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ABSTRACT

Business process management is an acknowledged asset for run-
ning an organization in a productive and sustainable way. One of the
most important aspects of business process management, occurring
on a daily basis at all levels, is decision making. In recent years, a
number of decision management frameworks have appeared in ad-
dition to existing business process management systems. More re-
cently, Decision Model and Notation (DMN) was developed by the
OMG consortium with the aim of complementing the widely used
Business Process Model and Notation (BPMN). One of the reasons
for the emergence of DMN is the increasing interest in the evolving
paradigm known as the separation of concerns. This paradigm states
that modeling decisions complementary to processes reduces process
complexity by externalizing decision logic from process models and
importing it into a dedicated decision model. Such an approach in-
creases the agility of model design and execution. This provides orga-
nizations with the flexibility to adapt to the ever increasing rapid and
dynamic changes in the business ecosystem. The research gap, identi-
fied by us, is that the separation of concerns, recommended by DMN,
prescribes the externalization of the decision logic of process models
in one or more separate decision models, but it does not specify how
this can be achieved.

The goal of this thesis is to overcome the presented gap by
developing a framework for discovering decision models in a semi-
automated way from information about existing process decision mak-
ing. Thus, in this thesis we develop methodologies to extract decision
models from: (1) control flow and data of process models that exist
in enterprises; and (2) from event logs recorded by enterprise infor-
mation systems, encapsulating day-to-day operations. Furthermore,
we provide an extension of the methodologies to discover decision
models from event logs enriched with fuzziness, a tool dealing with
partial knowledge of the process execution information. All the pro-
posed techniques are implemented and evaluated in case studies us-
ing real-life and synthetic process models and event logs. The eval-
uation of these case studies shows that the proposed methodologies
provide valid and accurate output decision models that can serve as
blueprints for executing decisions complementary to process models.
Thus, these methodologies have applicability in the real world and
they can be used, for example, for compliance checks, among other
uses, which could improve the organization’s decision making and
hence it’s overall performance.
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ZUSAMMENFASSUNG

Geschiftsprozessmanagement ist eine anerkannte Strategie, um
Unternehmen produktiv und nachhaltig zu fiihren. Einer der wich-
tigsten Faktoren des Geschiftsprozessmanagements ist die Entschei-
dungsfindung — tagtdglich und auf allen Ebenen. In den letzten Jah-
ren wurden — zusitzlich zu existierenden Geschiftsprozessmanage-
mentsystemen — eine Reihe von Frameworks zum Entscheidungsma-
nagement entwickelt. Um die weit verbreitete Business Process Mo-
del and Notation (BPMN) zu ergédnzen, hat das OMG-Konsortium
kiirzlich die Decision Model and Notation (DMN) entwickelt. Einer
der Treiber fiir die Entwicklung der DMN ist das wachsende Inter-
esse an dem aufstrebenden Paradigma der “Separation of Concerns”
(Trennung der Sichtweisen). Dieses Prinzip besagt, dass die Prozess-
komplexitdt reduziert wird, wenn Entscheidungen komplementéir zu
den Prozessen modelliert werden, indem die Entscheidungslogik von
Prozessmodellen entkoppelt und in ein dediziertes Entscheidungs-
model aufgenommen wird. Solch ein Ansatz erhoht die Agilitdt von
Modelentwurf und —ausfithrung und bietet Unternehmen so die Fle-
xibilitat, auf die stetig zunehmenden, rasanten Veranderungen in der
Unternehmenswelt zu reagieren. Wahrend die DMN die Trennung
der Belange empfiehlt und die Entkopplung der Entscheidungslogik
von den Prozessmodellen vorschreibt, gibt es bisher keine Spezifika-
tion, wie dies erreicht werden kann. Diese Forschungsliicke ist der
Ausgangspunkt der vorliegenden Arbeit.

Das Ziel dieser Doktorarbeit ist es, die beschriebene Liicke zu
fillen und ein Framework zur halbautomatischen Konstruktion von
Entscheidungsmodellen zu entwickeln, basierend auf Informationen
iiber existierende Prozessentscheidungsfindung. In dieser Arbeit wer-
den die entwickelten Methoden zur Entkopplung von Entscheidungs-
modellen dargestellt. Die Extraktion der Modelle basiert auf folgen-
den Eingaben: (1) Kontrollfluss und Daten aus Prozessmodellen, die
in Unternehmen existieren; und (2) von Unternehmensinformations-
systemen aufgezeichnete Ereignisprotokolle der Tagesgeschifte. Au-
Berdem stellen wir eine Erweiterung der Methode vor, die es ermog-
licht, auch in von Unschérfe gepragten Ereignisprotokollen Entschei-
dungsmodelle zu entdecken. Hier wird mit Teilwissen tiber die Pro-
zessausfiihrung gearbeitet. Alle vorgestellten Techniken wurden im-
plementiert und in Fallstudien evaluiert — basierend auf realen und
kiinstlichen Prozessmodellen, sowie auf Ereignisprotokollen. Die Eva-
luierung der Fallstudien zeigt, dass die vorgeschlagenen Methoden
valide und akkurate Entscheidungsmodelle produzieren, die als Blau-
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pause fiir das Vollziehen von Entscheidungen dienen konnen und die
Prozessmodelle ergénzen. Demnach sind die vorgestellten Methoden
in der realen Welt anwendbar und konnen beispielsweise fiir Uberein-
stimmungskontrollen genutzt werden, was wiederum die Entschei-

dungsfindung in Unternehmen und somit deren Gesamtleistung ver-
bessern kann.
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INTRODUCTION

n 2016, the European Parliament adopted a set of regulations for

the collection and use of personal information. Scheduled to take
effect as a law across the European Union in 2018, the law foresees
a “right to explanation,” whereby users can ask for clarification of an
algorithmic decision affecting them. In order to ensure compliance,
many companies are re-examining their processes [5].

Providing integrated business process and decision management
frameworks supports businesses against the newly posed challenges.
It does this by providing tools to explicitly model and execute pro-
cesses and decisions. The lifecycle of integrated business process and
decision management starts with the design phase, in which pro-
cesses and decisions are identified and modeled. Existing frameworks
rely heavily on experts modeling idealized “to-be” processes and de-
cisions [183]. To assist companies with the automated design of real
process decisions, knowledge about “as-is” process decision making
needs to be retrieved.

Often in practice, decision logic is either explicitly encoded in
process models through control flow structures [18], or it is implic-
itly contained in process execution logs [23]. According to the sepa-
ration of concerns principle, modeling decisions complementary to
processes is the recommended approach [142]. To this end, our work
proposes a set of methodologies for the derivation of decision mod-
els from both process models and event logs. The derived decision
model explains “as-is” decision making, and serves as a blueprint
to execute decisions complementary to the process model. The pre-
sented thesis is a detailed report on the conducted research and the
results achieved from our experiments.

This chapter introduces the thesis and outlines its content. In
Section 1.1 we investigate the drivers for discovery of decision models
complementary to process models. Based on this setting, we derive
the problem statement in Section 1.2. The main contributions of the
thesis are discussed further in Section 1.3. Section 1.4 presents our
research methodology, which is used as a foundation for conducting
this research, and explains the thesis structure.
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1.1 MOTIVATION

Competing in the Information Age, companies strive to run their
business processes in a productive and sustainable way. It has been
widely acknowledged that business process management (BPM) of-
fers competitive advantages to run companies efficiently [16, 63, 202].
Decision making plays a crucial role in business process management.
Integrated business process and decision management improves the
process by both focusing on the way decisions are made and directing
the processes that carry out the decisions [144, 177, 194, 197].

An interest towards decision support in business processes is in-
dicated by a number of both theoretical works on decision ontologies
and notations [30, 104, 210], and industrial decision frameworks com-
plementary to business process management systems [6, 48, 168, 172].
Recently, the Decision Model and Notation (DMN) standard was de-
veloped by the OMG consortium, whose Board of Directors consists
of representatives of such companies as SAP, IBM, Microsoft, HP, Ora-
cle, and other major firms [136]. This trend indicates a strong interest
of major market players in an interoperable standard for business de-
cision management.

One of the primary prerequisites for emergence of the DMN
standard is the paradigm of separation of process and decision con-
cerns, which has gained in importance over the last years [60, 94,
177, 178, 197]. The paradigm states that modeling decisions separated
from process models can reduce process complexity by excluding
decision logic from process models and imported into a dedicated
decision model. This allows reusage of the same decision model in
different processes. Such a modeling approach also increases agility
of processes, since decisions typically have a more dynamic nature in
comparison to processes. According to [178], making changes in de-
cisions that are complementary to processes reduces time and costs,
provides a more rapid response to business risks, and results in fewer
missed opportunities. As an example, the authors use a process of the
US government agency on managing vehicle licensing payment. The
licensing management, at across more than 150 channels, involves ap-
proximately 50 million registered vehicles. Separating the fee calcula-
tion decision from the rest of the process enabled an easy updating of
thousands of rules by non-technical users. As a result, around 13,000
hours of maintenance work were saved in one year.

In this scenario, there arise a lot of issues during integrated mod-
eling and executing of processes and decisions. The lifecycle of inte-
grated business processes and decision management starts with the
design phase, in which business processes and decisions need to be
identified and modeled. Through the use of support tools [6, 48, 168,
172], modeling languages such as Business Process Model and Nota-
tion (BPMN) [138] or DMN are well suited for both process experts
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Figure 1: Two perspectives of discovering decision models complementary
to process models (in bold) covered in this thesis, with respect
to the process mining picture adapted from [181, 184]. Informa-
tion systems record event logs that capture information about the
execution of real-world processes. Process models can be either
modeled by experts or discovered from event logs with the help
of the existing process mining techniques. Both process models
and event logs can serve as a source of information about exist-
ing decision making at an enterprise.

and end users. State-of-the-art decision management tools support
expert’s design of process decisions, often with the goal of further au-
tomation of decision making. However, there exist situations where
modeling of decisions by experts needs to be additionally supported,
e.g., in the situations where companies run a lot of processes involv-
ing decision making. In our work, we want to assist companies with
the design of explanatory decision models relying on information
about process and its execution. In such a way, we propose to use the
approach, where decision models are designed based on knowledge
about “as-is” process decision making.

Despite extensive research on how to effectively design process
models (e.g., [63, 156, 183, 202]) and decision models (e.g., [160, 177,
178, 208]) independently, the question of the integrated design of pro-
cess and decision models has received far less attention. While the
separation of concerns paradigm, recommended by DMN, prescribes
externalizing the decision logic of process models in one or more sep-
arate decision models, it does not specify how this should be done.
That said, the integrated usage of business process and decision man-
agement approaches offers new opportunities for discovering deci-
sions from information about existing process decision making. Thus,
there is a need for a comprehensive methodology supporting compa-
nies in designing decision models that complement process models.

As prescribed by the OMG consortium, in designing decision
models complementary to process models [142], decision discovery
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is closely related to process discovery. The main goal of process min-
ing is to provide the automated discovery of process-related informa-
tion from event logs created by IT systems. In order to position our
work, in Figure 1, adapted from Van der Aalst et al. [181, 184], we
present an overview of the general process mining setting. The figure
shows perspectives of the discovery of decisions complementary to
processes as an augmentation in bold.

As can be seen in Figure 1, processes are carried out by machines
and people with the help of software systems. These software systems
record event logs, which range from simple text files to data hidden
in complex structures of large databases. Once we have extracted an
event log from the IT systems, process mining provides the discovery
or enhancement of existing processes, e.g., through usage of alpha-
algorithm and its extensions [57, 113, 186], heuristic approaches such
as genetic algorithms [32, 55], as well as region-based mining algo-
rithms [187], or inductive mining algorithms [108].

Different ways of capturing process decision making exist in a
company. These depend on the company’s BPM maturity, informa-
tion systems, expertise and data. An analysis of existing works and
interviews with our industrial partners allow us to identify two fun-
damental approaches for capturing operational decisions: (1) in pro-
cess models, and (2) in process event logs. Corresponding approaches
that serve towards the discovery of decision models complementary
to process model are Process model analysis and Event log analysis. This
connection is indicated by bold arrows in Figure 1.

Event ID | Activity Time
1 A 28.06.2017 13:12
2 C 28.06.2017 15:45
3 G 29.06.2017 10:41

(a) BPMN process model explicitly en- (b) Event log implicitly storing
coding decision logic in control flow decision results

Figure 2: Different ways of capturing decision-related process information

I. PROCESS MODEL ANALYSIS. In cooperation with our industrial
partners, we analyzed about 1,000 real process models from
insurance, banking, and health care domains [18]. Our analy-
sis shows that the decision logic is often encoded in compli-
cated control flow structures, consisting of sequences of exclu-
sive gateways. An abstract BPMN process model from Figure 2a
is an example of control flow misuse for modeling decisions,
which is hard to read and maintain. Understanding the pat-
terns of incorporating decision logic into control flow assists
with the extraction of decision models complementary to pro-
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cess models. In this way, decision logic can be externalized into
a dedicated decision model, e.g., a DMN decision table which is
a tailored compact method to describe the decision logic [142].
Thereby, the corresponding process control flow can be signifi-
cantly simplified.

Additionally, the decision logic can be hidden in the process
model in the form of implicit data dependencies [19, 20, 21, 23].
Understanding the patterns of incorporating decision logic into
process data objects can be useful for extracting decision mod-
els from process models. In this thesis, we propose the method-
ologies to discover decision models complementary to process
models from both the control and the data flow of the process
model.

II. EVENT LOG ANALYSIS. Process decision making can be captured
and analyzed through an event log (see Figure 2b correspond-
ing to the process model from Figure 2a). For instance, the
event log can contain claim data and logged expert decisions for
the credit-risk assessment process. In such cases, the decisions
made by experts are only implicitly contained in the event log,
e.g., in the event log in Figure 2b it cannot be seen why activ-
ity C, and not some other activity, was executed after activity
A. In such cases, the decision logic can be derived by solving a
classification problem, where the classes are possible outcomes
of process decisions, and the training examples are the process
instances recorded in the event log. A lot of works exist that
use statistical means for the discovery of decision rules [205],
but their direct application can lead to the unjust treatment of
an individual applicant. Thus, for companies it is important to
derive interpretive decision models from event logs explaining
how decisions were taken.

Decisions are often represented by rules based on Boolean al-
gebra, e.g., “If client age is more than 45 years old, then the
discount is 25%.” The formal nature of such decisions is often
hard for interpretation and utilization in practice. This is be-
cause imprecision is intrinsic to real-life decisions. Operations
research considers fuzzy logic, based on fuzzy algebra, as a tool
dealing with partial knowledge [89, 193]. Fuzzy rules represent
strings encoding the semantic meaning of a certain probability
behind a value range [209], e.g., “If loan duration is long, then
risk is very high.” Since meaning can be derived directly from
the representation, it is generally considered that fuzzy rules
are more comprehensible compared to crisp rules [89]. More-
over, using literals across rules increases decision flexibility, as
it allows a consistent adaptation of all rules by adjusting only
the underlying mappings. In this thesis, we explore the possibil-
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ity of incorporating fuzziness into decision models based on the
example of DMN. Consequently, we provide methodologies for
discovering both classic and fuzzy decision models from event
logs.

