
UNIVERSITY OF POTSDAM
HASSO PLATTNER INSTITUTE

INFORMATION SYSTEMS GROUP

Structural Preparation of Raw Data Files

Dissertation
zur Erlangung des akademischen Grades
“Doktor der Ingenieurwissenschaften”

(Dr.-Ing.)

in der Wissenschaftsdisziplin
“Informationssysteme”

eingereicht an der
Digital Engineering Fakultät

der Universität Potsdam

von
Mazhar Hameed

Potsdam, 18. December 2023

ii

Unless otherwise indicated, this work is licensed under a Creative Commons License Attribution –
NonCommercial – ShareAlike 4.0 International.
This does not apply to quoted content and works based on other permissions.
To view a copy of this licence visit:
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode.en

Reviewers

Prof. Dr. Felix Naumann
Hasso Plattner Institute, University of Potsdam

Prof. Dr. Holger Schwarz
Institute for Parallel and Distributed Systems, University of Stuttgart

Prof. Dr. Giovanni Simonini
Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia

Published online on the
Publication Server of the University of Potsdam:
https://doi.org/10.25932/publishup-65567
https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-655678

Abstract

Data preparation stands as a cornerstone in the landscape of data science workflows, com-
manding a significant portion—approximately 80%—of a data scientist’s time. The exten-
sive time consumption in data preparation is primarily attributed to the intricate challenge
faced by data scientists in devising tailored solutions for downstream tasks. This complex-
ity is further magnified by the inadequate availability of metadata, the often ad-hoc nature
of preparation tasks, and the necessity for data scientists to grapple with a diverse range of
sophisticated tools, each presenting its unique intricacies and demands for proficiency.

Previous research in data management has traditionally concentrated on preparing the con-
tent within columns and rows of a relational table, addressing tasks, such as string disam-
biguation, date standardization, or numeric value normalization, commonly referred to as
data cleaning. This focus assumes a perfectly structured input table. Consequently, the
mentioned data cleaning tasks can be effectively applied only after the table has been suc-
cessfully loaded into the respective data cleaning environment, typically in the later stages
of the data processing pipeline.

While current data cleaning tools are well-suited for relational tables, extensive data repos-
itories frequently contain data stored in plain text files, such as CSV files, due to their
adaptable standard. Consequently, these files often exhibit tables with a flexible layout of
rows and columns, lacking a relational structure. This flexibility often results in data being
distributed across cells in arbitrary positions, typically guided by user-specified formatting
guidelines.

Effectively extracting and leveraging these tables in subsequent processing stages necessi-
tates accurate parsing. This thesis emphasizes what we define as the “structure” of a data
file—the fundamental characters within a file essential for parsing and comprehending its
content. Concentrating on the initial stages of the data preprocessing pipeline, this thesis
addresses two crucial aspects: comprehending the structural layout of a table within a raw
data file and automatically identifying and rectifying any structural issues that might hinder
its parsing. Although these issues may not directly impact the table’s content, they pose
significant challenges in parsing the table within the file.

Our initial contribution comprises an extensive survey of commercially available data pre-
paration tools. This survey thoroughly examines their distinct features, the lacking features,
and the necessity for preliminary data processing despite these tools. The primary goal is

v

to elucidate the current state-of-the-art in data preparation systems while identifying ar-
eas for enhancement. Furthermore, the survey explores the encountered challenges in data
preprocessing, emphasizing opportunities for future research and improvement.

Next, we propose a novel data preparation pipeline designed for detecting and correcting
structural errors. The aim of this pipeline is to assist users at the initial preprocessing stage
by ensuring the correct loading of their data into their preferred systems. Our approach be-
gins by introducing SURAGH, an unsupervised system that utilizes a pattern-based method
to identify dominant patterns within a file, independent of external information, such as
data types, row structures, or schemata. By identifying deviations from the dominant pat-
tern, it detects ill-formed rows. Subsequently, our structure correction system, TASHEEH,
gathers the identified ill-formed rows along with dominant patterns and employs a novel
pattern transformation algebra to automatically rectify errors. Our pipeline serves as an
end-to-end solution, transforming a structurally broken CSV file into a well-formatted one,
usually suitable for seamless loading.

Finally, we introduce MORPHER, a user-friendly GUI integrating the functionalities of both
SURAGH and TASHEEH. This interface empowers users to access the pipeline’s features
through visual elements. Our extensive experiments demonstrate the effectiveness of our
data preparation systems, requiring no user involvement. Both SURAGH and TASHEEH

outperform existing state-of-the-art methods significantly in both precision and recall.

vi

Zusammenfassung

Die Datenaufbereitung ist ein wesentlicher Bestandteil von Data-Science-Workflows und
nimmt einen beträchtlichen Teil - etwa 80% - der Zeit eines Datenwissenschaftlers in An-
spruch. Der hohe Zeitaufwand für die Datenaufbereitung ist in erster Linie auf die kom-
plizierte Herausforderung zurückzuführen, der sich Datenwissenschaftler bei der Entwick-
lung maßgeschneiderter Lösungen für nachgelagerte Aufgaben gegenübersehen. Diese
Komplexität wird noch verstärkt durch die unzureichende Verfügbarkeit von Metadaten,
den oft ad-hoc-Charakter der Aufbereitungsaufgaben und die Notwendigkeit für Datenwis-
senschaftler, sich mit einer Vielzahl von hochentwickelten Tools auseinanderzusetzen, von
denen jedes seine eigenen Schwierigkeiten und Anforderungen an dessen Beherrschung
aufweist.

Bisherige Forschung im Bereich der Datenverwaltung konzentriert sich traditionell auf die
Aufbereitung der Inhalte innerhalb der Spalten und Zeilen einer relationalen Tabelle und
befasst sich mit Aufgaben wie der Disambiguierung von Zeichenketten, der Standardi-
sierung von Datumsangaben oder der Normalisierung numerischer Werte, die gemeinhin
unter dem Begriff der Datenbereinigung zusammengefasst werden. Dieser Forschungs-
schwerpunkt geht von einer perfekt strukturierten Eingabetabelle aus. Folglich können die
genannten Datenbereinigungsaufgaben erst dann effektiv durchgeführt werden, wenn die
Tabelle erfolgreich in die entsprechende Datenbereinigungsumgebung geladen wurde, was
in der Regel in den späteren Phasen der Datenverarbeitungspipeline geschieht.

Während aktuelle Datenbereinigungstools gut für relationale Tabellen geeignet sind, ent-
halten große Datenrepositories aufgrund ihres flexiblen Standards häufig Daten, die in rei-
nen Textdateien, wie z. B. CSV-Dateien, gespeichert sind. Folglich weisen diese Dateien
oft Tabellen mit einem flexiblen Layout von Zeilen und Spalten auf, denen eine relatio-
nale Struktur fehlt. Diese Flexibilität führt häufig dazu, dass die Daten beliebig über die
einzelnen Zellen der Tabelle verteilt sind, was in der Regel durch benutzerdefinierte For-
matierungsrichtlinien gesteuert wird.

Um diese Tabellen effektiv zu extrahieren und in den nachgelagerten Verarbeitungsschrit-
ten nutzen zu können, ist ein präzises Parsen erforderlich. In dieser Arbeit wird der Schwer-
punkt auf das gelegt, was wir als “Struktur” einer Datendatei definieren - die grundlegen-
den Zeichen innerhalb einer Datei, die für das Parsen und Verstehen ihres Inhalts wesent-
lich sind. Die vorliegende Arbeit konzentriert sich auf die ersten Stufen der Datenvor-

vii

verarbeitung und behandelt zwei entscheidende Aspekte: Das Verstehen des strukturellen
Layouts einer Tabelle in einer Rohdatendatei und das automatische Erkennen und Korri-
gieren von strukturellen Problemen, die das Parsen der Datei erschweren könnten. Auch
wenn sich diese Probleme nicht direkt auf den Inhalt der Tabelle auswirken, stellen sie eine
große Herausforderung beim Parsen der Tabelle in der Datei dar.

Unser erster Beitrag besteht aus einem umfassenden Überblick über kommerziell verfüg-
bare Datenaufbereitungstools. In dieser Übersicht werden ihre besonderen Merkmale, die
fehlenden Merkmale und die Notwendigkeit einer vorläufigen Datenverarbeitung trotz die-
ser Werkzeuge eingehend untersucht. Das primäre Ziel ist es, den aktuellen Stand der
Technik bei den Datenaufbereitungssystemen zu ermitteln und gleichzeitig Bereiche zu
identifizieren, die verbessert werden können. Darüber hinaus werden die bei der Datenvor-
verarbeitung aufgetretenen Herausforderungen untersucht und Möglichkeiten für künftige
Forschung und Weiterentwicklungen aufgezeigt.

Als Nächstes schlagen wir eine neuartige Datenaufbereitungspipeline zur Erkennung und
Korrektur von strukturellen Fehlern vor. Ziel dieser Pipeline ist es, die Nutzer in der an-
fänglichen Vorverarbeitungsphase zu unterstützen, indem das korrekte Laden ihrer Daten
in ihre bevorzugten Systeme sichergestellt wird. Unser Ansatz beginnt mit der Einführung
von SURAGH, einem unüberwachten System, das eine musterbasierte Methode verwendet,
um dominante Muster innerhalb einer Datei zu identifizieren, unabhängig von externen In-
formationen wie Datentypen, Zeilenstrukturen oder Schemata. Durch die Identifizierung
von Abweichungen vom vorherrschenden Muster werden fehlerhafte Zeilen erkannt. An-
schließend sammelt unser Strukturkorrektursystem, TASHEEH, die identifizierten fehler-
haften Zeilen zusammen mit den dominanten Mustern und verwendet eine neuartige Mus-
tertransformationsalgebra, um Fehler automatisch zu korrigieren. Unsere Pipeline dient
als End-to-End-Lösung, die eine strukturell fehlerhafte CSV-Datei in eine gut formatierte
Datei umwandelt, die in der Regel für ein nahtloses Laden geeignet ist.

Schließlich stellen wir MORPHER vor, eine benutzerfreundliche GUI, die die Funktionen
von SURAGH und TASHEEH integriert. Mit Hilfe von visuellen Elementen ermöglicht
diese Schnittstelle den Benutzern den Zugriff auf die Funktionen der Pipeline. Unsere um-
fangreichen Experimente zeigen die Effektivität unserer Datenaufbereitungssysteme, die
kein Eingreifen des Benutzers erfordern. Sowohl SURAGH als auch TASHEEH übertref-
fen bestehende State-of-the-Art-Methoden in den beiden Metriken Precision und Recall
deutlich.

viii

Acknowledgements

I would like to commence with a quote from Caliph Ali, a close companion of Prophet
Muhammad (PBUH), who said:

“One who taught me a single word made me eternally indebted to them.”

This quote exemplifies the respect students should offer their teachers.

Through these words, I wish to express my profound gratitude to my advisor, Professor
Felix Naumann. I will forever be in your debt for the invaluable knowledge you have
imparted to me throughout the years.

Next, I want to express my love and gratitude to my wife, Hiba. Your unwavering support,
love, and encouragement have been crucial in helping me reach this milestone. I could not
have achieved this without you.

Furthermore, I am deeply grateful to my loving parents and my loving sister for their count-
less prayers and unwavering moral support throughout this journey. My heartfelt thanks
also go to my parents-in-law and sisters-in-law for their encouragement and support.

Finally, I would like to acknowledge my wonderful colleagues and friends at the Informa-
tion Systems group, especially my Data Preparation teammates. You all made my time
incredibly enjoyable, to the extent that I can confidently say I have never had such an
exceptional team experience before.

ix

We can only see a short distance ahead, but we can see plenty there that needs
to be done.

— Alan M. Turing

xi

Contents

1 Structural Data Preparation 1
1.1 Structural (Syntactic) and Semantic Inconsistencies 3
1.2 Data Ingestion with Structural Inconsistencies 5
1.3 A Taxonomy of Structural Inconsistencies 6
1.4 Thesis Structure and Contributions . 10

2 Data Preparation from an Industry Perspective: A Survey 13
2.1 The Data-to-Application Process . 14
2.2 Data Preparation Tasks . 18
2.3 Data Preparation Tools and Preparator Matrix 18
2.4 Evaluation of Selected Tools . 26
2.5 Challenges . 29
2.6 Conclusion . 31

3 SURAGH: A Structural Error Detection System 33
3.1 Data Loading Obstacles . 34
3.2 Problem Definition . 36
3.3 The SURAGH System . 40
3.4 Datasets and Annotation . 50
3.5 Experiments . 53
3.6 Related Work . 62
3.7 Conclusion . 64

4 TASHEEH: A Structural Error Correction System 65
4.1 Anomalous Row Structures . 66
4.2 Problem Definition . 68
4.3 The TASHEEH System . 70
4.4 Experiments . 82
4.5 Related Work . 93
4.6 Conclusion . 95

5 MORPHER: Data Preparation with SURAGH and TASHEEH 97
5.1 An Overview of MORPHER . 98
5.2 Self-Service Data Preparation with MORPHER 99

xiii

Contents

5.3 Conclusion . 100

6 Conclusion 101
6.1 Summary . 101
6.2 Outlook . 103

References 107

xiv

STRUCTURAL DATA PREPARATION

Chapter 1

We live in an age of technology where data are the new oil [8, 24, 73], and much like its
predecessor, data must be extracted and refined before they have any practical use. How-
ever, unlike its predecessor, the amount of data generated is enormous and growing expo-
nentially, spurred by surveillance devices generating sensor data, social media platforms,
government data portals, medical research projects, etc. It is estimated by the international
data corporation (IDC) that a substantial growth in the number of connected IoT devices
to reach 55.7 billion by 2025, leading to the generation of nearly 80 zettabytes (ZB) of
data [44]. This increase in data generation is also reflected in the IDC projections, which
expect the volume of digital data produced, acquired, and copied across the world to reach
175 ZB by 2025, up from 59 ZB in 2020 [28].

Data obtained from various devices and platforms often exist in a raw format, lacking a
standardized structure [3, 49, 103]. Consequently, parsing such data introduces numerous
structural inconsistencies, including invalid characters resulting from incorrect parsing,
column shifting due to incorrect escaping, inconsistent formatting, and more. These in-
consistencies pose challenges during data ingestion, requiring significant efforts from data
scientists and machine learning engineers, who spend a substantial amount of time on the
laborious task of data preparation [64, 71, 82]. Studies have indicated that data scien-
tists typically spend a significant portion of their time, ranging from 50% to 80%, on data
preparation tasks, which include activities such as gathering, loading, cleaning, and trans-
forming data [41, 77, 98]. Unfortunately, data preparation is often regarded as the least
enjoyable aspect of their work. In fact, a survey conducted by Forbes revealed that 76% of
the 80 interviewed data scientists considered data preparation to be the least enjoyable part
of their job [77]. These studies highlight the considerable time and effort invested in this
crucial but often labor-intensive process.

Data scientists dedicate considerable time to data preparation, primarily driven by the need
to prevent the “garbage in, garbage out” (GIGO) situation. GIGO refers to the scenario
where using low-quality input data leads to inaccurate or unreliable output insights. One
common practice in data preparation is conducting trivial but critical transformations on

1

1 Structural Data Preparation

raw data, as illustrated in Figure 2. By applying this pipeline to the unprepared data de-
picted in Figure 1, the resulting prepared data are shown in Figure 3. However, building ad-
hoc scripts for these transformations is inefficient, as the scripts are usually implemented
based on a user’s cursory observation of data and might not be robust to erroneous content
hidden within. In addition, these scripts also assume that the input file is free of preprocess-
ing errors and can be seamlessly loaded into the downstream application or development
platform without encountering any ingestion issues, as depicted in Figure 1, where the cell
boundaries are clearly defined and no additional metadata are present. Furthermore, such
scripts assume the execution environment at hand of the respective developer, making them
challenging to repeat or adapt to other environments. Consequently, data scientists and an-
alysts often spend additional time tailoring scripts to the data in particular environments.

Figure 1: An overview of unprepared data marked with the preparation steps specified in
Figure 2.

Figure 2: A sample pipeline of multiple transformations describing a common data prepa-
ration task.

The traditional data preparation workflow involves two primary roles, business experts
and data experts, with the former specifying data preparation requirements and the lat-
ter implementing and executing corresponding preparation scripts or pipelines. However,
communication overhead often becomes a bottleneck in agile data preparation, leading
to more sophisticated data preparation systems, such as Open-Refine [31], Tableau [96],
and Trifacta [48]. These systems aim to bridge the communication gap and enhance ef-
ficiency by offering interactive interfaces and menu-based transformation options. This

2

1.1 Structural (Syntactic) and Semantic Inconsistencies

Figure 3: Prepared data after applying the data preparation steps specified in Figure 2.

feature empowers even non-expert users to perform self-service data preparation tasks.
With the growing demand for high-quality data, these systems have become essential for
data science projects. However, their efficiency and effectiveness may vary based on the
user’s level of expertise, the size of the dataset, and the complexity of the inconsistencies
appearing in the data.

1.1 Structural (Syntactic) and Semantic Inconsistencies

In the realm of data files, inconsistencies can be classified into two main categories: se-
mantic inconsistencies and syntactic inconsistencies. Semantic inconsistencies arise due
to an inadequate understanding of the contextual information associated with data values,
leading to violations of integrity constraints [47], the presence of outliers [9], missing
values [79], duplicates [69], and other issues [3]. These inconsistencies can have a sig-
nificant impact on the quality of data values within a file, leading to erroneous analyses
and unreliable outcomes. Fortunately, several data cleaning approaches have been pro-
posed to detect these inconsistencies [13, 38, 42, 43, 63, 79, 105], as well as for their
correction [15, 27, 52, 62, 75, 78, 86]. Moreover, ongoing research aims to uncover the
symptoms, causes, and origins of data errors, shedding light on the factors that contribute
to these inconsistencies [46].

On the other hand, syntactic or structural inconsistencies emerge as a consequence of devi-

3

1 Structural Data Preparation

Data preparation

Data cleaning

Syntactic transformation Semantic transformation

Delimiter
detection

Date format
normalization

Null value
imputation

… …

Figure 4: Data preparation vs. data cleaning [32]

ations from prescribed formatting guidelines, established standards, or the defined schema.
These structural inconsistencies introduce a multitude of challenges, such as the presence
of invalid characters resulting from incorrect parsing, different number of cells across data
rows, different variants of quoted fields due to user specifications, etc. While semantic
inconsistencies appear at the content level, syntactic inconsistencies occur at the structural
level of a file. Addressing these inconsistencies adds an intriguing new dimension to the
task of ensuring data quality and facilitating seamless data ingestion for downstream ap-
plications.

To effectively handle semantic inconsistencies, a comprehensive understanding of the mean-
ing and context of the data values is essential. Addressing structural inconsistencies in-
volves enforcing predefined structural constraints and adhering to specific formatting guide-
lines and standards. We define data preparation as the set of preprocessing operations
performed at the structural level in the early stages of a data processing pipeline [32].
Throughout the thesis, we provide numerous examples of such transformations. Data
cleaning, on the other hand, involves subsequent transformations and corrections at the
semantic level (Figure 4).

In the next section, we discuss the challenges of data ingestion with structural inconsis-
tencies, emphasizing their impact on the overall process. Subsequently, we discuss the
structural inconsistencies of raw CSV files, along with the associated research challenges
related to detecting and correcting these inconsistencies. Finally, we conclude this chap-
ter by outlining the structure of the subsequent chapters and summarizing their respective
contributions.

4

1.2 Data Ingestion with Structural Inconsistencies

Figure 5: A sample of a raw CSV file with ill-formed rows due to structural inconsistencies
at both column- and row-levels.

1.2 Data Ingestion with Structural Inconsistencies

For data-driven projects, the first step is typically loading the data. Even to prepare data,
they must first be successfully loaded into the platform or tool being used for data prepara-
tion. However, existing tools and systems often assume structurally preprocessed files that
adhere to specific standards and guidelines, making the data ingestion process more seam-
less [32]. In practice, data files can be challenging to ingest due to their non-standardized
formats and the presence of structural inconsistencies that deviate from established stan-
dards [33]. These inconsistencies pose significant challenges during the data ingestion
phase and often necessitate significant human intervention to ensure successful ingestion
in downstream applications. In this context, two prominent research problems are the de-
tection and correction of rows that exhibit structural inconsistencies, which we refer to as
ill-formed rows (see Section 3.2 for a formal definition). Such rows do not adhere to the
expected structure and can disrupt data-driven tasks, leading to aborted loading processes,

5

1 Structural Data Preparation

incorrect parsing of data, and interference with the training process of machine learning
algorithms.

While detecting and cleaning ill-formed rows is a general problem across different types of
data files, this thesis specifically focuses on CSV files – a type of plain-text data file used
to store semi-structured data. The CSV file format is popular for its simplicity, read/write
capabilities, and compatibility with numerous systems. However, this flexibility can also be
a drawback, leading to non-standard file formats and a lack of appropriate metadata in real-
world datasets. CSV files found on open data portals, for instance, often exhibit significant
structural variations, such as multiple tables stacked on top of each other, differing numbers
of cells across rows, data and metadata appearing in the same rows, user-specified quote
and escape characters, differing numbers of row separators across the file as well as empty
visual separators, etc. For example, Figure 5 depicts a typical CSV file, where groups of
ill-formed rows with different inconsistencies are highlighted.

1.3 A Taxonomy of Structural Inconsistencies

Structural inconsistencies in raw CSV files can be categorized into different groups. In our
proposed taxonomy, we have identified five distinct groups: (i) file level structural inconsis-
tencies, (ii) table level structural inconsistencies, (iii) row level structural inconsistencies,
(iv) column level structural inconsistencies, and (v) cell level structural inconsistencies.
Figure 6 provides an overview of these groups and includes examples for each category.
In the following sections, we delve into each group, providing a detailed explanation of
the specific types of structural inconsistencies they encompass, along with concrete exam-
ples.

1.3.1 File Level Structural Inconsistencies

Structural inconsistencies in raw CSV files pose significant challenges to data quality and
usability. At file level, structural inconsistencies emerge at the earliest stage of data pro-
cessing, giving rise to issues, such as incompatible file encodings, presence of multiple
tables within a single file, ambiguity in table boundaries and headers, etc. These incon-
sistencies have a profound impact on the subsequent stages of data ingestion and analysis
processes, as they pose distinct challenges depending on the downstream application. For
instance, raw CSV files, known for their flexible standard, may contain vertically or hori-
zontally stacked tables, making it challenging to accurately identify and extract individual
tables by determining precise table boundaries. Moreover, recurring headers in stacked
tables and the differentiation between header and data sections when both contain numbers
or strings further complicate the interpretation. In the case of horizontally stacked tables,

6

1.3 A Taxonomy of Structural Inconsistencies

St
ru

ct
ur

al
 In

co
ns

is
te

nc
ie

s

Fi
le

 L
ev

el
Ta

bl
e

Le
ve

l
Ro

w
 L

ev
el

Co
lu

m
n

Le
ve

l
Ce

ll
Le

ve
l

Fi
le

 F
or

m
at

In
co

rr
ec

t f
ile

ex

te
ns

io
n

In
co

m
pa

tib
le

fil

e
en

co
di

ng

Co
rr

up
te

d
fil

e
en

co
di

ng

Ex
ce

ss
iv

e
fil

e
si

ze

M
ul

tip
le

 ta
bl

es

Am
bi

gu
ou

s
ta

bl
e

bo
un

da
rie

s

Am
bi

gu
ou

s
ta

bl
e

he
ad

er
s

M
is

si
ng

 h
ea

de
r

In
co

m
pl

et
e

he
ad

er

G
ro

up
 h

ea
de

rs

Pr
ea

m
bl

e
ro

w
s

Fo
ot

no
te

 ro
w

s

Ag
gr

eg
at

io
n

ro
w

s

Am
bi

gu
ou

s
da

ta
 b

ou
nd

ar
ie

s

N
on

-s
ta

nd
ar

di
ze

d
ro

w
 d

el
im

ite
r

N
on

-s
ta

nd
ar

di
ze

d
va

lu
e

de
lim

ite
r

N
on

-s
ta

nd
ar

di
ze

d
qu

ot
e

ch
ar

ac
te

r

N
on

-s
ta

nd
ar

di
ze

d
es

ca
pe

 c
ha

ra
ct

er

Em
pt

y
ro

w
s

M
is

si
ng

 ro
w

 d
el

im
ite

r

M
is

pl
ac

ed
 ro

w

de
lim

ite
r

In
co

ns
is

te
nt

 ro
w

de

lim
ite

r

In
co

ns
is

te
nt

va

lu
e

de
lim

ite
r

In
co

ns
is

te
nt

 n
um

be
r

of
 v

al
ue

 d
el

im
ite

rs

In
co

ns
is

te
nt

 q
uo

te

ch
ar

ac
te

r

In
co

ns
is

te
nt

 n
um

be
r

of
 q

uo
te

s

In
co

ns
is

te
nt

 e
sc

ap
e

ch
ar

ac
te

r

In
co

ns
is

te
nt

 n
um

be
r

of
 e

sc
ap

es

M
is

m
at

ch
ed

 q
uo

te

an
d

es
ca

pe
 c

ha
ra

ct
er

s

In
co

ns
is

te
nt

 n
ul

l v
al

ue

re
pr

es
en

ta
tio

n

Am
bi

gu
ou

s
ro

w

bo
un

da
rie

s

Em
pt

y
ro

w

M
is

si
ng

 c
ol

um
n

he
ad

er

M
is

m
at

ch
ed

 c
ol

um
n

he
ad

er

M
is

m
at

ch
ed

co

lu
m

n
da

ta
 ty

pe

M
ix

ed
 v

al
ue

 fo
rm

at
s

In
co

ns
is

te
nt

 v
al

ue

fo
rm

at
tin

g

In
co

ns
is

te
nt

 n
ul

l v
al

ue

re
pr

es
en

ta
tio

n

Va
lu

es
 e

xc
ee

di
ng

m

ax
im

um
 le

ng
th

Am
bi

gu
ou

s
co

lu
m

n
bo

un
da

rie
s

Em
pt

y
co

lu
m

n

Re
pe

at
ed

 c
ol

um
n

he
ad

er

Ex
ce

ss
iv

e
va

lu
e

le
ng

th

U
nq

uo
te

d
va

lu
e

co
nt

ai
ni

ng
 ro

w
 d

el
im

ite
r

U
nq

uo
te

d
va

lu
e

co
nt

ai
ni

ng
 v

al
ue

 d
el

im
ite

r

Q
uo

te
s w

ith
ou

t e
sc

ap
es

 in

qu
ot

ed
 v

al
ue

In
co

ns
is

te
nt

 e
sc

ap
es

 in

qu
ot

ed
 v

al
ue

Va
lu

e
co

nt
ai

ni
ng

 s
pe

ci
al

ch

ar
ac

te
rs

 fo
r r

ef
er

en
ce

(s
)

Am
bi

gu
ou

s
ce

ll
bo

un
da

rie
s

Em
pt

y
ce

ll

Tr
ai

lin
g

or
 le

ad
in

g
w

hi
te

sp
ac

es

Tr
ai

lin
g

or
 le

ad
in

g
w

hi
te

sp
ac

es

Co
nt

en
t

St
ru

ct
ur

e

He
ad

er
 R

el
at

ed

M
et

ad
at

a
Re

la
te

d

St
an

da
rd

iza
tio

n
Re

la
te

d

O
th

er

O
th

er

O
th

er

O
th

er

Fo
rm

at
tin

g

Fo
rm

at
tin

g

Q
uo

ta
tio

n
an

d
Es

ca
pe

 R
el

at
ed

Q
uo

ta
tio

n
an

d
Es

ca
pe

 R
el

at
ed

De
lim

ite
r R

el
at

ed
Co

lu
m

n
He

ad
er

Fi
gu

re
6:

A
ta

xo
no

m
y

of
st

ru
ct

ur
al

in
co

ns
is

te
nc

ie
s

in
ra

w
C

SV
fil

es

7

1 Structural Data Preparation

the absence of empty visual separators makes identifying the start and end of each table
region a significant challenge. Resolving these structural inconsistencies is crucial for en-
abling effective data interpretation and facilitating seamless data processing workflows.
Note, this thesis focuses on detecting structural inconsistencies within single table files. It
assumes that the tables have already been extracted [101] and that the file encodings are
correct and compatible. Therefore, the scope of this thesis does not include addressing
structural inconsistencies at the file level. Instead, it emphasizes dealing with structural
inconsistencies at the other four levels (table, row, column, cell).

1.3.2 Table Level Structural Inconsistencies

Raw CSV files consist of tables that can have diverse structures, ranging from arbitrary
shapes to those conforming to the RFC 4180 standard for relational tables. Each table in
a raw CSV file may display distinct structural inconsistencies. These inconsistencies in-
clude ambiguous data boundaries, non-standardized dialect characters (delimiters, quote,
escape), multi-layer hierarchical headers, aggregations that establish arithmetic relation-
ships between numeric cells and sets of other numeric cells, etc. Additionally, tables that
do not conform to the RFC 4180 standard can exhibit various types of rows with distinct
purposes. For instance, comment rows can be found at the beginning of the table, pro-
viding additional information about the tables themselves. Footnote rows, located at the
bottom of the table, typically contain references to other rows and supplementary metadata.
Similarly, in the middle of the table, there may be group headers that provide additional
information about the data rows, and users may insert notes for future reference in be-
tween rows. Addressing such inconsistencies necessitates a comprehensive approach that
involves gaining an understanding of the special characters’ role in defining the structure
of data within a table, as well as comprehending the actual data content. Moreover, it
entails identifying recurring patterns to effectively distinguish between data and non-data
elements, as well as comprehending numeric values to distinguish between aggregations
and their associated cells, among other essential considerations. In this thesis, we address
these structural inconsistencies and provide effective solutions.

1.3.3 Row Level Structural Inconsistencies

As mentioned earlier, CSV files are prone to inconsistencies not only at the table level but
also at more granular levels, such as row, column, and even cell levels. At row level, these
inconsistencies can appear in various forms, such as ambiguous row boundaries caused
by missing new-line separators or cell values containing new-line separators without ap-
propriate quote or escape characters. Another common occurrence is the use of different
characters as cell separators within the same table, often resulting from data integration

8

1.3 A Taxonomy of Structural Inconsistencies

from multiple sources or individuals contributing to the file’s creation. Moreover, rows in
CSV files often exhibit inconsistent delimiters, deviating from the expected schema. This
inconsistency hinders the understanding and definition of the table’s structure, resulting
in the emergence of multiple columns without headers and containing null values across
different rows. Additionally, inconsistent representation of empty values adds to the com-
plexity of data interpretation. Resolving these inconsistencies requires a holistic approach
that involves grasping both table-level solutions and patterns specific to row-level incon-
sistencies. This entails identifying common row patterns and comprehending the structural
characters that define the columns within each row. Like the inconsistencies at the table
level, this thesis addresses and offers solutions for row level inconsistencies.

1.3.4 Column level structural inconsistencies

Column level structural inconsistencies appear within individual table columns. Unlike
standard CSV files, which typically contain a single relational table with columns exhibit-
ing consistent structures, raw CSV files can have columns with varying arrangements of
cells serving different purposes. This can result in the absence of optional headers, the
presence of diverse value formats within the same column, and inconsistencies between
the declared column data type and the actual values present. Resolving these column-
level inconsistencies necessitates the application of comprehensive approaches, including
techniques for value structure transformation and format normalization. Like other struc-
tural inconsistencies, such column-specific challenges are addressed as part of the structure
standardization process.

