Sizing Factor = 10

 0
 100
 200
 300
 400
 500
 600
 700

D
ata Pull, Span=1

D
ata Pull, Span=20

O
P Push, Span=1

O
P Push, Span=20

St
ar

 S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Ti
m

e
in

 S
ec

on
ds

(c) Sizing Factor = 100

Figure 8.2: RAMCloud cluster with 20 nodes and a single node running AnalyticsDB
with a varying Star Schema Benchmark data scale factor (SF). The figure shows that the
ratio between data set size and Star Schema Benchmark execution times remain constant
with a growing data set size.

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200

St
ar

 S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Ti
m

e
in

 S
ec

on
ds

Experiment Time in Seconds

add 2nd node

add 3rd node

add 4th node
add 5th node

add 6th node
add 7th node

add 8th node
add 9th node

add 10th node

(a)

 5

 10

 15

 20

 25

 30

 35

 0 200 400 600 800 1000 1200

St
ar

 S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Ti
m

e
in

 S
ec

on
ds

Experiment Time in Seconds

remove
10th node

remove
9th node

remove
8th node remove

7th node

remove
6th node remove

5th node

remove
4th node

remove
3rd node

remove
2nd node

(b)

Figure 8.3: RAMCloud cluster with a varying number of nodes and a single node run-
ning AnalyticsDB with a operator push execution strategy and a Star Schema Benchmark
data scale factor of 10.

Figure 8.2 evaluates the impact a varying data set size has on the execution
time by showing the execution of the SSB with a varying data scale factor SF.
Scale factor 1 has a fact table with 6 million rows and a total data size of 600 MB,
scale factor 10 has a fact table with 60 million rows and a total data set size of 6
GB, and scale factor 100 has 600 million rows in the fact table and a total data
set size of 60 GB. The experiments with SF 100 could not be executed on local

115

Chapter 8: Performance Evaluation

DRAM as the data set size exceeded the capacity of a single server. Figure 8.2
illustrates that the ratio between the data set size and the SSB execution times
of the different execution strategies remain constant even with a growing data set
size and with a constant cluster size.

Throughout the previous experiments, we varied the number of nodes in the
RAMCloud cluster and the resulting server span. In this subsection, we want to
perform this variation not in separate experiment executions, but continuously
while a single AnalyticsDB node is executing queries. Therefore, we designed and
used a simplistic data migration manager which distributes the data equally across
the available nodes: if a new node joins the RAMCloud cluster, it gets a chunk of
the data, before a node is removed from the cluster its contained data is distributed
across the remaining nodes. The data distribution is done via a splitting of the
RAMCloud namespaces and a subsequent migration of the data that is contained
in a part of a namespace: the complexity and execution time of this mechanism
benefits from an equal partitioning of all namespaces.

Figure 8.3 illustrates the SSB execution time while RAMCloud nodes are being
added or removed from the cluster. With every added RAMCloud node, the overall
storage capacity increases and the SSB execution time decreases as previously
discussed. With every removed node the overall storage capacity decreases and
the SSB execution time increases.

8.2 Mixed Workload: Point-Of-Sales Customer Data

This section also aims to quantify the gap between query execution on local and
remote main memory while considering the different operator execution strategies
(data pull vs. operator push). In contrast to the previous section, it is not done
by taking a synthetic benchmark with generated data, but an excerpt of the point-
of-sales data from one of the largest European retailers with over 5,000 branches.
The excerpt includes about 62 million records, which is a data volume of 10.8 GB
and holds the point-of-sales data of some branches over the course of a month.
Each record represents a single product being sold at the cash register in a single
branch. The point-of-sales data itself is in a single fact table accompanied by a
number of dimension tables which describe the different branches and products.
Products are hierarchically grouped in four levels where Product Group Level 1
contains for example all non-alcoholic drinks, Product Group Level 2 contains all
soft drinks, Product Group Level 3 contains all energy drinks and Product Level
4 contains the different actual products where each variation of a product in size
or flavor is a separate product.

The workload itself consists of four analytical and one transactional query. The

116

Section 8.2: Mixed Workload: Point-Of-Sales Customer Data

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Local D
RA

M

RC, D
ata Pull, Span=8

RC, O
P Push, Span=8

Local D
RA

M

RC, D
ata Pull, Span=8

RC, O
P Push, Span=8

Local D
RA

M

RC, D
ata Pull, Span=8

RC, O
P Push, Span=8

Local D
RA

M

RC, D
ata Pull, Span=8

RC, O
P Push, Span=8

Local D
RA

M

RC, D
ata Pull, Span=8

RC, O
P Push, Span=8

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
in

 S
ec

on
ds

Other Operators
GroupBy Operator

Join Probing Operator
Materialize Operator

Scan Operator

Transactional
Query 1 (TQ1)

Analytical
Query 4 (AQ4)

Analytical
Query 3 (AQ3)

Analytical
Query 2 (AQ2)

Analytical
Query 1 (AQ1)

Figure 8.4: Operator breakdown for executing the point-of-sales customer data mixed
workload with different operator execution strategies. AnalyticsDB runs on a single
node, the RAMCloud (RC) cluster has a size of 8 nodes. The figure illustrates i.a. that
the data pull execution strategy is on average 2.2x slower than the execution on local
DRAM and that the operator push execution strategy is on average 44% slower than the
execution on local DRAM.

analytical queries represent how a sales analyst operates on the data, while the
transactional query covers a product being sold at a cash register. The following
queries are used:

• AQ1: The first analytical query calculates the grouping of all sold items by
Product Group Level 1, showing for example which percentage of the overall
sales was achieved by non-alcoholic drinks.

• AQ2: This analytical query lists how often a single product has been sold
for what price, analyzing the price elasticity of a product.

• AQ3: This query groups all sales by a chosen Product Group Level 2 and
shows the respective revenues and quantities. This query has a low selectivity
as it groups by a product group that includes many sold products.

• AQ4: Same as AQ3 but with selecting a product group where only few
products were sold resulting in a high selectivity.

• TQ1: This query performs an insert for a sold product that was registered
at the counter.

Figure 8.4 presents the operator breakdown for executing the customer data
mixed workload with different operator execution strategies. AnalyticsDB runs on

117

Chapter 8: Performance Evaluation

a single node, the RAMCloud cluster has a size of 8 nodes. The outcome of the
experiment is similar to the experiment presented in Section 8.1: for the queries
AQ1-AQ4 the data pull execution strategy is on average 2.3x slower, the operator
push execution strategy is on average 44% slower. It can be observed that in query
AQ3 the operator push execution strategy is slower than the data pull strategy due
to the low selectivity, whereas in query AQ4 the operator push execution strategy
is even faster than an execution on local DRAM due to parallelism in RAMCloud
in combination with high selectivity. The transactional query takes 4 µs on local
DRAM and 12 µs with RAMCloud regardless of the operator execution strategy.

118

Chapter 9

High-Availability Evaluation

As shown in Figure 8.3 in the previous chapter, the size of a RAMCloud Cluster
can be changed without an interruption of the query processing executed by Ana-
lyticsDB. However, the dynamic resizing in Figure 8.3(b) is done via a purposeful
revocation of a node which gives RAMCloud the time to redistribute the data
from the to-be-removed node before its actual revocation. This kind of awareness
cannot be expected in the event of a hardware failure. For the scenario of an un-
expected hardware failure, RAMCloud features a fast crash recovery mechanism
[ORS+11] as explained in Section 3.3.

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250 300

St
ar

 S
ch

em
a

Be
nc

hm
ar

k
Ex

ec
ut

io
n

Ti
m

e
in

 S
ec

on
ds

Experiment Time in Seconds

Kill
RAMCloud
Node #10

Kill
RAMCloud

Node #9

Kill
RAMCloud

Node #8

Kill
RAMCloud

Node #7

Kill
RAMCloud

Node #6

Figure 9.1: High-availability experiment with one AnalyticsDB and ten RAMCloud
nodes. Throughout the experiment RAMCloud nodes get killed and the impact on the
query response time is observed.

119

Chapter 9: High-Availability Evaluation

AnalyticsDB can make use of the fast crash recovery feature in RAMCloud.
To prove its applicability in the context of a database application, we conduct the
following experiment: the experiment utilizes a total of 20 nodes where 10 nodes
run the RAMCloud master service as well as the RAMCloud backup service. The
number of replicas is set to three. The remaining 10 nodes run AnalyticsDB which
consecutively executes the Star Schema Benchmark suite to create a base load on
the cluster. The Star Schema Benchmark data set is sized at factor 10.

In this experiment, each AnalyticsDB node permanently executes the Star
Schema Benchmark. At a sizing factor 10, the average runtime is about 8.2 seconds.
As shown in Figure 9.1, after about 60 seconds, one RAMCloud node is getting
killed, decreasing the total RAMCloud node count to 9 running nodes within the
cluster. When a RAMCloud node is killed, its data is restored from the backups
to the remaining servers.

The RAMCloud data recovery process itself takes between 0.2 and 0.5 seconds.
At a SSB sizing factor 10 the overall dataset is about 6 GB, resulting in about
600MB of data per node at the initial setup of 10 RAMCloud nodes. It is possible
that an AnalyticsDB node is connected to the RAMCloud node that is being killed
and executes an operator. Here, the AnalyticsDB node is not notified in any way
of the crashed RAMCloud node. For that case, AnalyticsDB has a RPC timeout
of 1 second after which the respective RPC is issued again. This RPC timeout
also explains the execution time bumps in Figure 9.1 which are greater than just
the time needed for the RAMCloud recovery process.

AnalyticsDB is not aware of the fact that a node of its storage system was killed,
it just notices the timed-out RPC and restarts it. Throughout the experiment in
Figure 9.1, the execution time of the Star Schema Benchmark execution increases
as the capacity of the RAMCloud cluster decreases constantly.