To sum it up, we utilize the decision-related information with respect
to two perspectives described above, and propose methodologies for
deriving decision models from both process models and their cor-
responding execution logs. The constructed decision models explain
existing process decision making and serve as blueprints for execut-
ing decisions complementary to process models. This has been our
core motivation for commencing the research presented in this thesis.

1.2 PROBLEM STATEMENT

The focus of this research is to provide background on the para-
digm of the separation of process and decision concerns, different
ways of capturing decision logic in processes, and externalizing pro-
cess decision logic in dedicated models complementary to input pro-
cess models. Our focus group is composed of business process and
decision management stakeholders, such as process and decision of-
ficers, owners, designers, participants, knowledge workers, system
architects, and developers. The broader group of our goal stakehold-
ers encompasses all kind of users, vendors, and also academic circles
related to enterprise information systems. As we aim at designing
explanatory decision models that can be executed complementary
to process, those stakeholders who run processes involving frequent
decision-making regulated by strict guidelines benefit the most. An
example industry is the banking domain managing such processes as
an evaluation of customer creditworthiness, claim acceptance, eligi-
bility decision in social security, etc. [208]. Another example domain
is healthcare, which includes such processes as determining the ap-
propriate type of check to be performed on patients, assigning them
to nurses, or determining patient-oriented care programs [132].

The goal of this research is to provide stakeholders with a com-
prehensive methodology on designing decision models of their pro-
cess decision making complementary to process models. Taking into
account that information about operational decisions can be derived
from knowledge about current processes of an enterprise (see Sec-
tion 1.1), we formulate the research objective of this thesis as follows.

DESIGN AND EVALUATE A FORMAL FRAMEWORK TO DISCOVER
DECISION MODELS FROM PROCESS MODELS AND EVENT LOGS.

Further, we determine a set of goals that shall be met in the course of
this thesis in order to achieve our research objective.
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1. Provide a specification of decision models that can effectively be used

to design and execute decision models complementary to process mod-
els.
In order to address our research objective, an understanding is
necessary of the requirements for decision models and their de-
sired properties. To achieve this, it first has to be determined
what types of decisions are suitable for business process man-
agement, and what properties of decision models designed com-
plementary to process models are relevant. Further, an analysis
of existing practices and tools suitable for modeling process de-
cisions should be done to identify the stakeholders experience
on process decision design. The best practices and identified
gaps in modeling decisions complementary to processes form a
requirements base for the output decision model.

2. Identify constructs of state-of-the-art encapsulation of decision logic
in process models and their execution logs.
The “process-first” nature of the approach that we pursue in
our thesis infers that we want to provide support for designing
decision models based on knowledge about existing process de-
cision making at enterprises. In order to implement this, a rigor-
ous analysis of possible ways and practices of representing deci-
sions in processes should be devised. Moreover, most business
processes today are not designed to be decision aware [197] (this
served as a premise for creating the DMN standard complemen-
tary to the BPMN standard). Lacking proper integration with
process models, the decision making has been implemented in
multiple ways, e.g., by experts or rule engines working exter-
nally from process engines. In such cases, decision logic is often
implicitly encoded in event logs of information systems, such
that process execution data is another source of valuable knowl-
edge about process decision making. Our goal is to identify and
summarize such ways of representing and recording knowledge
about process decision making which can be used for extracting
information relevant for decision models.

3. Design methodologies for extraction of decision models from process
models and event logs.
To ensure that stakeholders can effectively utilize the concept of
designing decision models complementary to process models,
we want to support the process of discovering decision mod-
els from process models and event logs with corresponding
methodologies. The methodologies should take as input process
models or event logs, and provide a step-by-step approach for
obtaining output decision models that can be utilized comple-
mentary to process models. In case only event logs are available,
the discovery of process models can be done by process mining
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techniques. These are well explored in literature [184], and are
beyond the scope of this thesis. As we expect our techniques
on the discovery of decision models from process knowledge to
be used by a broad group of stakeholders, our methods shall
be represented by comprehensible step-by-step methodologies,
and be demonstrated based on real-world examples.

4. Evaluate how effectively the developed methodologies support the dis-
covery of decision models from process models and event logs.
The applicability and usefulness of the proposed methodologies
for the discovery of decision models shall be assessed through
comprehensive evaluation. We need to investigate how proposed
methodologies can be implemented and observe how they in-
teract with a real-world context. The proposed methodologies
should require minimized effort for stakeholders in extracting
decision models from process models and event logs, and achiev-
ing distinct separation of process and decision concerns in out-
put models.

The presented goals define the direction of the research conducted in
this thesis. We develop the thesis structure with respect to these goals
further in Section 1.4.

1.3 CONTRIBUTIONS

As indicated by the bold arrows in Figure 1, we derive decision
models either from process model or event logs, depending on what
is available at an enterprise. Therefore, our methodologies on deriv-
ing decision models from process models (see Chapters 4, 5) and from
event logs (Chapters 6, 7) are independent, though they are not meant
to be exclusive, but rather complementary. If no process model exists,
numerous process mining techniques mentioned above can be used
to discover process models from event logs. At the same time, the
event logs might contain additional information related to process
decisions which is not part of process models. Therefore, if only an
event log is available as an input, discovery of a decision model from
this event log cannot be replaced through the consequent discovery
of a process model and further discovery of a decision model from
the derived process model.

Thus, to answer the research questions formulated in Section 1.2,
this thesis provides a novel approach for discovering decision mod-
els complementary to process models that takes process model and
execution logs as inputs (see the outline of our approach in bold in
Figure 1). Some parts of this thesis have been previously published
in [18, 19, 20, 21, 22, 23, 24, 25, 96]. The key contributions of this thesis
are:
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* A formal specification of the elements and the relationships that form a
decision model which can be designed and executed complementary to
process model. (See Goal 1 from Section 1.2.)

Modeling languages are typically used by both individuals and or-
ganizations, all having diverse backgrounds and stemming from
various industries. When developing a methodology for decision
design, this diversity needs to be taken into consideration. One
way of ensuring this is to develop a methodology that can be used
to create decision models according to well-established formaliza-
tion of entities and relationships that form a decision model which
has the following properties: (1) it can be used complementary to
process, (2) separation of process and decision logic is supported.
Since real-life decision processes are often exposed to imprecision,
we extend our base formal concept of decision model with fuzzy
logic which was introduced by Zadeh in [209] and has been estab-
lished as an effective tool for dealing with partial input knowledge
for decision making [27].

Methodologies to extract decision models from control flow and data of
process models. (See Goals 2-3 from Section 1.2.)

— Control flow patterns. Many real-world process models utilized
by stakeholders contain decision logic incorporated into con-
trol flow structures of process models, although it is not con-
sidered good practice [18]. We utilize such knowledge for our
purpose and propose a semi-automatic methodology that en-
ables identification of decision logic in the control flow of pro-
cess models, derivation of corresponding DMN models, adap-
tation of the original process model by replacing the decision
logic accordingly, and final configuration of the result during
post-processing. The identification is pattern-based derived
from an intensive analysis of about 1,000 real world process
models provided by our project partners.

— Data structures. The decision logic can also be hidden in the
process models in the form of implicit data dependencies be-
tween data objects [19, 20, 25]. Thus, the decision making can
be captured implicitly in attributes of data objects in a process
model. For example, the decision activity of choosing a ven-
dor from the list of available ones in a logistic company can be
simply captured with an input data object which consists of
a list of alternatives and an output data object containing the
chosen vendor. Thereby, the decision logic is not represented
in the process model. We investigate structures of the incor-
poration of decision logic into process model data, and we
propose a methodology to extract decision models from these
data.

11
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* Methodologies to extract decision models from event logs. (See Goals 2-3
from Section 1.2.)

— Base methodology. Using information about decisions contained
implicitly in the process execution data, we provide a formal
framework enabling the extraction of complete decision mod-
els from event logs. In particular, we propose a methodology
which extends an existing approach [165] to derive control
flow decisions from event logs with additional identification
of data decisions and dependencies between them. Further-
more, we propose a technique to rebuild decision trees to
identify the dependencies between discovered decisions and
to overcome the problem of reusing attributes in a dependent
decision.

— Discovering fuzzy decision models. To assist companies with
the automated construction of fuzzy decision models comple-
mentary to process models, we introduce a methodology to
discover these models from event logs. Fuzzy decision logic
in models is represented by fuzzy decision rules, which we
obtain by application of fuzzy learners for process decisions.
Hereby, we explore the possibility of applying genetic and NE-
FCLASS classifiers, and describe needed modifications of the
algorithms for the process context. Further, we propose a tech-
nique of how to prioritize fuzzy rules during their run-time
execution.

Apart from developing the above mentioned methodologies, we eval-
uate how effectively the introduced methodologies support the dis-
covery of decision models from process model and event logs in
Chapter 8. (This corresponds to Goal 4 from Section 1.2.) Our work is
aimed to be reusable and extensible with respect to supporting stake-
holders with the design of decision models complementary to pro-
cess models. The introduced specification can be employed by stake-
holders to develop their own methodologies for managing decisions
complementary to process models alongside the whole lifecycle of
integrated process and decision management. The presented method-
ologies to extract decision models from process models and event
logs are open to include additional techniques.

1.4 THESIS STRUCTURE

Our investigation is grounded by a review and analysis of the
literature dedicated to existing methods, techniques, and approaches
to business process management and decision management. We re-
inforce our theoretical findings through a series of interviews with
practitioners and vendors of business process and decision manage-
ment systems.
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The work in this thesis follows a design science methodology
as, for example, suggested by Wieringa [204]. The stakeholders of
our study are users and vendors of business process and decision
management solutions, represented by both academia and industry.
The primary objective of this research is to provide a methodology for
extracting decision models taking as inputs (1) process models, and
(2) event logs. The reusable artefacts that are the result of this thesis
are methodologies to discover decision models from process models
and event logs.

This thesis is organized as follows. Part I provides the back-
ground for the whole thesis. The current Chapter 1 opens up this
part with the motivation, the problem statement, the contributions
and the structure of this thesis. Chapter 2 explores the problem con-
text by providing an overview of the types of decisions maintained in
business process management, and it also presents needed definitions
from business process and decision management domains. This cor-
responds to Goal 1 from Section 1.2. Chapter 3 presents works related
to the problem of discovering decision models from event logs. We
achieve this by means of a systematic literature review on best prac-
tices of process and decision modeling. For the systematic literature
review we follow the guidelines proposed in [99].

Part II addresses the presented thesis problem by providing me-
thodologies to discover decision models from decision-related pro-
cess information. These mentioned methodologies correspond to Goals
2 — 3 from Section 1.2. Chapters 4-5 introduce our methodologies for
extraction of decision models from process models. In Chapter 4, we
propose a methodology to derive decision models from control flow
of process models. Chapter 5 proposes a methodology to derive de-
cision models from process model data. Chapters 6-7 introduce our
methodologies to extract decision models from event logs. Chapter 6
presents a methodology to derive classic decision models from event
logs. Chapter 7 presents the fuzzy extension of the methodology from
Chapter 6.

Part 11 evaluates and discusses the conceptual results presented
previously, which corresponds to Goal 4 from Section 1.2. Chapter 8
introduces our evaluation of the presented methodologies. First, we
introduce the description of the methods and metrics used in our
experiments. Second, we validate our methodologies by implement-
ing corresponding prototypes. Further, we evaluate the presented
methodologies by applying them to several real-life and synthetic use
cases and discussing the findings. Finally, in Chapter 9, we summa-
rize the thesis results, discuss the limitations of our methodologies,
and outline future work directions.

13
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he value of business process management (BPM) has been ac-

knowledged as an essential asset to drive a company [16, 63, 202].
One of the important and challenging BPM aspects is decision mak-
ing. Exposed to massive volumes of information nowadays, man-
agers are challenged to make highly complex decisions in increas-
ingly shorter time frames. Decision management exists as an inde-
pendent discipline which has been developing over the last decades
[177, 194]. Integrated business process and decision management im-
prove the business activities of a company by both focusing on the
way decisions are made and directing the processes that incorporate
decision making [144, 177, 194]. Despite extensive research on busi-
ness process management and decision management as independent
disciplines, the question of the integrated usage of these two assets
has received far less attention up to now. Designing decision models
complementary to process models is a solution bridging the gap be-
tween business process and decision modeling. Our work is aimed
at supporting this design by providing methodologies for extracting
decision models from process models and event logs.

Addressing our goals from Section 1.2, we present formalisms
and approaches, which are fundamental for this thesis, in this chapter.
In particular, in Section 2.1, we report on the background of business
process management and decision management both as independent
and as integrated disciplines. Section 2.2 presents an integrated life-
cycle for business process and decision management, and discusses
each phase of it. Section 2.3 examines the fundamentals of business
process and decision modeling. In Section 2.4, we present foundations
of process and decision execution. The chapter concludes with a dis-
cussion of the goals of the thesis in light of the introduced concepts.

2.1 INTEGRATED BUSINESS PROCESS AND DECISION MANAGE-
MENT

In this section, we present the background of business process
management, followed by the background of decision management.
The section concludes with an overview of the state-of-the-art integra-
tion of these two disciplines.

15
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2.1.1 Business Process Management

The primary purpose of any enterprise is to maximize profits for
its owners or stakeholders [71, 72]. To ensure its own competitive per-
formance, a company needs tools to effectively manage its business
operations. The widely acknowledged discipline of business process
management (BPM) addresses this goal by providing an approach
and tools for managing and improving business processes through a
holistic process-oriented view [51, 63, 83, 151, 169, 202].

Business processes form the basis of a company’s value chain,
which represents a set of activities that a company is operating in
order to deliver a valuable product or service for the market [151].
On the basis of [202] we define the term business process as follows:

Definition 1 (Business Process). A business process consists of a set
of coordinated activities that contribute to a specific business goal. A
business process is embedded into an organizational, informational
and technical environment. Each business process is enacted by a
single organization, but it may interact with business processes per-
formed by other organizations. o

Business process management (BPM) is a branch of knowledge that
includes multiple facets, as captured in the definition below, stem-
ming from [184]:

Definition 2 (Business Process Management). Business process man-
agement is the discipline that combines approaches for the design,
execution, control, measurement and optimization of business pro-
cesses. o

Following the development and adoption of information systems, or-
ganizations can achieve additional benefits for coordinating the activ-
ities involved in business processes. Following [202], [16], and [63],
we refer to information systems that exploit an explicit representa-
tion of a business process as business process management systems
(BPMSes).