1.3.5 Cell Level Structural Inconsistencies

Due to the lack of a standardized row-wise or column-wise structure in raw CSV files,
cell-level structural inconsistencies can arise, demanding careful consideration. These in-
consistencies encompass various aspects, including missing or misplaced cells, irregular
formatting, values without proper quoting containing value or row delimiters, and incon-
sistent value representations. Resolving these cell-level inconsistencies requires thorough
examination and analysis of individual cells within the file. Techniques, such as data vali-
dation and cleansing, can be employed to address these issues and ensure the integrity and
consistency of the data at a granular level. Similar to column-level inconsistencies, cell-
level challenges are inherently addressed as part of the structure standardization process.

In the preceding discussion, we have outlined a taxonomy comprising five groups of struc-
tural inconsistencies commonly found in raw CSV files. It is important to acknowledge
that the taxonomy is not exhaustive and represents a partial classification, and there may
be additional categories of inconsistencies that can be included. The taxonomy can be

9

1 Structural Data Preparation

expanded both horizontally, by incorporating more diverse categories, and vertically, by
encompassing a wider range of specific inconsistencies within each category. Detecting
and repairing structural inconsistencies in raw CSV files presents a valuable yet intricate
challenge, given the unique characteristics and complexity of file structures.

1.4 Thesis Structure and Contributions

In the previous sections, we introduced the problem of detecting and correcting structural
inconsistencies in raw CSV files and discussed the associated challenges. In the follow-
ing four chapters, we present our main contributions, which emphasize the need for data
preparation and offer comprehensive solutions for detecting and correcting a wide range
of structural inconsistencies in raw CSV files. These contributions are summarized as fol-
lows.

* DATA PREPARATION FROM AN INDUSTRY PERSPECTIVE: A SURVEY

In Chapter 2, we present a survey that provides an extensive analysis of commercial data
preparation tools, and is based on our publication [32]. The survey thoroughly exam-
ines prominent data preparation tools, the distinctive features offered by these tools, the
need for preliminary data processing even with these tools, and the features that are still
lacking. The survey aims to shed light on the current state-of-the-art data preparation
systems and identify areas for improvement. To achieve this, we initially compiled over
100 tools from the web, offering data quality features. We narrowed down the selec-
tion to 42 tools with data preparation offerings for our preliminary study. To ensure a
systematic approach, we organized various data preparation tasks into six broad cate-
gories and identified 40 common data preparation steps that fell within these categories.
The survey also includes the evaluation of the final selected tools and the creation of a
comprehensive feature matrix, showcasing the capabilities of each tool for specific data
preparation steps. Additionally, the survey delved into the challenges associated with
data preprocessing that the tools encountered, highlighting areas for improvement and
presenting opportunities for future research. The survey was conducted by Hameed,
while Naumann contributed valuable discussions.

* SURAGH: A STRUCTURAL ERROR DETECTION SYSTEM

In Chapter 3, we present our system SURAGH, which detects structural errors in CSV
files, and is based on our publication [33]. During our survey, we encountered data pre-
processing challenges while evaluating the state-of-the-art data preparation tools, par-
ticularly when it comes to ingesting data into these systems. The major obstacle we
identified was the difficulty in effectively handling the inconsistent structure of rows
within files. These inconsistencies occurred in various forms, including variations in the

10

1.4 Thesis Structure and Contributions

number of attributes across rows, non-standardized formatting of cell values, and the
presence of additional information such as comments at the top or concluding remarks
as footnotes. To detect rows with such structural inconsistencies (ill-formed rows), we
developed, SURAGH which abstracts row structures into structural patterns based on a
syntactic pattern grammar. Using the pattern grammar, SURAGH generates syntax-based
patterns at the cell, column, and row levels, subsequently identifying the frequent (dom-
inant) row patterns in the input file. These dominant patterns are then used to classify
rows into ill-formed and well-formed rows. The experimental findings highlight the su-
perior performance of SURAGH compared to existing state-of-the-art row classifiers and
pattern-based error detectors. SURAGH was developed by Hameed, while Vitagliano,
Jiang and Naumann contributed valuable discussions.

* TASHEEH: A STRUCTURAL ERROR CORRECTION SYSTEM

In Chapter 4, we present TASHEEH, an extension of SURAGH, which is detailed in our
publication [35]. Building upon the classification of rows as either ill-formed or well-
formed using SURAGH, the primary objective of TASHEEH is to repair the structural
inconsistencies present in the ill-formed rows. To this end, these ill-formed rows are
further classified into two categories: ill-formed unwanted (rows with no data, e.g.,
table titles, footnotes, or empty rows) and ill-formed wanted (rows containing data
but exhibiting additional structural or formatting information and possibly additional
columns). After successful identification of the ill-formed wanted rows, TASHEEH ef-
fectively repairs the structural inconsistencies within them. To achieve the classification,
TASHEEH utilizes a pattern-level distance measure, inspired by sequence alignment, that
helps TASHEEH determine the extent to which ill-formed rows differ structurally from
well-formed rows. For the transformation, TASHEEH uses a pattern transformation al-
gebra to transform the ill-formed wanted rows into well-formed ones. Our experimental
results demonstrate that TASHEEH outperforms current state-of-the-art table extractors,
row classifiers, and powerful analytics tools. TASHEEH was developed by Hameed,
while Vitagliano, Panse, and Naumann contributed valuable discussions.

* MORPHER: DATA PREPARATION WITH SURAGH AND TASHEEH

In Chapter 5, we present our system MORPHER, a desktop-based system featuring a
graphical user interface that incorporates the capabilities of both SURAGH and TAS-
HEEH, and is based on our publication [34]. MORPHER serves as a user-friendly tool
that allows users to visualize, for an input file, a classification of ill-formed wanted and
ill-formed unwanted rows with a corresponding cleaned version. It provides a seamless
export of the final results as both CSV and Microsoft Excel workbook (.xlsx) formats for
convenient use. MORPHER was developed by Hameed, while Vitagliano and Naumann
contributed valuable discussions.

11

1 Structural Data Preparation

Finally, in Chapter 6, we provide a summary of our work on detecting and correcting
structural inconsistencies in raw CSV files. Building upon our findings, we propose fu-
ture directions for the detection and correction of such inconsistencies, considering both
research and practical perspectives. By placing our work within the broader context of data
preparation, we highlight the importance of addressing various structural inconsistencies
to facilitate efficient data processing.

12

DATA PREPARATION FROM AN INDUSTRY

PERSPECTIVE: A SURVEY

Chapter 2

Data preparation is a crucial step in handling raw data, which often come in messy formats
with various encodings, poorly structured rows, and inconsistent patterns. The act of ob-
taining information from raw data relies on some data preparation process. It is integral to
advanced data analysis and data management, not just limited to data science but also for
any data-driven application. While there are existing data preparation tools that are oper-
ational and useful, there is still scope for improvement and optimization. The demand for
prepared data is increasing steadily, especially considering the growing volume and com-
plexity of data. To gain a better understanding of the available data preparation systems,
this chapter focuses on several aspects:

Prominent data preparation tools: We identified the leading data preparation tools cur-
rently being used in the industry.

Distinctive tool features: We explored the unique features and capabilities that set these
tools apart from one another.

The need for preliminary data processing: Even with data preparation tools, preliminary
processing is often necessary to handle the messy nature of raw data effectively.

Missing features and abilities: We identified areas where current data preparation tools
may be lacking and require further development.

Based on our findings, we advocate for the advancement of automatic and intelligent data
preparation techniques beyond the traditional and simplistic methods currently employed.
With the continuous growth of data and their challenging nature, there is a pressing need
for more sophisticated and efficient data preparation solutions to meet the rising demand
for high-quality prepared data.

13

2 Data Preparation from an Industry Perspective: A Survey

Our work in this chapter is based on our publication [32], and encompasses the following
key contributions:

Organization: We propose and define six comprehensive categories of data preparation
tasks and compile a total of 40 common data preparation steps that fall within these cate-
gories.

Documentation: To provide practical insights, we conduct a thorough examination of
seven selected data preparation tools. We validate the presence and functionality of the
identified data preparation features and broader categories for each tool and document our
findings in a well-structured preparator matrix1.

Evaluation: We perform a detailed evaluation of the selected features and functionalities
offered by the surveyed data preparation tools. This evaluation enables us to determine
whether each tool adequately supports the stated data preparation tasks.

Recommendation: Based on our evaluation and analysis, we identify certain limitations
and shortcomings of commercial data preparation tools in general. Additionally, we invite
researchers to explore and innovate further in the field of data preparation to address the
identified challenges effectively.

The rest of the chapter is organized as follows: Section 2.1 introduces the need for data
preparation and presents a real-world data preparation use case to illustrate its importance.
In Section 2.2, broader categories of data preparation tasks are described, along with the in-
troduction of “data preparators”, representing individual data preparation steps. Section 2.3
details the process of collecting data preparation tools and the selection criteria for the fi-
nal tools, accompanied by a feature matrix showcasing the offered capabilities. Section 2.4
presents the evaluation criteria and methodology used to assess the selected tools. In Sec-
tion 2.5, preprocessing challenges encountered during the survey are discussed. Finally,
Section 2.6 concludes the chapter, summarizing key findings and emphasizing the role
of data preparation in enhancing data quality and decision-making in diverse data-driven
applications.

2.1 The Data-to-Application Process

To ensure that data are suitable for the consuming application, several essential phases are
involved in the data-to-application life cycle. As outlined in Chapter 1, data generation
initially occurs in raw format, often stored in data lakes. However, before sending this
raw data to applications, it becomes crucial to enhance its structure and content to make

1In the remainder of the chapter, the terms Preparator Matrix and Feature Matrix are used interchangeably
to refer to the set of functionalities of data preparation tools.

14

2.1 The Data-to-Application Process

it readable and machine understandable. This process involves a series of steps, such as
(1) data exploration [18, 53, 88, 90], (2) data collection [60, 107], (3) data profiling [25,
68, 74], (4) data preparation [16, 41, 84], (5) data integration [22, 59, 94], and (6) data
cleaning [3, 17, 83] in various orders and iterations.

These aforementioned steps are applied to originally ‘raw data’, before they are sent to
the main application for further processing. In our research focus, and based on evidence
from noted surveys, a critical and important step is data preparation. Studies have shown
that data scientists spend approximately 80% of the time on preparing the data and about
20% on actual model implementation and deployment [41, 77, 98]. Trifacta’s2 data prepa-
ration study shows that 72% of respondents indicated that data preparation by data users
is critical, while 88% indicated at least its importance, and only 4% indicated that it is not
important for the user [1]. Clearly, these numbers cannot be reduced to 0%, due to the se-
mantic difficulties of understanding and interpreting data. However, the time spent on data
preparation can be decreased to a significant amount using sophisticated data preparation
techniques, and, in turn, data scientists attain more time for model implementation and de-
ployment, ultimately enhancing the overall efficiency of the data-to-application process.

Recognizing the significance and impact of data preparation, developers and researchers
have contributed a multitude of techniques to streamline the data preparation process [14,
15, 17, 33, 49, 51, 52, 58, 78, 79, 86, 89, 97, 101]. However, we are still far from creating a
fully automated data processing pipeline, in part due to open challenges of raw data files.

Acknowledging the challenges posed by data preparation and its overall importance, many
tools have been designed by not only the industry [31, 48, 96], but also by research and
academia [11, 27, 102] to address varying use cases. In light of that, we have surveyed
commercial data preparation tools to analyze available features and methods. In selecting
to focus primarily on commercial data preparation systems, our rationale stemmed from
the extensive range of features and services they offer. These commercial tools often cater
to a broader spectrum of data-related requirements, making them a valuable reference point
for assessing the state of the industry. Moreover, the intent behind this choice was to iden-
tify gaps in the market where we can potentially contribute by addressing unmet needs. It
is important to note that the survey is not designed for direct comparisons or explicit eval-
uations of individual tools. Instead, the primary objective is to present an overview of the
available features and methods in these tools, showcasing their capabilities and potential
impact on the data preparation process.

Through this survey, researchers and practitioners can gain a better understanding of the
existing landscape of data preparation tools, enabling them to make informed decisions
about tool selection based on specific requirements. Additionally, it provides an avenue
for the data preparation community to identify areas for improvement, innovation, and

2https://www.trifacta.com/

15

https://www.trifacta.com/

2 Data Preparation from an Industry Perspective: A Survey

collaboration, ultimately contributing to the advancement of data preparation techniques
and enhancing the overall efficiency and effectiveness of data processing in the data-to-
application life cycle.

(a) An overview of unprepared data

(b) An overview of prepared data

Figure 7: A data preparation example

Let us consider an example where a data scientist is given a CSV file, as shown in Figure 7a
(viewed as a spreadsheet for easy navigation), from a government data portal3 to analyze

3http://webarchive.nationalarchives.gov.uk/+/http://www.bis.gov.uk/assets/biscore/
further-education-skills/docs/n/11-708-data-nlss-2009.csv (February, 2019)

16

http://webarchive.nationalarchives.gov.uk/+/http://www.bis.gov.uk/assets/biscore/further-education-skills/docs/n/11-708-data-nlss-2009.csv
http://webarchive.nationalarchives.gov.uk/+/http://www.bis.gov.uk/assets/biscore/further-education-skills/docs/n/11-708-data-nlss-2009.csv

2.1 The Data-to-Application Process

how much time each employee is spending on training besides their regular work hours.
However, upon opening the file, it becomes clear that the data are not in a coherent rela-
tional structure and are laid out in a somewhat human-readable format, making automated
analysis impossible. Moreover, in this case, almost 1 000 tables are stacked one below each
other (not shown), interleaved by metadata information in the form of preambles and com-
ments that more often than not repeat themselves without meaningful addition. Moreover,
inside the actual data values, alphanumeric characters appear in what seem to be otherwise
numeric rows. There are apparently inconsistent representations for zeros/null values (e.g.,
‘*’,‘-’, or empty cell). To make the data structured and machine-readable, as depicted in
Figure 7b, the data scientist needs to perform a sequence of steps on each file before feed-
ing them to the analysis tool. By doing so, the data scientist can avoid the cumbersome
and time-consuming manual execution of these tasks and use the same sequence for future
use cases.

The data scientist performs the following sequence of steps before feeding the data to their
analysis tool:

1. Split the file to isolate one data table at a time. For each obtained table:

2. Remove preamble and comment rows.

3. Unify null-value representations.

4. Remove rows with no meaningful information, e.g., empty rows or rows with only
null-values.

5. Clean numeric data rows by removing special characters.

6. Fill missing values, e.g., by value imputation or using functional dependencies.

7. Transpose table.

8. Add missing parts of the header.

It is evident from the aforementioned example that with the help of various data preparation
steps, we were able to target messy data and convert them into clean and machine-readable
data, highlighting the significance of data preparation in the market for both industry and
academia. The application of simple data preparation tasks on raw data files improves
their usability, readability, and interpretability. It is essential to emphasize that our focus
is solely on addressing the structural errors in rows. Cleaning data errors present in the
values themselves is beyond the scope of this chapter and the entire thesis.

17

2 Data Preparation from an Industry Perspective: A Survey

2.2 Data Preparation Tasks

Data preparation is not a single step process. Rather, it usually comprises many individual
preparation steps, implemented by what we call preparators, and which we have organized
anew into six broader categories, defined here.

Data discovery involves the analysis and collection of data from various sources [39, 67].
The purpose is to identify data patterns, locate outliers, and detect missing data, among
other tasks.

Data validation includes the application of rules and constraints to inspect the data for
correctness, completeness, and other data quality constraints [51, 87]. It ensures that the
data meets specific requirements and standards.

Data structuring encompasses tasks related to the creation, representation, and structuring
of information. Examples include updating data schemas, detecting and changing encod-
ings, and transforming data based on examples provided [36, 50].

Data enrichment involves adding value or supplementary information to existing data
from separate sources [10, 106]. It often includes augmenting existing data with new or
derived data values using data lookups, generating primary keys, and inserting metadata.

Data filtering focuses on generating a subset of the data to facilitate manual inspection
and remove irregular data rows or values [33, 72]. Examples include extracting specific
text parts and retaining or deleting filtered rows.

Data cleaning refers to the removal, addition, or replacement of less accurate or inaccurate
data values with more suitable, accurate, or representative values [27, 86]. Common data
cleaning tasks include deduplication, filling missing values, and trimming whitespace.

Despite our definition, which distinguishes data preparation and cleaning, we include data
cleaning steps here as well, as most data preparation tools also venture into this area.

Our set of 40 individual preparators is shown and categorized in Table 4, which is intro-
duced in the next section.

2.3 Data Preparation Tools and Preparator Matrix

Data preparation tools are vital to any data preparation process. They offer implementa-
tions of various preparators and provide a user-friendly frontend to apply preparations se-
quentially or define data preparation pipelines. The flexibility, robustness and intelligence
of these tools contribute significantly towards the data analysis and data management tasks.

18

2.3 Data Preparation Tools and Preparator Matrix

In this section, we discuss in detail a selection of tools for our research study that are sup-
ported by supplementary documentation for experimentation and guidance. Section 2.3.1
discusses the selected data preparation tools (see Table 2 for an overview) and Section 2.3.2
highlights our approach to populate the preparator matrix (see Table 4), organized by data
preparator categories with selected preparation tasks. Additionally, we have collected a
set of additional functional and non-functional features for these tools, which go beyond
specific data preparation tasks (shown in Table 5).

2.3.1 Available Data Preparation Tools

Data preparation is a resource-intensive and time-consuming activity, particularly when
lacking automated and mature data preparation tools. Traditionally, data scientists write
custom preparation scripts tailored to the specific requirements of each project. Recently,
the market has answered to some of the general needs of data preparation by offering
commercial data preparation tools that alleviate the burden on data scientists.

To better understand commercial tools and their capabilities, we initiated our study with
a discovery phase. We collected notable commercial data preparation tools gathered from
business reports and analyses, company portals, and online demonstration videos. Our
preliminary investigation resulted in 42 initial commercial tools (shown in Table 1), which
we then examined for the extent of their data preparation capabilities. Note that the links
provided in Table 1 for the discovered tools could be outdated or may have been redirected
to different portals due to possible industry mergers and acquisitions4.

Not all the initially collected tools were solely dedicated to data preparation. Many of them
primarily targeted data visualization, data analysis, and business intelligence applications,
with only some added data preparation features. To focus on the topic of our survey, we
established, necessarily, soft criteria for tool selection. These criteria are as follows:

• Domain specificity: The tools that specifically address the data preparation tasks.

• Comprehensiveness: The extent and sophistication to which tools adequately cover
preparation features listed in Section 2.2.

• Guides and documentation: The availability of documentation for the tools, i.e.,
useful, up-to-date documentation with listings of features and how-to guides.

• Trial availability: The availability of a trial version, giving us the opportunity to test
the tools and validate their features.

• GUI: The availability of a comprehensive and intuitive graphical user interface to
select and apply preparations.

4All tools and their corresponding documented preparators were gathered before 2nd September 2019.

19

2 Data Preparation from an Industry Perspective: A Survey

Table 1: Discovered tools with asserted data preparation capabilities. The seven tools high-
lighted in bold were selected for a detailed analysis in our survey.

Tool name URL
Altair Monarch Data Preparation https://www.datawatch.com/in-action/monarch-draft/
Alteryx Data Preparation https://www.alteryx.com/solutions/analytics-need/

data-preparation
BigGorilla Data Preparation https://www.biggorilla.org/
Cambridge Semantics Anzo https://www.cambridgesemantics.com/
Datameer https://www.datameer.com/
EasyMorph Data Preparation https://easymorph.com/
Erwin https://erwin.com/
FICO https://www.fico.com/
Google Cloud Data Prep by Trifacta https://cloud.google.com/dataprep/
Hitachi-Pentaho Business Analytics https://www.hitachivantara.com/en-us/products/

data-management-analytics.html
IBM Data Refinery https://www.ibm.com/cloud/data-refinery
INFOGIX https://www.infogix.com/data3sixty/analyze/
Informatica Enterprise Data Prepara-
tion

https://www.informatica.com/products/data-catalog/
enterprise-data-prep.html

Looker https://looker.com/
Lore IO https://www.getlore.io/
Microsoft Power BI https://powerbi.microsoft.com/en-us/
MicroStrategy https://www.microstrategy.com/us/product/analytics/

data-visualization
Modak-nabu https://modakanalytics.com/nabu.html
OpenRefine http://openrefine.org/
Oracle Analytics Cloud https://www.oracle.com/business-analytics/analytics-cloud.

html
Paxata Self Service Data Prepara-
tion

https://www.paxata.com/self-service-data-prep/

Qlik Data Catalyst https://www.qlik.com/us/products/qlik-data-catalyst
Quest Toad Data Point https://www.quest.com/products/toad-data-point/
Rapid Insight https://www.rapidinsight.com/solutions/data-preparation/
RapidMiner Turbo Prep https://rapidminer.com/products/turbo-prep/
SAP Agile Data Preparation https://www.sap.com/germany/products/data-preparation.html
SAS Data Preparation https://www.sas.com/en_us/software/data-preparation.html
Smarten Advanced Data Discovery https://www.smarten.com/self-serve-data-preparation.html
Solix Common Data Platform https://www.solix.com/products/solix-common-data-platform/
Sparkflows https://www.sparkflows.io/data-science
Tableau Prep https://www.tableau.com/products/prep
Talend Data Preparation https://www.talend.com/products/data-preparation/
Tamr https://www.tamr.com/
Teradata Vantage https://www.teradata.com/Products/Software/Vantage
TIBCO Spotfire Analytics https://www.tibco.com/products/tibco-spotfire
TMMData https://www.tmmdata.com/
Trifacta Wrangler https://www.trifacta.com/products/wrangler-editions/
Unifi Data Platform https://unifisoftware.com/platform/
Waterline Data https://www.waterlinedata.com/
Workday-Prism Analytics https://www.workday.com/en-us/applications/analytics/

prism-analytics.html
Yellowfin Data Prep https://www.yellowfinbi.com/suite/data-prep
Zoho Analytics https://www.zoho.com/analytics/

20

https://www.datawatch.com/in-action/monarch-draft/
https://www.alteryx.com/solutions/analytics-need/data-preparation
https://www.alteryx.com/solutions/analytics-need/data-preparation
https://www.biggorilla.org/
https://www.cambridgesemantics.com/
https://www.datameer.com/
https://easymorph.com/
https://erwin.com/
https://www.fico.com/
https://cloud.google.com/dataprep/
https://www.hitachivantara.com/en-us/products/data-management-analytics.html
https://www.hitachivantara.com/en-us/products/data-management-analytics.html
https://www.ibm.com/cloud/data-refinery
https://www.infogix.com/data3sixty/analyze/
https://www.informatica.com/products/data-catalog/enterprise-data-prep.html
https://www.informatica.com/products/data-catalog/enterprise-data-prep.html
https://looker.com/
https://www.getlore.io/
https://powerbi.microsoft.com/en-us/
https://www.microstrategy.com/us/product/analytics/data-visualization
https://www.microstrategy.com/us/product/analytics/data-visualization
https://modakanalytics.com/nabu.html
http://openrefine.org/
https://www.oracle.com/business-analytics/analytics-cloud.html
https://www.oracle.com/business-analytics/analytics-cloud.html
https://www.paxata.com/self-service-data-prep/
https://www.qlik.com/us/products/qlik-data-catalyst
https://www.quest.com/products/toad-data-point/
https://www.rapidinsight.com/solutions/data-preparation/
https://rapidminer.com/products/turbo-prep/
https://www.sap.com/germany/products/data-preparation.html
https://www.sas.com/en_us/software/data-preparation.html
https://www.smarten.com/self-serve-data-preparation.html
https://www.solix.com/products/solix-common-data-platform/
https://www.sparkflows.io/data-science
https://www.tableau.com/products/prep
https://www.talend.com/products/data-preparation/
https://www.tamr.com/
https://www.teradata.com/Products/Software/Vantage
https://www.tibco.com/products/tibco-spotfire
https://www.tmmdata.com/
https://www.trifacta.com/products/wrangler-editions/
https://unifisoftware.com/platform/
https://www.waterlinedata.com/
https://www.workday.com/en-us/applications/analytics/prism-analytics.html
https://www.workday.com/en-us/applications/analytics/prism-analytics.html
https://www.yellowfinbi.com/suite/data-prep
https://www.zoho.com/analytics/

2.3 Data Preparation Tools and Preparator Matrix

Table 2: Selected data preparation tools
Tool name URL
Altair Monarch Data Preparation https://www.datawatch.com/in-action/monarch-draft/
Paxata Self Service Data Preparation https://www.paxata.com/self-service-data-prep/
SAP Agile Data Preparation https://www.sap.com/germany/products/data-preparation.html
SAS Data Preparation https://www.sas.com/en_us/software/data-preparation.html
Tableau Prep https://www.tableau.com/products/prep
Talend Data Preparation https://www.talend.com/products/data-preparation/
Trifacta Wrangler https://www.trifacta.com/products/wrangler-editions/

Table 3: Selected data preparation tools with their current affiliations
Tool name URL
Altair Monarch https://altair.com/monarch
DataRobot (Paxata) https://www.datarobot.com/platform/dataprep/?redirect_

source=paxata.com
SAP Data Intelligence (SAP) https://www.sap.com/germany/products/technology-platform/

data-intelligence.html
SAS Viya (SAS) https://www.sas.com/en_us/trials/software/viya/

viya-trial-form.html
Tableau Prep Builder https://www.tableau.com/products/prep
Talend a Qilk Company (Talend) https://www.talend.com/products/data-preparation/
Alteryx (Trifacta Wrangler) https://www.alteryx.com/products/capabilities/

data-preparation-tools

• Customer assistance: Compliant support teams that assist users with generic and
specific tool queries when needed.

By applying these criteria, we aimed to ensure that the selected tools are well-suited for
data preparation tasks and offer a robust and user-friendly experience for data profession-
als. This approach allowed us to focus on the most relevant tools and gain meaningful
insights into their capabilities and functionalities.

After carefully applying our selection criteria, we have identified seven qualifying tools
for detailed investigation in our data preparation survey, as listed in Table 2. In the follow-
ing, we will discuss each of these tools in alphabetical order, providing a comprehensive
overview of their features.

As mentioned earlier, some links to the discovered tools may have become obsolete or may
now refer to other portals due to mergers and acquisitions in the industry. This situation
has also been observed for the selected tools listed in Table 2. To address this, we have
now provided new links in Table 3, which correspond to the current versions5 and names
of the tools and their affiliated companies. Despite potential changes in the tool’s names
and associations, it is important to acknowledge that the survey presented in this chapter is

5 Accessed on 1st August 2023.

21

https://www.datawatch.com/in-action/monarch-draft/
https://www.paxata.com/self-service-data-prep/
https://www.sap.com/germany/products/data-preparation.html
https://www.sas.com/en_us/software/data-preparation.html
https://www.tableau.com/products/prep
https://www.talend.com/products/data-preparation/
https://www.trifacta.com/products/wrangler-editions/
https://altair.com/monarch
https://www.datarobot.com/platform/dataprep/?redirect_source=paxata.com
https://www.datarobot.com/platform/dataprep/?redirect_source=paxata.com
https://www.sap.com/germany/products/technology-platform/data-intelligence.html
https://www.sap.com/germany/products/technology-platform/data-intelligence.html
https://www.sas.com/en_us/trials/software/viya/viya-trial-form.html
https://www.sas.com/en_us/trials/software/viya/viya-trial-form.html
https://www.tableau.com/products/prep
https://www.talend.com/products/data-preparation/
https://www.alteryx.com/products/capabilities/data-preparation-tools
https://www.alteryx.com/products/capabilities/data-preparation-tools

2 Data Preparation from an Industry Perspective: A Survey

based on the tools originally discussed in the published paper [32], and the focus remains
on the functionalities of the tools as outlined in the original research publication.

Altair Monarch Data Preparation formerly known as Datawatch before the company’s
merger with Altair, offers a range of data preparators for structured data, as well as the
unique capability to transform tables within PDF and text files into tabular data. The tool’s
table extractor feature allows users to extract files independently as tables or merge them
with other tables or files using various join and union operations. This functionality pro-
vides data professionals with enhanced flexibility when working with diverse data sources
and formats, making it a valuable addition to the data preparation toolkit.

Paxata Self-Service Data Preparation is a comprehensive tool that excels in organiz-
ing and preparing structured data, while also demonstrating efficient handling of semi-
structured data. In addition to typical data preparation features, Paxata introduces a unique
functionality called “data filtergrams”. These filtergrams enable users to perform filter
operations on data through various visual interactions, such as text filtergrams, numeric
filtergrams, boolean filtergrams, and source filtergrams. The emphasis on user experience
makes Paxata a user-friendly tool, accommodating both data experts and non-experts alike,
thereby streamlining the data preparation process for a wider range of users. The tool is
currently known as DataRobot.

SAP Agile Data Preparation is built on top of SAP’s HANA database system and provides
a comprehensive set of common data preparators with additional system-specific features.
One notable feature is “Schedule Snapshot”, enabling users to take periodic snapshots of
data and retrieve information from remote sources as needed. This feature minimizes the
necessity of manually writing queries for data retrieval, freeing up valuable time for data
scientists to allocate towards other essential data-centric activities. The tool also offers
interactive suggestions, assisting users in navigating and preparing data efficiently. Fur-
thermore, the support for multi-user access allows collaborative data preparation, facilitat-
ing teamwork and enhancing productivity. With its powerful capabilities and collaborative
features, SAP Agile Data Preparation empowers users to streamline their data preparation
tasks within the SAP HANA ecosystem. Currently, SAP provides data preparation features
through their new system called Data Intelligence.

SAS Data Preparation is integrated into the SAS Viya System Management, leveraging
distributed in-memory processing for efficient operations. In addition to standard data pre-
paration features, SAS offers code-based transformations, allowing users to write and share
custom code for data transformation. This support for code re-usability enables users to
create and reuse preparation pipelines, enhancing the flexibility and customization options
for data processing tasks.

22

2.3 Data Preparation Tools and Preparator Matrix

Tableau Prep adopts a workflow-based approach to efficiently organize and prepare un-
tidy data. The tool’s interactive interface and workspace plans empower users to execute
multiple operations simultaneously. Tableau Prep consists of two components: Tableau
Prep Builder, which facilitates the creation of data flows, data management, and the ap-
plication of operations on the data, and Tableau Prep Conductor, which enables users to
share, schedule, and monitor these data flows. With its seamless integration of data prepa-
ration tasks, Tableau Prep offers a user-friendly and comprehensive solution for handling
complex data preparation workflows.

Talend Data Preparation stands out with its tailored and specific data preparation func-
tionalities designed to address diverse tasks. For data cleaning, it offers various functions
dedicated to handling numeric data values, strings, and date inputs. A notable feature is
“selective sampling”, allowing users to work with a subset of the data for insights and
operations that can later be applied to the entire dataset. Talend actively addresses system-
level challenges, exemplified by its intelligent pipeline automation feature, which enables
the saving and reusability of data preparation tasks or steps. With its powerful capabili-
ties and intelligent features, Talend Data Preparation remains a robust choice for handling
data preparation tasks efficiently and effectively. The tool is currently associated with Qlik
Analytics, following a merger between the Talend and Qilk companies.

Trifacta Wrangler excels in data preparation with its diverse range of preparation func-
tions and intelligent pattern prediction, providing valuable suggestions to aid users in data
transformation. Beyond the common preparation tasks, it offers intriguing additional fea-
tures, including primary key generation, data transformation by example, and permitted
character checks. Wrangler leverages regular expressions for many of its pattern-based
functionalities. Notably, the preparators in Wrangler exhibit a high degree of sophistica-
tion. For instance, the locate outlier not only identifies outliers but also generates a his-
togram of the entire column, adding valuable insights for data analysis. The tool originated
from the Wrangler project [54], and its continued development showcases its commitment
to empowering users with advanced data preparation capabilities. Currently, the tool is part
of Alteryx’s data management solutions following the company’s acquisition of Trifacta.