120

Chapter 10

Elasticity Evaluation

In the previous experiments in our evaluation, we varied either the number of
RAMCloud nodes or we varied the load by changing the number of AnalyticsDB
nodes. In this chapter we want to put the pieces together by maintaining a constant
query execution time by resizing the RAMCloud cluster online under a changing
load which is represented by a varying amount of AnalyticsDB nodes executing
the Star Schema Benchmark.

The experiments in this chapter define an upper and lower execution time limit
for the average Star Schema Benchmark execution time of 30 and 20 seconds re-
spectively. If the load is increased by adding AnalyticsDB nodes and subsequently
the execution time goes above the upper limit, then new RAMCloud nodes are
added to the cluster until the average execution is back within the boundaries.
The same approach is used when AnalyticsDB nodes are being removed and the
execution time drops below the lower limit resulting in the removal of RAMCloud
nodes. It is common to take differently shaped workloads for evaluating the elas-
ticity of a system [ILFL12, CST+10]: we use three different workloads namely a
sinus-shaped, a plateau-shaped, and an exponential workload. We added a sim-
plistic load manager to the system, as the RAMCloud project does not feature
such a component as of now, which checks on configurable intervals the average
processing time of the Star Schema Benchmark and adds or removes RAMCloud
nodes accordingly.

Sinus-Shaped Workload

The first experiment we present executes a sinus-shaped workload. In the begin-
ning, only one AnalyticsDB node executes the SSB benchmark, after a while a
second node, then three more nodes and finally five nodes are added. The exper-

121

Chapter 10: Elasticity Evaluation

iments highest load counts ten AnalyticsDB nodes in total. Following the sinus
shape, after a while, five nodes, then three nodes and finally one node are removed
to lower the load back to the initial load. Once the load manager detects a breach
of the upper bound, it will check another 90 times before acting. The delay of the
lower bound is set to 30 seconds, while the delay for the upper bound breach is
three times higher than for the lower bound. This can be useful to avoid provi-
sioning resources in case of runaways. On the other hand, a shorter delay helps
the load manager to provision new resources faster and therefore react more elas-
tically. Figure 10.1 shows a sinus-shaped workload pattern in which RAMCloud
scales out and later back in as load is decreasing. The delay between breaching
the upper bound and starting the second RAMCloud node is obvious. Since the
load manager is a simple reactive manager, it only starts one RAMCloud node at
a time leading to a period of slow mitigation from the moment of high load at
about 500 seconds from the experiment’s beginning. At about 700 seconds, the
SSB runtime is back in its normal boundaries. With lowering the load, the system
reacts faster with de-provisioning of nodes.

Plateau-Shaped Workload

The second experiment is depicted in Figure 10.2. The upper and lower boundary
for the SSB runtime are set to the same value (30 seconds upper and 20 seconds
lower) as in the first experiment. One RAMCloud node is started at the beginning
of the experiment. The cluster load is ramped up by starting an AnalyticsDB
node every 60 seconds. In this experiment, the load manager delays acting upon
a boundary violation by 300 milliseconds. Because of the instantaneous under-
provisioning situation, the load manager starts seven more RAMCloud nodes to
bring the SSB execution time into the specified boundaries. The time period the
cluster runs on high load is called plateau time. In this experiment, it is 600
seconds long. At about 1100 seconds, the plateau time is over. The benchmark
framework stops 9 out of 10 AnalyticsDB nodes, reducing the cluster load to one-
tenth of the plateau load. This leads to an immense over-provisioning situation.
The runtime of the SSB benchmark drops to under 10 seconds per SSB run. The
load manager acts immediately by stopping 7 of the 8 running nodes to bring the
runtime back into its boundaries. The SSB runtime runs within boundaries until
the end of the experiment.

Exponential Workload

In the third experiment, we probe an exponential workload. As shown in Figure
10.3 the experiment starts with one AnalyticsDB node. After the second node

122

has been added, first two then four nodes are added with a delay of 120 seconds.
It is clearly visible, that the system needs much more time to normalize the SSB
runtime when four nodes are being added to the system. This has two reasons:
first, the load manager only adds one node at a time. With a more efficient load
manager, it could be possible to start more RAMCloud nodes the more the load
has increased. This would bring the execution time within the specified boundaries
more quickly, but also bears the risk of oversteering. Second, the higher the load
in the system, the longer it takes to migrate data between the nodes to distribute
the load among more nodes. When the load decreases, the system corrects the
over-provisioning situation by stopping RAMCloud nodes.

The experiments in this chapter a) show that the architecture can adapt to
workload changes of different orders in a short period of time (seconds), b) the
adaption does not interrupt the ongoing query processing and c) the resulting
elasticity allows the compliance with a performance goal without any adjustments
from a DBMS perspective or without any manual intervention from a database
administrator.

123

Chapter 10: Elasticity Evaluation

 0 2 4 6 8
 10

 0 1000

 2000
 0

 200
 400

 600
 800

 1000
 1200

Number of
AnalyticsDB Nodes

Star Schema Benchmark
Executions per Hour

Throughput
Load

 0

 10

 20

 30

 40

 50 0
 200

 400
 600

 800
 1000

 1200

 0 10

 20

 30

 40

 50

Star Schema Benchmark
 Execution Time in Seconds

Experim
ent Tim

e in Seconds

add 1
A

nalyticsD
B

node

add
RA

M
Cloud

node

add
RA

M
Cloud

node

add 3
A

nalyticsD
B

nodes

add
RA

M
Cloud

node
add

RA
M

Cloud
node

add
RA

M
Cloud

node

add 5
A

nalyticsD
B

nodes

add
RA

M
Cloud

node
add

RA
M

Cloud
node

add
RA

M
Cloud

node

add
RA

M
Cloud

node

rem
ove 5

A
nalyticsD

B
nodes

rem
ove

RA
M

Cloud
noderem

ove
RA

M
Cloud

node
rem

ove
RA

M
Cloud

node

rem
ove

RA
M

Cloud
node rem

ove
RA

M
Cloud

node

rem
ove 3

A
nalyticsD

B
nodes

rem
ove

RA
M

Cloud
node

rem
ove

RA
M

Cloud
node

rem
ove

RA
M

Cloud
node

add
RA

M
Cloud

node

rem
ove 1

A
nalyticsD

B
node

rem
ove

RA
M

Cloud
node

rem
ove

RA
M

Cloud
node

upper lim
it

low
er lim

it

F
igure

10.1:
E

lasticity
evaluation

w
ith

a
sinus-shaped

w
orkload.

T
he

num
ber

ofthe
nodes

in
the

R
A

M
C

loud
cluster

varies
depending

on
the

changing
w

orkload
im

posed
by

a
changing

num
ber

ofA
nalyticsD

B
nodes.

E
ach

A
nalyticsD

B
node

executes
the

Star
Schem

a
B

enchm
ark

at
a

sizing
factor

ten,the
execution

strategy
is

operator
push.

124

 0 2 4 6 8 1
0

 0 1
00

0

 2
00

0
 0

 2
00

 4
00

 6
00

 8
00

 1
00

0
 1

20
0

 1
40

0

Number of
AnalyticsDB Nodes

Star Schema Benchmark
Executions per Hour

Th
ro

ug
hp

ut
Lo

ad

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0 0

 2
00

 4
00

 6
00

 8
00

 1
00

0
 1

20
0

 1
40

0

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0

 8
0

Star Schema Benchmark
 Execution Time in Seconds

Ex
pe

rim
en

t T
im

e
in

 S
ec

on
ds

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

ad
d

A
na

ly
tic

sD
B

no
de

re
m

ov
e

9
A

na
ly

tic
sD

B
no

de
s

ad
d

RA
M

Cl
ou

d
no

de

ad
d

RA
M

Cl
ou

d
no

de

ad
d

RA
M

Cl
ou

d
no

de
ad

d
RA

M
Cl

ou
d

no
de

ad
d

RA
M

Cl
ou

d
no

de

ad
d

RA
M

Cl
ou

d
no

de
ad

d
RA

M
Cl

ou
d

no
de

re
m

ov
e

RA
M

Cl
ou

d
no

de
re

m
ov

e
RA

M
Cl

ou
d

no
de

re
m

ov
e

RA
M

Cl
ou

d
no

de

up
pe

r l
im

it

lo
w

er
 li

m
it

F
ig

ur
e

10
.2

:
E

la
st

ic
ity

ev
al

ua
ti

on
w

it
h

a
pl

at
ea

u-
sh

ap
ed

w
or

kl
oa

d.
T

he
nu

m
be

r
of

th
e

no
de

s
in

th
e

R
A

M
C

lo
ud

cl
us

te
r

va
ri

es
de

pe
nd

in
g

on
th

e
ch

an
gi

ng
w

or
kl

oa
d

im
po

se
d

by
a

ch
an

gi
ng

nu
m

be
r

of
A

na
ly

ti
cs

D
B

no
de

s.
E

ac
h

A
na

ly
ti

cs
D

B
no

de
ex

ec
ut

es
th

e
St

ar
Sc

he
m

a
B

en
ch

m
ar

k
at

a
si

zi
ng

fa
ct

or
te

n,
th

e
ex

ec
ut

io
n

st
ra

te
gy

is
op

er
at

or
pu

sh
.

125

Chapter 10: Elasticity Evaluation

 0 2 4 6 8
 10

 0 1000

 2000
 0

 200
 400

 600
 800

 1000
 1200

Number of
AnalyticsDB Nodes

Star Schema Benchmark
Executions per Hour

Throughput
Load

 0

 10

 20

 30

 40

 50

 60 0
 200

 400
 600

 800
 1000

 1200

 0 10

 20

 30

 40

 50

 60

Star Schema Benchmark
 Execution Time in Seconds

Experim
ent Tim

e in Seconds

add 1
A

nalyticsD
B

node

add 2
A

nalyticsD
B

nodes

add 4
A

nalyticsD
B

nodes

rem
ove 4

A
nalyticsD

B
nodes

rem
ove 2

A
nalyticsD

B
nodes

rem
ove 1

A
nalyticsD

B
node

add
RA

M
Cloud

node

add
RA

M
Cloud

node

add
RA

M
Cloud

node

add
RA

M
Cloud

node

add
RA

M
Cloud

node

add
RA

M
Cloud

node
rem

ove
RA

M
Cloud

node rem
ove

RA
M

Cloud
noderem

ove
RA

M
Cloud

node

rem
ove

RA
M

Cloud
node

rem
ove

RA
M

Cloud
node

upper lim
it

low
er lim

it

F
igure

10.3:
E

lasticity
evaluation

w
ith

an
quadratically

in-
and

decreasing
w

orkload.
T

he
num

ber
of

the
nodes

in
the

R
A

M
C

loud
cluster

varies
in

dependence
ofa

changing
w

orkload
im

posed
by

a
changing

num
ber

ofA
nalyticsD

B
nodes.