Definition 3 (Business Process Management System). A business pro-
cess management system is a generic software system that is driven by
explicit process representations to coordinate business process enact-
ment. o

BPM aims at achieving both business objectives, such as business per-
formance improvement, and technical objectives, such as the imple-
mentation of supporting information systems, e.g., BPMS [159]. In
both cases, the BPM objectives need to be aligned with the organiza-
tion’s strategy [162]. In achieving their goals, organizations run BPM
projects that represent ongoing tasks of continuous managing and
monitoring of their business processes [159].
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2.1.2  Decision Management

Decision making is one of the most important aspects of business
processes in organizations. However, not all decisions are relevant for
consideration in business process management. Therefore, we present
definitions and properties of enterprise decisions relevant to BPM.
These are considered throughout this thesis. Further, we present con-
cepts that are at the core of the decision management discipline.

Which Decisions are Relevant for Business Process Management?
Enterprise decisions vary from routine choices, such as how many

items to produce, to unexpected ones such as what to do if a new
technology emerges and disrupts the market. According to [16], the

Strategic

/ Managerial

Operational

Figure 3: Types of enterprise decisions, adapted from [16]

decision-making structure in a typical company is similar to a pyra-
mid, the cross section of which is shown in Figure 3. At the top of
the decision-making pyramid is the strategic level, in which managers
develop overall business goals and objectives as part of the enterprise
strategic plan. Such decisions are usually rare. They are largely un-
structured in the sense that a process prescribing how to take them
does not exist. Hereby, these decisions are extremely important for
the company, e.g., a company decision to enter a new market over
the succeeding years. On the second layer of the decision-making
pyramid is the managerial level, which covers short- and medium-term
plans, budgets, and procedures, e.g., a decision about employee ben-
efits. These decisions are considered as semi-structured. They occur
in situations in which established processes help to evaluate potential
solutions, but do not provide enough information to lead to a definite
recommended decision. The bottom of the decision-making pyramid
is the operational level, in which employees develop and maintain core
activities required to run the daily operations that are affected by
short-term business strategies. These decisions are normally struc-
tured in the sense that established processes exist prescribing how
they should be taken. Operational decisions are made frequently, and
they are repetitive in nature, e.g., determining whether a customer is
eligible for a benefit.
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If we look again at the motivation for the separation of process
and decision concerns in Section 1.1, making changes in decisions
that are designed complementary to processes potentially reduces the
time and costs of process execution. Decisions that incorporate high
change components of business processes are considered the opera-
tional decisions. Also, operational decisions can be relatively well for-
malized, analyzed, implemented, and reused in multiple processes ex-
ecuted on various platforms, cf. [86], [178], and [69]. Therefore, such
decisions are best suited for integrated process and decision manage-
ment. In accordance with this reasoning, in this thesis we focus only
on the challenges connected with operational decisions.

According to [177], the most common examples of operational
decisions in companies are eligibility and validation decisions (e.g., de-
termining whether a particular person is eligible for a discount), cal-
culation decisions (e.g., determining the product price), fraud decisions
(e.g., identifying whether the insurance claim for a medical treatment
is not falsified), etc. Further in this thesis we imply these types of de-
cisions, when we provide approaches to discovery of decision models
complementary to process models.

Definitions

Taking into account the operational nature of decisions relevant to
business process management, we formulate the definition of deci-
sion on the basis of the DMN standard [142]:

Definition 4 (Decision). A decision is an act of determining an output
value from a number of input values, using logic defining how the
output is determined from the inputs. o

The concept of decision management presented in [29, 124], and [178],
is aimed at promoting flexible information-driven processes and con-
version of data into intelligence that enables guiding and executing
enterprise decisions. The basis of decision management is the ex-
plicit representation of operational decisions in organizations. This
approach implies application of decision management systems in con-
junction with analytic models in order to automate, improve, and
distribute decision-making capabilities across an organization [82].
Decision management also covers additional activities such as active
measurement and continuous improvement of decision-making as-
sets [178].

Definition 5 (Decision Management). Decision management includes
concepts, methods, and techniques to support the design, administra-
tion, configuration, enactment, and analysis of operational business
decisions. o

Decision management realizes the value of business knowledge by
utilizing it to automate operational decisions [70]. Hereby, decision
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management systems are identified as primary mechanisms for mod-
eling and executing decisions [34, 176]. We define the decision man-
agement system as follows:

Definition 6 (Decision Management System). A decision management
system is a generic software system that is driven by explicit represen-
tations of operational decisions to coordinate their enactment. o

According to [6, 197] and [178], the goal of decision management is to
increase the speed and quality of operational decisions through their
implementation, maintenance, and reuse.

2.1.3 Integrated Business Process and Decision Management

Operational business decisions play an important role in guid-
ing business processes [197]. From the presented definitions of busi-
ness process management and decision management, it can be ob-
served that their ultimate goal of improving business performance
is the same. Therefore, their integrated usage can deliver benefits to
organizations. This has been understood by stakeholders in recent
years, indicated by the appearance of a number of industrial deci-
sion service platforms in addition to existing BPM-systems, e.g., SAP
Decision Service Management [6], IBM Operational Decision Manage-
ment [48], Signavio [172], Camunda [2], etc. The IBM company has
even formulated the principle in [48] (see p. 35) that “BPM processes
must be adapted or adjusted to consider the decision management
processes.” On the side of academia, a number of works dedicated to
conceptual decision service platforms [30, 210] and decision ontolo-
gies [104, 145, 197] complementary to business process management
techniques have been proposed. Therefore, it is evident that stake-
holders need consolidated solutions on business process and decision
management.

In the meantime, a paradigm of separation of process and deci-
sion concerns is also gaining strength [94, 197]. As decision making
is one of the most dynamic components of businesses due to ever-
changing markets, regulations and policies, agility is identified as a
key criteria for successful decision automation [6, 178, 197]. It has
been observed that the decision logic is often hard-coded in busi-
ness process flows [197]. Such hard-coding of decisions in business
process flows means that organizations often lack the necessary flex-
ibility, maintainability, and traceability in their business operations
[177].

To create a standard approach for describing and modeling re-
peatable decisions within organizations and to ensure that decision
models are reusable in processes, the Decision Model and Notation
(DMN) standard has been proposed and promoted by the OMG group
[142] in recent years. The DMN standard is aimed to be complemen-
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tary to the BPMN standard [138] also introduced by the OMG group
for managing business processes.

In summary, we formulate the basic principle of integrated busi-
ness process and decision management as follows: operational busi-
ness decisions should be managed complementary to business pro-
cesses of enterprises, ensuring a consistent separation of concerns.

2.2 BUSINESS PROCESS AND DECISION MANAGEMENT LIFECY-
CLE

As discussed above, synergy of business process and decision
management systems is the emerging generation of enterprise infor-

mation systems.
Evaluation:
ecision Process Mining
Monitoring

Design:
oo Admini  a ion detitcation and
Monitoring and Modeling
Maintenance S akeholde ASri‘n?Ilaﬁ(;ﬁ:
Validation Verification

Configuration:
S stem Selection
mplementation

Testand eplo ment

Figure 4: Business Process and Decision Management Lifecycle (BPDM-
lifecycle), adapted from [202]

To provide an overall understanding of concepts and technolo-
gies behind this synergy, one needs to look into the challenges cor-
responding to different phases of process and decision management
carried out at the enterprise. To achieve this it seems practical to view
business process and decision management within the frames of a cor-
responding Business Process and Decision Management lifecycle (BPDM-
lifecycle) as shown in Figure 4. The phases of the lifecycle in Figure 4
correspond to the phases of a standard business process lifecycle pre-
sented by, for example, [202]. Thereby, the phases of decision manage-
ment at enterprises match up to the phases of the BPDM-lifecycle as
discussed below.

The BPDM-lifecycle starts with the Design and Analysis phase, in
which business processes and decisions are identified, validated, and
modeled. This phase can be related to the phase of knowledge acqui-
sition in decision management. Next, during the Configuration phase,
the architecture of implementation platforms for business processes
and decisions is realized in implementation platforms. Once the con-
figuration phase is completed, business processes and corresponding
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decisions can be enacted, which happens in the Enactment phase. The
Evaluation phase of the BPDM-lifecycle uses information available to
evaluate and improve business process and decision models and their
implementations. The Administration and Stakeholders are all kind of
BPDM-users, who include developers, designers, knowledge work-
ers, participants, engineers and owners of business processes and de-
cisions.

The phases of the BPDM-lifecycle are organized in a cyclical
structure showing their logical dependencies. It is important to note
that the evolution of process and decision management at real en-
terprises is not necessarily simultaneous. To validate this considera-
tion, we interviewed our partner from the European banking indus-
try about the process of granting private loans. It turned out that
their process of deciding on a loan is modeled and executed with
the help of an automated credit assessing engine. However, their ac-
tual business process of receiving and handling the client applica-
tion exists only ex post without being explicitly modeled or enacted
with the help of any business process management system. Further
interviews with other partners show that incremental and evolution-
ary approaches involving concurrent activities in the lifecycle phases
from Figure 4 are not uncommon. In summary, the dependencies be-
tween the phases of the BPDM-lifecycle from Figure 4 do not imply
a strict temporal ordering prescribing in which the phases need to be
executed.

Since we are interested in discovering decision models originat-
ing from process models and event logs (cf. Chapter2), in this thesis
we refer to the phases of Design and Analysis, Enactment, and Evalua-
tion. The Configuration phase is beyond the scope of this thesis.

2.3 BUSINESS PROCESS AND DECISION MODELS

The BPDM-lifecycle is entered in the Design and Analysis phase,
in which business processes and decisions are identified, reviewed,
validated and represented by corresponding models. Thus, we next
present the concepts that are fundamental for business process mod-
eling, decision modeling, and separation of process and decision con-
cerns.

2.3.1 Business Process Modeling

Business processes consist of a partially ordered set of related
activities whose coordinated execution realizes some business goal
[202]. Business process management relies on the concept of business
process models, representing business processes. Here, process mod-
els are an abstraction of the real world. Therefore, process modeling
helps understand processes in focusing on their core aspects, and,
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in turn, sharing this understanding with process participants [63]. At
run-time, a process instance represents a process model. Thus, during
enactment, a process model serves as a blueprint for a set of business
process instances with a similar structure.

Business processes can be specified in process models with the
help of graphical and formal constructs. We therefore motivate the
usage of the BPMN standard for modeling processes and present its
basics. Afterwards, we present the formalisms of process modeling.

Business Process Model and Notation

According to [91], the five top-ranked perceived benefits of business
process modeling are (1) process improvement, (2) understanding, (3)
communication, (4) model-driven process execution, and (5) process
performance measurement. In order to reap these benefits, it is cru-
cial that companies utilize process models that are captured in an
appropriate modeling language [126].

To express process models, there needs to be a notation that
identifies and formalizes the properties of business processes. Sev-
eral modeling notations to capture business process models exist, cf.
the survey in [117]. For example, flow charts have been used to model
algorithms since the introduction of computers [78]. Candidates for
modeling business processes are, among others, UML activity dia-
grams [140], event-driven process chains [170], or the Business Pro-
cess Model and Notation (BPMN) [138]. Additional candidates from
academia are Petri nets [167], YAWL [185], and ADEPT2 [155].

In this thesis, we use BPMN to express process models as it is
de facto standard language today for business process modeling, cf.

[60, 173, 197].
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Figure 5 shows a process model demonstrating an example of
assigning a client discount. The notation used to express this process
model is BPMN:

* The process starts and ends with the occurrence of event models
that are represented by circles; the final event model is repre-
sented by a bold circle.

¢ Units of work conducted in a business process are represented
by process activities depicted as rectangles with rounded edges.

e Splitting and merging of process control flow is represented by
gateways depicted as diamonds with the appropriate markers
inside, e.g., marker X stands for choice.

¢ The temporal relationships between activities, event models, and
gateways are represented by solid directed edges.

* A process operates on data nodes represented by rectangles with
folded upper-right corners, the behaviour of which is repre-
sented by states. data nodes provide information about what
activities are required to be performed or what they produce.
Data inputs or data outputs are marked with white or black ar-
rows, and they provide the same information for processes.

* The read and write relationships between activities and data
nodes are represented by dashed directed edges.

In this example, a business event happens which requires deter-
mining a client discount. Once this event occurs, a company worker
checks the client’s status, which is represented by the Check if the client
has a VIP status activity and the edge connecting the start event model
to this activity. The Client’s record data node serves as an input data,
and the first process activity updates this data node with state [sta-
tus updated]. Analogously, the worker conducts a further check repre-
sented by the Determine the age of the client activity. Correspondingly,
the Client’s record data node is updated with the [age entered] state. Af-
terwards, the VIP client? gateway node is used to decide whether to
proceed with activity Assign 25% discount, or not. If the No branch is
activated, the Age gateway is used for deciding which activity should
be executed next: Assign 20% discount, Assign 15% discount, or Assign
10% discount. When either of the activities on assigning the discount
is completed, a corresponding discount value is entered into the Dis-
count output data node, and its state is updated to [assigned]. After-
wards, the merge gateway is activated and the process completes with
the final event.

Overall, BPMN is a fairly complex notation that consists of more
than 100 symbols. To provide guidance to the reader, in Figure 6 we
present a subset of BPMN symbols used in this thesis. The full list of
BPMN elements can be found in the standard [138].

The first column in Figure 6 presents activities that lie at the core
of the process modeling in BPMN. Activities represent atomic unit of
works that are performed within a business process.
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Figure 6: A subset of BPMN elements used in this thesis

The nature of the activity to be performed is specified by activity
types as shown in the figure. A receive activity is an activity that is
designed to wait for an information to arrive from an external pro-
cess participant. Once this information has been received, the activity
is completed. A send activity is an activity that is designed to send
an information to an external participant. Once this information has
been sent, the activity is completed.

Two other types of activities that are especially important for
decision-intense processes are business rule and user activities. Accord-
ing to BPMN, a business rule activity provides a mechanism for the
process to provide input to a business rule engine and to get the out-
put of calculations that the business rule engine could provide [138].
A user activity is executed by a human performer. In this thesis, we
only consider such user activities that are involved in decision mak-
ing.

Activities are connected to each other using either a sequence
flow connector, or a default flow connector, visualizing the rule that the
branch it is representing should be chosen if all other conditions eval-
uate to false.