2.3.2 Preparator Matrix

Table 4 provides a preparator matrix showing which preparator is supported by which tool
in each of the six categories. The population of this preparator matrix was not a trivial task.
Initially, we analyzed the tool’s documentation to gather all available preparators. We then
downloaded trial versions of all tools and (generously) evaluated to determine whether
they offered the functionality of each of the 40 preparators. The process of populating the
matrix is detailed further in Section 2.4.

23

2 Data Preparation from an Industry Perspective: A Survey

Table 4: Preparator matrix for data preparation tools
Categories Available preparators Data preparation tools

Altair Paxata SAP SAS Tableau Talend Trifacta
Data discovery Locate missing values (nulls) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Locate outliers ✓ ✓ ✓
Search by pattern ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sort data ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data validation Compare values (selection and join) ✓ ✓ ✓ ✓ ✓ ✓
Check data range ✓ ✓ ✓ ✓ ✓ ✓
Check permitted characters ✓
Check column uniqueness ✓ ✓ ✓ ✓ ✓ ✓
Find type-mismatched data ✓ ✓ ✓ ✓ ✓
Find data-mismatched datatypes ✓ ✓ ✓

Data structuring Change column data type ✓ ✓ ✓ ✓ ✓ ✓ ✓
Delete column ✓ ✓ ✓ ✓ ✓ ✓ ✓
Detect & change encoding ✓ ✓
Pivot / unpivot ✓ ✓ ✓ ✓ ✓
Rename column ✓ ✓ ✓ ✓ ✓ ✓ ✓
Split column ✓ ✓ ✓ ✓ ✓ ✓ ✓
Transform by example [50] ✓ ✓

Data enrichment Assign semantic data type ✓ ✓ ✓
Calculate column using expressions ✓ ✓ ✓ ✓ ✓ ✓ ✓
Discover & merge external data ✓ ✓ ✓ ✓ ✓
Duplicate column ✓ ✓ ✓ ✓ ✓ ✓
Generate primary key column ✓ ✓
Join & union ✓ ✓ ✓ ✓ ✓ ✓ ✓
Merge columns ✓ ✓ ✓ ✓ ✓
Normalize numeric values ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data filtering Delete/keep filtered rows ✓ ✓ ✓ ✓ ✓ ✓ ✓
Delete empty and invalid rows ✓ ✓ ✓ ✓ ✓ ✓ ✓
Extract value parts ✓ ✓ ✓ ✓
Filter with regular expressions ✓

Data cleaning Change date & time format ✓ ✓ ✓ ✓ ✓ ✓ ✓
Change letter case ✓ ✓ ✓ ✓ ✓ ✓ ✓
Change number format ✓ ✓ ✓ ✓ ✓ ✓ ✓
Deduplicate data ✓ ✓ ✓ ✓ ✓ ✓
Delete by pattern ✓ ✓ ✓ ✓ ✓ ✓
Edit & replace cell data ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fill empty cells ✓ ✓ ✓ ✓
Remove extra whitespace ✓ ✓ ✓ ✓ ✓ ✓ ✓
Remove diacritics ✓
Standardize strings by pattern ✓ ✓ ✓ ✓ ✓ ✓
Standardize values in clusters ✓ ✓ ✓ ✓ ✓ ✓

The basic functionality of most preparators is self-explanatory by their name – their pre-
cise implementation and parameterization might differ from tool to tool, and it would be
beyond the scope of this chapter to describe each. Instead, we have selected three ex-
emplary preparators to illustrate their function and the intricacies involved in even simple
data preparation tasks. We use the same three preparators in Section 2.4 to highlight some

24

2.3 Data Preparation Tools and Preparator Matrix

capabilities of individual tools.

Keep or Delete Filtered Rows serves the purpose of customizing data views by applying
filtering operations based on specified predicates. This preparator enables users to filter
data that may need to be deleted, extracted, or modified for subsequent analysis. In its
basic form, the filtering process involves applying simple predicates similar to SQL condi-
tions. However, a more advanced and intelligent approach would involve utilizing a richer
language, such as regular expressions, to perform filtering tasks. This enhanced filtering
capability allows for more complex and flexible data manipulation to suit diverse data pre-
paration requirements. For instance, consider a dataset of customer reviews, and a user
wants to extract all reviews that contain positive sentiments. The user could use a regu-
lar expression like .*\b(?:good|excellent|satisfactory)\b.* to filter out only the
rows with positive feedback, providing a positive subset for analysis.

Value Standardization is a common data preparation operation used to transform the val-
ues of a column to adhere to a specific standard. This standard can either be derived from
frequent patterns found within the data or obtained from an external authoritative source.
A more advanced preparator could help in automatically detecting relevant data clusters,
making the standardization process more efficient and effective. One popular technique
employed in this context is fuzzy matching for clustering, which allows for a more accu-
rate and meaningful representation of the data during standardization. By applying value
standardization, datasets can be homogenized, leading to improved consistency and com-
parability, which is crucial in various data analysis and integration tasks. For example, con-
sider a dataset containing information about countries and their currencies. The currency
column in this dataset might have values for US currency like “US Dollars”, “USD”, and
“$”, which can create inconsistency and make it challenging to analyze the data accurately.
To standardize the values in the currency column, a Value Standardization preparator can
automatically detect relevant data clusters and apply fuzzy matching. It recognizes that
all these variations should be standardized to one consistent version and may choose, for
instance, “USD” for consistency.

Split Column is valuable for dealing with messy data containing values comprising multi-
ple atomic parts. This preparator allows data to be divided into multiple columns based on
defined criteria, such as splitting after a comma or at the last whitespace within a string. A
more sophisticated preparator could identify split column cases by using existing patterns
in data, and be able to handle splits into more than two columns. For example, consider a
dataset with a column containing full names in a single field. To extract the first and last
names separately, a Split Column preparator can be applied. It can be configured to split
the column based on a word separator (e.g., whitespace), separating the full names into
two distinct columns: “First Name” and “Last Name”.

25

2 Data Preparation from an Industry Perspective: A Survey

In our survey, we came across many functional and non-functional system features that
did not cater to our data preparation focus. Nonetheless, these features are important and
interesting when explored and utilized. Thus, we have gathered them in Table 5.

2.4 Evaluation of Selected Tools

In this section, we delve into our assessment of data preparation tools, highlighting their
performance in data quality enhancement features. Overall, the evaluation aimed to provide
insights into the strengths of each data preparation tool, helping readers understand which
tool might be the best fit for their specific data preparation needs.

We evaluated each of the preparators on three datasets downloaded from public data repos-
itories: (i) Kaggle – 120 years of Olympic history (athletes and results)6, (ii) IMDb – data
about movies7, and (iii) UK government web archive, as mentioned in Section 2.1.

To better explain how we evaluated the preparators, we provide an example for each of
the three preparators discussed in the previous section. In general, even the simplest ver-
sions of the respective preparators earned the tool a checkmark in our matrix (Table 4).
More sophisticated versions could incorporate preparators that intelligently detect relevant
problems and actively provide suggestions for their configuration, e.g., suitable regular
expressions or standard formats.

Keep or Delete Filtered Rows: Data filtering techniques play a crucial role in enhancing
data quality by employing predefined criteria, such as removing rows with empty values or
those that do not adhere to specific user-defined patterns. A wide range of data preparation
tools provides diverse filtering options. For example, Talend Data Preparation offers filters
based on patterns using pre-defined syntactic data types, allowing users to apply precise
and efficient data filtering strategies to tailor data to their specific needs.

Example 1 Using pattern filtering, a user might want to keep only official email addresses.
Using Talend’s syntax, corresponding patterns might be:

[word]@ibm.[word],[char].[word]@ibm.[word]

Thus, private addresses such as bob1992@ gmail. com or alice25@ yahoo. com would
be filtered, while a. peter@ ibm. com would be retained.

6https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results
7ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/

26

bob1992@gmail.com
alice25@yahoo.com
a.peter@ibm.com
https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results
ftp://ftp.fu-berlin.de/pub/misc/movies/database/frozendata/

2.4 Evaluation of Selected Tools

Ta
bl

e
5:

Fu
rt

he
rf

ea
tu

re
s

of
da

ta
pr

ep
ar

at
io

n
to

ol
s

A
lta

ir
Pa

xa
ta

SA
P

SA
S

Ta
bl

ea
u

Ta
le

nd
Tr

ifc
at

a
A

dv
an

ce
d

Fi
lte

ri
ng

A
dd

C
om

m
en

ts
A

ct
io

n
H

is
to

ry
C

re
at

e
C

us
to

m
C

od
e

A
dj

us
tS

am
pl

e
Si

ze
A

dv
an

ce
d

Fi
lte

ri
ng

A
dd

C
om

m
en

ts
A

ud
it

U
se

rA
ct

io
ns

A
dv

an
ce

d
Fi

lte
ri

ng
A

dv
an

ce
d

Fi
lte

ri
ng

D
at

a
L

in
ea

ge
A

dv
an

ce
d

Fi
lte

ri
ng

A
gg

re
ga

tio
n

U
si

ng
C

ha
rt

s
A

dv
an

ce
d

Fi
lte

ri
ng

C
om

pa
ri

so
n

Fu
nc

tio
ns

A
gg

re
ga

tio
n

A
gg

re
ga

tio
n

D
at

a
Sa

m
pl

in
g

A
gg

re
ga

tio
n

A
ud

it
U

se
rA

ct
io

ns
A

gg
re

ga
tio

n
C

op
y

an
d

Pa
st

e
C

ol
um

ns
C

he
ck

Sp
el

lin
g

C
om

pa
ri

so
n

Fu
nc

tio
ns

Jo
b

M
on

ito
ri

ng
C

ha
ng

e
C

ol
or

Sc
he

m
e

C
al

en
da

rF
or

m
at

s
C

om
pa

ri
so

n
Fu

nc
tio

ns
C

re
at

e
Su

m
m

ar
ie

s
C

lu
st

er
D

at
a

Pr
ep

St
ep

s
C

op
y

an
d

Pa
st

e
C

ol
um

ns
Jo

b
Sc

he
du

lin
g

C
he

ck
Sp

el
lin

g
C

ou
nt

ry
N

am
e

in
to

C
od

es
C

op
y

an
d

Pa
st

e
C

ol
um

ns
D

at
a

H
is

to
gr

am
C

om
pa

ri
so

n
Fu

nc
tio

ns
D

at
a

Q
ua

lit
y

St
at

is
tic

s
M

ai
nt

ai
n

L
og

D
at

a
Si

ze
D

et
ai

ls
D

at
a

M
as

ks
D

at
a

H
is

to
gr

am
D

at
a

L
in

ea
ge

C
op

y
an

d
Pa

st
e

C
ol

um
ns

D
at

e
&

Ti
m

e
Fo

rm
at

s
M

at
h

fu
nc

tio
ns

E
xt

er
na

lD
at

a
U

se
D

at
e

&
Ti

m
e

Fo
rm

at
s

D
at

a
Pr

ofi
lin

g
D

at
a

Sa
m

pl
in

g
D

at
a

H
is

to
gr

am
D

ed
up

lic
at

io
n

St
at

is
tic

s
M

ul
ti

U
se

rA
cc

es
s

G
ro

up
an

d
R

ep
la

ce
E

xt
er

na
lD

at
a

U
se

D
at

e
&

Ti
m

e
Fo

rm
at

s
D

at
a

Si
ze

D
et

ai
ls

D
at

a
L

in
ea

ge
E

xt
er

na
lD

at
a

U
se

Pr
ep

ar
at

io
n

V
er

si
on

s
G

ro
up

Ta
sk

s
E

xt
ra

ct
Q

ua
rt

er
fr

om
D

at
e

D
ia

gn
os

e
Fa

ile
d

Jo
bs

E
di

tF
ie

ld
V

al
ue

s
D

at
a

Pr
ofi

lin
g

H
id

e
C

ol
um

n
R

ef
re

sh
D

at
a

fr
om

So
ur

ce
In

te
lli

ge
nt

B
ar

Fi
nd

an
d

G
ro

up
E

xt
er

na
lD

at
a

U
se

E
xt

er
na

lD
at

a
U

se
D

at
a

Sa
m

pl
in

g
In

te
lli

ge
nt

B
ar

R
eo

rd
er

Pr
ep

ar
at

io
n

St
ep

s
M

ai
nt

ai
n

L
og

In
te

lli
ge

nt
B

ar
Fi

x
D

ep
en

de
nc

y
Is

su
es

H
id

e
C

ol
um

n
D

at
a

Si
ze

D
et

ai
ls

M
ai

nt
ai

n
L

og
Se

ar
ch

an
d

R
ep

la
ce

M
at

h
Fu

nc
tio

ns
M

ai
nt

ai
n

L
og

G
ro

up
an

d
R

ep
la

ce
Jo

b
Sc

he
du

lin
g

D
at

e
&

Ti
m

e
Fo

rm
at

s
M

at
h

Fu
nc

tio
ns

Sh
ar

e
D

at
as

et
M

in
iM

ap
s

M
at

h
Fu

nc
tio

ns
In

iti
al

Pa
rs

in
g

St
ep

s
M

ai
nt

ai
n

L
og

E
xt

er
na

lD
at

a
U

se
M

ul
ti

U
se

rA
cc

es
s

St
ri

ng
Fu

nc
tio

ns
M

ul
ti

L
an

gu
ag

e
Su

pp
or

t
M

ul
ti

L
an

gu
ag

e
Su

pp
or

t
In

te
lli

ge
nt

B
ar

M
at

h
Fu

nc
tio

ns
Fi

nd
an

d
G

ro
up

M
ul

tip
le

G
ra

ph
s

fo
rV

is
ua

ls
Tr

an
sp

os
e

D
at

a
Pr

ep
ar

at
io

n
V

er
si

on
s

Pr
ep

ar
at

io
n

V
er

si
on

s
L

og
ic

al
Fu

nc
tio

ns
M

ov
e

C
ol

um
n

G
ro

up
an

d
R

ep
la

ce
Pr

ep
ar

at
io

n
V

er
si

on
s

V
ie

w
Ta

bl
e

Pr
op

er
tie

s
Pu

bl
is

h
Fl

ow
s

R
eo

rd
er

Pr
ep

ar
at

io
n

St
ep

s
M

ai
nt

ai
n

L
og

Pr
ep

ar
at

io
n

V
er

si
on

s
In

te
lli

ge
nt

B
ar

R
ef

re
sh

D
at

a
fr

om
So

ur
ce

V
is

ua
lF

ee
db

ac
k

R
ef

re
sh

D
at

a
fr

om
So

ur
ce

Se
ar

ch
an

d
R

ep
la

ce
M

an
ag

e
Fl

ow
s

w
ith

Fo
ld

er
s

R
ef

re
sh

D
at

a
fr

om
So

ur
ce

In
te

lli
ge

nt
In

ge
st

R
eo

rd
er

Pr
ep

ar
at

io
n

St
ep

s
W

or
k

w
ith

Pl
an

s
R

eo
rd

er
Pr

ep
ar

at
io

n
St

ep
s

Sh
ar

e
D

at
as

et
M

an
ag

e
St

ri
ng

L
en

gt
hs

R
ow

an
d

C
ol

um
n

C
ou

nt
s

M
ai

nt
ai

n
L

og
Se

ar
ch

an
d

R
ep

la
ce

Sc
he

du
le

Fl
ow

s
St

ri
ng

Fu
nc

tio
ns

M
at

h
Fu

nc
tio

ns
Se

ar
ch

an
d

R
ep

la
ce

M
at

h
Fu

nc
tio

ns
Sh

ar
e

D
at

as
et

Se
ar

ch
an

d
R

ep
la

ce
Su

gg
es

tio
ns

M
ul

ti
L

an
gu

ag
e

Su
pp

or
t

St
ri

ng
Fu

nc
tio

ns
M

ul
ti

L
an

gu
ag

e
Su

pp
or

t
St

ri
ng

Fu
nc

tio
ns

Sh
ar

e
D

at
as

et
Sw

ap
C

ol
um

n
C

on
te

nt
Pr

ep
ar

at
io

n
V

er
si

on
s

Tr
an

sp
os

e
D

at
a

Pr
ep

ar
at

io
n

V
er

si
on

s
Su

gg
es

tio
ns

St
ri

ng
Fu

nc
tio

ns
U

se
M

et
ri

c
Sy

m
bo

ls
R

eo
rd

er
Pr

ep
ar

at
io

n
St

ep
s

V
is

ua
lF

ee
db

ac
k

Pu
bl

is
h

D
at

as
et

Su
gg

es
tio

ns
V

is
ua

lF
ee

db
ac

k
R

ow
an

d
C

ol
um

n
C

ou
nt

s
R

eo
rd

er
Pr

ep
ar

at
io

n
St

ep
s

V
is

ua
lF

ee
db

ac
k

Se
ar

ch
an

d
R

ep
la

ce
Se

ar
ch

an
d

R
ep

la
ce

Se
qu

en
ce

D
at

as
et

s
Se

nd
N

ot
ifi

ca
tio

ns
Sh

ar
e

D
at

as
et

Sh
ar

e
D

at
as

et
St

ri
ng

Fu
nc

tio
ns

St
ri

ng
Fu

nc
tio

ns
Su

gg
es

tio
ns

Su
gg

es
tio

ns
Ta

rg
et

-d
riv

en
pr

ep
ar

at
io

n
V

er
si

on
H

is
to

ry
Tr

ac
k

D
at

a
C

ha
ng

es
V

is
ua

lF
ee

db
ac

k
V

is
ua

lF
ee

db
ac

k
W

or
kfl

ow
A

ut
om

at
io

n

27

2 Data Preparation from an Industry Perspective: A Survey

Value Standardization: A typical step in data preparation, especially when dealing with
heterogeneously formatted values, involves standardization using patterns. For instance,
phone number patterns, datetime patterns, and patterns by example are commonly used
to achieve standardization. Tools like Trifacta Wrangler offer valuable suggestions for
applicable patterns and transform data to adhere to the suggested or selected standard.

Additionally, value standardization is essential for handling different representations of
the same real-world value within a column. By grouping these varied representations and
transforming them into a single, common representation, data consistency is achieved. This
ensures that data are uniformly formatted, making it easier for analysis and facilitating
accurate insights and decisions.

Example 2 Trifacta might group rows with city values NY, NYC, and New York City and
standardize all occurrences to New York City. Alternatively, users can review the cluster
and manually choose the correct standard value.

Split Column: Multi-valued columns reduce flexibility in handling data (and also their
readability). The Split column preparator is designed to address this issue by dividing
such columns based on a specified criterion. For instance, SAS Data Preparation offers
multiple ways to implement this technique, such as splitting based on on, before, or after
a delimiter, on a fixed length, and using “quick split”, which intelligently identifies an
appropriate split criterion. This operation not only enhances data organization but also
streamlines subsequent data processing tasks, improving the overall efficiency of the data
preparation workflow.

Example 3 Using a comma as a delimiter, the user wants to split the location column (and
implicitly trim accrued whitespace). In addition, the user specified headers for the output
columns. As can be seen in the example, due to a missing value in the original data, the
value “USA” is misplaced; a later validation step might identify this error.

Input:

Location . . .
Melbourne, Victoria, Australia
San Francisco, USA
Potsdam, Brandenburg, Germany

Output:

City State Country . . .
Melbourne Victoria Australia
San Francisco USA
Potsdam Brandenburg Germany

28

2.5 Challenges

The three preparators discussed above are presented as examples among various available
ones. We intend to provide readers with a better understanding of different types of data
preparators, rather than focusing on specific tools or their comparative features. While the
examples presented in the evaluation of preparators are basic, they were used to assess all
the preparators listed in Table 4 or variants of these examples. This approach was chosen
to maintain simplicity and a consistent evaluation level, although some tools showcased
the ability to handle more complex problems.

2.5 Challenges

In this section, we present some of the most prominent challenges that we encountered
during our research and survey. These challenges offer valuable insights and serve as
key takeaways, contributing to a better understanding of data preparation tools and their
potential areas of enhancement.

Dataset preprocessing: Interestingly, despite being data preparation tools, all tools that
we have surveyed and explored require a pre-prepared or cleaned dataset as their input.
For example, if the file had comment-lines, additional header or footer information, or
poorly placed quotation marks, it was misinterpreted and loaded improperly. In fact, most
tools make the following broad assumptions:

• Single table file (no multi-table files)

• Specific file encoding

• No preambles, comments, footnotes, etc.

• No intermediate headers

• Specific line-ending symbol

• Homogeneous delimiters

• Homogeneous escape symbols

• Same number of fields per row

• Relational data (no nested or graph-structured data, such as XML, JSON or RDF)

Some of the assumptions made by data preparation tools present intriguing research chal-
lenges, and researchers have addressed these challenges in isolated contexts. For instance,
detecting tables in complex spreadsheets has been explored in works like [21, 101], while

29

2 Data Preparation from an Industry Perspective: A Survey

converting web tables to relations has been tackled in studies such as [14, 65]. These indi-
vidual research endeavors shed light on specific aspects of data preparation and contribute
to the ongoing advancement of techniques and tools in this domain.

In line with this progress, Chapter 3 introduces our system, SURAGH, designed to automat-
ically identify rows with structural issues (preambles, heterogeneous row delimiters, rows
with inconsistent cell counts, etc.) that might otherwise hinder the smooth ingestion of
files. In continuation of our efforts, Chapter 4 presents an automated solution, TASHEEH,
for repairing such rows, thereby facilitating seamless data ingestion.

User expertise needed: Another challenge we experienced was the level of expertise re-
quired to use data preparation tools effectively. Most tools require the user to be an expert
in the dataset domain and have prior knowledge and understanding of the datasets and of
the data preparation goal.

Moreover, many tools offer advanced features that go beyond simple predicates, such as
the ability to use regular expressions for tasks like matching, splitting, or deleting data.
However, crafting intricate regular expressions can be challenging for typical domain ex-
perts who may not possess extensive IT knowledge. This requirement for a certain level
of technical expertise and familiarity with data domains may limit the accessibility and
adoption of data preparation tools by non-technical users.

Automatic preparation: While all the surveyed data preparation tools offer valuable func-
tions, the majority of them lack intelligent solutions for more automated data preparation
tasks. For instance, the preparator Deduplicate data, which removes duplicate rows from a
source, is typically limited to exact match conditions. A more sophisticated version would
involve deduplication based on similarity measures. Another common issue is column het-
erogeneity, where columns contain data in multiple formats. Currently, users must man-
ually filter and prepare these different groups separately. An automatic homogenization
process would be helpful, but it also poses a challenging research problem.

The lack of more advanced and intelligent automation in data preparation tools underscores
the potential for further research and development in this area. Introducing smart solutions
to automate complex data preparation tasks would enhance the efficiency and effectiveness
of data preparation processes, ultimately benefiting data scientists and machine learning
engineers across various domains.

Unstructured data: The scope of our survey is that of preparing structured data. How-
ever, many datasets include some textual component, such as product descriptions, plot
synopses, etc. Such textual data can also benefit from basic preparation steps, such as
stopword-removal, lemmatization, or sentence breaking, to then, e.g., perform named en-
tity extraction or sentiment analysis.

30

2.6 Conclusion

One outlook is to include such capabilities in the existing tools for structured data prepara-
tion. Another is to develop a dedicated framework and toolset for the case of unstructured
data preparation (or text preparation), similar to the tools survey in this chapter.

Preparation pipelining: Data preparation is not a one-step process. Rather, it involves
many subsequent steps, organized in a preparation pipeline to gradually transform a dataset
towards the desired output. Creating and managing pipelines yields many system-level
challenges and opportunities. For instance, preparation suggestion, pipeline adaption, and
pipeline optimization, that need to be addressed accordingly. Such systematic data prepa-
ration can benefit from a comprehensive and well-defined yet extensible set of operators.
By incorporating the ability to create and manage preparation pipelines, data preparation
tools can be massively improved and generalized for more intelligent and self-service tech-
niques. After a pipeline has been established, optimization and customization policies can
be designed according to the needs of the problem at hand or business use cases under
considerations.

To summarize, existing tools already cover basic data preparation needs by implementing
simple and obvious preparators. In some instances, we observed more advanced capabil-
ities, such as automated pattern suggestions or even preparator recommendations tailored
to the data at hand. All of these tools are excellent platforms for further development in
several dimensions, as outlined above. In our opinion, the need for self-service data prepa-
ration and tool capabilities goes beyond current technology, and we encourage research in
this emerging field.

2.6 Conclusion

In this chapter, we have discussed and surveyed major commercial tools for data prepa-
ration. We have gathered and organized their capabilities in the form of “preparators”,
categorized into six distinct groups.

As the volume of data continues to grow, there is an increasing opportunity to derive value
by integrating and analyzing these vast datasets. Consequently, the demand for data pre-
paration and cleaning also grows, as data often come with various syntactic and semantic
issues that require careful automated or manual handling. While current technology offers
a range of data preparation tools, the process still heavily relies on manual intervention
from data experts or domain experts with data engineering skills. To meet the demands of
this rapidly evolving data market, the development of sophisticated and intelligent solu-
tions for automatic data preparation is crucial. However, achieving a fully automated data

31

2 Data Preparation from an Industry Perspective: A Survey

preparation toolkit remains a significant challenge, requiring extensive research and devel-
opment. Nonetheless, recognizing the critical need for such advancements, we encourage
continuous efforts to explore and innovate in the field of data preparation.

32

SURAGH: A STRUCTURAL ERROR

DETECTION SYSTEM

Chapter 3

Despite the presence of the established standard [45], data entry into CSV files is prone to
errors because users and applications do not always adhere to this standard; moreover, the
standard itself is rather loose. This behavior is also present in CSV files available on open
data portals. Out of 2 066 files randomly selected from a government data portal8, we were
unable to directly load 418 (20.2%) of them into an RDBMS due to inconsistent row struc-
tures. We observe the same behavior with other tools, including business intelligence and
data wrangling tools. We refer to such rows as “ill-formed” (see Section 3.2.1 for a formal
definition). Eventually, such rows can hinder or completely halt data loading and other
data processing operations. Similarly, such rows impose challenges for machine learning
algorithms during data annotation, manipulation operations, and algorithm training phases.
Manually identifying ill-formed rows involves substantial effort, domain expertise and re-
mains susceptible to errors.

To address this challenge, this chapter introduces our automated solution, SURAGH9, de-
signed to identify ill-formed rows within a file by mapping column values to syntax-based
patterns: syntactic patterns (see Definition 1).

In lieu of conventional regular expressions, we leverage syntactic patterns as a more stream-
lined form of representation. These patterns are easy to understand and represent data
structures comprehensively. The syntactic patterns we introduce can assist the user in var-
ious tasks:

• Data ingestion: The core use-case of SURAGH is to prevent frustrating experiences
of raw data not loading into a host system.

• Table detection: Ill-formed rows can cause ambiguity for table detection algorithms
when detecting table boundaries. Using SURAGH, we can remove these rows and

8https://www.data.gov/
9SURAGH is an Urdu word that means to investigate an event; to obtain clues about something.

33

https://www.data.gov/

3 SURAGH: A Structural Error Detection System

improve the accuracy of boundary detection. In addition, our approach can help
users identify multiple vertically aligned tables in a file.

• Data standardization: Syntactic patterns can serve as a basis for standardizing data
into a uniform format, as they reflect typical problems in ill-formed rows (outlier
patterns) and desired structure (frequent patterns).

Our work in this chapter is based on our publication [33], and makes the following main
contributions:

1. A formalization to describe file schema, syntactic patterns, and ill/well-formedness
of rows.

2. A set of 131 files from five open data sources, each annotated for ill-formed and
well-formed rows for a total of 210 550 rows. The datasets are publicly available
together with the annotations and code at the project page10.

3. A method, SURAGH, that automatically recognizes ill-formed rows by mapping col-
umn values to syntax-based patterns.

4. A wide range of experiments conducted to validate SURAGH and demonstrate the
applicability of our approach.

The remainder of this chapter is structured as follows: Section 3.1 discusses data loading
challenges and presents illustrative examples of ill-formed rows at both row and column
levels. Section 3.2 defines relevant concepts, provides a formal definition of ill/well-formed
rows, and describes the syntactic patterns grammar specified by EBNF rules [23]. The
workflow of the proposed algorithm and the significance of pruning in distinct phases are
detailed in Section 3.3. Section 3.4 presents the datasets and the annotation process. Our
experimental evaluation of SURAGH is presented in Section 3.5. Section 3.6 discusses
prominent research conducted in the field of pattern-based approaches, and finally, Sec-
tion 3.7 concludes our study.

3.1 Data Loading Obstacles

Recall from Chapter 2, parsing and storing raw data without standardized formats harbors
challenges, such as invalid characters due to incorrect parsing, preambles or comments, or
inconsistent formatting that causes problems in data manipulation operations. Data scien-
tists and machine learning engineers spend much of their development time cleaning and
preparing data [41, 77, 98]. Existing data cleaning [15, 17, 62, 79, 86] and data preparation
[32, 49, 58, 89, 108] techniques address data preprocessing tasks. However, improving

10https://github.com/HPI-Information-Systems/SURAGH

34

https://github.com/HPI-Information-Systems/SURAGH

3.1 Data Loading Obstacles

user experience in designing and carrying out an automated data preprocessing pipeline
still has open challenges.

Among other challenges, detecting “ill-formed” rows in CSV files is a difficult problem.
These rows do not adhere to the file’s structural patterns and prevent data from being
loaded, let alone being consumed by downstream applications. We expect that most read-
ers have first-hand experience of a load-process aborting after many minutes due to some
mistake, such as an incorrectly encoded value or a row too long towards the end of the input
file. Another common experience is the need to “clean up” a file by removing preambles,
footnotes, etc., before attempting to import the data into a database or other application.
Our goal is to identify such problems in advance and alert users or machines about the
problematic rows.

A row may be ill-formed due to inconsistencies that can exist at both column- and row-
levels. Column-level inconsistencies include inconsistent column values, such as incor-
rectly handled escape characters, string values in numeric columns, inconsistent format-
ting, a null or a missing value, etc. Figure 8 shows several real-world examples.

Missing string quotes, resulting in creating an unintended additional column.
1,"A Lamusi","M",23,170,60,"China","CHN","2012 Summer",2012,"Summer","London","Judo",Speed Skating Women's 1,000 metres,NA

Mistakenly placed a delimiter (;) resulting in creating a new column, while expecting a new-line separator.
1;0.2789999999;831667;0.21100000000000002;0;4BJqT0PrAfrxzMOxytFOIz;0.878,10,0.665;-20.096;1;Piano Concerto;

Mistakenly placed (-) with (/) in the date column consequently, the entry no longer matches the other values in that column.
1,Bob Miller,University of California,Batch2020,12/10/1980,USA

Mistakenly placed postal code in city name column consequently, the entry does not match the expected content.
1,John,27,street 20 5th avenue new york,10001,USA

Due to the presence of a new-line separator between values, some values are split across multiple rows.
jqXKi/fIcxO8zBKMyaedfQ==,Propiedad,2019-10-14,9999-12-31,2019-10-14,"TEMPORADA 2020\r\nCon Hermosa pileta\r\nQuincho Asador"

Figure 8: Examples of ill-formed rows due to column-level inconsistencies

Row-level inconsistencies occur when entire rows appear in the file but do not contain the
expected data. For instance, such rows may contain metadata or comments, group headers,
or are due to misplaced delimiter or end-of-line characters. Figure 9 again shows several
real-world examples.

Although CSV files are mainly comma-separated, we observe many CSV files with other
delimiters, which are also in the scope of our work. In the context of our research, we
do assume that a file contains tabular data. Dealing with semi-structured and unstructured
data is beyond the scope of this work. Also, to limit search space size, our approach is
designed for data files that contain ASCII values. The extension to larger character sets is
conceptually easy but computationally expensive.