E
ach

A
nalyticsD

B
node

executes
the

Star
Schem

a
B

enchm
ark

at
a

sizing
factor

ten,the
execution

strategy
is

operator
push.

126

Part IV

Conclusions and Future Work

127

Chapter 11

Conclusions

Current state-of-the-art parallel main memory DBMSs are designed according to
the principles of a shared-nothing architecture driven by the intention of minimiz-
ing network traffic and thereby preserve the main memory performance advantage
(as discussed in Chapter 2). The advent of RDMA-enabled network technology
makes the creation of a parallel main memory DBMS based on a shared-storage
technology feasible. A modern storage system such as RAMCloud keeps all data
resident in main memory, provides durability, high-availability and is elastic: ex-
ploiting these characteristics in the context of a database management system is
desirable. Nowadays, provisioning of information technology infrastructure over
the Internet — including in-memory computing — allows the service providers to
leverage the economies of scale and offer their services at an unbeatable price point.
Being able to utilize hosted main memory-based storage for operating a database
system makes in-memory data management even more economically viable.

Consequently, this work describes building a columnar database on shared
main memory-based storage. The DBMS that is used throughout the thesis is
AnalyticsDB which features dictionary-compression, a column-at-a-time execution
model, applies the pattern of late materialization and is optimized for read-mostly
respectively mixed workloads. Several instances of AnalyticsDB share a common
access to main memory-based storage provided by RAMCloud, in combination
with RDMA-enabled network.

Part I of this thesis describes that AnalyticsDB features an encapsulation of
data access and operator execution via an interface which allows seamlessly switch-
ing between local or remote main memory. Since RAMCloud provides not only
storage capacity but also processing power, this allows for pushing-down the exe-
cution of database operators into the storage system. Part I also shows that the
data of a column-oriented DBMS can be persisted in a hash table while at the

129

Chapter 11: Conclusions

same time maintaining the fast scan speed when working on column-oriented data
by chopping up a column into small blocks and storing each block as a key-value
pair. We demonstrated that with a tuple size of 8-bytes a block size of 1000 tu-
ples is sufficient to achieve the same scan speed as with a completely sequential
placement of all tuples.

Part II tackles the problem of placing the execution of database operators.
The presented system model allows the estimation of operator execution costs in
terms of network transfer, data processed in memory, and wall time. This can
be used for database operators that work on one relation at a time — such as a
scan or materialize operation — to discuss the site selection problem (data pull
vs. operator push). Since a database query translates to the execution of several
database operators, it is possible that the optimal site selection varies per operator.
For the execution of a database operator that works on two (or more) relations
at a time — such as a join — the system model is enriched by additional factors
such as the chosen algorithm (e.g. Grace- vs. DBNL- vs. Cyclo-Join), the data
partitioning of the respective relations and their overlapping as well as the allowed
resource allocation.

Part III presents an evaluation of AnalyticsDB on RAMCloud on a cluster with
60 nodes where all nodes are connected via RDMA-enabled network equipment.
We show that query processing performance is about 2.4x slower if everything is
done via the data pull operator execution strategy (i.e. RAMCloud is being used
only for data access), and about 27% slower if operator execution is also supported
inside RAMCloud (in comparison to operating only on main memory inside a
server without any network communication). The fast-crash recovery feature of
RAMCloud can be leveraged for providing high-availability (e.g. a server crash
during query execution only delays the query response for about one second). Our
solution is elastic in a way that it adapts to changing workloads a) within seconds
b) without interruption of the ongoing query processing and c) without manual
intervention.

A closing remark: this work comes to the conclusion that deploying a parallel
main memory-based DBMS on a storage system such as RAMCloud allows lever-
aging the features of the storage system, but incorporates a performance penalty
in comparison to operating on local main memory. Is this a beneficial trade-off?
We believe yes : a) When operating a system at scale, the scalability and elas-
ticity of the overall system is more important than the last percentage points of
performance. b) This approach enables the main memory DBMS to neglect the
aspect of data durability — which currently is a complex aspect of a main memory
DBMS. c) The comparison to operating on local main memory for quantifying the
performance penalties references the best-case scenario which is not achievable in
any parallel DBMS architecture.

130

Chapter 12

Future Work

The work presented in this thesis can be seen as a foundation for future research in
the area of creating a parallel main memory DBMS on top of a main memory-based
storage system. The following aspects are of interest:

• Implications on the DBMS query optimizer: in this work, the DBMS (Ana-
lyticsDB) received a query plan and executed it as is — the only variation
with regards to operating on a shared main memory-based storage is decid-
ing on the execution strategy of each individual operator. In a next step, it
might be beneficial to include the information of remotely located data while
creating and optimizing the query plan.

• Limitations of the independent scale-out of query processing and storage
capacities: the experiments in Part III cover the independent scale-out of
query processing and storage capacities. However, they do not explore the
limitations of this separation or come up with a guideline which ratios of
query processing and storage capacities can be considered reasonable.

• Limitations of scaling-out while using the operator-push execution strategy:
pushing down the execution of database operators into a storage system cre-
ates an additional potentially unevenly balanced load. This promotes the
creation of bottlenecks and resource contention in the storage system. Spec-
ifying the interdependencies of this additional load and the goal of scaling
out gracefully is a remaining challenge.

• Comparison with non-volatile memory: a main memory-based storage sys-
tem such as RAMCloud provides data durability while operating on volatile
DRAM. With the impending advent of non-volatile main memory modules,
it is not clear from a DBMS perspective which approach is preferable in
terms of performance, high-availability, and total cost of ownership.

131

Chapter 12: Future Work

132

Appendix

Table 12.1: Star Schema Benchmark relations involved in joins operations. One record
has a size of 8 bytes.

Relation Name ID Number of Records in SF1
LineOrder::Custkey R1 6000000
LineOrder::Orderdate R2 6000000
LineOrder:Partkey R3 6000000
LineOrder::Suppkey R4 6000000
Customer::Custkey S1 150000
Date::Datekey S2 2556
Part::Partkey S3 200000
Supplier::Suppkey S4 10000

133

Chapter 12: Future Work

Table 12.2: Star Schema Benchmark join operations.

Join Query R R S S
ID ID ID Selectivity ID Selectivity
J1 Query 1.1 R2 0.136 S2 0.142
J2 Query 1.2 R2 0.054 S2 0.011
J3 Query 1.3 R2 0.027 S2 0.002
J4 Query 2.1 R3 1 S3 0.04
J5 Query 2.1 R4 0.04 S4 0.2
J6 Query 2.1 R2 0.008 S2 1
J7 Query 2.2 R3 1 S3 0.008
J8 Query 2.2 R4 0.008 S4 0.2
J9 Query 2.2 R2 0.0016 S2 1
J10 Query 2.3 R3 1 S3 0.001
J11 Query 2.3 R4 0.001 S4 0.2
J12 Query 2.3 R2 0.0002 S2 1
J13 Query 3.1 R1 1 S1 0.2
J14 Query 3.1 R4 0.2 S4 0.2
J15 Query 3.1 R2 0.04 S2 1
J16 Query 3.2 R1 1 S1 0.04
J17 Query 3.2 R4 0.04 S4 0.04
J18 Query 3.2 R2 0.0016 S2 0.86
J19 Query 3.3 R1 1 S1 0.008
J20 Query 3.3 R4 0.008 S4 0.008
J21 Query 3.3 R2 0.00006 S2 0.86
J22 Query 3.4 R1 1 S1 0.008
J23 Query 3.4 R4 0.008 S4 0.008
J24 Query 3.4 R2 0.00006 S2 0.012
J25 Query 4.1 R1 1 S1 0.2
J26 Query 4.1 R4 0.2 S4 0.2
J27 Query 4.1 R3 0.04 S3 0.4
J28 Query 4.1 R2 0.016 S2 1
J29 Query 4.2 R1 1 S1 0.2
J30 Query 4.2 R4 0.2 S4 0.2
J31 Query 4.2 R3 0.04 S3 0.4
J32 Query 4.2 R2 0.016 S2 0.285
J33 Query 4.3 R3 1 S3 0.008
J34 Query 4.3 R4 0.08 S4 0.04
J35 Query 4.3 R1 0.00003 S1 0.2
J36 Query 4.3 R2 0.00006 S2 0.285

134

Abbreviations and Glossary

AnalyticsDB is a prototypical in-memory DBMS written in C++ that can seam-
lessly switch between local and remote main memory.

Cloud Computing is a paradigm that describes the provisioning of information
technology infrastructure, services, and applications over the Internet.

Cloud Storage System manages and persists large amounts of data created and
consumed by cloud computing applications.

Column-Oriented Data Layout stores all the instances of the same attribute
type from different tuples physically together.

CPU Central Processing Unit

Database is a collection of related data [EN10].

Database Management System (DBMS) is a collection of programs that en-
ables users to create and maintain a database. The DBMS is a general-
purpose software system that facilitates the processes of defining, construct-
ing, manipulating, and sharing databases among various users and applica-
tions [EN10].

Database Operator evaluates a condition on a set of tuples.

Database-Aware Storage System directly executes database operators inside
the storage system [RGF98, Kee99, SBADAD05]. This approach is based on
the idea of active storage/active disks/intelligent disks where the computa-
tional power inside the storage device is being used for moving computation
closer to the data [AUS98, KPH98].