In the second column, pools, lanes, artifacts and gateways are
presented. Pools and lanes are a visual mechanism to organize and
categorize activities according to resources that carry out the actual
work. A pool represents a major process participant. A pool can con-
tain one or more lanes that are used to organize and categorize ac-
tivities within a pool according to function or role. Artifacts allow
developers to bring additional information into the model. In our the-
sis, we use BPMN artifacts such as text annotations. Gateways control
the business process flow. A split exclusive (XOR) gateway routes the se-
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quence flow to exactly one of the outgoing branches. A merge exclusive
(XOR) gateway awaits one incoming branch to arrive in order to com-
plete it — before triggering the outgoing flow that follows the gateway.
Exclusive gateways can be shown with or without the “X” marker. A
split inclusive (IOR) gateway routes the sequence flow to one or more
of the outgoing branches. A merge inclusive (IOR) gateway awaits its
completion of all activated branches — before triggering the outgoing
flow that follows the gateway. A split parallel (AND) gateway branches
the sequence flow by activating all outgoing branches simultaneously.
A merge parallel (AND) gateway awaits its completion of all activated
branches — before triggering the outgoing flow. An event-based gateway
is always followed by catching event models (see the right most col-
umn in Figure 6) or receive activities, and it routes the sequence flow
to the subsequent event model or activity whichever happens first.

The next column presents the data nodes showing which data is
required or produced in an activity. This is visualized correspond-
ingly by data associations. The data collection symbol shows that a data
node clusters information collected within a business process. The
data input symbol represents data requirements that activities in the
whole business process depend on. The data output symbol demon-
strates information produced as the result of a business process.

The last column of the figure represents process event models. The
untyped start or end event model symbols signals the first or last step of
a process correspondingly. Message event models carry information
in processes: a start message event model triggers the process, an inter-
mediate message event model facilitates intermediate processes, and an
end message event model finishes the process. A timer event model visual-
izes a date or recurring time that intermediates processes by delaying
it or scheduling it for a certain time. Link event models serve as connec-
tors between process sections. Hereby, two corresponding link event
models equal a sequence flow: one of them is a link throwing event
model, and another one is a link catching event model.

Although BPMN is widely used in practice, in this thesis we use
it mainly for demonstrating the developed algorithms for discovery
of decision models complementary to process models based on con-
crete visual examples. However, since we do not want to limit the
generality of our work, we next introduce the formalization of the
business process model including its data perspective. Both notions
are essential for deriving decision models from process information.
Thereby, the work presented in this thesis can be applied to a wider
range of process modeling notations.

Process Models: Formalization

In this thesis, we consider that business processes are modeled in an
imperative style, which means that a process model prescribes how
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and in which sequence a set of activities should be executed. BPMN
process model from Figure 5 is an example of a process model de-
signed in an imperative style.

Our understanding of a process model is aligned with the defini-
tion given by Weske (see [202], p. 91) enriched with data and resource
perspectives. We consider these two extra perspectives as they are a
valuable source of process-related information. We utilize them later
in the thesis for extracting decision models complementary to process
models. Thus, a process model is defined by us as follows.

Definition 7 (Process Model). A process model is a tuple pm = (N, DE,
TA, %, C, F, Z, H, as, ay, ag, B, , ), where:

e N = TUEUG is a finite non-empty set N of control flow nodes
which consist of mutually disjoint sets T of activities, E of event
models, and G of gateways. Eg C E is the set of boundary
events. Function a5 : T — {task,subprocess} distinguishes activ-
ities into atomic tasks and non-atomic collapsed subprocesses.
Thereby, function a; : T — {abstract, manual, user, business rule,
service, script} assigns to each activity a specific type. Func-
tion ag : G — {XOR, IOR, AND, event-based} assigns to each
gateway a type in terms of a control flow construct. Function
B: T - 2E8 assigns sets of boundary events to activities.

e C C N x N is a finite set of directed flow edges, which define
the control flow. X is a finite set of conditions. G, C G is the set
of gateways with multiple outgoing edges, such that (a.(g) =
XOR V a¢(g) = IOR), g € G,. Function ¢ : (G, x N) — X
assigns conditions to control flow edges originating from gate-
ways with multiple outgoing edges, where for Vg € G,: 3 ny,
na€N, ny#ny such that (g,11) € CA (g, m2) € C.

e DE = DN UDS is a finite set of data elements, consisting of
mutually disjoint sets DN of data nodes, and DS of data stores.
F C (DExT)U (T x DE) is the set of directed flow edges,
indicating read respectively write operations of an activity with
respect to a data node, which define the data flow.

e TA is a finite set of text annotations. Z C (TA x T) U (T x TA)
is the set of symmetric associations that connect activities with
text annotations.

* H is a finite set of resources. Herewith, function ¢ : T — H
assigns a corresponding resource to each activity. o

An example process model is given Figure 5, and its elements are
discussed in the paragraph below the figure.

In some cases, it is reasonable to consider a subset of the process
model elements. It might be useful for analyzing a part of a process
model with the focus on a certain aspect of it, e.g., a decision point
containing several control flow splits and the activities involved in
this decision. In this thesis, we refer to such groups of elements as
process fragments, which are defined by us in Definition 8.
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Definition 8 (Process fragment). Let pm = (N, DE, TA, %, C, F, Z,
H, as, at, xg, B, ¢, ) be a process model. A process fragment pf = (N,
DE', TA", X, C',F,Z', H, s, 1, 114, %, 7, {) is a connected subgraph
of process model pm such that N' C N, DE' C DE, TA' C TA, X' C%,
C'"CC F CF Z'CZ and H C H. Functions s, 1, 1, k, 0, and
{ are restrictions of functions as, &y, &g, B, ¢, and ¥ respectively with
corresponding new domains. o

For example, Figure 7 is a process fragment of the process model
from Figure 5. This process fragment focuses on the decision point
reflecting the steps of the decision on assigning a certain type of dis-
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Figure 7: Example process fragment of the process model from Figure 5

Another subset of the process model elements, that is relevant for the
work presented in this thesis, are process activities that carry deci-
sional value. Adhering to BPMN, we consider that the business rule
and user activities in a process model serve as a natural placeholder
for process decisions. The DMN standard also recommends that de-
cision activities are executed either manually as by a user, or in a
business-rule-driven manner. We consider both types of decision ac-
tivity, as reflected in Definition 9.

Definition 9 (Decision Activity). Let DA C T be the set of decision
activities for a given process model pm. If da € DA is a decision activ-
ity, then a;(da) € {business rule, user}. o

For example, Figure 8 shows two process fragments that represent
variants of incorporating of a decision activity Decide on discount. Fig-
ure 8a shows the decision activity of a business rule type, where the
discount is assigned, for example, by a business rule engine. Figure 8b
shows the decision activity of a user rule type, where the decision on
discount is taken by a human performer.

The activities of a process model operate on an integrated set
DN of data nodes, which represent application data created, modi-
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Figure 8: Example process fragments showing two variants of a decision
activity Decide on discount

fied, and deleted during the execution of a process model. The term
data flow refers to data dependencies between process activities and
data. An example of a process model is given in Figure 5, followed
by description of its elements.

In our work, we use the distinction of process data into data
classes and data nodes (see Figure 9), which can be viewed as ana-
logue to the  object-oriented  programming  paradigm.
Data class, used in a business
process, serves as an abstract * 1
data type, which describes the Data Node ——3p» Data Class
properties of data nodes. The
data nodes can be viewed as in- Figure 9: Relations between data enti-
stances of the data classes at the tites
modeling level. Each data node
is associated with exactly one data class in a process model. The par-
ticular values of data class properties are assigned to the data node
associated with it.

Definition 10 (Data Class). A data class is a tuple dc = (name, S, J.),
where:
e S is a finite set of data states that dc has;
e J. is a finite set of attributes that dc has, where each attribute
j € Jc has a corresponding domain Dom(j) represented by a set
of either numeric or nominal values. o

Definition 11 (Data Node). Let DC and DN be the sets of data classes
and data nodes associated with a given process model pm correspond-
ingly. Each data node dn € DN is a tuple dn = (name, s, 6, T, |, Ty,
Fin, Han, @) related to a data class dc € DC, where:
* name is a constant labeling the data node dn, which also serves
as a reference to dc;
* s € S is a variable indicating the state assigned to dn, where S
is the set of data states of dc;
e 6 : DN —{singlinst, multinst} is a function indicating if dn €
DN is a collection (multinst) or not (singlinst);
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e T : DN — {input;output;default} is a function indicating if
dn € DN is an input data node (existed before the start of the
process), an output data node (will exist after termination of the
process) or none of these (default);

e | C J.is a set of attributes assigned to dn, where ] is the set of
attributes of dc;

* Ty, € T is a set of process model activities which are related
with the data node dn by the respective data flow F;, C F,
such that Fy, = (dn x Ty,) U (Ty, x dn). Function ¢ : DN —
2oy Hpy € H, assigns to dn € DN a power set of resources
responsible for execution of the activities that are in the data
flow relation with dn. o

We assume that the resource executing an activity is either allocated
to the data node read or write by this activity. Also, as it can be
seen from Definition 11, the set of attributes | store the context data
relevant to the business process, i.e., the particular characteristics of
the data class. An example data class for the process model from
Figure 5 is the Client’s record. The example data nodes for the same
process model are the concrete occurrences of the data class Client’s
record [status updated] and Client’s record [age entered].

2.3.2 Decision Modeling

As previously stated, a decision is an act of choosing one or a
set of possible outcomes based on a set of inputs [142]. We focus
on operational decisions that are repeatable, have a business value,
and occur in technical and informational environment of companies.
Decision modeling is needed to systematically describe decisions, so
that they are understandable to decision participants, and to continu-
ously improve them [178]. Below, we motivate the usage of the DMN
standard and present basics of this notation, which is followed by a
presentation of the decision modeling formalisms.

Decision Model and Notation

In [197], Halle et al. state that business logic of activities involved
in decision making is often not documented in BPMN process mod-
els. At the same time, operational decisions should be carefully mod-
eled since they are a subject of deliberate attention during compliance
checks. Providing a common visual language would allow an under-
standing of decision making and a sharing of this understanding
between decision participants. In addition, visual decision notation
would serve as a tool for identification of issues, thereby providing
an opportunity for decision improvement.

To create a standardized bridge for the gap between business
decision design and its implementation, the OMG group released in
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2015 the DMN standard. One of the main goals of DMN is to pro-
vide a common language which is understandable to business users,
such as the business analysts who need to create models of the deci-
sion making process, the technical developers who are responsible for
automating process decisions, and, finally, the business people who
will manage and monitor these decisions [142]. DMN provides con-
structs that are needed for modeling decision-making in processes,
that can be automated optionally. The DMN standard is created in
such a way that it can be used complementary to other established in-
dustry standards such as BPMN, Unified Modeling Language (UML),
Entity—Relationship model (ERD), Case Management Model and No-
tation (CMMN), Business Motivation Model (BMM), etc.[178].

The DMN standard was developed by the OMG Group through
the contribution of such companies as SAP, IBM, Microsoft, HP, Ora-
cle, and other major companies [136]. Although DMN is a young stan-
dard, it is gaining acceptance in industrial, and academic worlds. The
Decision Management Community [46] provides a catalogue of ven-
dors providing DMN support tools, which currently lists 16 vendors
across a range of countries and continents. These vendors include Al-
frescoActiviti, Blueriq, Camunda, DecisionsFirstModeler, OpenRules,
FICO, Drools, Sapiens, Signavio, Trisotech, etc. The DecisionsFirst-
Modeler CEO ]. Taylor recommends DMN as “the best approach
to decision modeling available today,” because it is an open, not-
for-profit standard for unambiguous, concise, and complete decision
management at enterprises [178]. Also, a range of scientific works is
dedicated to exploration of the standard properties, e.g. research on
its visual expressiveness [50], possibilities of enhancing declarative
process models with DMN logic [127], integration of DMN and other
OMG standards [101], etc.

DMN defines two levels for modeling decision logic, the deci-
sion requirements level and the decision logic level. The first one repre-
sents how decisions depend on each other and what input data is avail-
able for the decisions. Therefore, these nodes are connected with each
other through information requirement edges. A decision may addition-
ally reference the decision logic level where its output is determined
through an undirected association. The decision logic level describes
the actual decision logic applied to take the decision. Decision logic
can be represented in many ways, e. g.by an analytic model, a textual
description, or a decision table.

Figure 10 shows an example decision model. The DMN Deci-
sion Requirements Diagram is the visual notation used to express
this model (see Figure 10a):

* Rectangles represent decisions referred to as decisions nodes re-
quired to be taken. Each decision generates a set of results
which are using a set of inputs, i.e., other decision nodes and
data nodes (see the next bullet point).
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Determine inputs Output
discount -
VIP status Age Discount
Yes - 25%
No >=40 yrs 20%
VIP status No >=18, <40 yrs 15%
No <18 yrs 10%

(a) DMN decision requirements

diagram (DRD) (b) Decision table

Figure 10: DMN decision model corresponding to the example of assign-
ing a client discount

* A data node is represented by an ellipsis and is an area of data
required to take the decision. According to [70], this might be:
(1) specific data relating to the case being processed (such as
application, account, or claim data); (2) contextual data relating
to the conditions surrounding the case (such as the prevailing
base interest rate).

* Solid arrows represent dependency requirements referred to as
information requirement edges, such that a piece of information
(a decision or a data node) is used in a decision. The informa-
tion requirement edges are not conditional; the arrow must be
present if the piece of information is always required to take the
decision.

The decision requirements diagram does not visualize the decision
logic used for determining DRD output, but a corresponding deci-
sion table (see Figure 10b) is referenced through an undirected asso-
ciation corresponding to the decision node. The example shows the
same decision logic as it is used in the process model in Figure 5. In
particular, the decision to be taken refers to the discount given to a
customer. The corresponding logic is defined in the associated deci-
sion table manage discount table. Information about VIP status and Age
needs to be considered and the result of this decision is referenced in
the corresponding decision table.

To provide guidance to the reader, in Figure 11 we present a
subset of DMN symbols used in this thesis. The full list of DMN
elements can be found in the standard [142].

As reflected in Figure 11, the decision requirements level is de-
scribed in DMN by a Decision Requirements Diagram (DRD), which
consists of DRD elements and their interdependencies. The following
DRD elements are presented in the first column in Figure 11:

* A decision is an act of determining an output from a number
of inputs, using decision logic (cf. Definition 4). Therefore, deci-
sions are acts on process-related data.

* A business knowledge denotes any decision logic which is capa-
ble of being represented as a function encapsulating business
know-how, e.g., in the form of a decision table. Hence, the busi-
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Figure 11: A subset of DMN elements used in this thesis

ness knowledge elements represent functional requirements for
acting on process-related data.

* An input data denotes the information used as an input by one
or more decisions. Thereby, the input data elements directly rep-
resent process-related data.

* A knowledge source denotes an authority for a business knowl-
edge or a decision, which can be represented as the domain
experts responsible for maintaining decisions or the source doc-
uments from which decisions are derived. Thus, the knowledge
source elements represent non-functional requirements for act-
ing on process-related data.

As can be seen from the central three columns in Figure 11, the depen-
dencies between DRD elements express three kinds of requirements:

* An information requirement denotes either a decision output be-
ing used as input to another decision (rule 1), or an input data
being used as an input to a decision (rule 2). There is no dis-
tinction in DMN between input data that is always required
and input data that is sometimes required. Thus, information
requirements may be optional when the decision is made for a
specific transaction. Thereby, information requirements express
functional requirements for acting on process-related data.