35

3 SURAGH: A Structural Error Detection System

𝑴𝒖𝒍𝒕𝒊 − 𝒅𝒆𝒍𝒊𝒎𝒊𝒕𝒆𝒅 𝒇𝒊𝒍𝒆𝑪𝒐𝒎𝒎𝒆𝒏𝒕𝒔 𝒊𝒏 𝒃𝒆𝒕𝒘𝒆𝒆𝒏 𝒅𝒂𝒕𝒂 𝑯𝒆𝒂𝒅𝒆𝒓 𝒓𝒐𝒘 𝒓𝒆𝒑𝒆𝒕𝒊𝒕𝒊𝒐𝒏

(a) (b) (c)

point| tourism|caravan site|0x2b|0x03|20
point| tourism|information|0x4c|0x00|20
point| tourism|picnic site|0x4a| 0x00|20
point| tourism|theme_park|0x2c|ex011|20
Point| tourism|zoo |0x2c |0x07 |20
Land-use and other polygons
polygon| landuse|cemetary| 0xla||18
polygon| landuse|cemetery|0xla||18
polygon| landuse|forest |0x50||18
polygon| landuse|industrial|0x0c|| 18
polygon| landuse|reservoir| 0×3f||18
polygon| leisure |common|0×17||20
polygon| leisure |garden|0x17 ||20
polygon| leisure |golf_course|0×18||20
polygon| leisure |marina|0×09||20

01 | 13 | 01 | 10 | 04 | 02 | 001 | 001 | 002 | 003 |
01 | 14 | 01 | 09 | 00 | 00 | 003 | 002 | 001 | 002 |
01 | 14 | 01 | 11 | 02 | 01 | 003 | 002 | 001 | 002 |
01 | 14 | 00 | 06 | 03 | 02 | 001 | 001 | 003 | 001 |
01 | 15 | 01 | 08 | 00 | 00 | 001 | 003 | 003 | 003 |
01 | 15 | 01 | 10 | 02 | 02 | 003 | 003 | 002 | 003 |
01 | 15 | 01 | 09 | 06 | 01 | 002 | 002 | 001 | 003 |
01 | 17 | 00 | 06 | 10 | 01 | 002 | 003 | 003 | 002 |
01 | 17 | 01 | 10 | 18 | 02 | 003 | 003 | 002 | 001 |
01 | 19 | 00 | 07 | 00 | 01 | 003 | 003 | 003 | 001 |
01 | 19 | 01 | 10 | 12 | 02 | 003 | 001 | 002 | 002 |
PP II GG DD HH (Fulfilled already and exist in the list)
III PrD PrH Prw PrC PrP W_d W_h W_w W_c W_p DesI DNi DPi
000 004 005 000 002 009 001 003 -02 00 002 37,000 0,00 1,45
001 005 009 000 002 008 001 001 -03 00 002 30,000 5,55 0,00

Date, Open, High, Low, close, volume, Adj close
2008-08-01,20.09,20.12,19.53,19.80,19777000,19.80
2008-06-30,21.12,21.20,20.60,20.66,17173500,20.66
2008-05-30,27.07,27.10,26.63,26.76,17754100,26.76
2008-04-30,27.17,27.78,26.76,27.41,30597400,27.41
Date, Open, High, Low, close, volume, Adj close
2008-08-01,20.09,20.12,19.53,19.80, 19777000,19.80
2008-06-30,21.12,21.20,20.60,20.66,17173500,20.66
2008-05-30,27.07,27.10,26.63,26.76,17754100,26.76
2008-04-30,27.17,27.78,26.76,27.41,30597400,27.41
Date, Open, High, Low, close, Volume, Adj close
2008-08-01,20.09,20.12,19.53,19.80, 19777000,19.80
2008-06-30,21.12,21.20,20.60,20.66,17173500,20.66
2008-05-30,27.07,27.10,26.63,26.76,17754100,26.76
2008-04-30,27.17,27.78,26.76,27.41,30597400,27.41

Figure 9: Examples of ill-formed rows due to row-level inconsistencies

Nonetheless, for files containing Non-ASCII values, users have the flexibility to adapt the
code to their specific needs by following a straightforward configuration process outlined
in the code repository10. Moreover, users can seamlessly expand the grammar rules to
cater to Non-ASCII letters according to their preferences. This entails simply introduc-
ing new representation classes within the pattern generation module. The instructions for
this process are available in the code repository, facilitating a clear understanding of code
utilization.

One main challenge we address is system efficiency. Our solution comprises several phases
that require both time and memory optimization. We achieve efficiency by introducing
pruning techniques to optimize the different phases of the system (see Section 3.3).

3.2 Problem Definition

We first introduce the basic concepts involved in this work to then define the notion of
syntactic patterns. Following this, we provide definitions for ill-formed and well-formed
rows and outline the syntactic pattern grammar.

3.2.1 Ill-Formed and Well-Formed Rows

The input to our approach is a file, which is composed of a number of rows. A row is
composed of horizontally aligned cells, where each cell belongs to a column and is sepa-
rated by a delimiter. A column is composed of vertically aligned cells across rows, where
each cell contains a value (including the empty value). To distinguish ill-formed and well-
formed rows, we define a pattern schema: one or more ordered sequences of attributes,
each attribute having a syntactic pattern (defined hereafter). A pattern schema can contain
more than one ordered sequence because rows even in well-structured tables might follow

36

3.2 Problem Definition

different patterns. For example, a column with usernames might have a different number
of tokens in each row.

We now define the central notion of a syntactic pattern:

Definition 1 Syntactic patterns are a sequence of symbols to represent characters of an
input value. The production rules of Table 6 transform each input value to one or more
weighted syntactic patterns, where weights reflect different levels of pattern abstraction.

For example, using our syntactic pattern grammar (presented in Section 3.2.2) two of the
syntactic patterns for New York City zip codes (e.g., 10001) are ⟨D⟩⟨D⟩⟨D⟩⟨D⟩⟨D⟩ and
⟨SEQD⟩. We assign a higher weight to each abstraction of the pattern inversely propor-
tional to its abstraction level (see Figure 10); thus, the abstraction “digit” ⟨D⟩ is given a
higher weight than “sequence of digits” ⟨SEQD⟩. SURAGH uses these weights to avoid
generalization during its pattern selection and to prune highly abstracted patterns. How-
ever, ⟨SEQD⟩ and other higher-level abstractions are also crucial in the process when nec-
essary, e.g., a column with an index number from 1 to 1 000 000; there, it is not trivial
to find a small set of patterns using low-level abstractions due to the many different cell
values.

In general, we expect all the rows of a standard CSV file to conform to the same schema
and thus contain values with the same syntactic patterns across columns. However, non-
standard CSV files may include rows with different syntactic patterns, for example, if they
contain multiple tables and therefore multiple schemata, or contain metadata rows, such as
table titles, footnotes, etc.

Definition 2 A row conforms to a pattern schema if it has the same number of attributes
as the schema, and all column values of the row conform to the corresponding column
patterns of one of the attribute sequences of the pattern schema. We call such a row well-
formed and ill-formed otherwise.

We now formally define our problem as follows: Given an input file F = {r1,r2, . . . ,rm}
of m rows, automatically generate its pattern schema and use it to classify each row as
ill-formed or well-formed.

Please note that we limit our solution to syntactically or structurally ill-formed rows. Iden-
tifying semantically ill-formed rows, e.g., rows with data errors, is beyond the goal of this
research.

37

3 SURAGH: A Structural Error Detection System

Number

Bracket

Text

Symbol

Lower-case
letter

Sequence of
lower-case letter

Upper-case
letter

Sequence of
upper-case letter

Space

Whitespace

Digit

Sequence of
digit

Date

Arithmetic Delimiter Quotation Line break

Empty value

Missing value

Fulltext

Level/Weight

1/4

2/3

3/2

4/1

Abstractions

0/5 Literal

Figure 10: Abstractions dependency graph

3.2.2 A Grammar for Data Rows

To construct syntactic patterns, we define a set of production rules to transform values and
call them abstractions. Table 6 lists these abstractions with their representation and also
shows the associated grammar. We specify the grammar using the Extended Backus-Naur
Form (EBNF) rules and notations [23]. The abstractions are of two types, namely (1) en-
coder and (2) aggregator. For a given value, the encoder abstractions map each character
to a derived representation, while the aggregator abstractions that depend on the encoder
abstractions combine representations resulting from other encoder and aggregator abstrac-
tions based on a given rule. The application of these rules is order-dependent; for example,
the “sequence of upper-case letters” ⟨SEQUL⟩ abstraction is an aggregator abstraction that
is applicable only to representations of the “upper-case letter” ⟨UL⟩ abstraction. Figure 10
shows the dependency graph between abstractions, where abstractions without edges can
be executed in any order. The abstractions shown in orange are encoders, while those
shown in green are aggregators.

For a given input file, SURAGH generates, collects, and constructs syntactic patterns at
several levels; syntactic value pattern, syntactic column pattern, and syntactic row pattern
each serves a purpose in the process of detecting ill-formed rows (see Section 3.3 for
detailed definitions).

38

3.2 Problem Definition

Ta
bl

e
6:

A
bs

tr
ac

tio
ns

w
ith

w
ei

gh
ta

nd
as

so
ci

at
ed

gr
am

m
ar

(E
B

N
F

no
ta

tio
n)

W
ei

gh
t

A
bs

tr
ac

ti
on

s
G

ra
m

m
ar

5
L

ite
ra

l
R

ep
re

se
nt

ed
by

th
e

ch
ar

ac
te

ro
ft

he
fie

ld
its

el
f

4

D
el

im
ite

r⟨
D

E
L⟩

",
"

|
";

"
|

":
"

|
?U

S-
AS

CI
I

ch
ar

ac
te

r
9?

|
"|

"
U

pp
er

-c
as

e
le

tte
r⟨

U
L⟩

"A
"

|
"B

"
|

"C
"

|
"D

"
|

"E
"

|
"F

"
|

..
.|

"Z
"

L
ow

er
-c

as
e

le
tte

r⟨
LL
⟩

"a
"

|
"b

|
"c

"
|

"d
"

|
"e

"
|

"f
"

|
..

.|
"z

"
D

ig
it
⟨D
⟩

"0
"

|
"1

"
|

"2
"

|
"3

"
|

"4
"

|
"5

"
|

"6
"

|
"7

"
|

"8
"

|
"9

"
Sp

ac
e
⟨S
⟩

?U
S-

AS
CI

I
ch

ar
ac

te
r

32
?

Q
uo

ta
tio

n
⟨”
⟩

‘
"

’
A

ri
th

m
et

ic
⟨A

R
IT

H
⟩

"*
"

|
"+

"
|

"-
"

|
"/

"
|

"%
"

|
"=

"
|

"<
"

|
">

"
B

ra
ck

et
⟨B

R
K

T
⟩

"[
"

|
"]

"
|

"{
"

|
"}

"
|

"(
"

|
")

"
Sy

m
bo

l⟨
SY

M
⟩

"$
"

|
"#

"
|

".
"

|
"?

"
|

"@
"

|
"\

"
|

"^
"

|"
‘

"|
"~

"
|

"_
"

|
"

’
"

|
"&

"
|

"!
"

|
‘

"
’

|
",

"
|

";
"

|
":

"
|

?U
S-

AS
CI

I
ch

ar
ac

te
r

9?
|

"|
"

L
in

e
br

ea
k
⟨L

B
⟩

?U
S-

AS
CI

I
ch

ar
ac

te
r

10
?

|
?U

S-
AS

CI
I

ch
ar

ac
te

r
13

?
E

m
pt

y
va

lu
e
⟨E

V
⟩

nu
ll

3

Se
qu

en
ce

of
up

pe
r-

ca
se

le
tte

rs
⟨S

E
Q

U
L⟩

⟨U
L⟩
,

{⟨
U

L⟩
}

Se
qu

en
ce

of
lo

w
er

-c
as

e
le

tte
rs
⟨S

E
Q

LL
⟩
⟨L

L⟩
,

{⟨
LL
⟩}

Se
qu

en
ce

of
di

gi
ts
⟨S

E
Q

D
⟩

⟨D
⟩,

{⟨
D
⟩}

W
hi

te
sp

ac
e
⟨W

S⟩
⟨S
⟩,

{⟨
S⟩
}

D
at

e
⟨D

T
⟩

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,

4*
⟨D
⟩
|

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,

2
*⟨

D
⟩
|

4*
⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩
|
⟨D
⟩,
⟨A

R
IT

H
⟩,
⟨D
⟩,
⟨A

R
IT

H
⟩,

2
*⟨

D
⟩
|
⟨D
⟩,
⟨A

R
IT

H
⟩,

⟨D
⟩,
⟨A

R
IT

H
⟩,

4*
⟨D
⟩
|
⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,
2

*⟨
D
⟩|

⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,

4*
⟨D
⟩
|

4*
⟨D
⟩,
⟨A

R
IT

H
⟩,
⟨D
⟩,

⟨A
R

IT
H
⟩,
⟨D
⟩
|

4*
⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩,
⟨A

R
IT

H
⟩,
⟨D
⟩
|

4*
⟨D
⟩,

⟨A
R

IT
H
⟩,
⟨D
⟩,
⟨A

R
IT

H
⟩,

2*
⟨D
⟩

2
N

um
be

r⟨
N

U
M
⟩

"+
"

|
"-

",
⟨D
⟩
|
⟨S

E
Q

D
⟩
OR

["
+"

|
"-

"]
,
⟨D
⟩
|
⟨S

E
Q

D
⟩,

("
,"

|
".

")
,
⟨D
⟩
|
⟨S

E
Q

D
⟩,

{
("

,"
|

".
")

,
⟨D
⟩
|
⟨S

E
Q

D
⟩}

Te
xt
⟨T

X
T
⟩

⟨U
L⟩

|⟨
SE

Q
U

L⟩
|
⟨L

L⟩
|
⟨S

E
Q

LL
⟩,

(⟨
U

L⟩
|
⟨S

E
Q

U
L⟩
|
⟨L

L⟩
|

⟨S
E

Q
LL
⟩|
⟨S
⟩|
⟨W

S⟩
|"

-
"|

"_
"

|
"

’
"

|
"\

"
|

"/
"

|
".

"
|

"&
")

,
{
⟨U

L⟩
|
⟨S

E
Q

U
L⟩
|
⟨L

L⟩
|
⟨S

E
Q

LL
⟩|
⟨S
⟩|
⟨W

S⟩
|

"-
"

|
"_

"
|

"
’

"
|

"\
"

|
"/

"
|

".
"

|
"&

"}
M

is
si

ng
va

lu
e
⟨M

V
⟩

⟨E
V
⟩|

|
⟨S
⟩|

|
⟨W

S⟩
|

|
?U

S-
AS

CI
I

ch
ar

ac
te

r
9?

|
"N

ul
l"

|
"n

ul
l"

|
"n

a"
|

"n
/a

"
|

"N
A"

|
"N

/A
"

|
"N

aN
"

|
"n

an
"

|
"N

on
e"

|
"N

ON
E"

|
‘"

"’
1

Fu
llt

ex
t⟨

F
T

X
T
⟩

V
er

y
lo

ng
st

ri
ng

,e
.g

.,
ce

llV
al

ue
.s

iz
e(

)>
50

39

3 SURAGH: A Structural Error Detection System

3.3 The SURAGH System

Extracted Column Values

Pattern generation

Syntactic Value Patterns (VP)

1 Ali PAK

<D> <LL>
<LL>

Pattern Modeling Column Pattern Pruning

Highly Specific CP

Specificity-based pruning

High Coverage CP

…..

Syntactic Column Patterns (CP)

Coverage-based pruning

Col 1 Col 2 Col 3 …..

𝑐𝑝1,1 𝑐𝑝2,1 𝑐𝑝3,1 …..

𝑐𝑝1,2 𝑐𝑝2,2 𝑐𝑝3,2 …..

𝑐𝑝1,3 𝑐𝑝2,3 𝑐𝑝3,3

….. 𝑐𝑝2,4 …..

𝑐𝑝1,𝑠 …..

Pattern
collection

Col 1 Col 2 Col 3 …..

𝑐𝑝1,1 𝑐𝑝2,1 𝑐𝑝3,1 …..

𝑐𝑝1,2 𝑐𝑝2,2 𝑐𝑝3,2 …..

𝑐𝑝1,3 𝑐𝑝2,3 𝑐𝑝3,3

𝑐𝑝1,4 𝑐𝑝2,4 …..

Input file

Value extraction

Row Pattern ConstructionRow Classification

Cross column candidate
combination generation

Syntactic Row Patterns (RP)

Col 1 Col 2 Col 3 Col 4 Col 5 Col 6

𝑐𝑝1,1 𝑐𝑝2,1 𝑐𝑝3,1 𝑐𝑝4,1 𝑐𝑝5,1 𝑐𝑝6,1

𝑐𝑝1,2 𝑐𝑝2,2 𝑐𝑝3,2 𝑐𝑝4,2 𝑐𝑝5,2 𝑐𝑝6,2

𝑐𝑝1,3 𝑐𝑝2,3 𝑐𝑝3,3 𝑐𝑝4,3 𝑐𝑝5,3 𝑐𝑝6,3

𝑐𝑝1,4 𝑐𝑝2,4 𝑐𝑝4,4 𝑐𝑝5,4 𝑐𝑝6,4

𝑐𝑝4,5 𝑐𝑝5,5 𝑐𝑝6,5

Dominant Syntactic Row
Patterns (DRP)

Prune subsumed (RP)

𝑑𝑟𝑝1 𝑐𝑝1,1 𝑐𝑝2,2 𝑐𝑝3,1 𝑐𝑝4,2 𝑐𝑝5,1 𝑐𝑝6,1

𝑑𝑟𝑝2 𝑐𝑝1,4 𝑐𝑝2,1 𝑐𝑝3,2 𝑐𝑝4,3 𝑐𝑝5,4 𝑐𝑝6,2

Compliance check

ill-formed
Rows

well-formed
Rows

𝑟𝑝1 𝑐𝑝1,1 𝑐𝑝2,2 𝑐𝑝3,1 𝑐𝑝4,2 𝑐𝑝5,1 𝑐𝑝6,1

𝑟𝑝2 𝑐𝑝1,4 𝑐𝑝2,1 𝑐𝑝3,2 𝑐𝑝4,3 𝑐𝑝5,4 𝑐𝑝6,2

𝑟𝑝3 𝑐𝑝1,2 𝑐𝑝2,3 𝑐𝑝3,3 𝑐𝑝4,4 𝑐𝑝5,3 𝑐𝑝6,4

Pattern schema

Coverage-based pruning

Figure 11: The workflow of SURAGH

40

3.3 The SURAGH System

In this section, we describe the workflow of SURAGH as depicted in Figure 11. Given
an input file, SURAGH returns a list of indices of ill- and well-formed rows along with
the dominant syntactic row patterns as its pattern schema. The workflow consists of four
phases, and we discuss their functionalities in the following sections.

3.3.1 Pattern Modeling

In this phase, SURAGH first leverages dialect detection to extract values and then applies
our abstraction grammar to these values to generate syntactic value patterns. Then, value
patterns are collected to form a set of syntactic column patterns.

Value extraction

To extract column values, we must first detect the dialect of the file. The dialect of a file
specifies a set of characters that define the structure of a file. A CSV file dialect consists of a
delimiter, a quote character, a quote escape character, and a row separator. Dialect detection
is a well-known problem in academia [20, 29, 100] and industry: SURAGH leverages the
univocity parser11 to identify a file’s dialect and extract the individual column values. This
dialect determines the scope of each column.

Pattern generation

As mentioned, an ill-formed row contains inconsistencies at column- and/or row-level.
Some of these inconsistencies result in different row structures, such as incorrectly delim-
ited rows, while others result in inconsistent column values, such as values not compliant
to a schema, making an ill-formed row different from a well-formed row. Extracting the
intended pattern schema helps recognize these ill-formed rows. For pattern schema detec-
tion, SURAGH generates one or more syntactic value patterns for each individual cell value
using a syntactic pattern grammar that utilizes abstractions.

Definition 3 (Syntactic value pattern) Given a cell value, a syntactic value pattern vp is
a sequence of literals or abstractions from that value. We represent abstractions with their
acronyms, where each abstraction represents a single character or a group of characters.
The set of syntactic value patterns for a cell value is denoted with V P.

11https://github.com/uniVocity/univocity-parsers

41

https://github.com/uniVocity/univocity-parsers

3 SURAGH: A Structural Error Detection System

Algorithm 1: Syntactic Value Pattern Generation
Input : c: input column

A: the set of abstractions
G: the abstractions dependency graph

Output: LV P = the list of V P that represents values in c
1 LV P← []
2 foreach string ∈ c do
3 V P←{}
4 A← GETABSTRACTIONS(string)

5 PS← PRUNEABSTRACTIONCOMBINATIONS
(

POWERSET(A),G
)

6 foreach set ∈ PS do
7 vp← string
8 foreach abstraction ∈ set do
9 vp← EXECUTEABSTRACTIONS(abstraction , vp)

10 end
11 if vp /∈V P then
12 V P←V P∪{vp}
13 end
14 end
15 LV P.add(V P)
16 end
17 return LV P

The process of generating syntactic value patterns is presented in Algorithm 1. SURAGH

uses abstractions to map each character in each value of a column and generates a set
of value patterns. Formally, let F = {r1,r2, . . . ,rn} be the input file of n rows. Let
C = {c1,c2, . . . ,cm} be the set of m columns. For each value in ci, the algorithm first
accesses the relevant abstractions {a1,a2, . . . ,at} based on input value characters (line 4).
Then, the algorithm creates a power set of the selected abstractions to capture all pos-
sible combinations of abstractions and uses them to generate all possible value patterns
(line 5). After creating a power set, the algorithm prunes the subsets that violate the
encoder-aggregator abstraction dependencies shown in Figure 10 (Page 38). For exam-
ple, the algorithm prunes a subset if it contains “date” ⟨DT⟩ abstraction before “digit”
⟨D⟩ in the execution order. For each remaining subset, it maps each cell value charac-
ter to its derived representation from the abstractions to generate the set of value patterns
V P = {vp1,vp2, . . . ,vpu} (lines 6-14). It repeats the same process for all column values
and populates a list that contains the set of value patterns for each value in ci (line 15). For
example, Figure 13(a) lists the set of value patterns for the cell value “All” in the input file

42

3.3 The SURAGH System

F in Figure 1212.

2008-2009 All <SEQD> <SEQD> <SEQD>.<SEQD>% "$<NUM> " <SEQD>.<SEQD>%

2008-2009 <SEQD> <SEQD> <SEQD>.<SEQD>% "$<NUM> " <SEQD>.<SEQD>%

Example
Rows

Dominant
Patterns

Figure 12: Selected rows of a 100-row file12 with dominant syntactic row patterns (shaded
blue and green) and ill-formed rows (shaded red). The cell separators in the
table indicate the ⟨DEL⟩ abstraction, which we omit due to space limitation.

Pattern collection

SURAGH collects the syntactic value patterns generated in the previous step column by
column and uses them as column patterns.

Definition 4 (Syntactic column pattern) A syntactic column pattern cp is a syntactic value
pattern that represents one or more cell values in a column. The set of syntactic column
patterns for a column is denoted with CP.

After collecting value patterns, SURAGH forms a set CP of syntactic column patterns
{cp1,cp2, . . . ,cpv}. This set represents a column in a file, and each pattern in this set
represents one or more cell values in that column. For example, for the input file F in
Figure 12, Figure 13(b) lists the set of column patterns for column “Fund_Source”.

12https://github.com/HPI-Information-Systems/SURAGH/blob/main/InputFile.csv

43

https://github.com/HPI-Information-Systems/SURAGH/blob/main/InputFile.csv

3 SURAGH: A Structural Error Detection System

(a) (b)

(c)

Set of value patterns of column
“Fund_Source” value “All”.

Set of column patterns of column
“Fund_Source”.

Set of highly specific and high coverage column patterns of column
“Fund_Source” .

Set of syntactic row patterns. The commata in the patterns indicate
abstraction, which we omit due to space limitation.

(d)

Value Patterns

All

ll

<SEQUL>ll

…

<TXT>

Column Patterns Occurrences

 65

<SEQUL> 65

<TXT> 35

All 34

… …

Row Patterns

2008-2009,All,<SEQD> <SEQD>,<SEQD>.<SEQD>%,"$<NUM>“,<SEQD>.<SEQD>%

2008-2009,FFS,<SEQD> <SEQD>,<SEQD>.<SEQD>%,"$<NUM>“,<SEQD>.<SEQD>%

2008-2009,GFS,<SEQD> <SEQD>,<SEQD>.<SEQD>%,"$<NUM>“,<SEQD>.<SEQD>%

…

Column Patterns Occurrences Score Pattern Coverage (%)

 65 260 65.00

All 34 170 34.00

FFS 23 115 23.00

GFS 23 115 23.00

<TXT> 35 70 35.00

Figure 13: Value patterns, column patterns, highly specific and high coverage column pat-
terns, and row patterns.

44

3.3 The SURAGH System

2008-2009, All, 0, 557757, 24.34%, "$21, 840, 767", 38.03%

<D>,
<SEQD>,
<ARITH>

<D>, <S>, <">, <SYM>,
<SEQD>, <WS>

, <LL>,
<SEQUL>, <SEQLL>,
<TXT>

<D>,
<SEQD>

<D>,
<SEQD>

<D>, <SEQD>,
<ARTIH>, <SYM>,
<NUM>

<D>, <SEQD>,
<ARTIH>, <SYM>,
<NUM>

Figure 14: Mapping of Cell Values to abstractions (cell values are aligned with their cor-
responding applicable abstractions for clarity). The ⟨DEL⟩ abstraction, which
corresponds to commata, is omitted to save space.

3.3.2 Column Pattern Pruning

During syntactic pattern generation, the algorithm aims to apply every combination of
abstractions to generate all possible value patterns for representing cell values, requiring
many system resources and affecting performance. We propose a cell value detection mod-
ule that scans each value and uses only relevant abstractions (see Figure 14). For example,
for the value “All” in the input file F in Figure 12, the relevant abstractions are {⟨UL⟩,
⟨LL⟩, ⟨SEQUL⟩, ⟨SEQLL⟩, and ⟨TXT⟩}.

In addition, the dependency graph between the abstractions guides the process of reducing
the number of abstraction combinations, which optimizes the time expense of the pattern
generation process because the algorithm generates fewer patterns. However, not every
generated pattern is suitable for the ill-formed row detection due to its generality and/or
coverage.

To select the highly specific and high coverage subset of column patterns from the gener-
ated patterns, we make use of two pruning techniques: (1) specificity-based pruning and
(2) coverage-based pruning. We preserve Highly specific and high coverage column pat-
terns after applying the above pruning techniques on the given column pattern set CP.

Specificity-based pruning

SURAGH generates syntactic patterns with all possible abstraction combinations based
on the content of the input values. These patterns represent column values from the most
specific to the most generic way, depending on the pattern’s abstractions. The most specific
column pattern contains the fewest and the lowest level abstractions. In contrast, the most
generic column pattern includes maximum and the highest level abstractions.

45

3 SURAGH: A Structural Error Detection System

SURAGH aims to choose column patterns that are highly specific in a column. To do so,
it applies specificity-based pruning and leverages the weighting of abstractions, and uses
the relationship between encoder and aggregator abstractions to prune generic column
patterns. The goals of this phase are:

• Preserve the most specific column patterns.

• Reduce the search space for optimization.

Weighting criteria: Each abstraction ai has a weight w based on its abstraction level
(see Figure 10): the higher the abstraction level, the lower the weight. SURAGH uses these
weights to obtain a score for each column pattern cp. This score helps SURAGH prune
column patterns by identifying the significance of these patterns in a column. To obtain a
score for each column pattern, SURAGH scans through the column, counts cp’s number of
occurrences oc, and multiplies it by the mean value of the utilized abstractions weight:

Score(cp) = oc(cp) ∗ 1
t

t

∑
i=1

w(ai(cp)) (1)

Consider, as an example, that the value “male” appeared in a column 80% of the time.
To represent this value, three of the possible value patterns using the abstraction grammar
are {male, ⟨LL⟩⟨LL⟩⟨LL⟩⟨LL⟩, and ⟨SEQLL⟩}. As a user, we would like to see the value
male itself as one of the top column patterns for this column due to its specificity and high
coverage and because this pattern with the literal value itself represents the column very
well. Thus, we assign the highest weight to the literal abstraction due to its specificity
to prioritize the patterns with literals. The second-highest weighting applies to level 1
abstractions that help identify highly specific patterns when the topmost patterns are not
predominantly literal values. For example, if a column contains different values distributed
across the cells, e.g., a column containing the US state alpha codes, i.e., AL, AK, AZ, etc.
In this case, despite the highest weighting, the literal column patterns would be ranked
low due to their occurrences, so abstraction level 1 and higher abstractions would serve
the purpose better. For example, two of the possible column patterns for the mentioned
column are {⟨UL⟩⟨UL⟩ and ⟨SEQUL⟩}. According to our definition, we assign ⟨UL⟩⟨UL⟩
a higher weight and ⟨SEQUL⟩ a lower weight based on their abstraction level.

Pruning generic column patterns: As mentioned earlier, not every generated pattern
is suitable. For example, in Figure 13(b), the column patterns ⟨UL⟩⟨UL⟩ and ⟨SEQUL⟩
occur the same number of times and represent the same set of values. Therefore, we prune
⟨SEQUL⟩ since it is just a higher abstraction of the same values in this case. Note that
occurrences is not the only criterion to prune these patterns. We also check the dependency

46

3.3 The SURAGH System

between the encoder and the aggregator abstractions of these patterns and the pattern score.
In the above example, ⟨SEQUL⟩ is dependent on ⟨UL⟩, and due to its higher abstraction, it
also has a lower score.

SURAGH first sorts column patterns by their score, starts with the highest-scored column
pattern, compares it to all subsequent column patterns by examining their occurrences,
checks encoder-aggregator dependency on those that meet the occurrence criterion, and
removes those with higher abstractions. In this way, SURAGH removes the most generic
patterns, as they are just another representation of specific patterns. However, there are
other cases where a column contains many different values, and it is not possible to repre-
sent values with low-level abstractions due to a maximum variation, such as columns with
addresses or website URLs. Therefore, despite the lower weight, due to the number of
occurrences of higher-level abstractions, the top patterns of the columns SURAGH returns
are generic. Nevertheless, in the case of a column comprising web addresses, patterns
might appear generic, specific components tailored to them still exist, such as the common
protocol prefix for URLs followed by their unique addresses.

Coverage-based pruning

In coverage-based pruning, we introduce a coverage threshold to prune column patterns
at the column-level (column coverage threshold β) and column pattern combinations at
the row-level (row coverage threshold γ , see Section 3.3.3). Here, Column-level pattern
coverage: means how many column values are covered by a column pattern, and Row-level
pattern coverage: implies how many rows are covered by a combination of column patterns
across all columns. In Section 3.5 we test combinations of seven different thresholds at
both column- and row-level with a step size of 5, starting from 1% to 30% of the pattern
coverage. For the first threshold, we use 1% since 0% pattern coverage is meaningless. In
the subsequent discussion on column and row coverage thresholds, we refer to these same
seven thresholds as part of the process. Here, percentage implies the coverage of column
patterns at column-level and column pattern combinations at row-level. The goals of this
phase are:

• Preserve high coverage column patterns (column-level).

• Preserve high coverage column pattern combinations (row-level).

• Reduce the search space for optimization.

Let β be the specified column coverage threshold; we prune all column patterns that pro-
vide column coverage less than or equal to the specified β . We use seven different thresh-
olds for column pattern pruning. The goal is to select the set of high coverage column
patterns using a global column coverage threshold.

47

3 SURAGH: A Structural Error Detection System

For example, for the input file F in Figure 12, Figure 13(c) shows the highly specific and
high coverage column patterns for column “Fund_Source” that we obtain after specificity-
and coverage-based pruning, where β = 20%. For the column coverage threshold of 25%,
the remaining column patterns for the mentioned column are {⟨UL⟩⟨UL⟩⟨UL⟩, All, and
⟨TXT⟩}.