DBMS Database Management System

135

Abbreviations and Glossary

Distributed Database is a collection of multiple, logically interrelated databases
distributed over a computer network. A distributed database management
system (DBMS) is then defined as the software system that permits the
management of the distributed database system and makes the distribution
transparent to the users [ÖV11].

Distributed Filesystem allows users of physically distributed computers to share
data and storage resources by using a common file system [LS90].

DRAM Dynamic Random-Access Memory

Elasticity is the ability to deal with load variations by adding more resources
during high load or consolidating the tenants to fewer nodes when the load
decreases, all in a live system without service disruption, is therefore critical
for these systems. Elasticity is critical to minimize operating cost while
ensuring good performance during high loads. It allows consolidation of
the system to consume less resources and thus minimize the operating cost
during periods of low load while allowing it to dynamically scale up its size
as the load decreases [AEADE11].

ETL Extract, Transform, and Load

IMDB In-Memory Database

In-Memory Database (IMDB) system or also referred to as main memory
database system is a database system where data resides permanently in
main physical memory [GMS92].

InfiniBand is a switched fabric computer network communications link.

Mixed Workload is a database workload that includes transactional as well as
analytical queries [Pla09].

MMDB Main Memory Database, see In-Memory Database

NoSQL is most commonly referred to as “not only SQL”. This term does not reject
the query language SQL, but rather expresses that the design of relational
database management systems is unsuitable for large-scale cloud applications
[Bur10].

OLAP Online Analytical Processing

OLTP Online Transaction Processing

136

Abbreviations and Glossary

Parallel Database Management System (DBMS) is a revision and exten-
sion of a distributed database management system that exploits the parallel
nature of an underlying computing system in order to accelerate query exe-
cution [DG92].

RAMCloud is a storage system from Stanford University where data is kept
entirely in DRAM [OAE+11].

RDMA Remote Direct Memory Access

Remote Direct Memory Access (RDMA) Remote Direct Memory Access en-
ables the network interface card to transfer data directly into the main mem-
ory which bypasses the operating system by eliminating the need to copy data
into the data buffers in the operating system (which is also known as zero-
copy networking). In addition, transferring data via RDMA can be done
without invoking the CPU [Mel13].

Row-Oriented Data Layout stores all attributes of a tuple physically together.

Scalability is a desirable property of a system, which indicates its ability to either
handle growing amounts of work in a graceful manner or its ability to improve
throughput when additional resources (typically hardware) are added. A
system whose performance improves after adding hardware, proportionally
to the capacity added, is said to be a scalable system [AEADE11].

Shared-memory (or shared-everything) is an architectural approach for a paral-
lel database management system where all processors share direct access to
any main memory module and to all disks over an interconnection [ÖV11].

Shared-storage is an architectural approach for a parallel database management
system where each memory and disk is owned by some processor which acts
as a server for that data.. [ÖV11].

Shared-storage (or shared-disk or shared-data) is an architectural approach for
a parallel database management system where processors have each their
own memory, but they share access to a single collection of storage devices
such as a hard-disk. [ÖV11].

Site Selection in the context of client-server computing describes the decision
whether to execute a query at the client machine at which the query was
initiated or at the server machines that store the relevant data. In other
words, the question is whether to move the query to the data (execution at
servers) or to move the data to the query (execution at clients) [Kos00].

137

Abbreviations and Glossary

SQL Structured (English) Query Language [CB74]

SSB Star Schema Benchmark

Star Schema Benchmark (SSB) is an analytical database benchmark [O’N].

Switch Fabric Communication describes a network topology where a) each
network node connects with each other via one or more switches, b) the
connection between two nodes is established based on the crossbar switch
theory [Mat01] resulting in no resource conflicts with connections between
any other nodes at the same time [GS02].

138

Bibliography

[ACC+10] Daniel J. Abadi, Michael Carey, Surajit Chaudhuri, Hector Garcia-
Molina, Jignesh M. Patel, and Raghu Ramakrishnan. let’s. Proc.
VLDB Endow., 3(1-2):1657–1657, September 2010.

[ADHW99] Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and David A.
Wood. Dbmss on a modern processor: Where does time go? In Mal-
colm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B.
Zdonik, and Michael L. Brodie, editors, VLDB’99, Proceedings of
25th International Conference on Very Large Data Bases, Septem-
ber 7-10, 1999, Edinburgh, Scotland, UK, pages 266–277. Morgan
Kaufmann, 1999.

[AEADE11] Divyakant Agrawal, Amr El Abbadi, Sudipto Das, and Aaron J.
Elmore. Database scalability, elasticity, and autonomy in the cloud.
In Proceedings of the 16th International Conference on Database
Systems for Advanced Applications - Volume Part I, DASFAA’11,
pages 2–15, Berlin, Heidelberg, 2011. Springer-Verlag.

[AHK85] Arthur C. Ammann, Maria Hanrahan, and Ravi Krishnamurthy.
Design of a memory resident dbms. In COMPCON, pages 54–58.
IEEE Computer Society, 1985.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to
achieving large scale computing capabilities. In Proceedings of the
April 18-20, 1967, spring joint computer conference, AFIPS ’67
(Spring), pages 483–485, New York, NY, USA, 1967. ACM.

[AMD13] AMD - Global Provider of Innovative Graphics, Processors and Me-
dia Solutions. http://www.amd.com, Last checked on July 23rd
2013.

[AMDM07] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel
Madden. Materialization Strategies in a Column-Oriented DBMS.

139

BIBLIOGRAPHY

In Proceedings of the 23rd International Conference on Data Engi-
neering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April
15-20, 2007, pages 466–475. IEEE, 2007.

[AMF06] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating
compression and execution in column-oriented database systems.
In Proceedings of the 2006 ACM SIGMOD international conference
on Management of data, SIGMOD ’06, pages 671–682, New York,
NY, USA, 2006. ACM.

[AMH08] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-
stores vs. row-stores: how different are they really? In Proceedings of
the 2008 ACM SIGMOD international conference on Management
of data, SIGMOD ’08, pages 967–980, New York, NY, USA, 2008.
ACM.

[Ass13] InfiniBand Trade Association. The infiniband architecture.
http://www.infinibandta.org/content/pages.php?pg=
technology_download, Last checked on July 23rd 2013.

[AUS98] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: pro-
gramming model, algorithms and evaluation. In Proceedings of the
eighth international conference on Architectural support for pro-
gramming languages and operating systems, ASPLOS VIII, pages
81–91, New York, NY, USA, 1998. ACM.

[BCV91] Björn Bergsten, Michel Couprie, and Patrick Valduriez. Prototyping
dbs3, a shared-memory parallel database system. In Proceedings
of the First International Conference on Parallel and Distributed
Information Systems (PDIS 1991), pages 226–234, 1991.

[BEH+10] Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker
Markl, and Daniel Warneke. Nephele/pacts: A programming model
and execution framework for web-scale analytical processing. In
Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC
’10, pages 119–130, New York, NY, USA, 2010. ACM.

[BFG+08] Matthias Brantner, Daniela Florescu, David A. Graf, Donald Koss-
mann, and Tim Kraska. Building a database on S3. In Proceedings
of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June 10-12, 2008,
pages 251–264. ACM, 2008.

140

BIBLIOGRAPHY

[BGK96] Doug Burger, James R. Goodman, and Alain Kägi. Memory band-
width limitations of future microprocessors. In Proceedings of the
23rd annual international symposium on Computer architecture,
ISCA ’96, pages 78–89, New York, NY, USA, 1996. ACM.

[BGvK+06] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold,
Jan Rittinger, and Jens Teubner. Monetdb/xquery: a fast xquery
processor powered by a relational engine. In Proceedings of the 2006
ACM SIGMOD international conference on Management of data,
SIGMOD ’06, pages 479–490, New York, NY, USA, 2006. ACM.

[BKM08a] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Break-
ing the memory wall in monetdb. Commun. ACM, 51(12):77–85,
December 2008.

[BKM08b] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking
the memory wall in MonetDB. Commun. ACM, 51(12):77–85, 2008.

[BLP11] Spyros Blanas, Yinan Li, and Jignesh M. Patel. Design and evalu-
ation of main memory hash join algorithms for multi-core cpus. In
Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data, SIGMOD ’11, pages 37–48, New York,
NY, USA, 2011. ACM.

[BMK99] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. Database
architecture optimized for the new bottleneck: Memory access. In
Malcolm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stan-
ley B. Zdonik, and Michael L. Brodie, editors, VLDB’99, Proceed-
ings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 54–65. Mor-
gan Kaufmann, 1999.

[BN97] Philip Bernstein and Eric Newcomer. Principles of transaction pro-
cessing: for the systems professional. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1997.

[Bon02] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For Query-
Intensive Applications. PhD thesis, Universiteit van Amsterdam,
Amsterdam, The Netherlands, May 2002.

[BPASP11] Kamil Bajda-Pawlikowski, Daniel J. Abadi, Avi Silberschatz, and
Erik Paulson. Efficient processing of data warehousing queries in a

141

BIBLIOGRAPHY

split execution environment. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of Data, SIGMOD
’11, pages 1165–1176, New York, NY, USA, 2011. ACM.

[Bre00] Eric A. Brewer. Towards robust distributed systems (abstract). In
Proceedings of the Nineteenth Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC ’00, pages 7–, New York, NY,
USA, 2000. ACM.

[Bre12] Eric Brewer. Cap twelve years later: How the "rules" have changed.
Computer, 45(2):23–29, 2012.

[BS13] Zoltan Böszörmenyi and Hans-Jürgen Schönig. PostgreSQL Repli-
cation. Packt Publishing, 2013.

[BTAÖ13] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Öszu.
Main-memory hash joins on multi-core cpus: Tuning to the under-
lying hardware. In Proceedings of the 29th Int’l Conference on Data
Engineering (ICDE), Brisbane, Australia, April 2013.