* A knowledge requirement denotes the invocation of a business
knowledge node by the decision logic either of a decision (rule
3), or of another business knowledge (rule 4). In this way, knowl-
edge requirements also represent functional requirements for
acting on process-related data.

* An authority requirement denotes the dependence of a DRD el-
ement on another DRD element that acts as a source of guid-
ance or knowledge (rules 5, 6, 7, 8, and 9). This might be used
to record the fact that a set of business rules must be consis-
tent with a published document (e.g., a piece of legislation or a
statement of business policy), or that a specific person or orga-
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nizational group is responsible for defining some decision logic.
As a special case, they may be drawn from the input data and
decision nodes to the knowledge source nodes (rules 7 and 9).
Such a modeling approach is recommended by DMN in the sit-
uations if a source of business rules was originally built through
data mining or some other kind of data analysis. Thus, authority
requirements represent non-functional requirements for acting
on process-related data.
The second logic layer of DMN is decision logic which specifies how
decisions are to be taken. Decision logic is not visually presented in
the DRD diagram, but it is added to a DMN decision model through
a link with either the decision, or the business knowledge nodes
of a DRD diagram. As visualized by the last column in Figure 11,
such links represent undirected association of corresponding DRD el-
ements with decision logic. If a decision requires an input data, the
value of the variable is assigned the value of the data source attached
to the input data at execution time. One of the most widely used
representation for decision logic is a decision table [142, 191, 194].

In this thesis, we present all visual examples of decision models
with the help of the DMN standard. However, to not limit the gener-
ality of our work on the discovery of decision models complementary
to process models with the DMN standard, we introduce next the de-
cision model formalization. Thus, the work presented in this thesis
can be applied on a wider range of decision modeling notations.

Decision Models: Formalization

Our formalism of a decision model is aligned with the DMN stan-
dard [142]. According to DMN, a decision model consist of two logi-
cal layers: (1) decision requirements; and (2) decision logic, e.g., repre-
sented with the help of decision tables. We consider these two layers
below.

The first logical layer of the DMN decision model is the decision
requirements layer. People are much better at extracting information
from figures than from text, which is why decision requirements di-
agrams are recommended [70]. Decision requirements diagrams can
be viewed as a decomposition of process decision-making into a set
of interrelated decisions and areas of supporting information. We for-
mally define the decision requirements diagram as follows.

Definition 12 (Decision Requirements Diagram). A decision require-
ments diagram (DRD) is a tuple drd = (D, BK, ID, KS, IR, KR, AR)
consisting of:

* a finite non-empty set of decision nodes D;

* a finite set of business knowledge nodes BK;

* a finite non-empty set of input data nodes ID;

* a finite set of knowledge source nodes KS;
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* a finite non-empty set of directed edges IR representing infor-
mation requirements such that IR C (IDU D) x D;
* a finite set of directed edges KR representing knowledge require-
ments such that KR C BK x (D U BK);
¢ a finite set of directed edges AR representing authority require-
ments such that AR C (DU ID UKS) x (DUBKUKS).
Herewith, (DU BKU ID UKS,IRUKRU AR) is a directed acyclic
graph (DAG). o

An example decision requirements diagram is presented in Figure 10a,
and its elements are discussed in the paragraph above the figure.

The decision nodes of DRD provide a clear but succinct defini-
tion of the functional requirements for decision making. The input
data nodes identify all the types of data required for decision taking
to be made available to decision nodes and modeled within them. As
Fish points out in [70], the DRDs are useful, because they allow the
broad scope and structure of the decision-making to be appreciated at
a glance and discussed by all the participants of the decision-making
process, such as the project managers, business domain experts, ana-
lysts, designers, developers, and testers.

The most recent version of the DMN standard introduced a new
layer of a decision model, the decision service layer, that is a visual
mechanism to reflect which nodes of DRD should be implemented
as services. The decision service layer is beyond the scope of the cur-
rent thesis, as we primarily focus on creating an explanatory decision
model that can be discovered from the existing knowledge about a
process (cf. Section 1.2). Thereby, the implementation of the discov-
ered model is out of the scope of our work.

Besides DMN, there also exist other methods and notations to
specify requirements for decision making. UML use case diagrams
[140] treat the system as a black box rather than exposing the struc-
ture of its decision-making. Entity relationship diagrams can be used
for capturing knowledge structure [197], but they are more useful for
modeling specific rules than high-level requirements. Therefore we
adhere to the DMN decision models.

A decision may additionally reference the decision logic level,
the second layer of the DMN decision model, where its output is de-
termined through an undirected association. One of the most widely
used representations for decision logic is a decision table, which we
utilize in the rest of this thesis.

The decision table representation is one of the most widely used
formats for representing decision logic. Decision tables incorporate
all necessary components for decisions, such as inputs, outputs and
decision rules. What is crucially important, is that they are easily un-
derstood by business users [70, 142]. According to DMN, further rep-
resentations of decision logic can be used, e.g., with the help of the
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text documents or computer programs. However, we leave such rep-
resentations of decision logic out of the scope of the current thesis.

Our understanding of a decision table conforms to DMN [142].
According to the standard, a decision table describes the relation be-
tween a set of input values and a set of output values. Each decision
table input has a domain over which logical expressions can specify
conditions. During run-time execution, each input is assigned a value,
and if the conjunction of logical expressions of all inputs evaluates to
true, the corresponding output values are yielded. The output values
belong to the domain of the decision table output. The possibilities of
relating different inputs to outputs are represented in a tabular man-
ner such that each row of the table corresponds to a rule. Thereby,
in this thesis we consider the most usual case where decision table
has only one output variable. If rules overlap and multiple rules can
match, a hit policy indicates how to determine the output.

In Definition 13, we provide the formal definition of a decision
table. The definition is followed by a decision table example and a
discussion of the hit policies that can be encountered in this thesis.

Definition 13 (Decision Table). A decision table dt of the set of deci-
sion tables DT is a tuple dt = (I,O, R, x), dt € DT, where:

e | ={0,.., I}, v € NT is a finite non-empty set of input vari-
ables (inputs);

* O is an output variable (output);

e R={Ry,..,R,}, n € N7 is a finite non-empty set of mappings
(decision rules), which relate a subset of inputs to an output:

w
Vie [n] R : \(Ijopjq;) — Dom(0),1<w<wv (1)
j=1

where opy, ..., 0py, are comparison predicates, g1 € Dom(Ih), ...,
gw € Dom(I,) are constants representing values from the do-
mains of the inputs, and j,w € NT;

e x : DT — {unique, collect} is a function that assigns each
decision table dt € DT a hit policy.

<

An example decision table is presented in Figure 12. The inputs in
this decision table are VIP status and Age which are determined for
a client during decision execution. The output of this decision table
is Discount assigned to the client. There are four decision rules consti-
tuting this decision table which specify the decision logic about how
the discount is assigned to the client. A decision rule example for this
decision table is the last rule of the table:
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Inputs Output
VIP status Age Discount
Yes - 20%
No >=40 yrs 20%
No >=18, <=40 yrs 15%
No <18 yrs 10%

Figure 12: Decision table which contains: (1) overlapping rules; (2) rules
that have the same output.

VIP status=No, Age<18 yrs — Discount=10 % (2)

For a given set of input values, the matching rules of a decision table
indicate the resulting value for the output name. Thereby, decision
tables are allowed to contain overlapping decision rules, where rules
match for the same set of input values but do not necessarily map to
the same output values. For example, the second and the third rules
in the table from Figure 12 are overlapping.

For the case when rules overlap and multiple rules can match
the run-time input, DMN defines different types of hit policies that
indicate how to determine the output. Thus, the single-hit policies
return the output of one rule only, and the multi-hit policies return a
list (or sequence) of outputs. Hit policies can be assigned to decision
tables by a process expert, with respect to a relevant business context.
As indicated in Definition 13, in this thesis we use only unique and
collect hit policies, which are described below. The full list of the DMN
hit policies can be found in the standard [142].

The first type of hit policies which we use in this thesis are the
unique policies that are of the single-hit type. If the unique hit policy
is assigned to a decision table, no overlap of rules is possible and all
rules are disjoint. This is the default hit policy which is used for the
most of decision tables in this thesis, unless specified otherwise in the
text. For example, the table from Figure 10b serves as an example of
a decision table with non-overlapping rules that has the unique hit
policy. Then, for an example input VIP status=No, Age=30 yrs, the
output Discount=15% is returned.

The second type of hit policies which we use in this thesis are
the collect policies that are of the multi-hit type. If the collect hit pol-
icy is assigned to a decision table, the decision table rules can overlap,
and the output result is a list of all the matching output values. For
example, the table from Figure 12 contains overlapping rules, and
the collect hit policy can be assigned to it. Then, for an example in-
put VIP status=No, Age=40 yrs, the output Discount={20%,15%}
is returned.

We use a collective term decision model for an aggregate of a de-
cision requirements diagram drd and a corresponding decision table
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dt. An example decision model is presented in Figure 10, and its ele-
ments are discussed in the paragraph below the figure.

A decision table is considered complete if for each possible combi-
nation of input values at least one rule is matched. If a decision table
is incomplete, and is called with an input combination that it does not
consider, the result is undefined, which may lead to undesired behav-
ior. The decision table from Figure 10b is an example of a complete
decision table.

Adhering to the view of the OMG group on the nature of pro-
cess and decision modeling, we consider that business processes are
modeled in an imperative style, whereas business decisions are mod-
eled in a declarative style. As discussed in Section 2.3.1, an impera-
tive style of business process modeling means that a process model
prescribes how activities should be executed. In contrast, a decision
model instead expresses the decision requirements and logic without de-
scribing control flow of decision making. This view is supported, for
example, by J. Taylor et al. in [177, 178] and by A. Fish in [70], which
is that decision modeling should focus on what is to be done, not how
it should be done.

2.3.3 Separation of Process and Decision Concerns in Modeling

Below, we present two examples demonstrating how separation
of process and decision concerns can be accomplished. The first exam-
ple refers to the business process represented by process model from
Figure 5 and the decision model from Figure 10. The second example
is a real-world use case demonstrating more complicated process and
decision models, and their connection. Next, we introduce principle
of separation of concerns and its properties. Afterwards, we provide
a definition of a decision-aware process model.

Introductory Example: Discount Calculation

Consider again the business process model in Figure 5. While the
described process is reasonably easy to understand, it is clear that
control flow that incorporates decision logic can become complex
upon expansion of underlying business rules. If a new business rule
is introduced, e.g., to take the client’s nationality and loyalty into ac-
count, then a new nest of gateways and branches is required. Such
a modeling approach hinders agility of processes, since changing de-
cision logic requires changing the process control flow which is cost-
intensive, especially if the process is implemented in an information
system [197].

The separation of concerns principle states that decision logic
should be modeled complementary to process models. In this case,
this means to identify that the complete process from Figure 5 can be
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represented by steps of determining model and setting the discount
for a customer. In Figure 13, we show the refactored process model. It
references the decision model (see Figure 10) through an undirected
association depicted for visualization purpose with the bold arrow
1 which is not a part of the BPMN or DMN notations. The decision
model explains in details how the discount is determined. Hereby,
the DRD also references the decision table through an undirected
association which is depicted with the bold arrow 2.

BPMN Process Model | DMN Decision Model
I Decision Req irements Decision Logic
= Diagram I

2

Inputs Output

Determine
discount
VIP status

VIP status Age Discount
- 25%
>=40 yrs 20%
>=18, <40 yrs 15%
<18 yrs 10%

z|z|z|5
(5|5 |

0 be
determined

discoun wszone |

Figure 13: Demonstration of paradigm of separation of process and deci-
sion concerns on example of BPMN and DMN models using the
examples from Figure 5 and 10

The process model depicted in Figure 13 is an example of how
a process model can be “aware” of decision making that is part of a
process but that is described in a dedicated decision model. It can be
seen that the process model is simplified: decision logic which was en-
coded in control flow structures is now “exported” into a correspond-
ing decision model. Such representation increases process agility, be-
cause now changing decision logic can be done simply by modifying
or adding new lines of the decision table without changing the pro-
cess.

Real-World Example

Next, we present a real-world example communicated to us by an in-
dustry partner, a debt collection company operating throughout the
European Union. Using a standardized process, the company sup-
ports customers in enforcing their claims against debtors. Within this
process, numerous decisions have to be made: what kind of legal
documents are needed to evaluate the claim, how to communicate
with the debtors, in which jurisdiction the claim should be enforced,
etc. Usually, cases take several weeks before completion. However, it
a case may go to court and then it may take several years before a
resolution is reached.

An excerpt from the debt collection process is represented by
the BPMN process model shown in Figure 14. Some of the tasks of
the process reference the corresponding DMN decision requirements
diagram shown in Figure 15.
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Figure 14: Excerpt from the debt collection process represented by a BPMN
process model

A new process instance starts when a customer enters a claim
containing general information through a company website. First, the
activity Determine authorization type and response options is executed.
This activity is typed as a business rule activity and references the cor-
responding decision requirements diagram from Figure 15 through
an undirected association marked by a small icon of a table in the left
upper corner of the activity. At this step, only intermediate decisions
Authorization type and Response options of the decision requirements
diagram are invoked, resulting in production of the corresponding
data nodes by the activity. This correspondence is indicated by the la-
bel equalities of decisions from Figure 15 and data nodes written by
business rule activities of the process model. The Authorization type
decision determines if the company requires a Power of Attorney
(PoA) or Notice of Assignment (NoA) from the customer. This in-
formation is used in the following two concurrent activities Generate
e-mail and Generate authorization document of the process to customize
the e-mail that is sent to the customer. The Response options decision
determines different possibilities of how the client can provide the
PoA/NoA to the company, which depends on the country of resi-
dence of the customer. For example, a personal visit is possible if the
customer resides in the country where the headquarters of the com-
pany is situated, but in other cases, only mail or fax communication
is possible. Next, the activity Send authorization is executed, sending
the generated e-mail with the Authorization document attached to the
client.

The process proceeds with execution of activity Determine re-
minder cycle and type. This is also a business rule activity. Again, the
decision model from Figure 15 is invoked, and the result output is
stored in the corresponding data node written by the invoking ac-
tivity. This decision represents a top-level decision of the diagram in
Figure 15, as no further decisions depend on it. Note, that this deci-
sion depends on subdecisions Response options and Authorization type
that have already been evaluated before. The output results of these
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Figure 15: DMN decision requirements diagram showing decisions of the
debt collection process
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subdecisions are read by the business rule activity and passed along
to the decision model as inputs in such a way that there is no need
to evaluate them again. The corresponding activity specifies the cy-
cle and type of reminders which are sent to customers in case do
not respond to requests. For example, an activity could specify that
a customer should be reminded every five days, in total three times,
the first two times via e-mail, and the third time via phone. This is
depicted in the figure by the condition Reminder cycle [i] annotated
to the timer event model, and the XOR-split conditions i < 3 and
i >= 3 annotated to the outgoing edges of the split gateway, where i
is a number of reminders sent. At this point, it can already be noted
that this process model is not of a very good quality, as it incorporates
the decision logic within the process model.