3.3.3 Row Pattern Construction

In this phase, SURAGH uses the highly specific and high coverage column patterns from
the column pattern pruning phase and first constructs the set RP of syntactic row patterns
{rp1,rp2, . . . ,rpy} that represents rows. It then selects the set DRP of dominant syntactic
row patterns {drp1,drp2, . . . ,drpz} by pruning the set of syntactic row patterns to generate
the pattern schema for the input file.

Coverage-based pruning

Similar to selecting column patterns with high coverage at the column-level, the goal here
is to select the combinations of column patterns with high coverage when constructing row
patterns, which leads us to select high coverage row patterns.

Let γ be the specified row coverage threshold; we prune all cross column candidate com-
binations that provide row coverage less than or equal to the specified γ . Here, coverage is
the number of rows corresponding to a combination of column patterns across all columns.
We use the same thresholds as at the column-level to prune column patterns combinations
during row pattern construction.

For example, for the input file F in Figure 12, a combination of column patterns {2008-
2009 and FFS} covers 23% rows for the columns {“SFY” and “Fund_Source”} (see Fig-
ure 13(c) for column “Fund_Source” column patterns). For the row coverage threshold of
25%, SURAGH prunes this combination and stops the cross-column combination genera-
tion process for this candidate.

Cross column candidate combination generation

For row pattern construction, SURAGH creates all combinations of column patterns across
all columns while pruning based on coverage (γ). Furthermore, the algorithm generates
column pattern combinations for all columns and constructs all row patterns with high
coverage.

48

3.3 The SURAGH System

Definition 5 (Syntactic row pattern) A syntactic row pattern rp is an ordered sequence
of (highly specific and high coverage) column patterns that represents one or more rows.
The set of syntactic row patterns for a file is denoted with RP.

The process of constructing the set of syntactic row patterns is presented in Algorithm 2.
Formally, let {c1,c2, . . . ,cm} be the set of columns and let CPi = {cpi,1, . . . ,cpi,v} be the
corresponding set of highly specific and high coverage column patterns cps for a column
ci. SURAGH first starts comparing CPi and CPi+1, and then progressively moves towards
CPm (lines 2-13). For each pair of columns, SURAGH generates cross-column combi-
nations by comparing each cp ∈ CPi with each cp ∈ CPi+1 governed by coverage-based
pruning (lines 4-11). Intersection (line 6) computes the row coverage of a specified cp
combination, and the coverage check (line 7) allows cp combinations above the specified
threshold γ . Then, combinePattern concatenates the cp combination, and stores it into a
column combination set (line 8). This column combination set contains cp combinations
across columns, and serves as new input after each iteration (line 12). The algorithm re-
peats the same process and creates all possible column pattern combinations until cm and
test them against the coverage threshold. To avoid the multiplicative nature of this ap-
proach, SURAGH systematically grows row patterns by one column at a time in a branch
& bound fashion. It prunes those intermediate patterns that already violate the coverage
threshold γ and returns the set of row patterns (line 14). For example, for the input file F
in Figure 12, Figure 13(d) lists the set of syntactic row patterns.

Prune subsumed syntactic row pattern

The set of syntactic row patterns that SURAGH constructs may contain one or more row
patterns, where one row pattern may represent all rows that are also represented by another
row pattern, resulting in pattern redundancy. To avoid this redundancy, SURAGH detects
and removes the row patterns that are subsumed by any other row patterns.

Definition 6 (Pattern subsumption) A row pattern rpi ∈ RP is subsumed by another row
pattern rpk ∈ RP if the set of all rows it represents is a proper subset of the set of those
represented by rpk.

Definition 7 (Syntactic row pattern dominance) A dominant syntactic row pattern drp
is a syntactic row pattern that is not subsumed by any other syntactic row pattern. The set
of dominant syntactic row patterns for a file is denoted with DRP.

49

3 SURAGH: A Structural Error Detection System

Algorithm 2: Cross Column Candidate Combination Generation
Input : {CP1,CP2, . . . ,CPn}, row coverage threshold γ (see Section 3.3.2)
Output: RP = set of syntactic row patterns

1 RP←−CP1 ▷ initialization
2 foreach CPi , i > 1 do
3 CC←− {} ▷ column combinations
4 foreach cpr ∈ RP do
5 foreach cpc ∈CPi do
6 PC←− INTERSECTION(cpr,cpc) ▷ pattern coverage
7 if coverage(PC) > γ then
8 CC←−CC∪COMBINEPATTERN(cpr,cpc)
9 end

10 end
11 end
12 RP←−CC
13 end
14 return RP

3.3.4 Row Classification

In the final phase of SURAGH, we utilize the constructed set of dominant syntactic row
patterns from the row pattern construction phase to generate a pattern schema for the input
file and classify rows based on this schema. First, SURAGH accumulates dominant row
patterns obtained from the row construction phase and generates a pattern schema for the
input file. Then, SURAGH checks each row whether it conforms to the generated schema.

SURAGH classifies non-conforming rows as ill-formed, whereas conforming rows as well-
formed. For example, Figure 12 shows the input file, the set of dominant syntactic row
patterns that form its pattern schema, the rows that comply with the schema, and the non-
compliant (ill-formed) rows.

3.4 Datasets and Annotation

This section lists the datasets used in our evaluations and specification of the annotated ill-
and well-formed rows.

50

3.4 Datasets and Annotation

3.4.1 Datasets

We conducted our experiments with datasets collected from five different open data sources:
DataGov, Mendeley, GitHub, UKGov, NYCData. The statistics for each data source are
summarized in Table 8. The files of each source have at least some column and/or row-
level inconsistencies. To find files with inconsistencies, we first randomly selected files
from each source and manually loaded each into an RDBMS13. If the data loading process
aborted, we kept the file as one of our test files. Later on, we utilized the same RDBMS
along with data wrangling14 and business intelligence15 tools to investigate where loading
operations are interrupted and used this information to annotate rows in our files. To reduce
the manual annotation workload, we selected only one file from each group of similarly
structured files (e.g., monthly project reports with identical schemata that likely contain
similar inconsistencies), resulting in a diverse set of files for each data source. The code
artifacts together with datasets and annotations are publicly available10.

The UKGov and GitHub dataset files were taken from related work on dialect detec-
tion [100]. We randomly selected 1 000 CSV files from both of these datasets and manually
checked each file by loading it into the RDBMS. After reviewing each file, we collected
those containing ill-formed rows, which gives us 23 and 25 diverse files from UKGov
and GitHub, respectively. From the randomly selected 2 066 files, there were 418 files
with ill-formed rows that we observed by loading them into the RDBMS. We then used
40 manually selected files for our experiments. Our Mendeley dataset was created by
selecting files from data.mendeley.com where files are grouped by research projects.
We crawled all 2 214 projects and selected the lexicographical first 170, which already
displayed a large variety of ill-formed rows. These projects contain not only CSV files
but also other formats, such as .XML, .XLSX, etc. We kept only projects with at least
one CSV file and manually selected 33 files for our experiments, each file coming from
a different project. NYCData dataset includes a random subset of files downloaded from
opendata.cityofnewyork.us and was kept unseen in the development of SURAGH to
ensure generalizability.

Moreover, we utilized a command line tool16 to check whether a file is compliant with
RFC 4180. The purpose is to include both standardized and non-standardized files in
our datasets and emphasize that also standard files can stop the data loading process, for
instance, due to values not compliant to file schema. In the presence of inconsistent rows,
we manually checked each file and ensured that each selected file contained at least 50%
non-empty values at both column and row-levels to avoid empty values and missing values
(⟨EV ⟩, ⟨MV ⟩) to dominate the pattern search.

13Microsoft SQL Server 2019. https://www.microsoft.com/en-us/sql-server/sql-server-2019
14Trifacta Wrangler. https://www.trifacta.com/products/wrangler-editions/
15Tableau. https://www.tableau.com/
16https://github.com/Clever/csvlint/

51

data.mendeley.com
opendata.cityofnewyork.us
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.trifacta.com/products/wrangler-editions/
https://www.tableau.com/
https://github.com/Clever/csvlint/

3 SURAGH: A Structural Error Detection System

The difference in the number of rows per file is significant, as shown by the high standard
deviation in Table 8, for two reasons: 1) A few of the files in our datasets are very large.
2) To ensure a diverse set of files, we selected only one file from sets of similar files,
resulting in a different number of rows per file.

Table 8: Datasets: number of files (F), average number of rows (R), average ill-formed
(IF) rows per file, average well-formed (WF) rows per file.
Source # F Avg # R Avg # IF Avg # WF

DataGov 40 1143.2 ± 2060.6 70.9 ± 165.9 1072.3 ± 2014.1
Mendeley 33 2688.8 ± 3664.3 56.8 ± 109.1 2632.0 ± 3636.1
GitHub 25 791.9 ± 1094.6 110.6 ± 300.8 681.4 ± 963.5
UKGov 23 1548.1 ± 3179.2 98.7 ± 202.1 1449.4 ± 3076.1
NYCData 10 2068.7 ± 3159.4 713.0 ± 1970.3 1355.7 ± 1507.8

3.4.2 Data Annotation

We annotated each row in each file as ill- or well-formed and created a ground truth of
210 550 rows across all datasets. As part of the SURAGH annotation process, we assessed
each file in our datasets using the commercial tools mentioned earlier. We observed that
all tools recognized the dialect for files that conformed to the RFC 4180 standard [45],
but the RDBMS aborted the data loading process due to the ill-formed rows in each file.
We observed different behavior with the data wrangling and business intelligence tools for
standardized files: in most cases, the tools successfully load our files correctly by simply
mending the cell value, such as correcting the date format type based on the common
pattern in a column. However, in some cases, this automatic correction led to incorrect
results, such as assigning the most generic data type (string) to a column in the case of
values that do not match a schema.

We then manually identified column-level and row-level inconsistencies in these ill-formed
rows. Based on these findings, we manually determined the most specific syntactic patterns
for each given column in the file and manually labeled them as part of the pattern schema.
Finally, we annotated each row as well-formed if it conforms to the manually labeled pat-
tern schema and ill-formed otherwise.

In addition, for most files that do not conform to the RFC standard, the RDBMS does not
recognize the correct dialect and loads all the data into one column. For the few files where
the RDBMS did recognize the dialect, it aborted the data loading process due to various
issues, such as incorrect quotation marks, misplaced delimiters, inconsistent number of

52

3.5 Experiments

columns, etc. While the data wrangling and business intelligence tools, due to their built-
in intelligence, do recognize the correct dialect in most cases, they may still load data
incorrectly: for instance, they might assign the most generic data type (string) to each
column or add new columns due to an incorrect splitting, or by simply deleting rows they
could not parse. A few cases where these tools do not recognize the correct dialect load all
the data into one column, similar to the RDBMS.

Note that for our study, we annotated the header row in all CSV files as ill-formed: We
cannot assume that all tools have a built-in feature to distinguish header rows from data
rows, or at least provide a user with a feature to mark the first row as a header row so that
it does not become a part of the data.

3.5 Experiments

First, we present our experimental evaluation of SURAGH, which includes the global thresh-
old selection and its results for each dataset. Subsequently, we compare SURAGH with the
current state-of-the-art syntactic pattern and line classification approaches. Finally, we
conclude this section with an error analysis.

3.5.1 Performance Evaluation

As per Definition 2 (Page 37), a row in a file is ill-formed if it does not conform to the
pattern schema of that file. We call a detected ill-formed row true if its corresponding
row in the ground truth is labeled as ill-formed, and false if it does not. To show the
effectiveness of our approach, we use the precision and recall metrics:

P =
|true ill-formed rows detected |

|true & false ill-formed rows detected |
(2)

R =
|true ill-formed rows detected |
|total ill-formed rows|

(3)

Threshold setting evaluation

To evaluate the performance of SURAGH, we test combinations of seven different threshold
values for both column- and row-levels presented in Section 3.3.2, leading to 49 experi-
ments for each dataset. Due to varying numbers of ill-formed and well-formed rows in
CSV files, selecting experiments at the row-level, where all ill-formed and well-formed

53

3 SURAGH: A Structural Error Detection System

rows from all CSV files in a dataset are treated equally, irrespective of their file origins,
could introduce bias towards larger files when analyzing the results. To avoid this potential
bias, we conducted our experiments at the file-level. We compared the set of ill-formed
rows detected by SURAGH with the set of true ill-formed rows of ground truth for each
CSV file.

Figures 15a, 15b, and 15c show precision, recall, and F-1 scores, respectively, for each
threshold-combinations where the color codes reflect the average runtimes associated with
each threshold-combination. Each cell reports the average score across all files of all
datasets (excluding the unseen dataset NYCData) for a combination of column- and row-
level thresholds. As expected, we can observe that low thresholds lead to less pruning and,
thus, to higher runtime.

For the first threshold, we use 1% since 0% pattern coverage is meaningless. We kept
a maximum threshold of 30% for two reasons: 1) we achieved the highest recall by re-
taining only patterns with the highest coverage, 2) precision decreased due to many false
positives.

The goal of these experiments was to determine the global threshold setting (column- and
row-level thresholds combination) and provide a user with a tool including a built-in thresh-
old setting. However, users have the option to customize these thresholds according to their
specific needs and preferences. Details on how to customize the code can be found in the
SURAGH code repository10.

To determine the global threshold setting, we start by computing precision and recall
scores. We then calculate the F-1 score across all datasets by considering paired com-
binations of both thresholds. The first experiment starts with a threshold setting of 1%,
where the system only prunes column patterns and column pattern combinations with cov-
erage less than or equal to 1% at both column- and row levels. This setting generates
numerous row patterns that may hinder the identification of ill-formed rows, leading to an
increased number of false negatives. However, the substantial construction of row patterns
minimizes the likelihood of classifying well-formed rows as ill-formed, resulting in fewer
false positives. Consequently, this threshold setting achieves the highest precision score
but at the expense of the lowest recall score, as illustrated in Figure 15a and Figure 15b.
Similarly, Figure 15c illustrates that this threshold setting yields the lowest F-1 score.

In the subsequent experiment, we kept the row threshold constant while increasing the step
size for the column threshold, calculating precision and recall scores accordingly. After
completing the initial seven experiments, we proceeded by increasing the step size for the
row threshold and repeating the same procedure. After completing all the experiments, we
observed a common pattern in both precision and recall scores. With each step size increase
in the threshold setting, we noted a decrease in precision score. Consequently, this results
in the classification of many well-formed rows as ill-formed, leading to an increase in false

54

3.5 Experiments

(a) Precision score (b) Recall score

(c) F-1 score

Figure 15: Average precision, average recall, and average F-1 score across all datasets. The
color code shows runtimes (same for all three plots).

positives. However, with each step size increase in the threshold setting, we observed an
increase in the recall score. This phenomenon occurs because fewer rows conform to one
of the selected patterns, causing the system to classify more rows as ill-formed, resulting
in fewer false negatives.

Given this observed pattern, we leverage the F-1 score to determine the global threshold
setting. As mentioned earlier, we noticed that when aiming for the highest precision score,
it often resulted in a lower recall score, and vice versa, especially at the extreme threshold
settings. This trade-off is evident in the F-1 score, as depicted in Figure 15c.

55

3 SURAGH: A Structural Error Detection System

The F-1 score shows an increasing trend at the beginning and a peak in the middle of the
threshold setting, which then decreases as the threshold step size increases. The decreasing
trend of the F-1 score from the middle of the threshold setting to both ends is due to the
lowest recall at the minimum threshold setting and the lowest precision at the maximum
threshold setting. The threshold setting (β = 20%, γ = 1%) is the one with the highest F-1
score, which we also tested on unseen data. The promising results indicate its suitability
as a recommended global setting.

We observed that in our datasets, most column patterns covering ≤ 20% of cell values,
and column pattern combinations covering ≤ 1% of rows, refer to ill-formed rows. Since
we first apply the column-level threshold β , the larger step size of β perfectly balances
with the smaller step size of the row threshold γ , as most of the patterns that might refer
to ill-formed rows are already pruned after applying the formal threshold. This behavior
is reflected in Figures 15a and 15b where precision decreases by about 7%, but the recall
score increases significantly by about 39% between β = 1% to 20% when γ = 1%.

For a more detailed examination of performance across individual datasets, Figures 16
to 19 present precision and recall measures specific to each dataset.

Unseen dataset

To test the generalizability of SURAGH, we applied our approach to the unseen dataset,
NYCData. The results obtained by SURAGH, utilizing the global threshold setting deter-
mined from the other four datasets, are presented in Table 9. Similar to the performance on
all the other datasets, SURAGH achieved a recall of over 90% and a precision of 70%.

Table 9: Unseen dataset results
Source # files # rows Precision Recall F-1
NYCData 10 20 687 0.70 0.95 0.81

System efficiency

SURAGH achieved an average classification time of 9 ms per row with the global threshold
setting. All experiments are performed on a 4-core Intel Core i7 2.3G CPU with 16GB
RAM. Figure 20 shows the runtime of SURAGH for the files in our dataset, including the
six synthetically generated ones. While we observe a quadratic scalability overall, variance
is quite high due to the quite different pattern complexity of individual files. The runtime
increase is expected due to the increase in cross-column combinations in Algorithm 2,
which depends on #columns and #rows; adding more columns leads to more cross-column

56

3.5 Experiments

(a) Precision score (b) Recall score

Figure 16: Average precision and recall scores for all DataGov dataset files.

(a) Precision score (b) Recall score

Figure 17: Average precision and recall scores for all UKGov dataset files.

57

3 SURAGH: A Structural Error Detection System

(a) Precision score (b) Recall score

Figure 18: Average precision and recall scores for all GitHub dataset files.

(a) Precision score (b) Recall score

Figure 19: Average precision and recall scores for all Mendeley dataset files.

58

3.5 Experiments

combinations. Adding more rows can dominate the runtime as these combinations are
integrated to construct row patterns, where #rows can influence the row coverage threshold,
resulting in less pruning and thus more computation time.

Figure 20: Ill-formed row detection efficiency, with a fitted quadratic curve. The last six
files were obtained by extending existing files with duplicate rows.

3.5.2 Comparative Analysis

There is no other approach dealing specifically with the detection of ill-formed rows at the
syntactic level. However, FAHES is a syntactic pattern-based approach to detect disguised
missing values (DMVs) [79], with which we can simulate our task. The authors categorize
DMVs into the following cases: (1) out of range data values, e.g., missing values disguised
with a negative value for an attribute with positive values; (2) outliers, e.g., missing values
disguised as very large values; (3) strings with repeated characters, e.g., replacing a phone
number with 5555555555; (4) values with non-conforming data types, e.g., disguising
the missing strings with numerical values; (5) valid values that are randomly distributed
within the range of the data. The proposed approach uses a syntactic outlier detection
module for Cases 1, 3, and 4 to detect those DMVs that are syntactic outliers or contain
special patterns. The approach also uses a numerical outlier detection module for Cases 1
and 2, and follows missing-completely-at-random (MCAR) or missing-at-random (MAR)
models [6, 61] for Case 5. For our experiments, we use the FAHES demo [80]17.

17https://github.com/daqcri/Fahes_Demo/

59

https://github.com/daqcri/Fahes_Demo/

3 SURAGH: A Structural Error Detection System

To compare FAHES with our approach, we consider rows that, according to FAHES, contain
disguised missing values as ill-formed, otherwise as well-formed. Since our approach is
broader, the files in our datasets include not only the inconsistencies that FAHES deals with
but many others, so not every file could be parsed by FAHES during our experiments. Of
the files that FAHES successfully parsed, we excluded those with only header and missing
values as inconsistencies because FAHES does not consider these cases. Table 10 shows
the average precision, average recall, and F-1 score obtained by FAHES and SURAGH with
the global threshold setting. The low FAHES scores can be attributed to several factors.
Primarily, the tool’s design focuses on identifying frequently occurring outliers, assuming
that infrequent missing values have minimal impact on analytics. Consequently, the sys-
tem applies a 10% threshold to remove less frequent values. Additionally, after applying
the distinct formula, it is required that the resultant patterns cover at least 1% of the to-
tal distinct values. This strict criterion erroneously classified valid but infrequent patterns
as errors, thereby adversely impacting precision. Furthermore, the tool’s approach of dis-
carding infrequent cases significantly contributed to its low recall. Note that we set the
precision score to 1 when FAHES returned no DMVs.

Table 10: FAHES comparison overview

Source # files # files
used

FAHES [79] SURAGH

P R F-1 P R F-1

DataGov 40 20 0.35 0.27 0.30 0.87 0.89 0.88
Mendeley 33 3 0.00 0.00 0.00 1.00 1.00 1.00
GitHub 25 11 0.70 0.22 0.33 0.80 0.92 0.86
UKGov 23 19 0.37 0.10 0.16 0.84 0.99 0.91
NYCData 10 8 0.63 0.06 0.11 0.81 0.93 0.87

Another system to which we compared our approach is the multi-class random forest clas-
sifier approach STRUDEL for CSV file row classification [49]. STRUDEL divides rows into
six semantic classes: metadata, group, header, data, derived, and notes. The approach
uses a set of features: content, context, and computational features to model the individual
classes to classify rows in a CSV file. STRUDEL is a supervised learning approach, so for
our experiments, we trained on the datasets available at the STRUDEL project page18 and
tested on the datasets listed in Section 3.4.1. We chose the STRUDEL datasets for train-
ing, because they contain a larger set of files than the datasets we used for SURAGH, and
the authors (the author of this thesis is a coauthor) tested their approach on out-of-domain
datasets. Moreover, we used the same parameter settings as [49], except for the dialect
detection tool, which we replaced with the univocity parser.

18https://hpi.de/naumann/s/strudel

60

https://hpi.de/naumann/s/strudel

3.5 Experiments

Table 11: STRUDEL comparison overview

Source # files # rows STRUDEL [49] SURAGH

P R F-1 P R F-1

DataGov 40 45 728 0.98 0.21 0.34 0.80 0.93 0.86
Mendeley 33 88 729 0.97 0.42 0.58 0.80 0.98 0.88
GitHub 25 19 799 0.93 0.26 0.40 0.78 0.96 0.86
UKGov 23 35 607 0.90 0.22 0.35 0.71 0.99 0.83
NYCData 10 20 687 1.00 0.04 0.08 0.70 0.95 0.81

To compare STRUDEL with our approach, we consider the rows classified as data by
STRUDEL to be well-formed and the remaining five classes as ill-formed. Table 11 shows
the average precision, average recall, and F-1 score obtained by STRUDEL and SURAGH

with the global threshold setting. STRUDEL’s recall is lower for two main reasons: (i) If
there are errors in the data block, STRUDEL cannot detect them due to the scope of the
project, as it does not further distinguish erroneous data rows from correct data rows. (ii) In
our file collection, some files have metadata and footnote rows with the same number of
fields as data rows, making it difficult for STRUDEL to distinguish these non-data rows from
data rows that authors also reported in their paper. Note that we set the precision score to 1
when STRUDEL returned all rows as data, thus not misclassifying any outlier-row.

3.5.3 Error Analysis

Not all ill-formed rows exhibit distinct patterns within a file. Conversely, a well-formed
row might adhere to a unique pattern, which can lead to confusion for SURAGH, causing it
to misclassify it as ill-formed. In the following, we present an analysis of specific detection
errors made by SURAGH.

False positive cases

Our global threshold settings achieved an average precision of 76% across all datasets. To
investigate instances of false positives in all datasets, we conducted a manual examina-
tion of each file. During this analysis, we identified scenarios where SURAGH does not
accurately classify a row when a correct pattern is less frequent.

For instance, consider a column that primarily stores employee names, with most names
consisting of two tokens (first name and last name). Consequently, the top patterns for this
column predominantly consist of two-word combinations. In cases where an employee’s

61

3 SURAGH: A Structural Error Detection System

name has three tokens, SURAGH may erroneously classify the row as ill-formed, leading
to false positives.

Another instance occurs in columns containing values with long decimal numbers, such as
0.0347414562 and 7.6389273017e−005. Data-driven systems can correctly identify and
load these values by recognizing their data type. Therefore, we categorize both patterns
as well-formed in our annotations. However, because very few values are represented in
scientific notation with ‘e’, SURAGH prunes this pattern, resulting in false positives.

False negative cases

Our global threshold settings achieved an average recall of 96% across all datasets. How-
ever, there are some instances of false negatives.

In cases where columns contain only non-textual values, making it difficult to distinguish
the header row from the data row, e.g., numeric headers, such as year, date, etc. Conse-
quently, SURAGH fails to classify the header row as ill-formed, resulting in a false nega-
tive.

Another scenario leading to false negatives is when the ill-formed row value patterns are
highly frequent, often due to the presence of numerous problematic rows. This is par-
ticularly evident in rows with many missing values. It is important to note that we only
categorize rows as inconsistent if the file contains non-uniform empty/null values, e.g., a
column that contains empty/null values at arbitrary locations. Consequently, the global
threshold setting considers these patterns as well-formed, preventing SURAGH from accu-
rately classifying these rows as ill-formed.

3.6 Related Work

Detecting ill-formed rows in CSV files is a novel research problem. However, to improve
the user experience in processing data, related work has introduced approaches for im-
plementing automated data preprocessing pipelines. Our research can complement these
existing approaches.

Dialect detection: The initial step in extracting data from CSV files involves deter-
mining the file’s dialect, including the delimiter, quote, and escape characters. Various
approaches have been put forward to address this challenge [20, 29, 100]. Döhmen et
al. introduced a CSV parsing method that concurrently generates multiple hypotheses re-
garding the dialect and the table structure. These hypotheses are then ranked based on

62

3.6 Related Work

the quality features of the resulting table [20]. Ge et al. proposed a finite state machine for
CSV files to discern the correct dialect [29]. Van den Burg et al. introduced a Python-based
approach, CLEVERCSV to detect the dialect of CSV files by leveraging row and type pat-
terns [100]. The authors use pattern scores to favor frequent and long row patterns to find
the most suitable dialect. In contrast, our approach relies on the more readily available and
adaptable univocity dialect detection system.

File structure detection: Discovering the structure of CSV files is a challenging task
that requires distinguishing amongst rows of different types, e.g., data, metadata, header,
group header, aggregation, and footnote rows. To address this challenge, several solutions
have been introduced in the literature [5, 12, 49]. Among these, Jiang et al. proposed the
state-of-the-art STRUDEL approach [49], which classifies CSV file rows into six semantic
classes based on three types of features: content, context, and computational features. In
Section 3.5.2, we conducted a comprehensive comparative analysis between SURAGH and
the STRUDEL approach.

Error detection: Detecting data quality issues has gained significant recognition within
the research community [3, 40]. Several techniques for error detection have been pro-
posed [13, 38, 42, 63, 79]. Among these techniques, Qahtan et al. introduced FAHES, a
syntactic pattern approach to detect disguised missing values as outliers [79]. The authors
classify disguised missing values into five categories and attempt to detect them using
various modules, including outlier detection, missing-at-random, or missing-completely-
at-random. In Section 3.5.2, we conducted a comparative analysis of their approach with
our proposed technique.

Data transformation: Data transformation has posed a persistent research challenge,
with one prominent solution being the “transform-by-example” (TBE) method. This method
enables users to provide input and output examples, allowing the system to search for con-
sistent programs [4, 36, 50, 51]. While the TBE method has made notable progress, its
reliance on users to provide paired input and output examples still presents limitations in
its usability. To address this challenge, Jin et al. introduced the “transformation-by-pattern”
(TBP) paradigm for data transformation, which operates solely based on input/output data
patterns, without the need for paired examples [52]. This approach involves utilizing a
source pattern, a target pattern, and a transformation program. Their way of representing
the data patterns is similar to our abstraction representation, so our automatically detected
patterns might serve as input to this approach in discovering TBP programs.

63

3 SURAGH: A Structural Error Detection System

3.7 Conclusion

Raw data contain ill-formed rows, which have inconsistencies at both column- and row-
levels, preventing data from being (correctly) loaded into downstream applications. Iden-
tifying such rows in advance reduces errors and user effort in the event of a data loading
problem.

In this chapter, we introduced SURAGH– a system to automatically detect ill-formed rows
and helps expert users by generating a pattern schema for a file so that they can pre-
determine how messy the data are and how much data preparation is needed. SURAGH

takes an input file from a user and then generates, collects, and constructs syntactic pat-
terns at several levels that help classify ill-formed rows in a file. Additionally, we utilized
pruning techniques and implemented weighting criteria and coverage thresholds to select
highly specific and high coverage syntactic patterns, optimizing our solution. We collected
real-world datasets containing data errors at the syntactic level and performed extensive
empirical evaluations. Our approach achieved high precision and recall rates in detecting
ill-formed rows across various datasets, including previously unseen data.

After identifying ill-formed rows within a file, the next intriguing challenge is to transform
these rows into a standardized format, thereby assisting users in their data preparation
efforts. In the following chapter, we introduce our system, TASHEEH, which addresses this
transformation task employing syntactic pattern grammar.

64

TASHEEH: A STRUCTURAL ERROR

CORRECTION SYSTEM

Chapter 4

In Chapter 3, we discussed how open data portals contain a plethora of data files, with
comma-separated value (CSV) files being particularly popular with users and businesses
due to their flexible standard. However, this flexibility comes with much responsibility for
data consumers, as many of these files contain various structural problems. With the SU-
RAGH system, we performed classification based on the frequent patterns found within the
file and detected erroneous rows. Following the identification of errors (ill-formed rows),
the subsequent phase of rectification poses a distinct challenge, as identifying errors differs
significantly from correcting them.

Traditionally, data scientists write custom code to clean ill-formed rows, even before they
can use data cleaning tools and libraries, which assume all data to be properly loaded.
These tasks are tedious and time-consuming, requiring expertise and frequent human in-
tervention. Additionally, not every ill-formed row requires correction, as some may not
contain any data. For instance, rows may be empty or contain metadata, such as pream-
bles, aggregations, or footnotes. Accurately distinguishing between ill-formed rows that
require correction and those that should either be removed or stored separately without any
transformation presents another challenge in the quest for automation.

In this chapter, we present TASHEEH19, an integrated system that merges with the SU-
RAGH system. TASHEEH, in collaboration with SURAGH, enhances the identification of
erroneous rows by distinguishing between ill-formed rows containing data (wanted rows)
and non-data rows (unwanted rows). Most significantly, it automates the structure stan-
dardization within wanted rows, ensuring they conform to a consistent format based on the
structure observed in well-formed rows.

19TASHEEH (TAS-HEEH) is an Urdu word that means correction or rectification.

65

4 TASHEEH: A Structural Error Correction System

Our work in this chapter is based on our publication [35], and makes the following main
contributions:

1. A formalization to describe ill- and well-formedness of rows, wanted and unwanted
rows, and row structure standardization.

2. A set of files from four open data sources, each annotated for ill-formed or well-
formed, and wanted or unwanted rows for a total of 200 351 rows. The files, together
with the classification annotations, manually cleaned wanted rows, and code, are
publicly available20.

3. A system, TASHEEH, that automatically recognizes ill-formed wanted rows and
cleans their structure using a novel pattern transformation algebra.

4. A wide range of experiments conducted to validate TASHEEH for both classification
and transformation of ill-formed rows.

The rest of the chapter is organized as follows: Section 4.1 delves into the underlying
rationale of our use-case, highlighting the structural challenges using an example file. Sec-
tion 4.2 lays the foundation by presenting formal definitions and outlining the problem
statement. Section 4.3 illustrates the workflow of TASHEEH and presents the processes of
classifying and transforming ill-formed rows. Section 4.4 presents the experimental eval-
uation of TASHEEH and Section 4.5 presents related work. Finally, Section 4.6 concludes
our study.

4.1 Anomalous Row Structures

Recall from Chapter 3, among other challenges, detecting and cleaning “ill-formed” rows
in CSV files are difficult problems. Figure 21 shows an example of a raw CSV file taken
from a government data portal. We highlight groups of ill-formed rows with different
inconsistencies. Among these rows, our goal is to automatically detect those that contain
data, which we call wanted rows (see Section 4.2 for a formal definition), and automatically
clean them by repairing their structural inconsistencies.