[Bur10] Greg Burd. NoSQL. login magazine, 36(5), 2010.

[CAK+81] D. D. Chamberlin, M. M. Astrahan, W. F. King, R. A. Lorie, J. W.
Mehl, T. G. Price, M. Schkolnick, P. Griffiths Selinger, D. R. Slutz,
B. W. Wade, and R. A. Yost. Support for repetitive transactions and
ad hoc queries in system r. ACM Trans. Database Syst., 6(1):70–94,
March 1981.

[Cat11] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Rec.,
39(4):12–27, May 2011.

[CB74] Donald D. Chamberlin and Raymond F. Boyce. Sequel: A struc-
tured english query language. In Proceedings of the 1974 ACM SIG-
FIDET (now SIGMOD) workshop on Data description, access and
control, pages 249–264, New York, NY, USA, 1974. ACM.

[CC11] Tom Coffind and Leona Coffing. Tera-Tom on Teradata SQL
V12/V13. Coffing Publishing, 2011.

[CCS93] E.F. Codd, S. B. Codd, and C. T. Salley. Providing olap (on-line
analytical processing) to user-analysts: An it mandate. Technical
report, E.F.Codd Associates, 1993.

142

BIBLIOGRAPHY

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. Bigtable: A distributed storage system for
structured data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation - Volume 7, OSDI
’06, pages 15–15, Berkeley, CA, USA, 2006. USENIX Association.

[CG94] Richard L. Cole and Goetz Graefe. Optimization of dynamic query
evaluation plans. In Proceedings of the 1994 ACM SIGMOD inter-
national conference on Management of data, SIGMOD ’94, pages
150–160, New York, NY, USA, 1994. ACM.

[CK85] George P. Copeland and Setrag N. Khoshafian. A decomposition
storage model. In Proceedings of the 1985 ACM SIGMOD inter-
national conference on Management of data, SIGMOD ’85, pages
268–279, New York, NY, USA, 1985. ACM.

[CKP+93] David Culler, Richard Karp, David Patterson, Abhijit Sahay,
Klaus Erik Schauser, Eunice Santos, Ramesh Subramonian, and
Thorsten von Eicken. Logp: Towards a realistic model of parallel
computation. In Proceedings of the Fourth ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPOPP
’93, pages 1–12, New York, NY, USA, 1993. ACM.

[CL86] Michael J. Carey and Hongjun Lu. Load balancing in a locally dis-
tributed db system. In Proceedings of the 1986 ACM SIGMOD in-
ternational conference on Management of data, SIGMOD ’86, pages
108–119, New York, NY, USA, 1986. ACM.

[Cod70] E. F. Codd. A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387, 1970.

[Cor13] Microsoft Corporation. Microsoft sql server-hadoop connector user
guide. http://www.microsoft.com/en-us/download/details.
aspx?id=27584, Last checked on July 23rd 2013.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrish-
nan, and Russell Sears. Benchmarking cloud serving systems with
ycsb. In SoCC ’10: Proceedings of the 1st ACM symposium on
Cloud computing, pages 143–154, 2010.

[DF06] Alex Davies and Harrison Fisk. MySQL Clustering. MySQL Press,
2006.

143

BIBLIOGRAPHY

[DFI+13] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson,
Pravin Mittal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling.
Hekaton: Sql server’s memory-optimized oltp engine. In Proceedings
of the 2013 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’13, pages 1243–1254, New York, NY, USA,
2013. ACM.

[DG92] David DeWitt and Jim Gray. Parallel database systems: the future
of high performance database systems. Commun. ACM, 35(6):85–
98, June 1992.

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. Commun. ACM, 51(1):107–113, Jan-
uary 2008.

[DGS+90] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I.
Hsiao, and R. Rasmussen. The gamma database machine project.
IEEE Trans. on Knowl. and Data Eng., 2(1):44–62, March 1990.

[DHJ+07] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavard-
han Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Prin-
ciples, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.

[DHN+13] David J. DeWitt, Alan Halverson, Rimma Nehme, Srinath Shankar,
Josep Aguilar-Saborit, Artin Avanes, Miro Flasza, and Jim Gram-
ling. Split query processing in polybase. In Proceedings of the 2013
ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 1255–1266, New York, NY, USA, 2013. ACM.

[DMS13] D. J. DeWitt, S. Madden, and M. Stonebraker. How to Build a High-
Performance Data Warehouse. http://db.lcs.mit.edu/madden/
high_perf.pdf, Last checked on July 23rd 2013.

[Doc13] Microsoft SQL Server 2012 Documentation. xVelocity in
SQL Server 2012. http://http://msdn.microsoft.com/en-us/
library/hh922900.aspx, Last checked on July 23rd 2013.

[EN10] Ramez A. Elmasri and Shankrant B. Navathe. Fundamentals of
Database Systems. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 6th edition, 2010.

144

BIBLIOGRAPHY

[ERAEB05] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced Computer
Architecture and Parallel Processing (Wiley Series on Parallel and
Distributed Computing). Wiley-Interscience, 2005.

[FCP+12] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd,
Stefan Sigg, and Wolfgang Lehner. Sap hana database: data man-
agement for modern business applications. SIGMOD Rec., 40(4):45–
51, January 2012.

[FGKT10] Philip Werner Frey, Romulo Goncalves, Martin L. Kersten, and Jens
Teubner. A spinning join that does not get dizzy. In 2010 Interna-
tional Conference on Distributed Computing Systems, ICDCS 2010,
Genova, Italy, June 21-25, 2010, pages 283–292, 2010.

[Fit04] Brad Fitzpatrick. Distributed caching with memcached. Linux J.,
2004(124):5–, August 2004.

[FJK96] Michael J. Franklin, Björn Thór Jónsson, and Donald Kossmann.
Performance tradeoffs for client-server query processing. In Pro-
ceedings of the 1996 ACM SIGMOD international conference on
Management of data, SIGMOD ’96, pages 149–160, New York, NY,
USA, 1996. ACM.

[FML+12] Franz Färber, Norman May, Wolfgang Lehner, Philipp Große, Ingo
Müller, Hannes Rauhe, and Jonathan Dees. The SAP HANA
Database – An Architecture Overview. IEEE Data Eng. Bull.,
35(1):28–33, 2012.

[GCMK+12] Martin Grund, Philippe Cudré-Mauroux, Jens Krüger, Samuel
Madden, and Hasso Plattner. An overview of hyrise - a main mem-
ory hybrid storage engine. IEEE Data Eng. Bull., 35(1):52–57, 2012.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
google file system. In Proceedings of the Nineteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’03, pages 29–43,
New York, NY, USA, 2003. ACM.

[GGS96] Sumit Ganguly, Akshay Goel, and Avi Silberschatz. Efficient and
accurate cost models for parallel query optimization (extended ab-
stract). In Proceedings of the fifteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, PODS ’96,
pages 172–181, New York, NY, USA, 1996. ACM.

145

BIBLIOGRAPHY

[GIG13] GIGABYTE - Motherboard, Graphics Card, Notebook, Server and
More. http://www.gigabyte.us, Last checked on July 23rd 2013.

[GK85] Dieter Gawlick and David Kinkade. Varieties of concurrency control
in ims/vs fast path. IEEE Database Eng. Bull., 8(2):3–10, 1985.

[GK10] Romulo Goncalves and Martin L. Kersten. The data cyclotron query
processing scheme. In EDBT 2010, 13th International Conference
on Extending Database Technology, Lausanne, Switzerland, March
22-26, 2010, Proceedings, pages 75–86, 2010.

[GK11] Romulo Goncalves and Martin Kersten. The data cyclotron query
processing scheme. ACM Trans. Database Syst., 36(4):27:1–27:35,
December 2011.

[GKP+10] Martin Grund, Jens Krüger, Hasso Plattner, Philippe Cudre-
Mauroux, and Samuel Madden. Hyrise: a main memory hybrid
storage engine. Proc. VLDB Endow., 4(2):105–116, November 2010.

[GMS92] H. Garcia-Molina and K. Salem. Main memory database systems:
An overview. IEEE Trans. on Knowl. and Data Eng., 4(6):509–516,
December 1992.

[GMUW08] Hector Garcia-Molina, Jeffrey D. Ullman, and Jennifer Widom.
Database Systems: The Complete Book. Prentice Hall Press, Upper
Saddle River, NJ, USA, 2 edition, 2008.

[Gra94a] G. Graefe. Volcano— an extensible and parallel query evalua-
tion system. IEEE Trans. on Knowl. and Data Eng., 6(1):120–135,
February 1994.

[Gra94b] Goetz Graefe. Volcano - an extensible and parallel query evaluation
system. IEEE Trans. Knowl. Data Eng., 6(1):120–135, 1994.

[GS02] Meeta Gupta and C. Anita Sastry. Storage Area Network Funda-
mentals. Cisco Press, 2002.

[HF86] Robert Brian Hagmann and Domenico Ferrari. Performance anal-
ysis of several back-end database architectures. ACM Trans.
Database Syst., 11(1):1–26, March 1986.

[Hil90] Mark D. Hill. What is scalability? SIGARCH Comput. Archit.
News, 18(4):18–21, December 1990.

146

BIBLIOGRAPHY

[HLM+11] Theo Härder, Wolfgang Lehner, Bernhard Mitschang, Harald
Schöning, and Holger Schwarz, editors. Datenbanksysteme für
Business, Technologie und Web (BTW), 14. Fachtagung des GI-
Fachbereichs "Datenbanken und Informationssysteme" (DBIS), 2.-
4.3.2011 in Kaiserslautern, Germany, volume 180 of LNI. GI, 2011.

[HM95] Waqar Hasan and Rajeev Motwani. Coloring away communication
in parallel query optimization. In Proceedings of the 21th Inter-
national Conference on Very Large Data Bases, VLDB ’95, pages
239–250, San Francisco, CA, USA, 1995. Morgan Kaufmann Pub-
lishers Inc.