After sending the authorization document, the company waits
for the customer’s response. If it does not arrive within the time inter-
val specified by the Reminder cycle and type decision, a corresponding
reminder is sent out. If no answer is received after the third reminder,
the case is abandoned. If the signed authorization document is re-
ceived, it is stored in the company’s IT system during execution of
Enter authorization into system activity, and a request of payment (RoP)
is generated and sent to the debtor during the execution of the last
two activities of the process. The remainder of the real process is not
shown here as the illustrated excerpt is sufficient for discussing the
challenges described in this thesis. In reality, the process can go on
for a long time if the debtor refuses to pay. In this case, a lawyer may
eventually get instructed to settle the case in court.

Separation of Concerns: Motivation and Principle
In [178], Taylor et al. state that using a decision model complemen-

tary to a process model is one of the most powerful inter-model syner-
gies available to business process management. Based on a literature
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overview of this area, we distinguish the following three motivations
for modeling decisions complementary to process models:

* Simplification of process model / reduction of complexity. Because
business decisions are identified and managed as discrete ele-
ments of the new process, the process becomes simpler: it has
a single decision-making activity instead of complex decision
control-flow structures in the process design [69, 142, 197]. More
specifically, clusters of XOR-structures describing decision mak-
ing are excluded from the process model and are imported into
a dedicated decision model resulting in less complex process
models [76]. Hereby, these structures can be represented as an
ordered list of rules of decision tables.

e Agility / Better change management. Decisions are the subject of
frequent change in processes [6, 29]. Decision changes occur for
different reasons, such as internal change of business policies
improvements (e.g., to reduce risk or improve revenues as a
response to market changes), or compliance (e.g., imposed by
law changes). The operational decisions must recognize the or-
ganizations’ need for agility: a readiness and ability to respond
quickly to changing business conditions [69]. In business, be-
ing agile means that an organization has the ability to not only
sense environmental change, but also has the capabilities and
processes in place to efficiently and effectively respond to that
change. In [178], it is noted that making changes in decisions
that are complementary to processes reduces time and costs (see
example of costs reduction in Section 1.1). That said, separation
of concerns allows changes in decision models without chang-
ing corresponding process models [197]. According to [70], de-
cision tables containing business rules are particularly useful to
support the agility of processes, as they can incorporate policies
that change frequently and are easily updated. The ability of de-
cision tables to support dynamic changes in environment allows
modifying business process implementation without changing
and redeploying it.

* Reusage of decisions. Separate models allow decisions and pro-
cesses to be reused independently of one another [142, 197]. In
[70], the authors recommend designing decision models and
services complementary to process models in such a way that it
is possible to use them across functions, channels, and lines of
business. FICO, one of the DMN vendors, states in [69], that
the same decision rules, for example, how you deal with a
customer’s order in a particular situation should be applied
identically across your BPMS. This is true especially of com-
pliance, where companies must be able to show consistency of
behaviour. Additionally, inconsistent treatment across systems
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could even leave you accused of bias [69].

In order to clarify how a decision model should be modeled comple-
mentary to process model, a list of corresponding properties should
be specified. Thereby, both process and decision models that are “aware”
of each other should adhere to the separation of concerns principle.
On the basis of [178], we define the decision-aware process model
and process-aware decision models as follows:

Definition 14 (Decision-Aware Process Model). A decision-aware pro-
cess model is a process model that has the following properties:

* Process activities that come to conclusions based on business
logic are assigned with the business rule or user type (such activ-
ities interchangeably referred to as decision activities).

¢ Decision activities in the process model reference a correspond-
ing decision model through undirected association, normally
realized during the implementation phase.

* The process model describes how the data is provided to the
decision model by specifying the involved control flow.

* A decision activity can invoke a decision node from the decision
model at any level. o

Definition 15 (Process-Aware Decision Model). A process-aware deci-
sion model is a decision model that has the following properties:
¢ Each decision node in a decision model can be associated with
one or more process models or activities.
¢ Decision nodes in the decision model are stateless and decou-
pled from the control flow.
* Not all decision nodes need to be explicitly invoked by a deci-
sion activity from the process model. o

An example of a business rule activity (or a decision activity) is the
activity Collect client data in Figure 13. An idea of undirected associa-
tion between process and decision models is illustrated in Figure 13
with the help of bold arrows 1 and 2 (the arrows are not part of the
modeling notation).

The concrete examples of invocations of decision models by pro-
cess models follow. For instance, the decision activity Determine autho-
rization type and response options in Figure 14 invokes subdecisions Au-
thorization type and Response options in Figure 15, and the decision ac-
tivity Determine reminder cycle and type invokes the top-level decision
in Figure 15. Decision Place of jurisdiction in Figure 15 is not invoked
by any decision activity in Figure 14, but it is invoked by decision
Authorization type in Figure 15, since the second decision needs the
first decision as input.

Although separation of process and decision concerns (e.g., as
presented in Figure 13) is prescribed by the DMN standard, most
of today’s business processes are not designed to be decision-aware
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[18, 197]. According to [178], decision modeling is an emerging tech-
nique that has yet to be widely adopted. In many companies the
state-of-the-art managing of process decisions is implemented “in an
obscure fashion in some application code by technical people” (in
[29], p-4). This served as our motivation for providing stakeholders
with methodologies for discovery of decision models complementary
to process models.

2.4 EXECUTION OF PROCESSES AND DECISIONS

Once a business process is designed and configured, it can be
executed. In this section, the formal foundations are laid to cover
business process and decision execution.

2.4.1 Process Enactment

The execution can be performed completely automatically, com-
pletely manually, or a combination of both. In this thesis, we do not
differentiate between automatic or manual executions, yet, we impose
certain restrictions on how the execution of a process has to be logged
in order to apply the introduced techniques.

Definition 16 (Process Execution, Process Instance, Activity Instance).

Given a process model pm, a process execution is a sequence of activ-
ity instances aiy ...ai,, n € INT, where each ai; is an instance of an
activity in the set of activities T of pm. o

Event logs are central artifacts of process executions [184]. An event
is a real-world happening occurring in a particular point in time at a
certain place in a certain context [85, 119]. In [67], an event is defined
as either a real world occurrence (e.g., an incoming phone call), or an
observation of a real world occurrence within a particular system or
domain (e.g., a missed call log at the desk phone).

In the context of business process management, the systems that
store and manage information related to processes are called process-
aware information systems [62, 182]. More specifically, a Process-Aware
Information System (PAIS) is a software system that manages and ex-
ecutes operational processes involving people, applications, and/or
information sources on the basis of process models (cf. [182]). As can
be seen from Figure 1, PAIS are recording real-world events in event
logs. PAIS include all kind of workflow management systems: ERPs,
CRMs, rule-based systems, etc.

In our work, we refer to particular occurrences of real-world
events in a PAIS as event instances. We abstract from the technological
details of how events are collected from different sources. Thereby,
we work at the abstraction level of event logs that capture relevant
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Event ID | Trace ID Activity Other attributes
e1 1 Collect client data -
e 1 Determine discount | VIP status = No, Age = 34[yrs]
es 2 Collect client data -
ey 2 Determine discount | VIP status = Yes, Age = 28[yrs]
es 1 Record discount Discount = 15[%]
e 2 Record discount Discount = 25[%]

Table 1: An example event log for the process of assigning a discount to a
client

events of a business process grouped by the corresponding case, as is
also defined in the process mining literature [184].

Below we specify definitions of event instances, attributes, traces
and logs. When an event instance is recorded in a PAIS, among other
attributes, it normally also has a unique identifier and a time stamp.
We assume that an activity name in the process model corresponds
to related event instance name in an event log.

Definition 17 (Event Instance, Attribute, Trace, Log). Let E={e;,
...n}, NEINT, be a finite set of n event instances and A={Ajy, ..., Ay},
veINT a finite set of v attributes. Each attribute a€ A is associated with
a domain Dom(a), which represents a set of either numeric, or nomi-
nal values. Each event instance e€E has tuples (a,y), ac A, ycDom(a)
assigned to it. A trace is a finite sequence of event instances ecE, such
that each event instance appears in it once. An event log L is a multi-
set of traces over E. o

Note that in general event logs are not restricted to the components
in this definition in general. Rather, many information systems keep
track of additional aspects of events, e.g., roles, used resources, costs,
data. However, in this thesis the data attributes, the values of which
are assigned during process execution. We assume that the environ-
ment that generates the events also sets the timestamps of the events.

Table 1 shows an example event log for a process model of credit-
risk assessment in a bank. Thereby, event instances are labeled by
names of executed activities associated with values of data attributes
attached to them. For each event instance e, the event log records
the event instance ID, the trace ID referring it to the corresponding
process instance, the name of the executed activity, and the subset of
event attributes logged when a token is produced by the correspond-
ing transition. For example, the event instance e, has the following
attributes: VIP status = No, Age = 34 [yrs]. All other information,
e.g., the timestamps of event instances, is discarded.
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2.4.2  Executing Decisions Complementary to Processes

During process execution, a point can be reached at which a de-
cision needs to be made. If the principle of separation of process and
decision logic is supported, the process activity that invokes a corre-
sponding decision model supplies the decision-making system with
input data. Next, the decision is “made”, and the result is returned to
the invoking activity.

Automating decisions in business processes involves identifying
or modeling the business knowledge required to make those deci-
sions and codifying it in a machine-executable form. The knowledge
can then be automated by encapsulating it in services that execute
the decisions. Next, decision management systems provide a means
for executing decisions [70]. If decision models are represented by
decision tables, such decision models are implemented and executed
utilizing business rule engines [14, 54, 114, 117, 200]. A business rules
engine is a software system which evaluates process execution data
against a set of decision rules from decision table, and provides deci-
sion output. The matching of outputs against inputs is done by infer-
ence engines. Inference engines are provided by a variety of vendors,
e.g., open-source project Drools, JRules, and Open-Rules, or commer-
cial products such as Corticon. As well, there exist inference engines
provided by scientific community, e.g., as in [4] and [198].

In our thesis, we abstract from the technological details of deci-
sion execution, which can be found in the works cited above. Thus, we
only focus on modeling decisions complementary to process models.
However, since implementing decisions is one of the goals of decision
modeling, we assume that all the information necessary for decision
execution is provided by decision models through the decision re-
quirements layer, and the decision logic layer.

The integrated execution of processes and decisions can be illus-
trated as follows. When the process in Figure 13 is instantiated with
the arrival of a new client, the bank worker retrieves Client’s record
data from the information system, and next, the worker performs ac-
tivity Collect client data to get an information about the client such
as VIP status and Age. The instantiation of decision activity Determine
discount from the process model invokes corresponding decision from
the decision requirements diagram depicted in the centre of the same
figure. Decision Determine discount from the decision requirements
diagram invokes decision table depicted in the right of the same fig-
ure. The decision rules in the decision table are evaluated against the
client’s data, and the inference mechanism yields the matching out-
put discount. This data is used in the last process step by the worker
during the execution of activity Set discount.
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2.4.3 Summary

In this chapter, we discussed preliminaries for our work, main
concepts of business process management and decision management
domains. Firstly, we introduced the definitions of business process,
business process management, and business process management
system. Secondly, we explored which decisions are relevant for busi-
ness process management and came to a conclusion that operational
decisions are best suited for integrated process and decision manage-
ment as they can be easily formalized, implemented and reused in
processes. Considering the operation nature of decisions relevant for
business process management, we introduced definitions of a deci-
sion, decision management, and decision management system. Fur-
ther we explored state-of-the-art integrated usage of business process
and decision management. Our conclusion states that although stake-
holders need integrated solutions, they do not have a comprehensive
methodology on how to design them, i.e. how to exactly realize sepa-
ration of process and decision concerns introduced in [60, 142, 197].

Next, we introduced integrated business process and decision
management lifecycle which grasps such phases as design, configura-
tion, enactment, and evaluation of decisions and processes. Although
the phases of the introduced lifecycle are organized in a cyclical struc-
ture, the dependencies between phases do not imply a strict temporal
execution ordering of them, especially if to take into account the the
evolution of process and decision management at real enterprises is
not necessarily simultaneous.

Afterwards, we provided formalizations of process and decision
models. We motivated usage of the BPMN standard as a notation to
describe processes as de facto standard, where the DMN standard
is a logically complementary notation to describe process decisions
provided already by many vendors. Using these notations, we intro-
duced examples of process and decision models and demonstrated a
possible implementation of the separation of concerns principle. The
introduced formalization helped us to introduce later a formal spec-
ification of the elements and the relationships that form a decision
model which can be designed and executed complementary to pro-
cess model.

Lastly, we introduced formalisms connected to the execution of
processes and decisions, such as process and decision instantiation,
and event logs. This includes the notion of a process-aware informa-
tion system that serves for management and execution of processes
and decisions. The execution information about processes and deci-
sions serves as an important source of information which can be in-
cluded into the process of discovery of decision models complemen-
tary to process models.



RELATED WORK

n this chapter we elaborate on the work which is related to the
I research presented in our thesis. Figure 16 presents our literature
classification. On a high level, the related works can be divided into
two groups. The first group refers to the work on properties of deci-
sions taken in processes. The second group is related to approaches
to design of decision models complementary to process models.

3. Related Work

Approaches to Design
Decision Models
Complementary to
Process Models

Properties of Process
Decisions

[ 1 1
3.5. Automated
3.1. General 3.2. Decision Logic|| 3.3. Separation of 3.4. Manual and Semi-
Characteristics of || Representation in Process and Decision Model automated
Decision Making || Process Models ||Decision Concerns Design Decision Model
Design
I—I_I

3.5.1. Discovering
Decision Models
from Process
Models and Data

3.5.2. Discovering
Decision Models
from Event Logs

Figure 16: Classification of related work

The first group is presented in Sections 3.1—3.3. We start with an ex-
ploration of general decision characteristics stemming from the de-
cision theory in Section 3.1. We classify the decision characteristics
into either those which are intrinsic to the decisions considered in
our thesis (see Chapter 2), or those which could be considered in
future works. In Section 3.2, we explore different approaches for rep-
resenting decisions in process models and relate them to our work.
Section 3.3 presents the related work which motivates and explains
the paradigm of separation of process and decision concerns.

The second group is dedicated to different approaches to de-
sign decision models complementary to process models. Process de-
cision design can either be made by humans, or automatically or semi-
automatically derived from process-related information. We explore
works dedicated to manual design of decisions in Section 3.4. The
works dealing with automated and semi-automated design of deci-
sion models complementary to process models can also be divided
into two groups, depending on which process information is avail-
able. Thus, Section 3.5.1 introduces existing techniques on discovery
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of decisions from process models. Next, Section 3.5.2 presents state-
of-the-art approaches on discovery of decisions from event logs.