To detect ill-formed rows, we abstract rows into structural patterns based on a syntactic
pattern grammar, using our error-detection system SURAGH. We extend the use of the
syntactic pattern grammar with TASHEEH. The goal of TASHEEH is to improve the classi-
fication of ill-formed rows by recognizing wanted and unwanted ill-formed rows, as well
as automatically clean wanted rows structure.

20https://github.com/HMazharHameed/TASHEEH

66

https://github.com/HMazharHameed/TASHEEH

4.1 Anomalous Row Structures

Figure 21: A sample of a raw CSV file with ill-formed rows due to structural inconsisten-
cies at both column- and row-levels.

In the following, we discuss structural challenges using the example file shown in Fig-
ure 21.

Example 4 The file in Figure 21 contains, among other inconsistencies, cell values with
either a non-standard quote character or a missing quote escape character, e.g., ""5,249""
(row 30). The RFC 4180 standard [45] for CSV files states: 1) Each field must be enclosed
in double-quotes if its value contains a character used as a field delimiter; 2) a double-
quote appearing inside a field must be escaped by preceding it with another double quote.
With those rules, the standardized versions of the value should either appear as "5,249"
as per the Rule 1, or as """5,249""", as per Rule 2. Loading the file as-is in a downstream
application might lead to a shift in column values.

Moreover, Sun et al. noted that shifts in values can also occur when extracting data from
multiple sources, during manual data entry, or when sensors fail [95].

67

4 TASHEEH: A Structural Error Correction System

Figure 22: Examples of how data and metadata can appear in the same rows. In our file
collection, we observed only combinations (1) and (3).

Example 5 Another example of structural inconsistency in the file of Figure 21 (row 84)
is data and metadata appearing in the same row. We also observed this inconsistency
appear in rows in the opposite order as data next-to metadata (see Figure 22). In both
combinations, metadata appear mainly in the form of comments, where users leave notes
for later reference or try to explain data in that row. Another cause is manual data entry or
automatic data integration from multiple sources, where users or automated scripts miss
the new-line separator, resulting in a different number of columns across rows.

Out of a random subset of 1 000 files from www.data.gov, we found that in about 5.8%
data and metadata were present in the same rows. Such additional metadata are not the
only reason for different numbers of columns in rows. Due to the flexible format of CSV
files, users add additional columns for data and explanations to the data by simply adding
delimiters to the rows. Some rows contain fewer columns due to missing values or dele-
tion operations causing the same problem. In another random subset of 1 000 files from
Mendeley’s data sharing platform21, we observed that around 7.3% contained wanted rows
with a varying number of columns.

Preparing data with such structural inconsistencies for loading into data-driven applications
is a challenging and time-consuming task that often requires significant manual effort.
TASHEEH aims to help streamline a data processing pipeline by automating preparation
tasks at the structural level and minimizing the burden of manual data preparation.

4.2 Problem Definition

The input to our approach is a file that is composed of a number of rows. A row is a
sequence of characters terminated by a newline separator. Further, let T be a relational
table serialized in a CSV file F and let R be the set of rows of F . Every tuple t ∈ T
contains data from one or possibly multiple rows (e.g., due to a misplaced line separator).
Moreover, due to missing or misplaced line separators, two tuples can also contain distinct

21https://www.mendeley.com/

68

www.data.gov
https://www.mendeley.com/

4.3 The TASHEEH System

data from the same row. Formalizing these concepts, we define wanted and unwanted rows
as follows:

Definition 8 Let T be a relational table serialized in a CSV file F, and let Φ : T → 2R be
a function that maps every tuple t ∈ T to a non-empty set of rows in F from which it can
be parsed. A row r ∈ R is called wanted, if it serializes data from any tuple of T , i.e., if
∃t ∈ T : r ∈Φ(t), and unwanted otherwise.

Since at parsing time we do not know the relational table serialized in a file F (nor do
we know Φ), classifying rows as wanted or unwanted is often not trivial and leads to a
trade-off between the two data quality dimensions completeness and soundness. If we
mistakenly label a ‘wanted’ row as ‘unwanted’, it leads to information loss, causing the
loaded table to miss some data and thus becoming incomplete. Vice versa, if an ‘unwanted’
row is erroneously classified as ‘wanted’, it introduces incorrect information into the table,
making it unsound. We now define the problem we address as follows:

Given as input a raw data file with a set of rows, identify the structure of the table T
serialized in F and transform all wanted rows to follow that structure, while retaining all
data.

To solve this problem, we need to perform three steps: 1) structure detection to identify
the table T , 2) row classification to separate wanted and unwanted rows and 3) row trans-
formation to standardize the structure of wanted rows into a uniform format.

We have addressed the first step of the problem in the previous chapter using SURAGH,
which employs a pattern-based approach [33]. SURAGH takes a CSV file as input and clas-
sifies its rows as ill- or well-formed based on the dominant row pattern(s) (see Figure 23).
For the next steps, we developed TASHEEH that utilizes the pattern language introduced in
SURAGH and further enhances the process by classifying ill-formed rows into wanted and
unwanted rows. In Figure 23, the output of TASHEEH’s classification process is merged
with the results of SURAGH to minimize visual clutter.

Note that we assume the transformations should only clean the structure of the rows and
should neither lose data nor invent new information that was not present in the input file,
such as filling null values, disambiguating values, or normalizing addresses. These se-
mantic transformations can be applied later in the preprocessing pipeline, leveraging data
cleaning tools and libraries [4, 31, 36, 48, 51, 52, 86, 92, 93, 96] that are specifically de-
signed to perform such transformations.

69

4 TASHEEH: A Structural Error Correction System

Figure 23: Selected rows of the CSV file of Figure 21 with well-formed rows (highlighted
green), ill-formed wanted rows (highlighted blue), and ill-formed unwanted row
(highlighted red). The dominant pattern at the bottom corresponds to the file
structure automatically detected by SURAGH.

4.3 The TASHEEH System

TASHEEH performs in three phases (see Figure 24). In the first phase, it first uses SU-
RAGH to classify input file rows as ill-formed or well-formed using dominant row patterns
(Pd). Then, it runs SURAGH incrementally for ill-formed rows to obtain row patterns
specifically for those rows; we call these patterns potential row patterns (Pp): these ill-
formed data rows can possibly be transformed into well-formed data rows. TASHEEH

repeats the incremental pattern generation process until no ill-formed rows are left without
a potential pattern. Section 4.3.1 provides details for this step.

The second phase uses the incrementally generated patterns to classify ill-formed rows
into wanted and unwanted ones. It leverages a pattern-level distance measure inspired by
sequence alignment [30]. This pattern sequence alignment helps TASHEEH determine the
extent to which ill-formed rows differ structurally from well-formed rows. Section 4.3.2
explains this step in detail.

In its third and final phase, TASHEEH collects wanted rows, well-formed rows, and their
patterns from the previous phases. It then uses a pattern transformation algebra to transform
the wanted rows into well-formed ones – Section 4.3.3 explains the details.

70

4.3 The TASHEEH System

Pattern Schema

SURAGH

Input file

Incremental Pattern Generation

Well-formed
rows

Ill-formed
rows

Compliance Check

Rows

Min Cost Path Finder

Row Structure Transformation

Alignment operations

Pattern Wrangler

Operator Tagger

Cleaned file
Row Wrangler

DP Matrix

Row Classification

Potential
patterns

Dominant
patterns

Score

Sequence Aligner

Cluster Curator

P
at

te
rn

 C
la

ss
if

ie
r

Ill-formed
rows

Unwanted
rows

DP Matrix

Wanted
rows

Pattern clusters

Figure 24: The workflow of TASHEEH

4.3.1 Incremental Pattern Generation

SURAGH generates a set of dominant row patterns for a given file. Using these dominant
patterns, it classifies rows as ill-formed and well-formed. During this process, to reduce
the dominant pattern search space, SURAGH retains only the dominant patterns and dis-
cards all other patterns, including those for ill-formed rows. However, TASHEEH requires
these patterns for two reasons: (1) The level of abstraction of these patterns makes the
comparison with dominant patterns more applicable than with original rows. (2) Trans-
forming general patterns that cover multiple ill-formed rows is more efficient and scalable
than transforming rows individually. To generate such further patterns, TASHEEH incre-
mentally executes SURAGH. In each iteration, TASHEEH revises the criteria for classifying
rows based on the dominant patterns generated in that cycle. This iterative process entails
discarding previously identified well-formed rows and reassessing rows previously labeled
as ill-formed. As a result, the definition of well-formed dynamically adapts with each it-
eration, guided by the remaining rows that have yet to be classified. For example, for the
input file in Figure 21, three of the potential row patterns along with the dominant row
pattern are shown in Table 12.

71

4 TASHEEH: A Structural Error Correction System

Table 12: Example set of dominant and potential row patterns (aligned by cell separators
that represent delimiters); Pd corresponds to well-formed rows (Figure 23 →
rows 6-8), Pp1 corresponds to an unwanted row (Figure 23 → row 5), Pp2
corresponds to wanted rows (Figure 23→ rows 30-32), and Pp3 corresponds to
a wanted row (Figure 23→ row 84).

Dominant Row Pattern:
Pd ⟨D⟩⟨D⟩⟨D⟩⟨D⟩ ⟨UL⟩⟨SEQLL⟩ ⟨D⟩⟨D⟩⟨D⟩ ⟨SEQD⟩ ⟨SEQD⟩ . ⟨SEQD⟩%
Potential Row Patterns:
Pp1 Fiscal Year Month Total SSR Internet SSR Percentage
Pp2 2011 ⟨UL⟩⟨SEQLL⟩ ""⟨D⟩ ⟨D⟩⟨D⟩⟨D⟩ "" ""⟨D⟩ ⟨D⟩⟨D⟩⟨D⟩ "" ⟨SEQD⟩ . ⟨SEQD⟩%
Pp3 2015 ⟨UL⟩⟨SEQLL⟩ 359 1 0.0% # in progress

After obtaining dominant and potential patterns for well-formed and ill-formed rows, TAS-
HEEH processes them further to classify ill-formed rows into wanted and unwanted.

4.3.2 Row Classification

In this phase, TASHEEH first calculates the minimum pattern-level distance between dom-
inant and potential patterns using a dynamic programming approach. Then, the distance
score is used to find for each potential pattern the closest corresponding dominant pat-
tern as a target for transformation. Finally, TASHEEH classifies the potential patterns and
their associated rows as ill-formed wanted or ill-formed unwanted, based on the pattern
distance.

Pattern sequence aligner

The potential patterns that TASHEEH generated in the previous phase may or may not cover
rows that contain data. To understand how similar they are to dominant patterns, which
do cover data rows, we introduce a pattern-level distance measure inspired by sequence
alignment [30]. Sequence alignment frameworks arrange the characters of two sequences
to maximize the number of matching characters [70], calculating the similarity between
the sequences using dynamic programming [7].

Like edit distance frameworks for string matching [104], sequence alignment frameworks
also expect a pair of input sequences and apply the required operation. These frameworks
aim at computing the closest possible match between characters of the input sequences
so that the overall character-wise distance is minimized. To align the sequences, a set of
operations includes “match”, “mismatch”, and “indel” (insertion and deletion; represented
by a gap character “-”), with a given cost for each operation. This cost may be fixed or
may vary depending on the user definition.

72

4.3 The TASHEEH System

We introduce a distance-based alignment framework for pattern-by-pattern alignments,
where the input sequences are entire row patterns. The input patterns are compared column
by column, splitting them on the delimiter character of the raw CSV file.

Let us consider the dominant pattern Pd and a potential pattern Pp from Table 12. To cal-
culate their distance, our distance-based alignment framework generates P ′

d and P ′
p with

the same number of column patterns so that they can be aligned. To this end, we append
column patterns using a special gap character to the shorter of the two sequences. We im-
plemented our framework using a dynamic programming approach to find the alignment
with the lowest distance, similar to other sequence alignment distances [70]. To find an
alignment between the two patterns Pd , Pp, we instantiate a matrix M where the posi-
tion at element i, j represents the minimum cost to transform Pp[0, . . . , j] into Pd [0, . . . , i].
The matrix is initialized with the element at the index [0,0], and then all other costs are
filled using Equation (4):

M (Pd ,Pp)[i][j] = min

M [i−1] [j]+1,
M [i] [j−1]+1,
M [i−1] [j−1]+

D(Pd [i−1],Pp[j−1])

(4)

Here, the cost of the insertion and deletion are calculated as 1 (first and second lines of
Equation (4)). To determine the cost between individual column patterns, we define a
pattern distance function D by enumerating four possible cases, which are summarized in
Equation (5). Given two column patterns α,β :

1. If α is equal to β , their distance is 0.

2. If either α or β are the gap “-” pattern, or contain a null value pattern ⟨EV ⟩, their
distance is 1.

3. If α contains the delimiter ⟨DEL⟩ and β contains data (or vice versa), their distance
is also 1.

4. If both column patterns represent data and do not contain any delimiters or gaps,
we first obtain the similarity score between the column patterns as the number of
common abstractions in the same class (letters, digits, special characters) divided
by the maximum length of the two column patterns. We then define column pattern
distance as 1 minus the similarity score [range: 0-1].

73

4 TASHEEH: A Structural Error Correction System

D(α,β) =

0, if α = β

1, if α ∈ {‘-’,⟨EV ⟩} or β ∈ {‘-’,⟨EV ⟩}
1, if α = ⟨DEL⟩ and β /∈ {‘-’,⟨EV ⟩⟨DEL⟩}

1 −
∑

i=l,d,s
min(|αi|, |βi|)

max(|α|, |β |)
, if α,β /∈ {‘-’,⟨EV ⟩,⟨DEL⟩}

(5)

The pattern distance formula is inspired by the string-by-string alignment approach [36],
which we adapted to define the distance function D between syntactic column patterns
(α,β) using abstractions [33]. We consider the typical three groups of abstraction classes:
letters “l”, digits “d” and symbols “s” (see details in [33]). This choice of quantifying
distance between string patterns is motivated by the need to capture structural similari-
ties. For example, the values “123 Main Street, New York, NY” and “789 Broadway
Avenue, New York, NY” exhibit a significant structural similarity despite high edit, Jac-
card, and Hamming distances.

The aforementioned dynamic programming approach solves the following optimization:

D(Pd ,Pp) = min
P ′

d ,P
′
p

1
|P ′

p|

|P ′
p|

∑
k=1

D(P ′
d [k],P

′
p[k]) (6)

Here, Pd and Pp are the original input row patterns, while P ′
d and P ′

p are the padded
row patterns to obtain the same number of columns.

Example 6 Table 13 demonstrates the pattern-by-pattern distance scores between the dom-
inant pattern Pd and potential pattern Pp3 from Table 12, where the column pattern dis-
tance scores were determined through the use of Equation (5). The overall row pattern
distance was determined as (0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0.90)/9 = 0.10 by applying
Equation (6).

Potential patterns that are close to the dominant pattern have a lower distance score. To
classify wanted and unwanted patterns, we introduce a distance score threshold: rows
whose potential pattern is not too different from the dominant pattern, i.e., with a dis-
tance lower than the threshold, are considered “wanted”, and all others are considered
“unwanted”. Additional details, including information about the global threshold setting,
can be found the in the following sections.

74

4.3 The TASHEEH System

Table 13: Column pattern-wise distance scores between row patterns Pd (Figure 23 →
rows 6-8) and Pp3 (Figure 23→ row 84).

Aligned Pattern Pairs Distance Score Freq.

Pd column patterns Pp3 column patterns

⟨D⟩⟨D⟩⟨D⟩⟨D⟩ 2015 0 1
⟨DEL⟩ ⟨DEL⟩ 0 4
⟨UL⟩⟨SEQLL⟩ ⟨UL⟩⟨SEQLL⟩ 0 1
⟨D⟩⟨D⟩⟨D⟩ 359 0 1
⟨SEQD⟩ 1 0 1
⟨SEQD⟩.⟨SEQD⟩% 0.0% # in progress 0.90 1

Cluster curator

In cases with only one dominant pattern, such as in the example file shown in Figure 23
(Page 70), all potential patterns are aligned to the single dominant pattern to determine their
distance. However, when files have multiple dominant patterns, the distances between each
combination of dominant and potential patterns are calculated by the cluster curator, and
the combination with the lowest distance score is selected.

Pattern classification

After obtaining the pattern distance for each combination of dominant and potential pat-
terns, TASHEEH passes it to the pattern classifier, which uses a distance score threshold to
determine whether the potential patterns are wanted or unwanted, resulting in whether the
corresponding rows contain data or not. Given a distance score threshold θ , all potential
patterns with a distance score ≤ θ are labeled as wanted, while the rest are considered as
unwanted. With the experiments detailed in Section 4.4.2 we determined that a threshold
value θ = 0.3 yielded the highest F-1 score.

4.3.3 Row Structure Transformation

In this phase, TASHEEH collects the ill-formed wanted rows, well-formed rows, their pat-
terns, and the corresponding dynamic programming matrices M from the previous phase.
First, it chooses the best alignment between dominant and wanted patterns, determining

75

4 TASHEEH: A Structural Error Correction System

Table 14: Row pattern transformation operators

Operator Description

Drop Returns an empty column pattern.
Extract Extracts a (wanted) part from a column pattern.
Ignore Returns the unchanged input column pattern.
Move Relocates a column pattern from one position to another.
Merge Concatenates column patterns and appends the merged column pattern to the

specified position.
Pad Pads a row pattern with empty cell(s).
Permute Rearranges a column pattern set with a given order.
Re-quote Adds or removes quotes from a column pattern.
Re-escape Adds or removes escapes from a column pattern.
Re-delimit Adds or removes a field separator from a column pattern.
Re-line Adds or removes a row separator from a column pattern.
Replace Replaces abstractions in a column pattern.

the necessary transformations to clean up the structure of wanted patterns. Then, the trans-
formations identified at the pattern level are used to transform the corresponding wanted
rows into well-formed ones.

Pattern transformation algebra

Table 14 presents a set of operators to transform one pattern into another. This set is also
the basis to later transform the corresponding rows from ill-formed ones to well-formed
ones. The pattern transformation operators take one or more input column patterns and
output up to one column pattern with a possibly transformed structure.

Each operator has a specific function based on the inconsistencies that need to be resolved
in column pattern(s). For some inconsistencies, multiple operators may have to be com-
bined in a specific execution order. For example, to correct shifted column values, TAS-
HEEH uses the functionalities of Merge, Re-delimit, Re-quote, Re-escape, and Drop. Here,
the execution order is important because if the Drop operator precedes the Merge operator,
data are lost. Similarly, without the Re-delimit operator before the Merge operator, shifted
values are not fixed, and even worse, shifted further due to incorrect field boundaries. In
the following section, we explain how we obtain a complete pattern-level edit path and the
functionalities of the transformation operators.

76

4.3 The TASHEEH System

Minimum cost edit path

To find the alignment between a dominant pattern and a wanted pattern, we trace back from
the bottom right of their matrix M from the previous phase. First, we construct a graph on
M where each node corresponds to a cell of the matrix and contains information about a
pair of column patterns from the dominant and the wanted patterns. Each node has three
outgoing edges indicating the three possible directions from one node to another based on
the alignment operators (“match”, “mismatch”, “insert”, and “delete”), where each edge
has its weight based on the cost of the operation required.

Figure 25: Weighted graph for minimum cost path finder

The use of edge weights provides information about the cost of each transformation, en-
abling us to choose the best overall alignment between the patterns. An example of a
weighted graph with outgoing edges is illustrated in Figure 25. The solid line in the graph
represents the path with the minimum cost from one node to another, where every direction
provides information about the set of operations required to transform one column pattern
into another. For example, the diagonal direction indicates the match and mismatch align-
ment operations, and for each of them, we can apply a set of transformation operators as
shown in Table 15. The determination of which operation to use is based on the column
patterns and the distance score. If two column patterns are equal, the distance score is zero,
and the diagonal direction indicates a match operation. On the other hand, if the column
patterns are different, the direction indicates a mismatch operation.

Similarly, an outgoing vertical direction represents the insertion operation, while an out-
going horizontal direction represents the deletion operation. Both directions are accompa-
nied by a set of transformation operations (see Table 15). In essence, the process involves
determining the edge weights to represent the cost (distance) associated with each transfor-
mation. Following that, we employed Dijkstra’s shortest path algorithm [19] to compute
the most efficient path, allowing for the determination of the minimum cost edit path from
the initial node to the final node. This path represents the alignment between a dominant

77

4 TASHEEH: A Structural Error Correction System

Figure 26: Minimum cost edit path alignment between row patterns Pd (Figure 23 →
rows 6-8) and Pp2 (Figure 23 → rows 30-32) together with marked transfor-
mation directions.

Table 15: Pattern sequence alignment operators, where underlined transformation opera-
tors were used for both TASHEEH and BASELINE transformation strategies.

Operator Transformation
direction

Corresponding transformation operator(s)

Match Diagonal Ignore
Mismatch Diagonal Drop, Extract, Ignore, Replace, Re-delimit, Re-quote, Re-

escape, Re-line
Insert Vertical Pad, Permute
Delete Horizontal Merge, Drop, Extract, Move, Re-delimit, Re-quote, Re-escape,

Re-line

pattern and a wanted pattern, as shown in Figure 26. The figure provides a visual repre-
sentation of the aligned row patterns (Pd , Pp2) and the marked alignment operators. This
information later will be used by the transformation engine for pattern transformation (see
Section 4.3.3). During backtracking, several paths with equal minimum edit costs may be
found. We choose the first path returned by the shortest path algorithm, and in the case of a
tie between moves, we prioritize the diagonal move if the column patterns being compared
are equal.

Pattern wrangler

TASHEEH collects the aligned patterns together with the minimum cost alignment from the
previous step. It then passes the aligned column patterns one at a time from the row patterns
to the transformation engine, the pattern wrangler, which applies the necessary transforma-
tions. The transformation engine stores the results of each column pattern transformation
in a transformation queue and continues to apply transformations to the remaining column
patterns (see Algorithm 3). Once all transformations are complete, it applies the preferred
transformations from the queue to the corresponding actual data rows.

78

4.3 The TASHEEH System

Algorithm 3: Pattern Wrangler
Input: Dominant pattern Pd , Potential pattern Pp, alignment A between Pd ,Pp

Output: List of Transformations T
1 T ← []
2 foreach 0≤ i≤ |Pp| do
3 transformations← APPLICABLETRANSFORMATIONS(Pd [i],Pp[i],A[i])
4 Tc← GENERATECOMBINATIONS(transformations)

5 T ← T ∪ argmin
c∈Tc

(
DISTANCE

(
Pd [i], c

(
Pp[i]

)))
6 end
7 return T

In the following, we explain the alignment operators listed in Table 15 and their corre-
sponding transformation operators in the context of the pattern wrangler.

Match. When aligning row patterns, one often encounters identical column patterns that
do not require a transformation. Such patterns are marked with the “match” alignment
operator, with the corresponding transformation operator Ignore, which skips the identi-
cal column patterns without applying a transformation. For example, in Figure 26, we
marked column patterns as “match” if they are identical, indicating that no transformation
is required.

Mismatch. Although the “match” and “mismatch” alignment operators follow a diagonal
direction, the operator tag in the minimum cost edit path differs for non-identical column
patterns, suggesting the need for transformation(s) in the wanted column pattern. However,
not every “mismatched” pattern requires a transformation: for example, column patterns
“⟨SEQD⟩.⟨SEQD⟩%” and “⟨SEQD⟩%” may appear dissimilar, but can both be used to rep-
resent data values within the same column. Transforming these patterns may result in
undesired output. Nonetheless, the transformation engine identifies such cases using the
abstractions hierarchy and applies the Ignore operator to the mismatched patterns, thereby
preventing unintended results.

The column patterns “⟨SEQD⟩.⟨SEQD⟩%” and “0.0% # in progress” in Table 13 (Page 75)
provide an example of where it is necessary to apply transformations to column pat-
terns with the mismatched marked operator. The inconsistency is that the metadata (#
in progress) are appended to the data part (0.0%) in the wanted pattern. Before apply-
ing transformations, the engine determines the necessary operators based on the abstrac-
tions present in the pattern. In this case, since the wanted pattern does not contain dialect
characters (delimiter, quote, quote escape), other operators, such as Re-quote, Re-escape,

79

4 TASHEEH: A Structural Error Correction System

Re-delimit, and Re-line are not utilized. The available operators for the transformation en-
gine are Drop, Replace, and Extract. The Drop operator is the least preferred and is used
when other operators fail to produce accurate results. The goal is to decrease the pattern
distance between the transformed wanted pattern and the dominant pattern, indicating a
closer match. Thus, the engine first applies Replace and Extract individually and then in
combination, if necessary, to achieve a transformed wanted pattern, closer to the dominant
pattern. Note that often a single operator can yield the best results, as in our example,
where the Extract operator alone suffices.

After applying the Extract operator to the example column patterns, the resulting pattern
is “0.0%”, which is the desired output. Let us delve into how the Extract operator works.
We employ the same sequence alignment framework designed for row patterns, aligning
the individual literals, symbols, and abstractions of a pair of column patterns. The table
below depicts the alignment between the elements of the example column patterns, with
gap characters “-” indicating the deletion operation.

⟨SEQD⟩ . ⟨SEQD⟩ % - - - - - - - - - - - - - -
0 . 0 % # i n P r o g r e s s

The transformation engine then stores the Extract operator in the transformation queue and
moves on to the next column pattern.

Insert. As previously stated, it is common for CSV files to have ill-formed wanted rows
with a varying number of columns. This inconsistency is manifested in the alignment of
the column patterns, where the alignment operator “insert” is marked in the edit path, indi-
cating the insertion of missing columns. The transformation engine uses information from
the alignment to identify the position of the missing parts and applies the corresponding
operators (Pad, Permute) to resolve this inconsistency. The trivial options are at the be-
ginning or end of the row patterns, where we pad additional column patterns by inserting
a field separator.

A more challenging scenario is when the engine needs to add column patterns in the mid-
dle of a row pattern, requiring the decision of the appropriate position. Imagine a situation
where a file contains sensor data, and new data are frequently being added. Due to a sensor
malfunction, some columns are absent, resulting in fewer columns in the impacted rows.
The problem is further complicated as the missing parts in the middle cause a backward
shift in the column values, resulting in shift inconsistency. In such a scenario, the transfor-
mation engine does not merely add separators between columns, but finds the best position
by iterating through all the possible indices combinations provided by the alignment (see
Algorithm 4). Note that the system does not impute actual data values.

Delete. If a pattern of the wanted rows has more column patterns than a dominant pattern,
the alignment framework inserts gaps into the dominant pattern and marks column patterns

80

4.3 The TASHEEH System

Algorithm 4: Pattern Padding
Input: Dominant pattern Pd , Potential pattern Pp, Insertion indices In

Output: Optimal positions in Pp for Padding
1 n_pad← ||Pd |− |Pp||
2 P ′

p← Pad(Pp[In[0]],n_pad)
3 O← PERMUTATIONS(P ′

p, In[0], In[|In|−1])

4 o∗← argmin
o∈O

(
DISTANCE

(
Pd , Permute

(
P ′

p,o
)))

5 return o∗

with the “delete” alignment operator in the edit path. The presence of such deletions can be
attributed to inconsistencies caused by shifted values resulting from missing/broken quotes
or quotes escape characters. Or it may be caused by additional columns being appended
to the row due to a missing new-line separator. For example, in Figure 26 (Page 78), the
wanted column patterns “""⟨D⟩⟨DEL⟩⟨D⟩⟨D⟩⟨D⟩""” are aligned with the dominant column
pattern “⟨D⟩⟨D⟩⟨D⟩” and are marked with the delete alignment operator indicating shifted
or additional column inconsistency.

The transformation engine starts with the Merge operator and stores the intermediate re-
sults by combining all the column patterns and updating the positions of these patterns,
which are later used to transform the real data rows. Since potential quote ‘"’ and quote’s
escape‘"’ characters are present in the column patterns, the system applies the Re-quote
and the Re-escape operators for possible transformations. At present, the transformation
operators only support single‘'’ and double quotes‘"’ as quote and quote’s escape charac-
ters. We searched through thousands of files from the four repositories we crawled and
could not find any file that used other characters for quotes or escaped the quotes. Nev-
ertheless, we can modify the settings to allow for more characters if there are valid file
dialects with other characters. The transformation engine follows the RFC 4180 stan-
dard [45] specifications as described in Section 4.1 to standardize the incorrect quote and
escape characters.

After the quotes and escapes are standardized, the Re-delimit operator is applied, which
replaces the incorrectly treated ⟨DEL⟩ with the correct literal symbol and updates the inter-
mediate results in the Merge operator. The final output obtained after applying the trans-
formations is as follows: “"⟨D⟩,⟨D⟩⟨D⟩⟨D⟩"”. The engine then stores the final result in the
transformation queue.

81

4 TASHEEH: A Structural Error Correction System

Row wrangler

The row wrangler takes the sequence of transformations from the transformation queue and
applies them to all data rows of the pattern at hand, thus cleaning the structure of the ill-
formed but wanted rows. As a final result, TASHEEH usually outputs a clean and structured
CSV file.

4.4 Experiments

This section provides an overview of our experiments, beginning with a description of
the datasets and our annotation process. We then present the performance results of our
pattern classifier at different distance score thresholds, along with a comparison against
a BASELINE approach and the state-of-the-art row classifiers. Following this, we present
an experimental analysis to demonstrate the efficacy of TASHEEH’s transformations again
in comparison to our BASELINE approach. In addition, we compare TASHEEH with the
SRFN system, which addresses shifted values in CSV files. Finally, we conclude this
section with a runtime analysis and a usability case study.

4.4.1 Datasets and Annotation

We extended the datasets previously employed in SURAGH system by incorporating addi-
tional files from DataGov, Mendeley, GitHub, and UKGov. The statistics for each of these
data sources are summarized in Table 16.

Table 16: Datasets: number of files (F), average number of rows (R), average well-formed
(WF) rows per file, average ill-formed wanted (IFW) rows per file, and average
ill-formed unwanted (IFU) rows per file.

Source # F Avg # R Avg # WF Avg # IFW Avg # IFU

DataGov 62 877.7 ± 1760.4 819.9 ± 1695.5 51.5 ± 173.6 6.2 ± 10.5
Mendeley 34 2909.6 ± 3707.2 2841.4 ± 3690.6 51.0 ± 112.3 17.2 ± 43.4
GitHub 28 662.1 ± 1013.4 627.7 ± 1009.4 17.4 ± 29.5 17.1 ± 41.7
UKGov 24 1186.2 ± 2865.9 1153.3 ± 2845.1 30.4 ± 50.1 2.5 ± 2.3

We manually determined the most specific dominant row pattern(s) for each file, annotated
each row as ill-formed or well-formed and wanted or unwanted, and created a ground truth
of 200 351 rows across all datasets. Also, we created a ground truth of manually cleaned

82

4.4 Experiments

“wanted” rows that were used for the transformation experiments. The code artifacts to-
gether with datasets and annotations are publicly available20.

The manual cleaning process involved examining each file’s “wanted” rows, with necessary
corrections or transformations made to ensure the transformed rows complied with that
file’s manually labeled dominant row patterns.

4.4.2 Classification Performance Evaluation

This section evaluates TASHEEH’s classification (wanted and unwanted rows) component,
including finding the best distance threshold to compare patterns.

In accordance with Definition 8 (Page 69), a detected ill-formed wanted row is considered a
true positive if its corresponding row in the ground truth is labeled as an ill-formed wanted
row. If not, it is considered a false positive. We use the standard precision P and recall R
metrics to assess the effectiveness of our system:

P =
|true ill-formed wanted rows detected |

|true & false ill-formed wanted rows detected |

R =
|true ill-formed wanted rows detected |
|total ill-formed wanted rows |

In files that have no ill-formed wanted rows, we set the precision and recall scores to 1
if the classifier returned no false positives and no false negatives, respectively, and to 0
otherwise.