[Hog13] Mike Hogan. Shared-Disk vs. Shared-Nothing - Comparing Archi-
tectures for Clustered Databases. http://http://www.scaledb.
com/pdfs/WP_SDvSN.pdf, Last checked on July 23rd 2013.

[HP11] John L. Hennessy and David A. Patterson. Computer Architecture,
Fifth Edition: A Quantitative Approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 5th edition, 2011.

[HS13] Donald J. Haderle and Cynthia M. Saracco. The history and growth
of ibm’s db2. IEEE Annals of the History of Computing, 35(2):54–
66, 2013.

[HSW+04] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, M. Satya-
narayanan, Gregory R. Ganger, Erik Riedel, and Anastassia Aila-
maki. Diamond: A storage architecture for early discard in interac-
tive search. In Proceedings of the 3rd USENIX Conference on File
and Storage Technologies, FAST ’04, pages 73–86, Berkeley, CA,
USA, 2004. USENIX Association.

[IBM13] IBM. DB2 pureScale. http://www.ibm.com/software/data/
db2/linux-unix-windows/purescale/, Last checked on July 23rd
2013.

[ILFL12] Sadeka Islam, Kevin Lee, Alan Fekete, and Anna Liu. How a con-
sumer can measure elasticity for cloud platforms. In Proceedings
of the 3rd ACM/SPEC International Conference on Performance
Engineering, ICPE ’12, pages 85–96, New York, NY, USA, 2012.
ACM.

[Int13] Intel Coporation. Intel automated relational knowledgebase. http:
//http://ark.intel.com, Last checked on July 1st 2013.

147

BIBLIOGRAPHY

[Jac13] Dean Jacobs. Dean’s Blog: After reviewing some cloud database
papers. http://http://deanbjacobs.wordpress.com/2010/08/
12/cloudpaperreviews/, Last checked on July 23rd 2013.

[KC04] Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming, and De-
livering Data. Wiley, Indianapolis, IN, 2004.

[KD98] Navin Kabra and David J. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans. In Proceedings
of the 1998 ACM SIGMOD international conference on Manage-
ment of data, SIGMOD ’98, pages 106–117, New York, NY, USA,
1998. ACM.

[Kee99] Kimberly Kristine Keeton. Computer Architecture Support For
Database Applications. PhD thesis, University of California at
Berkeley, 1999.

[KGT06] Andreas Knoepfel, Bernhard Groene, and Peter Tabeling. Funda-
mental Modeling Concepts: Effective Communication of IT Systems.
John Wiley & Sons, 2006.

[KGT+10] Jens Krueger, Martin Grund, Christian Tinnefeld, Hasso Plattner,
and Franz Faerber. Optimizing write performance for read opti-
mized databases. In Proceedings of the 15th international confer-
ence on Database Systems for Advanced Applications - Volume Part
II, DASFAA’10, pages 291–305, Berlin, Heidelberg, 2010. Springer-
Verlag.

[Kir96] John Kirkwood. SYBASE SQL Server II. International Thomson
Publishing Company, 1st edition, 1996.

[KKG+11] Jens Krueger, Changkyu Kim, Martin Grund, Nadathur Satish,
David Schwalb, Jatin Chhugani, Hasso Plattner, and Pradeep
Dubey. Fast updates on read-optimized databases using multi-core
cpus. Proc. VLDB Endow., 5(1):61–72, September 2011.

[KKN+08] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew
Pavlo, Alexander Rasin, Stanley Zdonik, Evan P. C. Jones, Samuel
Madden, Michael Stonebraker, Yang Zhang, John Hugg, and
Daniel J. Abadi. H-Store: a high-performance, distributed main
memory transaction processing system. Proc. VLDB Endow.,
1(2):1496–1499, 2008.

148

BIBLIOGRAPHY

[KLB+12] Barbara Klein, Richard Alan Long, Kenneth Ray Blackman, Di-
ane Lynne Goff, Stephen Paul Nathan, Moira McFadden Lanyi,
Margaret M. Wilson, John Butterweck, and Sandra L. Sherrill. An
Introduction to IMS: Your Complete Guide to IBM Information
Management System. IBM Press, 2nd edition, 2012.

[Klo10] Rusty Klophaus. Riak core: Building distributed applications with-
out shared state. In ACM SIGPLAN Commercial Users of Func-
tional Programming, CUFP ’10, pages 14:1–14:1, New York, NY,
USA, 2010. ACM.

[KNI+11] Alfons Kemper, Thomas Neumann, Fakultät Für Informatik, Tech-
nische Universität München, and D-Garching. Hyper: A hybrid
oltpolap main memory database system based on virtual memory
snapshots. In In ICDE, 2011.

[Kos00] Donald Kossmann. The state of the art in distributed query pro-
cessing. ACM Comput. Surv., 32(4):422–469, December 2000.

[KPH98] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein.
A case for intelligent disks (idisks). SIGMOD Rec., 27(3):42–52,
September 1998.

[KTGP10] Jens Krueger, Christian Tinnefeld, Martin Grund, and Hasso Plat-
tner. A case for online mixed workload processing. In Proceedings
of the Third International Workshop on Testing Database Systems,
DBTest ’10, pages 8:1–8:6, New York, NY, USA, 2010. ACM.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Commun. ACM, 21(7):558–565, July 1978.

[LCF+13] Per-Ake Larson, Cipri Clinciu, Campbell Fraser, Eric N. Hanson,
Mostafa Mokhtar, Michal Nowakiewicz, Vassilis Papadimos, Su-
san L. Price, Srikumar Rangarajan, Remus Rusanu, and Mayukh
Saubhasik. Enhancements to sql server column stores. In Pro-
ceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’13, pages 1159–1168, New York,
NY, USA, 2013. ACM.

[LFV+12] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran,
Ben Vandiver, Lyric Doshi, and Chuck Bear. The vertica analytic
database: C-store 7 years later. Proc. VLDB Endow., 5(12):1790–
1801, August 2012.

149

BIBLIOGRAPHY

[LKF+13] Juchang Lee, Yong Sik Kwon, Franz Farber, Michael Muehle, Chul-
won Lee, Christian Bensberg, Joo Yeon Lee, Arthur H. Lee, and
Wolfgang Lehner. Sap hana distributed in-memory database system:
Transaction, session, and metadata management. 2013 IEEE 29th
International Conference on Data Engineering (ICDE), 0:1165–
1173, 2013.

[LLS13] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. The
bw-tree: A b-tree for new hardware platforms. 2013 IEEE 29th
International Conference on Data Engineering (ICDE), pages 302–
313, 2013.

[LM10] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40,
April 2010.

[LS90] Eliezer Levy and Abraham Silberschatz. Distributed file systems:
Concepts and examples. ACM Comput. Surv., 22(4):321–374, De-
cember 1990.

[LVZ93] Rosana S. G. Lanzelotte, Patrick Valduriez, and Mohamed Zaït. On
the effectiveness of optimization search strategies for parallel execu-
tion spaces. In Proceedings of the 19th International Conference on
Very Large Data Bases, VLDB ’93, pages 493–504, San Francisco,
CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[Mat01] S. Matsuda. Theoretical limitations of a hopfield network for cross-
bar switching. Trans. Neur. Netw., 12(3):456–462, May 2001.

[MBK02a] Stefan Manegold, Peter Boncz, and Martin L. Kersten. Generic
database cost models for hierarchical memory systems. In Proceed-
ings of the 28th international conference on Very Large Data Bases,
VLDB ’02, pages 191–202. VLDB Endowment, 2002.

[MBK02b] Stefan Manegold, Peter Boncz, and Martin L. Kersten. Generic
database cost models for hierarchical memory systems. In Proceed-
ings of the 28th international conference on Very Large Data Bases,
VLDB ’02, pages 191–202. VLDB Endowment, 2002.

[MBK02c] Stefan Manegold, Peter Boncz, and Martin L. Kersten. Generic
database cost models for hierarchical memory systems. Techni-
cal Report INS-R0203, CWI, Amsterdam, The Netherlands, March
2002.

150

BIBLIOGRAPHY

[MC13] Masood Mortazavi Yanchen Liu Stephen Morgan Aniket Adnaik
Mengmeng Chen, Fang Cao. Distributed query processing with
monetdb. In 7th Extremely Large Databases Conference (XLDB),
2013.

[ME13] The Register Martin Edwards. Texas Memory RamSan-
440 Texas Memory Systems Makes Mighty Big RAM SSD.
http://www.theregister.co.uk/2008/07/22/texas_memory_
systems_ramsan_440/, Last checked on July 23rd 2013.

[Mel13] Mellanox Technologies. RDMA Aware Networks Programming User
Manual, V1.4 2013.

[mem13a] memcached - a distributed memory object caching system. http:
//memcached.org, Last checked on July 23rd 2013.

[Mem13b] Stratosphere Project Members. Stratosphere. http://www.
stratosphere.eu, Last checked on July 23rd 2013.

[MGL+10] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,
Shiva Shivakumar, Matt Tolton, and Theo Vassilakis. Dremel: in-
teractive analysis of web-scale datasets. Proc. VLDB Endow., 3(1-
2):330–339, September 2010.

[Mic02] Maged M. Michael. High performance dynamic lock-free hash ta-
bles and list-based sets. In Proceedings of the fourteenth annual
ACM symposium on Parallel algorithms and architectures, SPAA
’02, pages 73–82, New York, NY, USA, 2002. ACM.

[MN92] C. Mohan and Inderpal Narang. Efficient locking and caching of
data in the multisystem shard disks transaction environment. In
Alain Pirotte, Claude Delobel, and Georg Gottlob, editors, Ad-
vances in Database Technology - EDBT’92, 3rd International Con-
ference on Extending Database Technology, Vienna, Austria, March
23-27, 1992, Proceedings, volume 580 of Lecture Notes in Computer
Science, pages 453–468. Springer, 1992.

[Moo65] G. E. Moore. Cramming More Components onto Integrated Cir-
cuits. Electronics, 38(8):114–117, April 1965.