Next, Sections 3.1-3.3 present the works related to the process
decisions properties, representation of process decision logic in pro-
cess models, and the principle of separation of process and decision
concerns.

3.1 GENERAL CHARACTERISTICS OF DECISION MAKING

Design of real-life decision models complementary to process
models is a big challenge which implies the collaboration of busi-
ness and IT professionals. Members of these communities are typi-
cally characterized by different professional backgrounds [202]. What
could serve as a bridge between both sides, is the decision theory
which is a discipline dealing with applications of mathematics, statis-
tics, economics, management, and psychology for studying common
factors influencing decision making and identifying the ways of its
improving [66, 152, 174]. Further, we provide a classification of the
general characteristics of decision making based on our literature re-
view of the decision theory, with the aim to cover an intersection
between the decision and business process management theories.

The core setting of decision theory is a decision problem that
consists in an occurrence of a subject decision maker whose aim is to
make an optimal choice between a finite set of alternatives resulting in
a possible outcome event [152].

There exist multiple characteristics of the decision problem and
its elements. Figure 17 presents general characteristics of the decision
making derived by us from [33, 42, 66, 68, 131, 152, 207]. We divided
these characteristics into decision factors and properties. Factors are
used as categorical variables, and they are denoted with letter F fol-
lowed by the factor number, e.g., F1. Properties express concrete char-
acteristics of decisions, and they are denoted with letter P followed
by the property number, e.g., P1.

As depicted in the figure, we distinguish 4 general factors influ-
encing the decision problem: (1) Novelty; (2) Stucturedness of prob-
lem statement; (3) Information characteristics; and (4) Representation
of elements of decision problem. As it can be seen from the figure,
some of the factors are decomposed into subfactors. Herewith, we
distinguish 33 decision properties and explore their relation to deci-
sion models designed complementary to process models, which are
our research subject as defined in Section 2.3.3. The relation of gen-
eral characteristics of DMN decision models, considered in this thesis,
is presented in the corresponding column of Figure 17.
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(F1) Novelty

With regards to novelty (factor F1 from Figure 17), decisions can be
distinguished as unique (property P1) and repeated (property P2), as
discussed in [152]. In unique decisions, a problem or context are new
for a decision maker. In such tasks, the decision maker dynamically
identifies his preferences and makes a choice based on the analysis
of the current situation. In contrast, in repeated decisions, a decision
maker learns from previous experiences and applies some rules or
procedures of the decision making which become available, as there
is a possibility to observe results multiple times. With the course of
time, the quality of such decisions becomes higher.

The unique decisions are not so well suitable for being modeled
in processes, as the process model should serve as a blueprint for
future executions of business process instances reflecting repeatable
business situations [202]. In the DMN standard, the elements describ-
ing decision problems arising in processes are decisions (see Defini-
tion 4). As discussed in Section 2.1.2, DMN is rather aimed at support-
ing repeated operational decisions made in day-to-day business pro-
cesses. Thus, the scope of properties of decision models considered
in this thesis include only property P2, i.e. only repeated decisions
are considered. However, some new approaches for complementary
process and decision modeling also grasp the unique decision situa-
tions. For instance, in adaptive case management approach presented
in [130], a case manager creates an individual execution path for each
process instance (e.g., a doctor defining a clinical pathway for a spe-
cific patient). Thus, representation of novel decisions during design
of decision models complementary to process models can be consid-
ered in future works.

(F2) Structuredness of Problem Statement

The decision problems can be divided into well-structured (property
P3) and ill-structured (property P4) [174]. In management science, a
problem is well-structured if following is true (cf. [174]):

e It can be described in terms of numerical variables, scalar and
vector quantities;

* The goals to be attained can be specified in terms of a well-
defined objective function, e.g., the maximization of profit or
the minimization of cost;

* There exist algorithms that permit the solution to be found and
stated in actual numerical terms.

A problem is ill-structured when it is not well-structured. An example
of an ill-structured decision could be a credit-risk assessment decision
taken by a bank worker based purely on his intuition.
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The corresponding DMN elements encapsulating the structured-
ness characteristics are decisions. DMN prescribes management of de-
cisions which can be well formalized, analyzed, implemented, and
reused in multiple processes. As discussed in Section 2.3.2, for our
work we focus only on the decision logic that can be represented
with the help of decision tables. In such a manner, in our work we
focus only on well-structured decisions. In other words, property P3
holds for our research subject, decision models designed complemen-
tary to process models.

(F3) Information Characteristics

Another factor influencing decision making in processes is informa-
tion characteristics (factor F3 from Figure 17), in conjunction with cor-
responding subfactors depicted in the figure.

The first subfactor is information type (factor F3.1). With respect
to this subfactor, decisions are quantitative (property Ps) if they are
expressed in terms of numerical variables, or qualitative (property
Pé6) if they are expressed in textual or verbal form. As in our thesis
we consider decision models complementary to process models that
are designed with the help of modeling notations, it can be stated
that both properties P5 and P6 hold for them. Process modeling no-
tations like BPMN support both types. For example, in BPMN the
labelings of process activities express qualitative information, but the
attributes values of process activities express quantitative informa-
tion [138]. Analogously, in DMN the labelings of decisions and in-
put data express qualitative information, but decision tables of the
decision logic layer express quantitative and qualitative information.
Although any type of information is acceptable, the preference is for
quantitative objectively measurable data as one of the goals of deci-
sion and process model is future execution of models, which in such
case will be less prone to errors due to possible misinterpretations of
qualitative data.

The second subfactor, information determinancy (factor F3.2), refers
to the predictability of the availability of information or data related
to decision-making. Thus, decisions can be taken under certainty (prop-
erty Py), under risk (property P8), or under complete uncertainty (prop-
erty P§), according to [152]. In this thesis, we only consider decisions
taken under certainty, since our goal is to provide decision models
that can be executed complementary to process models in a deter-
ministic way. The reason for this is that the decision models that we
consider aim to capture repeated operational decisions which by na-
ture are rather prescriptive and deterministic, i.e., those which sat-
isfy property Py. However, future extensions of our work could in-
clude decision making under risk, and under complete uncertainty.
For exapmle, incorporation of decisions considering all of the three
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properties mentioned above into BPMN models with the help of en-
hanced XOR-gateways was done in [40]. Future extension of our
work could analogously include different types of information deter-
minacy to DMN decision models designed complementary to BPMN
process models, and provide corresponding discovery techniques.

With respect to the next subfactor, information nature (factor F3.4),
decisions can be distinguished into two types. Objective decisions
(property P10) are derived empirically from historical by some mea-
surements or calculations. Subjective decisions (property P11) are nor-
mally human-made decisions. In BPMN, the information nature can
be reflected at the modeling level, for example, through assigning the
corresponding task types, e.g., human or service tasks (see Figure 6).
That is reason why we consider that properties P10 and P11 are satis-
fied for decision models designed complementary to process models,
the research subject of this thesis.

The final subfactor influencing a decision problem is its depen-
dency on time which also allows to distinguish decisions into two
types. In static (property P12) decisions, the information is considered
as constant. If the information at the moment of decision making is
a subject of change, such decisions are dynamic decisions (property
P13). The static tasks are rare in reality and usually are considered
as simplification of real dynamic life [152]. For example, the dynamic
nature of decisions incorporated in process models (e.g., in condi-
tions of XOR-gateways in BPMN process modes as demonstrated in
[40]) can be observed when the process is instantiated. Then, process
and decision execution operates on data about the current process
instance which influences the decision outcome. From this point of
view, the dynamism property is relevant to decision models that is
our research subject, i.e., property P13 holds for them.

(F4) Representation of Elements of Decision Problem

The last factor influencing decision making is representation of elements
of the decision problem (factor F4), which naturally plays a significant
role in decision formalization. Firstly, all decision problems can be
categorized by a number of decision makers (factor F4.1) into individ-
ual decision making (property P14) with exactly one decision partici-
pant, and collaborative decision making (property P15) with more than
one decision participant [33, 33, 42, 68, 131, 207]. In the case of col-
laborative decision problems, there exist a number of group-specific
factors of decision making, e.g., the type of aggregation of preferences
such as full (property P23), partial (property P24), or dictator (property
P25) [152].

Another group-specific factor is types of decisions (factor Fg.1.2),
an example of which could be an aggregation of preferences in ax-
iomatic type (property P26) according to a defined principle by tak-
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ing mean or maximum of rankings. The rest of the decision types
are shown in Figure 17 (properties P28-P30) and discussed in more
details in [152]. Finally, in groups the decisions are made depending
on the type of data access for participants to the information (factor
F4.1.3), i.e. to the preferences of the other decision participants.

The decision processess can also be distinguished by the type of
the representation of preferences. In holistic decision processes (P16),
a decision maker is able to instantly form a comprehensive overview
of the problem and make a decision based on his or her professional
experience and intuition. For example, an experienced manager im-
mediately knows which products will be in demand, to whom al-
locate a task execution. In contrast, in decision problems designed
on top of criteria choice (property P17), it is supposed that a decision
maker makes choices based on predefined single or multiple criteria
(properties P21 and P22). At last, the decision problems differ in final
solution requirements (factor F4.3), which could be choosing classifica-
tion of alternatives (property P18), ranking of alternatives (property
P19), and choosing the best alternative (property P20).

In process models the decisions are represented by rather simple
control flow structures as split gateways in BPMN, or by separating
the decision modeling from the process model notation as in decision
modeling notation [142]. Also, the decision nature of an activity can
be represented by the business rule or activity type (see Figure 6). In
the DMN standard, representation of elements of a decision problem
can be done by both decision requirements level, and decision logic
layer. Decision problem reflecting business know-how is captured in
the DMN standard most commonly with the help of decision tables.
Hit policies of decision tables encapsulate output requirements and
criteria choice of decision output, i.e., properties P17, P18, P19 and
P20 hold for DMN decision models that we consider in our thesis.

At the current moment, the resources involved in decision mak-
ing are not graphically presented in DMN models: decisions can be
only be indirectly annotated with information about involved deci-
sion makers or decision owners. Since in the current moment, the
resource perspective is weakly supported by the DMN standard, we
also exclude if from the scope of our thesis. In such a way, the decision
making supported by decision models which we aim to discover from
process models is viewed as individual, so that property P14 holds.
If the resource perspective gains momentum in further versions of
the DMN standard, extension of our techniques for discovering deci-
sion models complementary to process models can be done. Also, at
the present moment it is not possible to model complicated decision
types in BPMN or DMN models.
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3.2 REPRESENTATION OF DECISION LOGIC IN PROCESS MODELS

In this thesis, we investigate how decision models can be dis-
covered from process-related information. As discussed by us in Sec-
tion 1.1, this information can be discovered from process model and
data. We present the concrete techniques to discover decision models
from process models and data in Chapters 4 and 5. For positioning
our work, below we present the related work dedicated to different
ways of representing decisions in processes.

Typically, decisions are represented in process models as XOR-
gateways [60, 63, 138, 202]. An example of expressing decision logic
with the help of XOR-gateways is given for a discount assignment
process in Figure 5. There also exist enhanced approaches on embed-
ding extra-decision rules in process models. For example, in [40], the
authors introduce the rule-based XOR-split gateway which allows to
specify different kind of rules which route the process when making
a choice which alternative path to follow after the gateway. Thereby,
the traditional way of representing the decisions in BPMN with a con-
trol flow is enhanced, since the whole process fragments consisting of
consequential activities are taken into account. The drawback of such
modeling approach is that as soon as the decision logic becomes more
complicated, it becomes very hard to embed it in a single XOR-split
gateway.

On the other side of the related works spectrum are works ded-
icated to modeling decision logic of processes through rule-based
constraints for process models. For example, in [153], a framework
is proposed that is grounded in constraint logic programming for
representing and reasoning about business processes from both the
workflow and data perspective. One of the first attempts to provide
a formal execution semantics for expressive BPMN workflows in the
presence of data and arithmetic constraints is presented in [96].

Our work presented in [18] was one of the first to consistently
analyze a process model repository consisting of around 1000 real
process models, and to come up with patterns of embedding deci-
sion logic in control flow. As we discovered, indeed the majority of
process decisions are encoded in process models through fragments
consisting of XOR-gateways and corresponding control flow of activ-
ities. The results of our analysis cound be found in Chapter 4.

Another way to represent decisions in processes is through data
flow of process models. Our works [19, 20] explore how decisions can
be modeled in process models through data-flow structures. In our
works we show that decisions can be encoded in attributes of data
objects. Among other data-centric approaches which can be used for
modeling process decisions is a methodology of Product-Based Work-
flow Design defined by means of a Product Data Model (PDM) [158, 180,
189]. In this approach, components of a decision outcome (product)
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are defined by data elements representing the smallest, meaningfully
distinguishable portions of information. PDM consists of a finite set
of data elements, data processing steps, and corresponding rules ap-
plied on top of them. There exist other data-centric process modeling
approaches that use different types of data representation and input,
such as the ontology-based knowledge-intensive approach in [154],
or an approach on enhancing DMN and declarative process models
[127]. The above mentioned approaches can be useful to model pro-
cess decisions, but only in the cases where the process is purely data-
centric. However, the focus on data often downplays the holistic view
that should be achieved to support process decisions. In our work, we
adhere to the principle of separation of concerns where decisions are
modeled to complementary to processes, which allows for activity-
centric focus in process models, and data-centric focus in decision
models.

Another way to integrate decision logic into process model is
through annotations for activities [199]. In this case, the textual ele-
ments are attached to graphical symbols within the process model
to represent extra information about process decision making. For
example, the routing rule for discount assignment from Figure 5 “If
the client is VIP, and he is older than 40 years old, then assign 29%
discount” can be simply annotated as a textual commentary for a
process model. The works on natural text processing [73, 110] can be
used to analyse such annotations and discover decision models from
such textual commentaries, but this is out of the scope of this thesis.

To sum up, in existing approaches the process decision logic
is expressed mostly through control-flow structures containing XOR-
gateways. In our work we consider both control flow and data per-
spectives. We provide a methodology to extract decision logic from
control flow of process models in Section 4, and from data flow of
process models in Section 5.

3.3 SEPARATION OF PROCESS AND DECISION CONCERNS

As discussed in Chapter 1.1, we use the principle of separation
of concerns as a motivation for our research on discovery of decision
models complementary to process models. Below we introduce the
related works which are dedicated to the separation of concerns prin-
ciple, and link it to our work.

The separation of concerns principle has attracted a lot of atten-
tion in the domains of software modeling and design [60, 80, 102, 197].
It was pointed out in [179] that managing decisions separately from
processes is important for agility and traceability of both. According
to [158], if decisions are not explicitly designed in a dedicated model,
that could lead to problems during execution of decisions. In [180], it
is also pointed that modeling languages such as BPMN are not meant
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to represent the complex decision logic, and that inclusion of detailed
decision logic in process models often results in complex, spaghetti-
like models.