To assess the effectiveness of the classification component in TASHEEH, it is essential
to determine the best distance score threshold, given the substantial differences in dis-
tance scores across the various patterns. We conducted several experiments with different
threshold values to determine the best configuration for the classification task. The pre-
cision, recall, and F-1 scores at different threshold values for all datasets are displayed in
Figure 27. The threshold value “0.3” yielded the highest F-1 score.

Our rationale behind the consistent optimal threshold across all datasets is that it appears to
be independent of the datasets themselves. Rather, it seems to serve as a correction factor
for potential bias or noise introduced during the SURAGH pattern extraction phase. Since
row patterns are extracted with a consistent method, the identified threshold is likely com-
pensating for individual wanted rows whose extracted patterns should but do not conform
to the dominant pattern in the first place.

In the following, we discuss state-of-the-art row classifiers, PYTHEAS and STRUDEL, a
popular data analytics tool PANDAS, and a straightforward BASELINE approach against
which we compared our system TASHEEH.

83

4 TASHEEH: A Structural Error Correction System

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

1.0
Sc

or
e

DataGov

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

0.6

0.7

0.8

0.9

1.0
Mendeley

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

UKGov

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold

0.5

0.6

0.7

0.8

0.9

1.0
GitHub

Precision Recall F-1

Figure 27: Precision, recall and F-1 measures at different distance score threshold values

The BASELINE classifier was inspired by the ad-hoc approach TABULAR [2], which uses
column counts in the header and other rows to assess row completeness. Based on this idea,
our BASELINE classifier counts the number of column patterns in the dominant pattern. If
the potential pattern has the same number of column patterns as the dominant pattern, it is
classified as wanted; otherwise, it is considered to be unwanted.

PANDAS is a Python module for data analysis. We compared our approach with PANDAS

by considering rows that were successfully parsed and loaded into a data frame as wanted,
while any other rows the tool skipped22 due to inconsistencies were considered unwanted.

22Using on_bad_lines = 'skip'

84

4.4 Experiments

Table 17: Row classification comparison overview
Source # files # rows BASELINE PANDAS [85] PYTHEAS [12] STRUDEL [49] TASHEEH

P R F-1 P R F-1 P R F-1 P R F-1 P R F-1

DataGov 62 54 416 0.42 0.76 0.54 0.56 0.81 0.66 0.75 0.96 0.84 0.87 0.92 0.89 0.96 0.96 0.96
Mendeley 34 98 927 0.39 0.73 0.51 0.49 0.82 0.61 0.71 0.88 0.79 0.79 0.94 0.86 0.91 0.94 0.93
GitHub 28 18 538 0.45 0.74 0.56 0.59 0.77 0.67 0.70 0.84 0.76 0.76 0.87 0.81 0.91 0.98 0.95
UKGov 24 28 469 0.52 0.75 0.62 0.63 0.90 0.74 0.85 0.90 0.87 0.91 0.95 0.93 1.00 0.97 0.98

Note that we set the recall score to 1 if PANDAS loads every row, thus not misclassifying
any unwanted row.

PYTHEAS is a pattern-based table discovery system that employs a rule-based approach to
identify tables in CSV files [12]. It uses a weighted set of rules to determine whether a
row is data or non-data, and the binary results are used to determine the table-top/bottom
boundaries. After detecting potential table headers through the search of common header
patterns, PYTHEAS applies a set of additional heuristic rules to determine the row classes:
context, header, subheader, data, and notes. As PYTHEAS is a supervised learning ap-
proach, the authors provided a pre-trained model, which we used to classify the rows in
our dataset. To compare our approach with PYTHEAS, we considered the rows that PYTH-
EAS classified as “data” to be wanted and the remaining four classes to be unwanted.

STRUDEL is a multi-class random forest classifier designed for CSV file row classifica-
tion [49]. In the previous chapter, we conducted a comparison between SURAGH and
STRUDEL, as detailed in Section 3.5.2. Here, we provide a concise overview of STRUDEL’s
approach. It categorizes rows into six semantic classes, metadata, group, header, data,
derived, and notes, based on content, context, and computational features. We trained
STRUDEL on the datasets available at the STRUDEL project page23 and tested on the
datasets listed in Section 4.4.1. We chose to use the datasets employed by STRUDEL for
training because they comprise a large number of files, and the authors (the author of this
thesis is a coauthor) of STRUDEL tested their approach on out-of-domain datasets. To
ensure comparability with STRUDEL, we kept the same parameter settings as described
in [49], with the exception of using the univocity parser24 instead of STRUDEL’s dialect
detection tool [100]. To compare our approach with STRUDEL, we considered the rows
classified as “data” by STRUDEL to be wanted, the others were considered unwanted.

When PYTHEAS and STRUDEL classified all rows as data, the recall score was 1, indicating
that no wanted rows were misclassified.

Table 17 presents the results of the row classification for all systems. Precision, recall,
and F1-score metrics are reported to assess the classification performance of each system.

23https://hpi.de/naumann/s/strudel
24https://github.com/uniVocity/univocity-parsers

85

https://hpi.de/naumann/s/strudel
https://github.com/uniVocity/univocity-parsers

4 TASHEEH: A Structural Error Correction System

Our proposed approach, TASHEEH, achieved the best performance across all metrics, out-
performing both state-of-the-art systems, PYTHEAS and STRUDEL. This achievement is
particularly significant considering that PYTHEAS and STRUDEL use supervised learning
approaches that require labeled data for training, while our approach is unsupervised and
requires no labeled data. By eliminating the requirement for labeled data, TASHEEH offers
greater flexibility and adaptability for analyzing a wide range of CSV files and makes it
easier to scale to new datasets without the need for costly and time-consuming labeling
efforts.

PYTHEAS and STRUDEL faced several challenges in classifying the data rows in some of
the files in our collection. For instance, STRUDEL had difficulty distinguishing between
data rows and non-data rows (comments, notes) with the same number of fields as data
rows, which were present in some files in our collection. In addition, PYTHEAS’ rules for
identifying data rows were based on the majority of the content in each row, and when
data and metadata appeared in the same rows, PYTHEAS misclassified those rows if the
majority of the content were metadata. Another challenge for both systems was data rows
with fewer columns at the bottom of the file, which were misclassified as notes. Finally,
both systems sometimes misclassified rows with new line separators between cell values
as group headers.

In situations of very few classification errors, where the system mistakenly identifies un-
wanted rows as wanted (resulting in false positives), this typically occurs when a dominant
pattern and an ill-formed unwanted row mainly comprise the same pattern sequences. For
example, when numeric headers like “year values” (e.g.,1990, 1991), are present, and the
column values also contain identical information, it becomes challenging to distinguish be-
tween the two. Similarly, this challenge applies to cases of solely textual headers, such as
“first name” and “last name”, when the values in the column contain names. For a wanted
row classified as unwanted (a false negative) a scenario occurs when an ill-formed wanted
row has additional details in several columns. For example, a dominant pattern may in-
clude date format for column values, while the wanted rows contain both date and time
format for several columns, leading to a high pattern distance.

4.4.3 Transformation Performance Evaluation

We evaluate the effectiveness of the transformations using the accuracy metric:

A =
|correctly cleaned ill-formed rows|

|total ill-formed rows|
(7)

A row is considered to be correctly cleaned only if the output produced by the system
matches exactly the corresponding row in the transformation ground truth, which was man-
ually created. For unwanted rows, the correct cleaning operation is to delete the row.

86

4.4 Experiments

As we discuss in Section 4.5, there has been no prior research on automatically cleaning
the structure of ill-formed rows in CSV files. Therefore, we compared TASHEEH against a
BASELINE transformation strategy that uses a simplified set of transformation operations,
shown underlined in Table 15 (Page 78).

For evaluating the transformation performance of both TASHEEH and the BASELINE trans-
formation strategy, we opted to use TASHEEH as the row classifier, since it outperformed
the other row classifiers. Additionally, we evaluated our approach using a PERFECT row
classifier with manually annotated ground truth for comparison. The experiments with the
TASHEEH classifier included 7 866 ill-formed rows for DataGov, 3 957 for Mendeley, 1 392
for GitHub, and 2 871 for UKGov, which also included misclassified rows from SURAGH.
For the PERFECT classifier, we used the manually annotated wanted rows for each dataset,
with 3 578 for DataGov, 2 319 for Mendeley, 963 for GitHub, and 789 for UKGov. In Fig-
ure 28, we present the results of the BASELINE and TASHEEH transformation strategies in
cleaning ill-formed rows.

Note that with the PERFECT classifier for both BASELINE and TASHEEH transformation
strategies, if a file contains no wanted rows, we set the accuracy score to 1.

Ill-formed rows transformation evaluation

The evaluation results in Figure 28 highlight the performance of both BASELINE and TAS-
HEEH transformation strategies in combination with both TASHEEH and PERFECT row
classifiers.

The performance of the BASELINE strategy was particularly notable in files where the
errors were limited to unwanted rows, requiring only the deletion operation. This resulted
in a substantial enhancement in the overall performance of the BASELINE strategy. We
also observed that the BASELINE strategy performed well in scenarios where padding cells
at the start or end of a row pattern was the correct transformation. Additionally, the BASE-
LINE strategy achieved high accuracy when the transformation only involved deleting an
entire column pattern.

The experimental results indicate that the combination of TASHEEH transformation with
a PERFECT classification achieved the highest overall performance. However, when TAS-
HEEH is used for both classification and transformation, the results are almost as good as
those obtained with a PERFECT classifier. These findings highlight the effectiveness of the
TASHEEH transformation strategy and its associated classifier in identifying and cleaning
ill-formed rows, leading to improved overall performance.

87

4 TASHEEH: A Structural Error Correction System

CA + TB CP + TB CA + TA CP + TA
0.0

0.2

0.4

0.6

0.8

Tr
an

sf
or

m
at

io
n

Ac
cu

ra
cy

0.29
0.36

0.87 0.9
DataGov

CA + TB CP + TB CA + TA CP + TA
0.0

0.2

0.4

0.6

0.8

0.26
0.31

0.83
0.94

Mendeley

CA + TB CP + TB CA + TA CP + TA

Transformation Strategy

0.0

0.2

0.4

0.6

0.8

Tr
an

sf
or

m
at

io
n

Ac
cu

ra
cy

0.33
0.38

0.89 0.93
UKGov

CA + TB CP + TB CA + TA CP + TA

Transformation Strategy

0.0

0.2

0.4

0.6

0.8

0.31 0.35

0.83
0.89

GitHub

CLTASHEEH + TRBASELINE (CA + TB)
CLPERFECT + TRBASELINE (CP + TB)

CLTASHEEH + TRTASHEEH (CA + TA)
CLPERFECT + TRTASHEEH (CP + TA)

Figure 28: BASELINE and TASHEEH transformation effectiveness with TASHEEH and
PERFECT row classifiers

In cases where TASHEEH failed to generate accurate transformations, we observed that
the problems mainly stemmed from domain-specific issues. For example, in the Mende-
ley dataset, the issues were related to the number formatting of values, where the patterns
used scientific notation differently, such as using exponents “E” or “e” in some cases. As a
result, the Extract operator removed these values, considering them as non-data parts due
to their low pattern frequency. Even in combination with different operators, the Extract
operator struggled to capture these domain-specific variations accurately. We also encoun-

88

4.4 Experiments

tered difficulties with complex strings, such as URLs or long addresses, with significantly
different patterns in the UKGov, GitHub, and DataGov datasets, resulting in either incor-
rect information being extracted or dropping the column pattern entirely. This highlights
the challenge of dealing with complex data types, which requires more understanding of
recognizing the data types to handle such variations in patterns effectively. Overall, TAS-
HEEH is a general-purpose system that has effectively handled various data transformation
tasks. For more domain-specific cases, TASHEEH can be customized by implementing
domain-specific rules.

SRFN - TASHEEH comparison

SRNF is the only other system that addresses a specific type of structural inconsistencies in
data rows by “swapping repair using a fixed set of neighbors” [95]. SRFN focuses on fixing
shifted values in CSV files by leveraging the likelihood of neighboring attribute values and
swapping them to determine the correct position. We evaluated the performance of SRFN
on our dataset by utilizing the available artifacts on the project’s GitHub repository25. As
access to the author’s dataset was not available, we tested the system on our own files
only. SRFN requires three inputs to be specified: (1) fixed attributes that should not be
modified during the repair process, (2) rows that are to be considered for repair, and (3) the
number k of nearest neighbors to be considered. The authors suggest that to determine a
proper k, users should test different values on their own data to find the optimal setting.
In their paper, the authors tested a minimum of 2 nearest neighbors up to a maximum of
864 neighbors, depending on the length of the file. Following the same setting, we started
our experiments with 2 neighbors and tried up to 864 neighbors if the file was longer
than 864 rows. We found that SRFN is capable of addressing the problem of swapping
misplaced values, such as swapping the position of name and passport values if misplaced.
However, for the dataset files used in our experiments, the SRFN system could not fix
any inconsistency, e.g., shifted values, even after applying it with all possible parameter
settings, having an overall transformation accuracy of 0.

Large language models for structural tasks

There has been increasing interest in leveraging large language models (LLMs) for tra-
ditional data wrangling and cleaning tasks. One intriguing aspect is their potential for
zero-shot or few-shot inference, where models can perform tasks without specific train-
ing on those tasks. However, despite the allure of these capabilities, our own exploratory
analysis using the state-of-the-art language model GPT 3.5 (in its version davinci-003,
like in [66]) revealed several challenges. (1) Prompt engineering: The performance of

25https://github.com/SwappingRepair/SRFN

89

https://github.com/SwappingRepair/SRFN

4 TASHEEH: A Structural Error Correction System

the model was found to be highly sensitive to the specific wording of the input prompt
and the content of the file. (2) Repeatability challenges: While the prompt engineering
process yielded reasonable results, achieving repeatability remains a significant challenge.
There is no guarantee that using the same prompt will consistently produce similar out-
comes. Multiple attempts with the same prompt often yielded different results, making it
difficult to replicate and rely on specific outcomes. (3) Reproducibility challenges: The
closed-source nature of the language model poses obstacles to achieving reproducibility.
Limited access hinders the ability to reproduce and verify results. Although efforts are
being made to open-source these architectures [99], the reliance on substantial hardware
resources adds another layer of complexity to the reproducibility process. (4) Adaptability
challenges: Despite the impressive performance of the model for language modeling and
its ability to follow instructions, its performance varies greatly depending on the specific
task at hand [109]. Adapting it to different tasks, such as file structure cleaning, remains
a significant challenge, as it tends to exhibit hallucination when confronted with tasks be-
yond its specific training.

4.4.4 Runtime Analysis

TASHEEH achieved an average classification time of 6.47±9.24 ms per file with the global
distance score threshold. The transformation times averaged at 4.45±6.32 ms per file on
a computer with a 4-core Intel Core i7 2.3G CPU and 16GB of RAM. Figures 29 and 30
depict the runtime of TASHEEH’s classification and transformation processes on the files
within our dataset.

Figure 31 shows the overall runtime of TASHEEH on the files in our dataset. Although
the overall runtime of our approach scales quadratically, we observed a high variance in
the results due to the quite different pattern complexity of individual files. All-around, in
the complete error detection and correction pipeline, the row pattern generation process of
SURAGH dominates the processing time.

4.4.5 Usability Case Study

To demonstrate the usability of TASHEEH, we conducted a user study, to measure the time
and accuracy of cleaning raw data files, both manually and with TASHEEH. We invited
five computer scientists with data cleaning expertise, not involved in our project, to clean a
random sample of ten files from our real-world datasets mentioned in Section 4.4.1. These
files exhibit an average number of rows of 904±842, with an average number of ill-formed
rows of 64±47. Before the study, we provided them with a clear explanation of the task,
i.e., row structure cleaning. They were free to use any tool or programming environment
they preferred. Each participant was assigned the same set of files to work on. We measure

90

4.4 Experiments

Figure 29: TASHEEH’s classification efficiency

Figure 30: TASHEEH’s transformation efficiency

91

4 TASHEEH: A Structural Error Correction System

Figure 31: TASHEEH classification and transformation efficiency together with SURAGH,
with a fitted quadratic curve. The last six files were obtained by extending
existing files with duplicate rows. The size of the marks indicates the number
of wanted patterns within the file, i.e., indirectly its degree of inconsistency.

the file-wise time taken for completion and the accuracy of the cleaning rows with the same
measure of Section 4.4.

Figure 32 shows the results for both manual cleaning and TASHEEH for the sample files
(each expert is represented by the same color and marker type). Manually cleaning required
a significant amount of time, averaging 67±18 minutes across all experts. Additionally, the
accuracy achieved is not always perfect, averaging 83±17 % across all experts: sometimes
experts simply removed the inconsistencies they did not understand, e.g., misplaced delim-
iter. Also, in some cases, certain unwanted rows, such as aggregation rows or expanded
group headers were erroneously treated as wanted, resulting in a significant negative im-
pact on the overall score. In contrast, when utilizing the TASHEEH system, the accuracy
is significantly higher, with 8 out of 10 files achieving a perfect cleaning result, averaging
87%. Moreover, the time required for cleaning using TASHEEH is remarkably low, averag-
ing 6.80±0.34 minutes (across three experimental runs). Even if we consider that the user
would manually clean the two files that were not perfectly cleaned by TASHEEH, the time
required to achieve a completely flawless result would be 9±3 minutes, which was the av-
erage time the experts took for these two files during manual cleanup. To summarize, the
use of TASHEEH not only significantly reduces the overall cleaning time to 15.80± 3.34
minutes but also delivers improved accuracy compared to a fully manual approach.

92

4.5 Related Work

Figure 32: Comparison of manual cleaning with TASHEEH

4.5 Related Work

While a considerable amount of research has been conducted on detecting and correcting
semantic errors in data, little attention has been given to addressing the structural prob-
lems in CSV files. However, there have been some notable attempts in related work for
table extraction, error detection and correction in structured data. We provide a succinct
overview of these approaches and briefly describe the pertinent research directions that can
be complemented by our research.

Table extraction: Extracting relational tables from diverse sources presents an inter-
esting problem, leading to the development of multiple tools [12, 14, 21, 26, 55, 57]. In
particular, TEGRA [14] (for web lists), TABLESENSE [21] (for spreadsheets), and PYTH-
EAS [12] (for CSV files) have achieved considerable success in the table extraction domain.
TEGRA approaches table extraction as a global optimization problem. Its function searches
for the best position to split every row to ensure column alignment and coherence of val-
ues. TABLESENSE is a deep learning architecture that leverages a combination of visual
and rich-text Excel features to accurately identify and segment tables within spreadsheets.
PYTHEAS is the state-of-the-art system dedicated to extracting tables from CSV files. It
utilizes machine-learned rules to discover tables in CSV files by identifying the position of
data rows.

93

4 TASHEEH: A Structural Error Correction System

Although these systems do not explicitly focus on cleaning structural issues, which is the
primary objective of our research, we compare our approach with the state-of-the-art sys-
tem PYTHEAS, since (1) it is designed for plain text files, and (2) the system’s ability
to identify data rows in CSV files allows for a direct comparison with our classification
component (Section 4.4.2). Conversely, TEGRA operates under the assumption that the
delimiter is the only potential structural issue, and it also expects the delimiter to be con-
sistent across all rows, and TABLESENSE expects a spreadsheet format as input, where cell
boundaries are typically well-defined and distinct, which contrasts with the less structured
nature of plain text files like CSV. Therefore, we believe applying the latter systems would
not lead to a fair comparison.

Row and cell type detection: In plain text files like CSV, not every row may contain
data [64]. Therefore, accurately identifying the boundaries of cells and rows and com-
prehending their underlying semantics are essential features for efficient data processing.
Researchers have devised various tools employing both supervised and unsupervised ap-
proaches to classify cells and rows within tabular data [5, 32, 49, 56, 76]. Among these
approaches, Jiang et al. proposed the state-of-the-art STRUDEL approach [49]: STRUDEL

is a multi-class random forest classifier that leverages three types of features: content, con-
text, and computational features to accurately classify rows in CSV files. Although its
primary focus is not on structure-cleaning, we include it in our comparative analysis by
evaluating its performance against TASHEEH’s classification component (Section 4.4.2).

File structure preparation: In the context of non-standardized CSV files, various struc-
tural inconsistencies can arise when processing data using different tools or parsers [103].
Among these, one notable issue is the occurrence of shifted column values. Sun et al. in-
troduced the SRFN system [95] to address this specific problem. The approach focuses
on repairing shifted values by leveraging the likelihood of neighboring attribute values
and determining the correct position for swapping. It is the sole solution available that
attempts to address one structural problem in CSV files. In our evaluation (Section 4.4.3),
we compared the performance of the TASHEEH transformation component with the SRFN
system.

Recent advances in natural language processing, such as the development of large language
models (LLM), exemplified by the GPT family [81], have sparked interest in using such
models for traditional data wrangling and cleaning tasks. The underlying idea is to uti-
lize pre-trained LLMs and employ zero-shot or few-shot inference techniques to address
various data management tasks. In Section 4.4.3 we provided a brief overview of our
experience utilizing these models to address structural inconsistencies.

94

4.6 Conclusion

Despite a dearth of prior work on correcting structural issues in CSV files, many down-
stream tasks rely on having a structurally sound CSV file as input. In the following, we
discuss the related research on these use cases.

Data transformation: Data transformation has been a long-standing challenge in re-
search, with various proposals to address it. Notable among these is the “transform-by-
example” method, which allows users to provide input/output examples for the system to
search for consistent programs [4, 36, 37, 50, 51, 91]. However, these approaches expect
the input data to already be in relational table format, which the system can then analyze
and transform accordingly. In contrast, the CSV files we focus on in this research often
exhibit various structural problems that make them challenging to parse by these systems,
let alone apply transformations on them. Our system complements the existing research
on data transformation by transforming the structurally broken CSV files into a consistent
format to be then loaded into these transformation tools.

Error detection and correction: The importance of detecting and correcting data qual-
ity issues has been widely acknowledged in the research community [3, 40]. Numerous er-
ror detection techniques have been proposed [13, 38, 42, 43, 63, 79, 105], as well as error
correction methods [15, 27, 52, 62, 75, 78, 86]. However, these techniques mainly focus
on detecting and correcting semantic errors and assume structurally sound data as input.
This assumption poses significant challenges when loading data into these systems. Our
system addresses these challenges by providing a solution for resolving structural incon-
sistencies in CSV files, thus enabling these downstream data quality techniques to parse
them correctly for subsequent operations.

4.6 Conclusion

In this chapter, we introduced TASHEEH, a data preparation system designed to identify
and clean ill-formed data rows in raw CSV files. It utilizes the pattern language introduced
in the previous chapter for SURAGH to classify rows as either ill-formed or well-formed,
based on the dominant row patterns. TASHEEH further classifies the ill-formed rows as
wanted (data) or unwanted (non-data) and repairs the structural inconsistencies in the ill-
formed wanted rows using a pattern transformation algebra.

To evaluate the effectiveness of TASHEEH, we extended the annotated data we used during
the development and evaluation of SURAGH and created a ground truth of 200 351 rows
across 148 files, each with at least one loading problem. Moreover, we created a distinct
ground truth of manually cleaned ill-formed wanted rows. Our results show that TASHEEH

95

4 TASHEEH: A Structural Error Correction System

achieves an average precision of 95% and an average recall of 96% in identifying wanted
rows across all files. In addition, TASHEEH automatically generates accurate transforma-
tions for 86% of ill-formed rows across all files, thus automatically recovering much data
that could otherwise not be ingested.

As TASHEEH is extensible, it allows for the addition of new transformation operators as
needed, ensuring that the system can be adapted to handle new use cases without requiring
a complete overhaul of the underlying architecture. In addition, TASHEEH can work with
any row classifier, as demonstrated by successful integration with the PERFECT row clas-
sifier in our experiments. This flexibility of the TASHEEH transformation engine enables
easy integration of future improved row classifiers.

In addition to its primary goal of reducing human effort during raw data preparation, TAS-
HEEH functionalities offer promising future directions, e.g., data augmentation, preparation
suggestion, and preparation estimation. Chapter 6 provides a more detailed exploration of
these potential directions.

96

MORPHER: DATA PREPARATION WITH

SURAGH AND TASHEEH

Chapter 5

In the pursuit of robust and accurate data-driven systems, the critical phase of data prepa-
ration often serves as the cornerstone upon which successful outcomes are built. In light
of this, in this chapter we present an important component of our research, focusing on
the creation and utilization of a user-friendly tool MORPHER, that incorporates our state-
of-the-art error detection and correction systems — SURAGH and TASHEEH. While the
former excels in the detection of structural errors within CSV files, the latter specializes
in rectifying these inconsistencies. The synergy between these two systems presents an
invaluable asset in our quest to ensure data quality, laying the foundation for rigorous anal-
ysis and informed decision-making.

We implemented both of our systems, SURAGH and TASHEEH, using the Java program-
ming language. The complete source code, along with the datasets, manually created
ground truth, and the implementation details are publicly available for both SURAGH26

and TASHEEH27.

MORPHER is an interactive system that aims to assist users in detecting and cleaning ill-
formed rows in CSV files. Its interface allows users to visualize, for an input file, a classi-
fication of ill-formed wanted and ill-formed unwanted rows with a corresponding cleaned
version and provides a seamless export of the final results as both CSV and Microsoft Excel
workbook (.xlsx) formats for convenient use.

The content of this chapter draws on the research presented in our publication [34], which
serves as a reference for this work.

The subsequent sections of the chapter are structured as follows: Section 5.1 presents
an overview of MORPHER. Section 5.2 demonstrates the practical usage of our system
through the graphical interface. Finally, Section 5.3 summarizes the contributions of the
chapter.
26https://github.com/HPI-Information-Systems/SURAGH
27https://github.com/HMazharHameed/TASHEEH

97

https://github.com/HPI-Information-Systems/SURAGH
https://github.com/HMazharHameed/TASHEEH

5 MORPHER: Data Preparation with SURAGH and TASHEEH

Figure 33: MORPHER overview

5.1 An Overview of MORPHER

MORPHER performs row classification and transformation in three phases. In the first
phase, it enables users to browse directories and parse files. Subsequently, in the sec-
ond phase, MORPHER first utilizes SURAGH to classify input file rows as either ill-formed
or well-formed based on the dominant row pattern(s) (see Chapter 3). Additionally, SU-
RAGH generates row patterns for the ill-formed rows, which are referred to as potential
row patterns. This process is repeated incrementally until no ill-formed rows remain with-
out a potential pattern. Then, MORPHER leverages TASHEEH to obtain the potential row
patterns from the previous phase and further classifies ill-formed rows into wanted and
unwanted ones (see Chapter 4). Finally, in the third phase, MORPHER utilizes TASHEEH

to transform the wanted rows into well-formed ones using a set of pattern transformations
(see Chapter 4). Figure 33 provides an overview of MORPHER’s functionalities through a
graphical user interface (GUI).

The graphical interface of MORPHER allows for seamless interaction with the results of au-
tomated row classification and transformation. Users can navigate through the rows within
a file and review their classification. With automatic row transformation, users can clean

98

5.2 Self-Service Data Preparation with MORPHER

up the structure of detected ill-formed wanted rows with just a click. An interactive MOR-
PHER demo, accompanied by a demonstration scenario video, can be accessed online28.

5.2 Self-Service Data Preparation with MORPHER

Figure 34: MORPHER’s desktop-based user interface

We present the simple but effective MORPHER GUI through a demonstration scenario
shown in Figure 34. To explore and interact with the system, users can download28 MOR-
PHER as a desktop application, along with a set of 148 exemplary raw CSV files obtained
from four different open data sources.

We present a use-case in which a data scientist analyzes a company’s growth and gains
insights from the statistics in a CSV file. To begin the analysis, the scientist might need
to load the file into a database connected to the analytics platform. Unfortunately, the file
contains ill-formed rows that disrupt the file ingestion process. After encountering a halt
during the file loading, the data scientist begins a manual inspection to narrow down the
causes. However, due to the sheer amount of data and the complexity of the file, the data
scientist may have overlooked some issues or needed help finding them amidst the wall of
characters. The data scientist may have initially identified one or a few ill-formed rows, but
cannot assume those are the only issues in the file. While some ill-formed rows may be easy
to spot by simply scrolling through a file, such as those containing preambles or footnotes,
others are more complicated to recognize, such as rows containing cell values with user-
specific dialect details (non-standardized) or those containing additional metadata, making
it challenging for even expert users to identify them manually. To ensure accurate analytics

28https://github.com/HMazharHameed/MORPHER

99

https://github.com/HMazharHameed/MORPHER

5 MORPHER: Data Preparation with SURAGH and TASHEEH

and reliable results, thoroughly inspecting the entire file to identify all problematic rows is
crucial.

To overcome these challenges, the data scientist utilizes the functionalities of MORPHER,
our unsupervised tool designed to detect and clean ill-formed rows in a CSV file automati-
cally. The tool’s GUI includes a file explorer, which facilitates navigation and viewing of
the input file. Using the GUI, with one click the data scientist runs MORPHER’s automatic
row classifier, which assigns each row a label as either well-formed (i.e., clean), ill-formed
but wanted (i.e., erroneous but can be cleaned), or ill-formed unwanted (i.e., non-data
row). Figure 34 displays the output of the row classification module on the tool’s GUI,
where each row is color-coded based on its classification label for ease of interpretation.

After classification, the data scientist executes the final stage of MORPHER’s pipeline:
row wrangler, automatically cleaning the ill-formed wanted rows with a single click. The
transformed and standardized output file, as shown in Figure 34, can then be exported
in both CSV and Excel formats, providing the data scientist with a handy resource for
their intended task. Moreover, users have the convenience of executing the entire process
through the command line interface.

The ability to efficiently identify and clean ill-formed rows streamlines the data processing
pipeline and allows data scientists and machine learning engineers to spend more time on
higher-level tasks, such as modeling and analytics.

5.3 Conclusion

MORPHER is an innovative tool that addresses a common data preparation challenge that
data scientists face when working with CSV files – the presence of ill-formed rows. Through
its intuitive GUI, MORPHER simplifies identifying and cleaning ill-formed rows, allowing
data scientists to navigate and parse their files more efficiently. MORPHER automates a
crucial step in data preparation, freeing up time and resources to be better spent during
the later stages of a data processing pipeline. Overall, MORPHER represents a valuable
contribution to the field of data science and has the potential to benefit a wide range of
researchers and practitioners.

100

CONCLUSION

Chapter 6

Data play an integral role in contemporary society, permeating various facets of our daily
lives, from professional environments and commercial operations to fields as diverse as
sports, healthcare, aviation, agriculture, and marine biology. The exploitation of data trends
not only accelerates progress in these domains but also aids in forecasting advancements
and mitigating potential crises. As with any valuable resource, optimizing the utilization
of data becomes critical, prompting the exploration of diverse data processing solutions
tailored to the available resources.

Amidst this landscape, the preprocessing of file-based data has emerged as a widely em-
braced challenge, predominantly due to the prevalent availability of online data in file-
based formats. Notably, open data portals serve as repositories housing a plethora of data
files, with comma-separated value (CSV) files standing out as particularly favored by users
and businesses owing to their adaptable standard and ease of use. However, the flexibility
inherent in these files necessitates a significant responsibility for data consumers. Many
files present structural issues, such as varying cell counts across data rows, diverse value
formats within the same column, and discrepancies in quoted fields due to user specifica-
tions, among other challenges. Consequently, ingesting them into a host system, such as a
database or an analytics platform, often requires prior data preparation steps.