[Moo11] Trevor Moore. The Sybase IQ Survival Guide, Versions 12.6 through
to 15.2. [Lulu], 1. ed. edition, 2011. by Trevor Moore.

151

BIBLIOGRAPHY

[MRR+13] Tobias Mühlbauer, Wolf Rödiger, Angelika Reiser, Alfons Kemper,
and Thomas Neumann. Scyper: elastic olap throughput on trans-
actional data. In Proceedings of the Second Workshop on Data An-
alytics in the Cloud, DanaC ’13, pages 11–15, New York, NY, USA,
2013. ACM.

[MSFD11a] Héctor Montaner, Federico Silla, Holger Fröning, and José Duato.
Memscale: in-cluster-memory databases. In Proceedings of the 20th
ACM international conference on Information and knowledge man-
agement, CIKM ’11, pages 2569–2572, New York, NY, USA, 2011.
ACM.

[MSFD11b] Héctor Montaner, Federico Silla, Holger Fröning, and José Du-
ato. Memscaletm: A scalable environment for databases. In Pari-
mala Thulasiraman, Laurence Tianruo Yang, Qiwen Pan, Xingang
Liu, Yaw-Chung Chen, Yo-Ping Huang, Lin-Huang Chang, Che-
Lun Hung, Che-Rung Lee, Justin Y. Shi, and Ying Zhang, editors,
HPCC, pages 339–346. IEEE, 2011.

[MWV+13] Marko Milek, Antoni Wolski, Katriina Vakkila, Dan Behman, Samir
Gupta, and John Seery. Ibm soliddb: Delivering data with extreme
speed. http://http://www-01.ibm.com/support/docview.wss?
uid=swg27020436&aid=1, Last checked on July 23rd 2013.

[MyS13a] MySQL Team. Mysql internals manual - writing a custom stor-
age engine. http://http://dev.mysql.com/doc/internals/en/
custom-engine.html, Last checked on July 23rd 2013.

[MyS13b] MySQL Team. MySQL - The world’s most popular open source
database. http://http://www.mysql.com/, Last checked on Sep
17th 2013.

[Neu11] Thomas Neumann. Efficiently compiling efficient query plans for
modern hardware. Proc. VLDB Endow., 4(9):539–550, June 2011.

[new13] Newegg.com - computer parts, laptops, electornics. http://
newegg.com, Prices checked on Sep 21st 2013.

[NFG+13] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski,
Herman Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel
Peek, Paul Saab, David Stafford, Tony Tung, and Venkateshwaran
Venkataramani. Scaling memcache at facebook. In Proceedings of
the 10th USENIX Conference on Networked Systems Design and

152

BIBLIOGRAPHY

Implementation, nsdi’13, pages 385–398, Berkeley, CA, USA, 2013.
USENIX Association.

[NL06] Linda Null and Julia Lobur. The Essentials of Computer Organi-
zation And Architecture. Jones and Bartlett Publishers, Inc., USA,
2006.

[OAE+11] John K. Ousterhout, Parag Agrawal, David Erickson, Christos
Kozyrakis, Jacob Leverich, David Mazières, Subhasish Mitra, Ar-
avind Narayanan, Diego Ongaro, Guru M. Parulkar, Mendel Rosen-
blum, Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman.
The case for RAMCloud. Commun. ACM, 54(7):121–130, 2011.

[OCD+88] John K. Ousterhout, Andrew R. Cherenson, Fred Douglis,
Michael N. Nelson, and Brent B. Welch. The sprite network op-
erating system. IEEE Computer, 21(2):23–36, 1988.

[O’N] O’Neil, P. E. and O’Neil, E. J. and Chen, X. The Star Schema
Benchmark (SSB).

[ORS+11] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K.
Ousterhout, and Mendel Rosenblum. Fast crash recovery in RAM-
Cloud. In Proceedings of the 23rd ACM Symposium on Operating
Systems Principles 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011, pages 29–41. ACM, 2011.

[ÖV11] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed
Database Systems, Third Edition. Springer, 2011.

[PH08] David A. Patterson and John L. Hennessy. Computer Organization
and Design, Fourth Edition, Fourth Edition: The Hardware/Soft-
ware Interface (The Morgan Kaufmann Series in Computer Archi-
tecture and Design). Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 4th edition, 2008.

[Pil12] Markus Pilman. Running a transactional database on top of ram-
cloud. Master’s thesis, ETH Zürich, Department of Computer Sci-
ence, 2012.

[Pla09] Hasso Plattner. A common database approach for oltp and olap
using an in-memory column database. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data,
SIGMOD ’09, pages 1–2, New York, NY, USA, 2009. ACM.

153

BIBLIOGRAPHY

[Pla11a] Hasso Plattner. In-Memory Data Management - An Inflection
Point for Enterprise Applications. Springer-Verlag Berlin Heidel-
berg, 2011.

[Pla11b] Hasso Plattner. Sanssoucidb: An in-memory database for processing
enterprise workloads. In Härder et al. [HLM+11], pages 2–21.

[Pos13] Postgres-XC Team. Postgres-XC (eXtensible Cluster) Wiki. http:
//postgres-xc.sourceforge.net, Last checked on October 2nd
2013.

[Raa93] Francois Raab. Tpc-c - the standard benchmark for online transac-
tion processing (oltp). In Jim Gray, editor, The Benchmark Hand-
book. Morgan Kaufmann, 1993.

[Rah93] Erhard Rahm. Parallel query processing in shared disk database
systems. SIGMOD Rec., 22(4):32–37, December 1993.

[RGF98] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active stor-
age for large-scale data mining and multimedia. In Proceedings of
the 24rd International Conference on Very Large Data Bases, VLDB
’98, pages 62–73, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

[ROS+11] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosen-
blum, and John K. Ousterhout. It’s time for low latency. In Proceed-
ings of the 13th USENIX conference on Hot topics in operating sys-
tems, HotOS’13, pages 11–11, Berkeley, CA, USA, 2011. USENIX
Association.

[RS13] David Daoud for IDC Rajani Singh. Intel announces 4q12 earn-
ings: Performance assessment and the road ahead. http://www.
idc.com/getdoc.jsp?containerId=lcUS23915413, Last checked
on July 23rd 2013.

[RSI07] Aravindan Raghuveer, Steven W. Schlosser, and Sami Iren. En-
abling database-aware storage with osd. Mass Storage Systems and
Technologies, IEEE / NASA Goddard Conference on, 0:129–142,
2007.

[SAB+05] Mike Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and
Stan Zdonik. C-store: a column-oriented dbms. In Proceedings of

154

BIBLIOGRAPHY

the 31st international conference on Very large data bases, VLDB
’05, pages 553–564. VLDB Endowment, 2005.

[SAP13] SAP AG. SAP HANA Administration Guides. http://help.sap.
com/hana_platform, Last checked on July 23rd 2013.

[SBADAD05] Muthian Sivathanu, Lakshmi N. Bairavasundaram, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Database-aware
semantically-smart storage. In Proceedings of the 4th conference on
USENIX Conference on File and Storage Technologies - Volume 4,
FAST’05, pages 18–18, Berkeley, CA, USA, 2005. USENIX Associ-
ation.

[Sca13] ScaleDB Team. ScaleDB for MySQL - Technical Overview.
http://http://scaledb.com/pdfs/TechnicalOverview.pdf,
Last checked on July 23rd 2013.

[Sch13] Jan Schaffner. Multi Tenancy for Cloud-Based In-Memory Column
Databases. PhD thesis, Hasso-Plattner-Institut, 2013.

[SD89] Donovan A. Schneider and David J. DeWitt. A performance evalu-
ation of four parallel join algorithms in a shared-nothing multipro-
cessor environment. In Proceedings of the 1989 ACM SIGMOD in-
ternational conference on Management of data, SIGMOD ’89, pages
110–121, New York, NY, USA, 1989. ACM.

[Ser13] Amazon Web Services. SAP HANA One on Amazon Web Ser-
vices. https://aws.amazon.com/marketplace/pp/B009KA3CRY,
Last checked on July 23rd 2013.

[SG13] ETH Zürich Systems Group. Department of computer science at
eth zurich: Systems group. http://www.systems.ethz.ch/, Last
checked on July 23rd 2013.

[SGK+88] R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon.
Innovations in internetworking. chapter Design and Implementation
of the Sun Network Filesystem, pages 379–390. Artech House, Inc.,
Norwood, MA, USA, 1988.

[SGM90] K. Salem and H. Garcia-Molina. System m: A transaction process-
ing testbed for memory resident data. IEEE Trans. on Knowl. and
Data Eng., 2(1):161–172, March 1990.

155

BIBLIOGRAPHY

[SH02] Frank Schmuck and Roger Haskin. Gpfs: A shared-disk file system
for large computing clusters. In Proceedings of the 1st USENIX
Conference on File and Storage Technologies, FAST ’02, Berkeley,
CA, USA, 2002. USENIX Association.

[SJK+13] Jan Schaffner, Tim Januschowski, Megan Kercher, Tim Kraska,
Hasso Plattner, Michael J. Franklin, and Dean Jacobs. Rtp: robust
tenant placement for elastic in-memory database clusters. In Pro-
ceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2013, New York, NY, USA, June 22-27,
2013, pages 773–784, 2013.

[SKG+12] Roshan Sumbaly, Jay Kreps, Lei Gao, Alex Feinberg, Chinmay So-
man, and Sam Shah. Serving large-scale batch computed data with
project voldemort. In Proceedings of the 10th USENIX Conference
on File and Storage Technologies, FAST’12, pages 18–18, Berkeley,
CA, USA, 2012. USENIX Association.

[SKRC10] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Proceedings of the
2010 IEEE 26th Symposium on Mass Storage Systems and Tech-
nologies (MSST), MSST ’10, pages 1–10, Washington, DC, USA,
2010. IEEE Computer Society.