6.1 Summary

Effectively ingesting files relies on accurate parsing. To achieve this, in this thesis, we
emphasized the structure of a file – the set of characters necessary for precise parsing of
data from the file. These characters are integral components of a file, playing a pivotal
role in correctly organizing and interpreting data within that file. Driven by the need, we
focused on comprehending the structure of CSV files and developed automated solutions
to identify and rectify any potential structural inconsistencies that may arise within these
files.

101

6 Conclusion

We began with an extensive survey of commercially available data preparation tools de-
tailed in Chapter 2. In this survey, we not only collected features aimed at improving data
quality, but also thoroughly examined the preprocessing challenges. The exploration was
intended to encourage the community to enhance available features and devise more in-
novative solutions, addressing a wide range of inconsistencies. Throughout our survey, a
recurring observation emerged: despite the data preparation and cleaning tools, these tools
often necessitated a preprocessed file as their primary prerequisite, even though their main
objective was to prepare data. These findings led to the development of our automatic
structure detection and correction pipeline.

In Chapter 3, we introduced SURAGH, a pattern-based structural error detection system
designed to identify rows containing structural inconsistencies (referred to as ill-formed
rows) that may obstruct file parsing. With the SURAGH system, we performed classifi-
cation based on the frequent patterns found within the file and detected erroneous rows.
SURAGH creates patterns for individual cell values based on their content, encompassing
elements, such as numbers, letters, and special characters. The aim is to abstract informa-
tion effectively without compromising specificity; an excessive level of abstraction would
result in mere strings, while retaining literal values would overly expand the search space.
Once these patterns are generated, they are accumulated per column and subsequently
merged to formulate row patterns that collectively represent entire rows within the input
file. Finally, row patterns that exhibited dominance across a majority of instances were
identified and retained, while others were omitted. These dominant patterns contribute
to forming the pattern schema of a file, facilitating the identification of non-conforming
(ill-formed) and conforming (well-formed) rows.

Subsequently, in Chapter 4, we presented TASHEEH, offering structural error correction
through pattern transformation. Following the identification of rows with structural errors,
our next objective was to rectify them. However, before initiating this rectification process,
our initial step involved understanding which rows required transformation. For instance,
we aimed not to clean empty rows or to impute values, and similarly, we aimed to avoid
transforming footnote or comment rows. To determine which ill-formed rows needed trans-
formation, we refined the classification within TASHEEH by further classifying ill-formed
rows into wanted and unwanted rows. We then leveraged the pattern schema as the gold
standard structure for the input file and transformed the structure of the wanted rows using
our novel pattern transformation algebra.

We empirically demonstrated that both SURAGH and TASHEEH offer an end-to-end solu-
tion, enabling the seamless ingestion of files. To evaluate the effectiveness of our pipeline,
we collected data from four open data sources: DataGov, Mendeley, GitHub, and UKGov.
We manually annotated each row, establishing a ground truth dataset of over 200 000 rows
distributed across 148 files. Our results showed that SURAGH achieved an average pre-
cision of 77% and an average recall of 97% in identifying ill-formed rows. On the other

102

6.2 Outlook

hand, TASHEEH demonstrated an average precision of 95% and an average recall of 96%
in identifying ill-formed wanted rows across all files. Notably, TASHEEH automatically
generated accurate transformations for 86% of ill-formed rows across all files, thus auto-
matically recovering much data that could otherwise not be ingested. We have made both
the code and annotated data for our entire data preparation pipeline publicly accessible.

Finally, in Chapter 5, we introduced MORPHER —a user-friendly tool that integrates the
functionalities of both SURAGH and TASHEEH. MORPHER, featuring a graphical interface,
enables seamless interaction with automated row classification and transformation results.
Similar to SURAGH and TASHEEH, the artifacts for MORPHER are available online, ac-
companied by guidelines for users to customize its features as needed.

6.2 Outlook

While our end-to-end data preparation pipeline demonstrates remarkable performance, ex-
ploring the pattern-based approach developed in SURAGH and TASHEEH opens up numer-
ous intriguing avenues for future research and enhancements. In the following discussion,
we briefly discuss these potential opportunities and explore the directions for future inves-
tigations.

Semantic knowledge: The pattern language currently operates based on the concept of
syntactic features inherent in the data values. For example, it understands how digits are ar-
ranged within values across columns, how strings are formed, which special characters are
used, and how they are distributed across the data. This approach allows us to comprehend
the structural aspects of input data, enabling us to identify structural deformities. While
this grammar is highly effective for detecting structural inconsistencies, its capability to
interpret information at the semantic level remains an area for further development. For
instance, it cannot distinguish whether columns containing digits with special characters
represent credit card numbers, phone numbers, or student registration IDs. Expanding this
approach to include semantic roles—such as recognizing column headers like city names,
postal codes, and phone numbers—holds great potential for identifying and correcting se-
mantic errors. We believe that extending this grammar to encompass semantic understand-
ing while retaining structural information could be a highly interesting approach, providing
a robust pipeline for addressing both structural and semantic errors.

Pattern-based machine learning: Machine learning has achieved significant breakthroughs
over the past few years, transforming numerous industries. A promising direction for future
development is to utilize the pattern language as a foundation for training machine learn-
ing models. By leveraging the generated row patterns as input data, we can streamline
the training process, enabling models to learn from structured and representative features.
This approach would enhance the model’s ability to identify and correct structural errors.

103

6 Conclusion

Moreover, pattern-based training could significantly reduce the need for extensive manual
data labeling and individual row analysis, which are both time-consuming and error-prone.
Automating this process would make it feasible to apply error detection and correction to
much larger datasets, thereby improving overall scalability.

Data augmentation and data pollution: Data augmentation is a vital technique widely
used in various fields, including machine learning, where it involves generating additional
training examples from existing data to enhance model performance and generalization. By
creating diverse and representative examples through data augmentation, machine learning
models can adapt to a wider range of scenarios. In contrast, data pollution involves intro-
ducing errors or misleading information into the training dataset to improve model robust-
ness. This process prepares models to handle real-world imperfections more effectively.
An intriguing future direction is to utilize row patterns derived from well-formed and ill-
formed rows for both data augmentation and data pollution. Well-formed row patterns
can be used to generate additional training examples, enriching the dataset and improving
model performance. Conversely, ill-formed row patterns can be strategically used to pol-
lute data, enhancing the model’s ability to manage and correct errors. These pattern-based
strategies offer innovative approaches to boost model robustness and performance across
diverse datasets and domains.

Preparation estimation: Another intriguing direction to explore is determining the ef-
fort required for file structure preparation. The distance measure proposed by our pipeline
quantifies the degree of inconsistency in ill-formed rows, allowing users to estimate the
effort needed for data preparation more accurately. Further investigation in this area could
yield significant benefits, such as more precise time and cost estimates for data-driven
projects, while also informing strategies to automate data cleaning pipelines and optimize
resource allocation. To advance this research, it is crucial to collect extensive, represen-
tative datasets of both raw files and their prepared versions, and to conduct thorough user
studies to establish reliable ground truth. These efforts will be essential in developing pre-
dictive models that accurately forecast preparation efforts, ultimately improving resource
management and strategic planning for future data preparation tasks.

As we conclude this thesis, we revisit the expansive and intricate field of data preparation,
where we continue to encounter a broad spectrum of challenges and opportunities. This
spans from the initial collection of raw data to the creation of standardized, deployment-
ready datasets. As we navigate this complex landscape, the aspiration of developing a
comprehensive data preparation system becomes both a substantial and multifaceted en-
deavor. Such a system would not merely streamline individual tasks but would integrate
a series of interconnected operations into a cohesive framework. This framework would
encompass critical elements including data lineage tracking, automation of preparation
pipelines, estimation and pipeline management, optimization techniques, and a collabora-
tive marketplace for shared data preparation solutions.

104

6.2 Outlook

This thesis contributes meaningfully to this vision by introducing an unsupervised struc-
tural preparation pipeline tailored for effective data ingestion. While this pipeline show-
cases robust functionality independently, it is also designed to integrate seamlessly into a
broader, more comprehensive framework. Through this advancement, we progress toward
achieving an integrated data preparation ecosystem that not only simplifies but also en-
hances the entire preparation process, thereby laying the foundation for more efficient and
scalable solutions in the future.

105

References

[1] Trifacta end user data preparation. https://www.trifacta.com/wp-content/
uploads/2018/02/End-User-Data-Preparation-Market-Study-2018.pdf.
(last accessed September 19th, 2019).

[2] A. H. Abba and M. Hassan. Design and implementation of a csv validation sys-
tem. In Proceedings of the International Conference on Applications in Information
Technology, pages 111–116, 2018.

[3] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas, M. Ouzzani, P. Papotti,
M. Stonebraker, and N. Tang. Detecting data errors: Where are we and what needs
to be done? PVLDB, 9(12):993–1004, 2016.

[4] Z. Abedjan, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, and M. Stonebraker.
DataXformer: A robust transformation discovery system. In Proceedings of the
International Conference on Data Engineering (ICDE), pages 1134–1145. IEEE,
2016.

[5] M. D. Adelfio and H. Samet. Schema extraction for tabular data on the web. PVLDB,
6(6):421–432, 2013.

[6] P. D. Allison. Missing data. Sage publications, Thousand Oaks, CA, 2001.

[7] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

[8] K. Bhageshpur. Data is the new oil–and that’s a good thing.
https://www.forbes.com/sites/forbestechcouncil/2019/11/15/
data-is-the-new-oil-and-thats-a-good-thing, 2019.

[9] C. A. Charu. Outlier Analysis. Springer, 2013.

[10] N. Chepurko, R. Marcus, E. Zgraggen, R. C. Fernandez, T. Kraska, and D. R.
Karger. ARDA: automatic relational data augmentation for machine learning.
PVLDB, 13(9):1373–1387, 2020.

107

https://www.trifacta.com/wp-content/uploads/2018/02/End-User-Data-Preparation-Market-Study-2018.pdf
https://www.trifacta.com/wp-content/uploads/2018/02/End-User-Data-Preparation-Market-Study-2018.pdf
https://www. forbes. com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing
https://www. forbes. com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing

References

[11] B. Chopra, A. Fariha, S. Gulwani, A. Z. Henley, D. Perelman, M. Raza, S. Shi,
D. Simmons, and A. Tiwari. Cowrangler: Recommender system for data-wrangling
scripts. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 147–150, 2023.

[12] C. Christodoulakis, E. B. Munson, M. Gabel, A. D. Brown, and R. J. Miller. Pytheas:
pattern-based table discovery in csv files. PVLDB, 13(12):2075–2089, 2020.

[13] X. Chu, I. F. Ilyas, and P. Papotti. Discovering denial constraints. PVLDB, 6(13):
1498–1509, 2013.

[14] X. Chu, Y. He, K. Chakrabarti, and K. Ganjam. Tegra: Table extraction by global
record alignment. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 1713–1728, 2015.

[15] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang, and Y. Ye. Katara:
A data cleaning system powered by knowledge bases and crowdsourcing. In Pro-
ceedings of the International Conference on Management of Data (SIGMOD), pages
1247–1261, 2015.

[16] G. Convertino and A. Echenique. Self-service data preparation and analysis by
business users: New needs, skills, and tools. In Proceedings of the CHI Conference
Extended Abstracts on Human Factors in Computing Systems, pages 1075–1083.
ACM, 2017.

[17] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and
N. Tang. Nadeef: a commodity data cleaning system. In Proceedings of the In-
ternational Conference on Management of Data (SIGMOD), pages 541–552. ACM,
2013.

[18] Y. Diao, K. Dimitriadou, Z. Li, W. Liu, O. Papaemmanouil, K. Peng, and L. Peng.
Aide: an automatic user navigation system for interactive data exploration. PVLDB,
8(12):1964–1967, 2015.

[19] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[20] T. Döhmen, H. Mühleisen, and P. Boncz. Multi-hypothesis csv parsing. In Proceed-
ings of the International Conference on Scientific and Statistical Database Manage-
ment (SSDBM), pages 1–12, 2017.

[21] H. Dong, S. Liu, S. Han, Z. Fu, and D. Zhang. TableSense: Spreadsheet table detec-
tion with convolutional neural networks. In Proceedings of the National Conference
on Artificial Intelligence (AAAI), volume 33, pages 69–76, 2019.

108

References

[22] X. L. Dong and D. Srivastava. Big data integration. In Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), pages 1245–1248. IEEE, 2013.

[23] EBNF. Iso/iec 14977:1996(e), extended bnf. https://www.iso.org/standard/
26153.html, 1996. (last accessed May 25th, 2021).

[24] T. Economist. The world’s most valuable resource is no longer
oil, but data. https://www.economist.com/leaders/2017/05/06/
the-worlds-most-valuable-resource-is-no-longer-oil-but-data,
2017.

[25] J. Ehrlich, M. Roick, L. Schulze, J. Zwiener, T. Papenbrock, and F. Naumann. Holis-
tic data profiling: Simultaneous discovery of various metadata. In Proceedings of
the International Conference on Extending Database Technology (EDBT), pages
305–316, 2016.

[26] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting relational tables from lists
on the web. PVLDB, 2(1):1078–1089, 2009.

[27] A. Fariha, A. Tiwari, A. Meliou, A. Radhakrishna, and S. Gulwani. Coco: In-
teractive exploration of conformance constraints for data understanding and data
cleaning. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 2706–2710, 2021.

[28] Forbes. 175 zettabytes by 2025. https://www.forbes.com/sites/
tomcoughlin/2018/11/27/175-zettabytes-by-2025/?sh=257ff2675459,
2018. (last accessed April 3rd, 2023).

[29] C. Ge, Y. Li, E. Eilebrecht, B. Chandramouli, and D. Kossmann. Speculative dis-
tributed csv data parsing for big data analytics. In Proceedings of the International
Conference on Management of Data (SIGMOD), pages 883–899, 2019.

[30] M. Gollery. Bioinformatics: sequence and genome analysis. Clinical Chemistry, 51
(11):2219–2220, 2005.

[31] I. Google. Openrefine, 2022. URL www.openrefine.org. (last accessed August
30th, 2022).

[32] M. Hameed and F. Naumann. Data preparation: A survey of commercial tools.
SIGMOD Record, 49(3):18–29, 2020.

[33] M. Hameed, G. Vitagliano, L. Jiang, and F. Naumann. SURAGH: Syntactic pat-
tern matching to identify ill-formed records. In Proceedings of the International
Conference on Extending Database Technology (EDBT), pages 143–154, 2022.

109

https://www.iso.org/standard/26153.html
https://www.iso.org/standard/26153.html
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.economist.com/leaders/2017/05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data
https://www.forbes.com/sites/tomcoughlin/2018/11/27/175-zettabytes-by-2025/?sh=257ff2675459
https://www.forbes.com/sites/tomcoughlin/2018/11/27/175-zettabytes-by-2025/?sh=257ff2675459
www.openrefine.org

References

[34] M. Hameed, G. Vitagliano, and F. Naumann. MORPHER: structural transformation
of ill-formed rows. In Proceedings of the International Conference on Information
and Knowledge Management (CIKM), pages 5051–5055, 2023.

[35] M. Hameed, G. Vitagliano, F. Panse, and F. Naumann. TASHEEH: Repairing row-
structure in raw csv files. In Proceedings of the International Conference on Ex-
tending Database Technology (EDBT), 2024 (to appear).

[36] Y. He, X. Chu, K. Ganjam, Y. Zheng, V. Narasayya, and S. Chaudhuri. Transform-
data-by-example (tde) an extensible search engine for data transformations. PVLDB,
11(10):1165–1177, 2018.

[37] J. Heer, J. M. Hellerstein, and S. Kandel. Predictive interaction for data transfor-
mation. In Proceedings of the Conference on Innovative Data Systems Research
(CIDR). Citeseer, 2015.

[38] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holodetect: Few-shot learning
for error detection. In Proceedings of the International Conference on Management
of Data (SIGMOD), pages 829–846, 2019.

[39] A. Helal, M. Helali, K. Ammar, and E. Mansour. A demonstration of kglac: A data
discovery and enrichment platform for data science. PVLDB, 14(12):2675–2678,
2021.

[40] J. M. Hellerstein. Quantitative data cleaning for large databases. United Nations
Economic Commission for Europe (UNECE), 25:1–42, 2008.

[41] J. M. Hellerstein, J. Heer, and S. Kandel. Self-service data preparation: Research to
practice. IEEE Data Engineering Bulletin, 41(2):23–34, 2018.

[42] S. Holzer and K. Stockinger. Detecting errors in databases with bidirectional recur-
rent neural networks. In Proceedings of the International Conference on Extending
Database Technology (EDBT), 2022.

[43] Z. Huang and Y. He. Auto-detect: Data-driven error detection in tables. In Proceed-
ings of the International Conference on Management of Data (SIGMOD), pages
1377–1392, 2018.

[44] IDC. International data corporation. www.idc.com, 2023. (last accessed April 3rd,
2023).

[45] IETF. Rfc 4180. https://tools.ietf.org/html/rfc4180, 2005. (last accessed
February 7th, 2023).

[46] I. F. Ilyas and F. Naumann. Data errors: Symptoms, causes and origins. IEEE Data
Engineering Bulletin, 45.

110

www.idc.com
https://tools.ietf.org/html/rfc4180

References

[47] I. F. Ilyas, X. Chu, et al. Trends in cleaning relational data: Consistency and dedu-
plication. Foundations and Trends® in Databases, 5(4):281–393, 2015.

[48] T. Inc. Trifacta data engineering cloud, 2022. URL www.trifacta.com. (last
accessed August 30th, 2022).

[49] L. Jiang, G. Vitagliano, and F. Naumann. Structure detection in verbose csv files.
In Proceedings of the International Conference on Extending Database Technology
(EDBT), pages 193–204, 2021.

[50] Z. Jin, M. R. Anderson, M. Cafarella, and H. Jagadish. Foofah: Transforming data
by example. In Proceedings of the International Conference on Management of
Data (SIGMOD), pages 683–698. ACM, 2017.

[51] Z. Jin, M. Cafarella, H. Jagadish, S. Kandel, M. Minar, and J. M. Hellerstein. Clx:
Towards verifiable pbe data transformation. In Proceedings of the International
Conference on Extending Database Technology (EDBT), pages 265–276, 2019.

[52] Z. Jin, Y. He, and S. Chauduri. Auto-transform: learning-to-transform by patterns.
PVLDB, 13(12):2368–2381, 2020.

[53] M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Interactive data explo-
ration with smart drill-down (extended version). IEEE Transactions on Knowledge
and Data Engineering (TKDE), (1):1–1, 2017.

[54] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Wrangler: interactive visual
specification of data transformation scripts. In Proceedings of the International Con-
ference on Human Factors in Computing Systems (CHI), pages 3363–3372, 2011.

[55] E. Koci, M. Thiele, W. Lehner, and O. Romero. Table recognition in spreadsheets
via a graph representation. In 2018 13th IAPR International Workshop on Document
Analysis Systems (DAS), pages 139–144. IEEE, 2018.

[56] E. Koci, M. Thiele, O. Romero, and W. Lehner. Cell classification for layout
recognition in spreadsheets. In Knowledge Discovery, Knowledge Engineering
and Knowledge Management: 8th International Joint Conference, IC3K 2016,
Porto, Portugal, November 9–11, 2016, Revised Selected Papers 8, pages 78–100.
Springer, 2019.

[57] E. Koci, M. Thiele, O. Romero, and W. Lehner. A genetic-based search for adap-
tive table recognition in spreadsheets. In International Conference on Document
Analysis and Recognition (ICDAR), pages 1274–1279. IEEE, 2019.

[58] S. Krishnan, J. Wang, E. Wu, M. J. Franklin, and K. Goldberg. Activeclean: Inter-
active data cleaning for statistical modeling. PVLDB, 9(12):948–959, 2016.

111

www.trifacta.com

References

[59] M. Lenzerini. Data integration: A theoretical perspective. In Proceedings of the
Symposium on Principles of Database Systems (PODS), pages 233–246. ACM,
2002.

[60] Y. Li, H. Sun, B. Dong, and H. W. Wang. Cost-efficient data acquisition on online
data marketplaces for correlation analysis. PVLDB, 12(4):362–375, 2018.

[61] R. J. Little and D. B. Rubin. Statistical analysis with missing data, volume 793.
John Wiley & Sons, 2019.

[62] M. Mahdavi and Z. Abedjan. Baran: Effective error correction via a unified context
representation and transfer learning. PVLDB, 13(12):1948–1961, 2020.

[63] M. Mahdavi, Z. Abedjan, R. Castro Fernandez, S. Madden, M. Ouzzani, M. Stone-
braker, and N. Tang. Raha: A configuration-free error detection system. In Pro-
ceedings of the International Conference on Management of Data (SIGMOD), pages
865–882, 2019.

[64] J. Mitlöhner, S. Neumaier, J. Umbrich, and A. Polleres. Characteristics of open data
csv files. In Proceedings of the International Conference on Open and Big Data
(OBD), pages 72–79. IEEE, 2016.

[65] G. Nagy, S. Seth, and D. W. Embley. End-to-end conversion of HTML tables for
populating a relational database. In Proceedings of the IAPR International Workshop
on Document Analysis Systems, pages 222–226, 2014.

[66] A. Narayan, I. Chami, L. J. Orr, and C. Ré. Can foundation models wrangle your
data? PVLDB, 16(4):738–746, 2022.

[67] F. Nargesian, E. Zhu, K. Q. Pu, and R. J. Miller. Table union search on open data.
PVLDB, 11(7):813–825, 2018.

[68] F. Naumann. Data profiling revisited. SIGMOD Record, 42(4):40–49, 2014.

[69] F. Naumann and M. Herschel. An introduction to duplicate detection. Synthesis
Lectures on Data Management, 2(1):1–87, 2010.

[70] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of molecular
biology, 48(3):443–453, 1970.

[71] P. Oliveira, F. Rodrigues, P. Henriques, and H. Galhardas. A taxonomy of data
quality problems. In 2nd Int. Workshop on Data and Information Quality, pages
219–233, 2005.

[72] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia. Filter before you parse: Faster
analytics on raw data with sparser. PVLDB, 11(11):1576–1589, 2018.

112

References

[73] M. Palmer. Data is the new oil. https://ana.blogs.com/maestros/2006/11/
dataisthenew.html, 2006. (last accessed April 3rd, 2023).

[74] T. Papenbrock, T. Bergmann, M. Finke, J. Zwiener, and F. Naumann. Data profiling
with Metanome. PVLDB, 8(12):1860–1863, 2015.

[75] J. Peng, D. Shen, N. Tang, T. Liu, Y. Kou, T. Nie, H. Cui, and G. Yu. Self-
supervised and interpretable data cleaning with sequence generative adversarial net-
works. PVLDB, 16(3):433–446, 2022.

[76] D. Pinto, A. McCallum, X. Wei, and W. B. Croft. Table extraction using condi-
tional random fields. In Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 235–242,
2003.

[77] G. Press. Cleaning data: Most time-consuming, least enjoyable data science task.
Forbes, Mar. 2016.

[78] A. Qahtan, N. Tang, M. Ouzzani, Y. Cao, and M. Stonebraker. Pattern functional
dependencies for data cleaning. PVLDB, 13(5):684–697, 2020.

[79] A. A. Qahtan, A. Elmagarmid, R. Castro Fernandez, M. Ouzzani, and N. Tang. Fa-
hes: A robust disguised missing values detector. In Proceedings of the International
Conference on Knowledge discovery and data mining (SIGKDD), pages 2100–2109,
2018.

[80] A. A. Qahtan, A. K. Elmagarmid, M. Ouzzani, and N. Tang. Fahes: Detecting
disguised missing values. In Proceedings of the International Conference on Data
Engineering (ICDE), pages 1609–1612, 2018.

[81] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language
understanding by generative pre-training. 2018.

[82] E. Rahm and H. H. Do. Data cleaning: Problems and current approaches. IEEE
Data Engineering Bulletin, 23(4):3–13, 2000.

[83] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data cleaning system.
In Proceedings of the International Conference on Very Large Databases (VLDB),
2001.

[84] T. Rattenbury, J. M. Hellerstein, J. Heer, S. Kandel, and C. Carreras. Principles of
data wrangling: Practical techniques for data preparation. O’Reilly Media, Inc.,
2017.

113

https://ana.blogs.com/maestros/2006/11/data is the new.html
https://ana.blogs.com/maestros/2006/11/data is the new.html

References

[85] J. Reback, jbrockmendel, W. McKinney, J. V. den Bossche, M. Roeschke,
T. Augspurger, S. Hawkins, P. Cloud, gfyoung, Sinhrks, P. Hoefler, A. Klein, T. Pe-
tersen, J. Tratner, C. She, W. Ayd, S. Naveh, J. Darbyshire, R. Shadrach, M. Garcia,
J. Schendel, A. Hayden, D. Saxton, M. E. Gorelli, F. Li, T. Wörtwein, M. Zeitlin,
V. Jancauskas, A. McMaster, and T. Li. pandas-dev/pandas: Pandas 1.4.3, June
2022. URL https://doi.org/10.5281/zenodo.6702671.

[86] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic data repairs with
probabilistic inference. PVLDB, 10(11):1190–1201, 2017.

[87] S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Grafberger.
Automating large-scale data quality verification. PVLDB, 11(12):1781–1794, 2018.

[88] T. Sellam and M. Kersten. Ziggy: Characterizing query results for data explorers.
PVLDB, 9(13):1473–1476, 2016.

[89] V. Shah and A. Kumar. The ml data prep zoo: Towards semi-automatic data prepa-
ration for ml. In Proceedings of the International Workshop on Data Management
for End-to-End Machine Learning, pages 1–4, 2019.

[90] T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Effortless data
exploration with zenvisage: an expressive and interactive visual analytics system.
PVLDB, 10(4):457–468, 2016.

[91] R. Singh. Blinkfill: Semi-supervised programming by example for syntactic string
transformations. PVLDB, 9(10):816–827, 2016.

[92] R. Singh and S. Gulwani. Learning semantic string transformations from examples.
PVLDB, 5(8):740—-751, 2012.

[93] S. Song, A. Zhang, L. Chen, and J. Wang. Enriching data imputation with extensive
similarity neighbors. PVLDB, 8(11):1286–1297, 2015.

[94] M. Stonebraker and I. F. Ilyas. Data integration: The current status and the way
forward. IEEE Data Engineering Bulletin, 41(2):3–9, 2018.

[95] Y. Sun, S. Song, C. Wang, and J. Wang. Swapping repair for misplaced attribute val-
ues. In Proceedings of the International Conference on Data Engineering (ICDE),
pages 721–732. IEEE, 2020.

[96] L. Tableau Software. Tableau, 2022. URL www.tableau.com. (last accessed Au-
gust 30th, 2022).

[97] N. Tang, J. Fan, F. Li, J. Tu, X. Du, G. Li, S. Madden, and M. Ouzzani. Rpt:
Relational pre-trained transformer is almost all you need towards democratizing data
preparation. PVLDB, 14(8):1254–1261, 2021.

114

https://doi.org/10.5281/zenodo.6702671
www.tableau.com

References

[98] I. G. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino. Data wrangling: The
challenging journey from the wild to the lake. In Proceedings of the Conference on
Innovative Data Systems Research (CIDR), 2015.

[99] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample.
Llama: Open and efficient foundation language models. CoRR, abs/2302.13971,
2023.

[100] G. J. van den Burg, A. Nazábal, and C. Sutton. Wrangling messy csv files by de-
tecting row and type patterns. Data Mining and Knowledge Discovery, 33(6):1799–
1820, 2019.

[101] G. Vitagliano, L. Jiang, and F. Naumann. Detecting layout templates in complex
multiregion files. PVLDB, 15(3):646–658, 2021.

[102] G. Vitagliano, L. Reisener, L. Jiang, M. Hameed, and F. Naumann. Mondrian:
Spreadsheet layout detection. In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 2361–2364, 2022.

[103] G. Vitagliano, M. Hameed, L. Jiang, L. Reisener, E. Wu, and F. Naumann. Pollock:
A data loading benchmark. PVLDB, 16(8):1870–1882, 2023.

[104] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal of
the ACM (JACM), 21(1):168–173, 1974.

[105] P. Wang and Y. He. Uni-detect: A unified approach to automated error detection
in tables. In Proceedings of the International Conference on Management of Data
(SIGMOD), pages 811–828, 2019.

[106] P. Wang, Y. He, R. Shea, J. Wang, and E. Wu. Deeper: A data enrichment system
powered by deep web. In Proceedings of the International Conference on Manage-
ment of Data (SIGMOD), pages 1801–1804. ACM, 2018.

[107] S. C. Weller and A. K. Romney. Systematic data collection, volume 10. Sage
publications, 1988.

[108] H. Wickham. Tidy data. Journal of statistical software, 59(10):1–23, 2014.

[109] C. Zhang, C. Zhang, C. Li, Y. Qiao, S. Zheng, S. K. Dam, M. Zhang, J. U. Kim,
S. T. Kim, J. Choi, et al. One small step for generative ai, one giant leap for agi: A
complete survey on chatgpt in aigc era. CoRR, abs/2304.06488, 2023.

115

Selbstständigkeitserklärung

Ich erkläre hiermit, dass

• ich die vorliegende Dissertationsschrift selbständig und ohne unerlaubte
Hilfe angefertigt sowie nur die angegebene Literatur verwendet habe,

• die Dissertation keiner anderen Hochschule in gleicher
oder ähnlicher Form vorgelegt wurde,

• mir die Promotionsordnung der Digital Engineering Fakultät der
Universität Potsdam vom 27. November 2019 bekannt ist.

Mazhar Hameed – 18. December 2023

117

	Title
	Imprint

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Structural Data Preparation
	1.1 Structural (Syntactic) and Semantic Inconsistencies
	1.2 Data Ingestion with Structural Inconsistencies
	1.3 A Taxonomy of Structural Inconsistencies
	1.3.1 File Level Structural Inconsistencies
	1.3.2 Table Level Structural Inconsistencies
	1.3.3 Row Level Structural Inconsistencies
	1.3.4 Column level structural inconsistencies
	1.3.5 Cell Level Structural Inconsistencies

	1.4 Thesis Structure and Contributions

	2 Data Preparation from an Industry Perspective: A Survey
	2.1 The Data-to-Application Process
	2.2 Data Preparation Tasks
	2.3 Data Preparation Tools and Preparator Matrix
	2.3.1 Available Data Preparation Tools
	2.3.2 Preparator Matrix

	2.4 Evaluation of Selected Tools
	2.5 Challenges
	2.6 Conclusion

	3 SURAGH: A Structural Error Detection System
	3.1 Data Loading Obstacles
	3.2 Problem Definition
	3.2.1 Ill-Formed and Well-Formed Rows
	3.2.2 A Grammar for Data Rows

	3.3 The SURAGH System
	3.3.1 Pattern Modeling
	3.3.2 Column Pattern Pruning
	3.3.3 Row Pattern Construction
	3.3.4 Row Classification

	3.4 Datasets and Annotation
	3.4.1 Datasets
	3.4.2 Data Annotation

	3.5 Experiments
	3.5.1 Performance Evaluation
	3.5.2 Comparative Analysis
	3.5.3 Error Analysis

	3.6 Related Work
	3.7 Conclusion

	4 TASHEEH: A Structural Error Correction System
	4.1 Anomalous Row Structures
	4.2 Problem Definition
	4.3 The TASHEEH System
	4.3.1 Incremental Pattern Generation
	4.3.2 Row Classification
	4.3.3 Row Structure Transformation

	4.4 Experiments
	4.4.1 Datasets and Annotation
	4.4.2 Classification Performance Evaluation
	4.4.3 Transformation Performance Evaluation
	4.4.4 Runtime Analysis
	4.4.5 Usability Case Study

	4.5 Related Work
	4.6 Conclusion

	5 MORPHER: Data Preparation with SURAGH and TASHEEH
	5.1 An Overview of MORPHER
	5.2 Self-Service Data Preparation with MORPHER
	5.3 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Outlook

	References