[SMHW02] Daniel J. Sorin, Milo M. K. Martin, Mark D. Hill, and David A.
Wood. Safetynet: improving the availability of shared memory
multiprocessors with global checkpoint/recovery. In Proceedings of
the 29th annual international symposium on Computer architecture,
ISCA ’02, pages 123–134, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[Smi13] Zack Smith. Bandwidth: a memory bandwidth benchmark. http:
//home.comcast.net/~veritas/bandwidth.html, Last checked
on July 1st 2013.

[SOE+12] Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins,
Bart Samwel, Radek Vingralek, Chad Whipkey, Xin Chen, Beat
Jegerlehner, Kyle Littlefield, and Phoenix Tong. F1: the fault-
tolerant distributed rdbms supporting google’s ad business. In Pro-
ceedings of the ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24,
2012, pages 777–778, 2012.

156

BIBLIOGRAPHY

[sta04] American National Standards Institute (ANSI) T10 standard. In-
formation technology - scsi object-based storage device commands
(osd). Standard ANSI/INCITS 400-2004, December 2004.

[Sto87] Michael Stonebraker. The design of the postgres storage system.
In Proceedings of the 13th International Conference on Very Large
Data Bases, VLDB ’87, pages 289–300, San Francisco, CA, USA,
1987. Morgan Kaufmann Publishers Inc.

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software. Dr. Dobb’s Journal, 30(3), 2005.

[SW13] Michael Stonebraker and Ariel Weisberg. The voltdb main memory
dbms. IEEE Data Eng. Bull., 36(2):21–27, 2013.

[Syb13a] Sybase - An SAP Company. SAP Sybase IQ. http://www.sybase.
com/products/datawarehousing/sybaseiq, Last checked on July
23rd 2013.

[Syb13b] Sybase - An SAP Company. A Practical Hardware Sizing Guide for
Sybase R� IQ 15. http://www.sybase.de/files/White_Papers/
Sybase_IQ_15_SizingGuide_wp.pdf, Last checked on Nov 1st
2013.

[Tan07] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edition, 2007.

[Ter13] Teradata. Teradata Active Enterprise Data Ware-
house 6650. http://www.teradata.com/brochures/
Teradata-Active-Enterprise-Data-Warehouse-6650/, Last
checked on July 23rd 2013.

[The13] The Embedded Microprocessor Benchmark Consortium. The core-
mark benchmark. http://http://www.eembc.org/coremark, Last
checked on September 1st 2013.

[Tho02] Erik Thomsen. Olap Solutions: Building Multidimensional Infor-
mation Systems. John Wiley & Sons, Inc., New York, NY, USA,
2nd edition, 2002.

[Tho11] Michael E. Thomadakis. The architecture of the nehalem processor
and the architecture of the nehalem processor and nehalem-ep smp
platforms. Research Report at the University of Texas, 2011.

157

BIBLIOGRAPHY

[Tin09] Christian Tinnefeld. Application characteristics of enterprise ap-
plications. Master’s thesis, Hasso-Plattner-Institut, Potsdam, Ger-
many, 2009.

[TKBP14] Christian Tinnefeld, Donald Kossmann, Joos-Hendrik Boese, and
Hasso Plattner. Parallel join executions in ramcloud. In CloudDB
- In conjunction with ICDE 2014, 2014.

[TKG+13] Christian Tinnefeld, Donald Kossmann, Martin Grund, Joos-
Hendrik Boese, Frank Renkes, Vishal Sikka, and Hasso Plattner.
Elastic online analytical processing on ramcloud. In Proceedings of
the 16th International Conference on Extending Database Technol-
ogy, EDBT ’13, pages 454–464, New York, NY, USA, 2013. ACM.

[TMK+11] Christian Tinnefeld, Stephan Müller, Helen Kaltegärtner, Sebas-
tian Hillig, Lars Butzmann, David Eickhoff, Stefan Klauck, Daniel
Taschik, Björn Wagner, Oliver Xylander, Hasso Plattner, and Cafer
Tosun. Available-to-promise on an in-memory column store. In
Härder et al. [HLM+11], pages 667–686.

[TMKG09] Christian Tinnefeld, Stephan Müller, Jens Krüger, and Martin
Grund. Leveraging multi-core cpus in the context of demand plan-
ning. In 16th International Conference on Industrial Engineering
and Engineering Management (IEEM), Beijing, China, 2009.

[TP11a] Christian Tinnefeld and Hasso Plattner. Cache-conscious data
placement in an in-memory key-value store. In IDEAS 2011: 15th
International Database Engineering and Applications Symposium,
2011.

[TP11b] Christian Tinnefeld and Hasso Plattner. Exploiting memory locality
in distributed key-value stores. In ICDE Workshops 2011, 2011.

[TS90] Shreekant S. Thakkar and Mark Sweiger. Performance of an oltp
application on symmetry multiprocessor system. In Proceedings of
the 17th annual international symposium on Computer Architecture,
ISCA ’90, pages 228–238, New York, NY, USA, 1990. ACM.

[TSJ+09] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. Hive: A warehousing solution over a map-
reduce framework. Proc. VLDB Endow., 2(2):1626–1629, August
2009.

158

BIBLIOGRAPHY

[TTP13] Christian Tinnefeld, Daniel Taschik, and Hasso Plattner. Providing
high-availability and elasticity for an in-memory database system
with ramcloud. In GI-Jahrestagung, pages 472–486, 2013.

[TTP14] Christian Tinnefeld, Daniel Taschik, and Hasso Plattner. Quanti-
fying the elasticity of a database management system. In DBKDA,
2014.

[Tur90] Efraim Turban. Decision Support and Expert Systems: Management
Support Systems. Prentice Hall PTR, Upper Saddle River, NJ, USA,
2nd edition, 1990.

[TWP12] Christian Tinnefeld, Björn Wagner, and Hasso Plattner. Operating
on hierarchical enterprise data in an in-memory column store. In
DBKDA, 2012.

[UFA98] Tolga Urhan, Michael J. Franklin, and Laurent Amsaleg. Cost-
based query scrambling for initial delays. In Proceedings of the 1998
ACM SIGMOD international conference on Management of data,
SIGMOD ’98, pages 130–141, New York, NY, USA, 1998. ACM.

[Ver13] HP Vertica. Native BI, ETL, Hadoop/MapReduce Integra-
tion. http://www.vertica.com/the-analytics-platform/
native-bi-etl-and-hadoop-mapreduce-integration/, Last
checked on July 23rd 2013.

[vN93] John von Neumann. First draft of a report on the edvac. IEEE
Ann. Hist. Comput., 15(4):27–75, October 1993.

[Vog07] Werner Vogels. Data access patterns in the amazon.com technology
platform. In Proceedings of the 33rd International Conference on
Very Large Data Bases, VLDB ’07, pages 1–1. VLDB Endowment,
2007.

[Wei84] Reinhold P. Weicker. Dhrystone: a synthetic systems programming
benchmark. Commun. ACM, 27(10):1013–1030, October 1984.

[Whi09] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc.,
1st edition, 2009.

[WH 1] Antoni Wolski and Sally Hartnell. soliddb and the secrets of speed.
IBM Data Magazine, 2010 Issue 1.

159

BIBLIOGRAPHY

[WW13] Microsoft Windows HPC Team Wenhao Wu. Overview of rdma
on windows. https://www.openfabrics.org/ofa-documents/
doc_download/222-microsoft-overview-of-rdma-on-windows.
html, Last checked on July 23rd 2013.

[Zem12] Fred Zemke. Whats new in sql:2011. SIGMOD Rec., 41(1):67–73,
April 2012.

160

	Title
	Imprint

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Questions and Scope
	1.3 Thesis Outline and Contributions

	2 Related Work and Background
	2.1 Current Computing Hardware Trends
	2.1.1 Larger and Cheaper Main Memory Capacities
	2.1.2 Multi-Core Processors and the Memory Wall
	2.1.3 Switch Fabric Network and Remote Direct Memory Access

	2.2 In-Memory Database Management Systems
	2.2.1 Column- and Row-Oriented Data Layout
	2.2.2 Transactional vs. Analytical vs. Mixed Workload Processing
	2.2.3 State-of-the-Art In-Memory Database Management Systems

	2.3 Parallel Database Management Systems
	2.3.1 Shared-Memory vs. Shared-Disk vs. Shared-Nothing
	2.3.2 State-of-the-Art Parallel Database Management Systems
	2.3.3 Database-Aware Storage Systems
	2.3.4 Operator Placement for Distributed Query Processing

	2.4 Cloud Storage Systems
	2.4.1 State-of-the-Art Cloud Storage Systems
	2.4.2 Combining Database Management and Cloud Storage Systems

	2.5 Classification of this Thesis

	Part I: A Database System Architecture for a Shared Main Memory-Based Storage
	3 System Architecture
	3.1 System Architecture - Requirements, Assumptions, and Overview
	3.2 AnalyticsDB
	3.3 Stanford’s RAMCloud

	4 Data Storage
	4.1 Mapping from Columnar Data to RAMCloud Objects
	4.2 Main Memory Access Costs and Object Sizing

	5 Data Processing
	5.1 Database Operators in AnalyticsDB
	5.2 Operator Push-Down Into RAMCloud
	5.3 From SQL Statement to Main Memory Access

	Part II: Database Operator Execution on a Shared Main Memory-Based Storage
	6 Operator Execution on One Relation
	6.1 Evaluating Operator Execution Strategies
	6.2 Optimizing Operator Execution
	6.3 Implications of Data Partitioning

	7 Operator Execution on Two Relations
	7.1 Grace Join
	7.2 Distributed Block Nested Loop Join
	7.3 Cyclo Join
	7.4 Join Algorithm Comparison
	7.5 Parallel Join Executions

	Part III: Evaluation
	8 Performance Evaluation
	8.1 AnalyticalWorkload: Star Schema Benchmark
	8.2 Mixed Workload: Point-Of-Sales Customer Data

	9 High-Availability Evaluation
	10 Elasticity Evaluation

	Part IV: Conclusions and Future Work
	11 Conclusions
	12 Future Work

	Appendix
	Abbreviations and Glossary
	Bibliography