The concrete exploration of how to model decision logic comple-
mentary to process logic was done in [76]. In this paper, the authors
introduce several kinds of business rules that can be used to generate
less complex contol-flow-based process models. They include deontic
assignments that specify data access for process and decision partic-
ipants, and reaction rules describing actions that are to be taken as
results of events. Debevoise et al. in [60] distinguish several categories
of operational decisions that can be included in a decision model de-
signed complementary to process model. The examples include inclu-
sive task sequencing, participant assignment, exclusive gateway, and
data coming from events preceding decision tasks. The externaliza-
tion of business logic into business rules implemented as a process
activity type was also discussed in [75].

The works mentioned above argue for separation of concerns,
and propose several patterns of inclusion of decision-related process
information into decision models. However, a holistic methodology
on extracting such kind of information from process model is lacking.
Therefore, we argue that there is space for extensive research and
development in the area of mining decision models complementary
to process models.

In [77], the authors state that declarative modeling approaches
lead to more design- and run-time flexibility, better compliance guar-
antees, and higher expressibility. Since decision models are declara-
tive in nature [197], combining them with business process models
could help to achieve these benefits, and additionally preserve the
benefits of separation of concerns. However, adaptation decision rules
in such cases would be limited to handling changes in values of the
data model, i.e. the adaptation can only manipulate the data model
values and not the process itself. If a change in the process itself is
required, some extra specification is needed.

Although one motivation for separation of concerns is the po-
tential to increase flexibility of process and decision models, in this
thesis we do not consider how to evaluate this characteristic of mod-
els. Nevertheless, there exist a plenty of related works that can be
of use for achieving this. For example, Reichert et al. [156] introduce
flexibility measures for processes which can be used in future works
for evaluation of how flexible do process model become if their de-
cision logic is externalized in a complementary decision model. An
analysis of flexibility of processes enhanced with such decision for-
malisms as decision tables is addressed in [31] which demonstrates
the agility benefit of decision-aware processes.

In [105], the authors introduce an approach for managing busi-
ness process variability based on configurable process modeling nota-
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tion incorporating features for capturing resources, data and physical
objects involved in the performance of tasks. In configurable process
models, the variations of processes are capturing mostly process prop-
erties, whereas in separated decision and process design, the decision
models capture mostly declarative decision logic. However, decision
modeling can be potentially applied complementary to configurable
process models.

Although the separation of concerns principle has gained popu-
larity among both academic, and industrial circles, it is important to
note that there exist situations under which it is better to model a deci-
sions as a part of a business process model. Thus, Wang et al. in [199]
distinguished factors which influence the question of integration of
business rules in process models. The top factors “for” separation of
concerns are the ones that we also use in Section 1.1 for motivation
of complementary usage of decision and process models: increased
agility, rate of change, reusability, and accessibility of decisions in
processes. However, the authors prove that there are two situations
when it is better to integrate it in a business process model: (1) When
a decision rule changes infrequently; (2) When a rule’s reusability
is low. Thus, if in a real process, any of these two situations can be
observed, we recommend to exclude corresponding decisions or de-
cision rules from being considered as a part of a decision model to be
constructed complementary to process model.

Various Platforms and Ontologies

Lately, both scientific and business communities shared increasing in-
terest towards exploring the decision support in organizations demon-
strated by an increasing number of emerging approaches on different
decision ontologies [104] and decision service platforms [6, 210].

The industrial solutions for separation of decision from process
logic include SAP Decision Service Management [6], IBM Decision
Manager [29], or Signavio Decision Manager [172].

In [102], a tool chain for creation of both models relying on con-
crete infrastructure and business rules is presented. The authors of
[104] present a decision ontology for supporting decision-making in
information systems. Another decision ontology is proposed in [30]
as a “domain-specific modeling method that is integrated with an
existing enterprise modeling method for describing and communicat-
ing decision processes”.

A promising approach on viewing decisions “as-a-service” com-
plementary to application process logic is discussed by Zarghami et
al. [210]. Their approach introduces both synchronous interaction be-
tween process and decision service, and asynchronous interaction.
Synchronous request-response manner means that the process always
call the decision service at some predefined decision points, which
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is supported by the DMN notation. Zarghami et al. introduce asyn-
chronous interaction such as that there is a change in the environ-
ment, the decision service notifies the process at runtime, thereby
adapting it. Such type of communication could be taken into account
by modeling decisions, but we do not do it as we stick to the DMN
standard.

In order to deal with the changes that can arise from runtime
contextual changes or the change of user requirements and prefer-
ences, an approach for decision services modeling is proposed in
[197]. Thereby, the authors propose that the ”stable” process logic
is specified in terms of processes while rules are employed to specify
conditions and constraints which can be dynamically adapted accord-
ing to runtime circumstances. The rules are exposed as an indepen-
dent decision service which can be called from the process.

Despite an increased interest towards complementary process
and decision modeling, the stakeholders are still missing a holistic
approach to automatically externalize decision logic of BPMN pro-
cess models into a complementary DMN decision model, which we
aim to cover in our thesis.

DMN and other OMG Standards

There exist a number of the OMG standards aiding design, execution
and maintenance of enterprise decisions and processes. Below we dis-
cuss the related OMG standards, an overview of which can be seen
in Table 2 .

The OMG consortium mandates separation of process and deci-
sion concerns. Thus, it recommends to model processes with the help
of the BPMN notation [138], and to model decisions complementary
to processes with the help of the DMN notation [142]. Thus, in this
thesis we decided to consider the DMN standard for exploiting the
decision logic alongside BPMN for exploiting the process logic. The
DMN standard has been designed to work alongside BPMN, provid-
ing a mechanism for modeling the decision-making represented in a
task within a process model. It is not obligatory to use DMN in con-
junction with BPMN, but these two standards are highly compatible.
Works on separation of process and decision concerns - [197], [60]
and [102] - utilize these standards but do not provide a methodology
of how to separate concerns. In [60], the authors provide the concrete
examples of BPMN models with the integrated elements of DMN.

Another OMG standard, namely Case Management Model and
Notation (CMMN) [141], exists for modeling cases of business pro-
cesses, which are used to represent less structured or discretional
activities. Similarly to decision activities in BPMN, the CMNN cases
can contain decision tasks which can invoke corresponding DMN de-
cision models. Thereby, the CMMN standard indicates that inputs of



3.3 SEPARATION OF PROCESS AND DECISION CONCERNS

Standard

Decision-related
artefacts

Decision-related func-
tions

BPMN [138]

Process model

-Description of decision-
making steps in process
models;

- Invocation of a DMN
decision model

CMMN [141]

Case model

-Description of decision-
making steps in case
models;

- Invocation of a DMN
decision model

DMN [142]

- Decision requirements
diagram;
- Decision logic

- Description of deci-
sion requirements and
logic;

- Provision of decision
outcome data to a
BPMN process model

SVBR [143]

- Business rules;
- Business vocabularies

- Defines business vo-
cabularies and facts for

a DMN decision model

- Business objectives - Provides strategic
guidance for modeling
process and decision
models

BMM [139]

Table 2: An overview of the OMG standards related to decision making in
processes

a CMNN decision task can be mapped to inputs of the corresponding
DMN decision model, and outputs of the DMN decision model can
be mapped to outputs of the CMMN decision task [141]. The guide-
lines on modeling decisions complementary to case models were pro-
vided, for example, in [97] and [84]. Although separation of concerns
for case models and decision models is not addressed in our thesis,
discovery of decision logic from case models or context information
appears to be an interesting research question for future works.

The OMG consortium also presents another standard for repre-
senting decision rules in processes: Semantics of Business Vocabulary
and Business Rules (SBVR) standard [143] which provides tools for
specifying business rules and vocabularies in natural text expressions.
This notations is mostly targeting the people who do not have sub-
stantial technical knowledge, but have a deep knowledge how the
company works. In [101], the translation from SVBR to BPMN and
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DMN models is presented, which could aid stakeholders already hav-
ing SVBR rules designed in order to utilize the DMN models. There-
fore, the translation mentioned above can be used complementary to
techniques presented in this thesis, in case if a company does not have
BPMN process models or execution data, but it has SVBR models.

The Business Motivation Model (BMM) [139] can be used for
strategical guidance for designing and executing the DMN decision
models. In particular, the business objectives defined by the BMM
model can be associated to business performance attached to deci-
sions in decision requirements diagrams. This allows to measure and
monitor the related decision model’s effectiveness, which can poten-
tially serve for improving decision making in processes.

In Sections 3.1-3.3 we discussed the works related to proper-
ties of process decisions. Sections 3.4-3.5 present works from the sec-
ond group of related literature which is related to discovery of deci-
sions from process-related information. Section 3.4 discusses works
on manual design of process decisions and are they related to re-
search conducted in this thesis. Further, Section 3.5 presents related
works on automated and semi-automated discovery of decisions from
process-related information. Afterwards, the chapter is concluded by
a short summary of all the sections.

3.4 MANUAL DECISION MODEL DESIGN

Process decisions can be either designed by humans, or auto-
matically derived from process-related information. Our thesis pro-
poses semi-automated techniques for discovery of decision models
from process-related information such as process models or event
logs. However, manual design of decisions complementary to process
models can be viewed as an alternative way for modeling decisions
in processes. Below we provide an overview of different methodolo-
gies for manual design of process decisions, and propose when they
can be used instead of our approach for discovery of decision mod-
els from process-related information. Since there exist multiple tech-
niques for modeling decisions, we consider them in the section below
in a historical order of appearance, as presented in Figure 18.
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Figure 18: Decision modeling timeline
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Pre-"gos: Early Period of Decision Tables

The history of operational decision management finds its origin in
decision table modeling, whereby rules used for decision making are
represented in a set of related decision tables. Earlier descriptions of
the decision table concept can be found in [121, 148]. The Canadian
Standards Association (1970) was the first to issue a formal standard
for decision table modeling and execution. The ability to represent
conditional logical expressions in a compact manner and the ease of
adaptation and consistency checking were considered as a solution
to the problem of growing software complexity [45]. Originally, the
decision tables were manually translated into code. A number of spe-
cific languages and initial preprocessors were developed in ‘60s in
order to convert two-dimensional decision tables into linear program
code. Later, an attention was paid to optimization of the conversion
process, followed by emanation of more powerful commercial prepro-
cessors [150, 196]. The experiences and best practices on decision ta-
ble modeling and execution [45] concluded that, when properly used,
decision tables can serve as an excellent tool for problem analysis,
specification, and implementation. Starting from '8os, the application
area of decision tables was extended from programming towards var-
ious other domains such as knowledge engineering and validation,
conditional logic representation, rules and regulations, etc. [190]. Fur-
thermore, the emphasis moved towards the power of decision tables
to represent complex decision situations in a simple manner, allow-
ing non-complicated checks of their consistency, completeness and
correctness [49, 135].

‘90s: Decision Tables and Business Rules as Tools of Knowledge-Based
Systems

In the ’gos, the role of decision-support tools for companies play
knowledge-based systems [192], the lifecycle of which is represented
by a set of phases of knowledge acquisition, target representation,
and implementation (see Figure 19a). During the acquisition phase,
business know-how is acquired and verified. Next, this know-how is
transformed into a suitable representation, depending on the problem
characteristics. Finally, the knowledge formalisms are implemented,
considering such factors as order and relevance of the rules and con-
ditions, execution time efficiency etc.

In parallel to the evolution of knowledge-based systems, an-
other view on decision-making support is developing in this period
which is represented by a concept of business rules management
[161]. The phases of business-rules management lifecycle are simi-
lar to the phases of knowledge development lifecycle and they are
presented in Figure 19b. During the phase of acquisition of business
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Figure 19: Different views on decision-making phases in ‘gos

rules from Figure 19b, enterprise objectives and constraints are col-
lected for generation operational business rules. During the deploy-
ment phase, the rules are realized by an enterprise information sys-
tem. In the evolutionary phase, based on the information provided by
the monitored data, it is determined if some business rules are incor-
rect or incomplete, and corresponding improvements are conducted.
From Figure 19, it can be seen that the phases of business-rules man-
agement are similar to the phases of decision table management, and
so are these two concepts, although during the discussed period they
are represented by different streams of works.

During this period, decision tables serve as a powerful tool for
implementing the knowledge development lifecycle [191]. The deci-
sion table management lifecycle of this period often complies to the
phases presented in Figure 20. It starts with identification of the lists
of business conditions, their states, and possible actions. During the
phase of decision rule definition, a decision problem is described as
a series of logical “if-then” relations which map combinations of con-
dition states and actions to be executed. Once the input data is de-
fined, the decision table is constructed, and further, it is checked for
completeness, correctness and consistency. Simplification of decision
tables happens if it is possible to contract tables by minimizing the
number of their columns or rows for the given condition order. At
last, optimization of decision tables can be done, e.g., by techniques
of optimal decision tree generation [112, 123].
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Figure 20: Stages of decision table management in the ‘gos (cf. [191])
2000s: Enterprise Decision Management and BPM

Around 2005, a new concept of Enterprise Decision Management
(EDM) appears, which promotes flexible information-driven processes
and conversion of data into intelligence which is able to guide and
execute enterprise decisions [124]. The EDM approach implies appli-
cation of rule-based systems in conjunction with analytic models in
order to automate, improve, and distribute decision-making capabili-
ties across an organization [82]. The newly defined knowledge man-
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agement lifecycle typically enables shorter change cycles, and it shifts
more responsibility for stewarding business changes from technical
to business people. Around this time, agility was identified as a key
criteria for successful decision automation, whereby business rules
management systems (BRMS) were identified as a primary mecha-
nism for automating decisions [176].

In parallel to the evolution of decision management, starting
from the early '9os, a concept of business process management is
steadily developing as an independent discipline including concepts,
methods, and techniques to support the design, administration, con-
figuration, enactment, and analysis of business processes [202]. Even-
tually, it was understood that information systems often make busi-
ness processes more rigid than flexible. For example, the companies
struggled to promptly guarantee compliance of business processes
and different kind of regulations. With that, the flexibility of informa-
tion systems dictated by constantly changing customer and market re-
quirements was acknowledged as a determining factor for a company
[171]. The work of [76] was one of the first suggesting to use business
rules in business process modeling which allowed better traceability
of the execution of business policies and business protocols. However,
the main shift towards the concept of integrated business process and
decision management was observed in the next decade.

2010-now: Complementary Usage of Business Process and Decision
Management

In recent years, a number of industrial decision service platforms
have appeared in addition to existing BPM-systems, e.g., SAP De-
cision Service Management [6], IBM Operational Decision Manage-
ment [48]. On the academia side, a number of works dedicated to con-
ceptual decision service platforms [30, 210] and decision ontologies
[104] complementary to business process management techniques
have been proposed. Although it is evident that stakeholders need
integrated solutions on business process and decision management,
a paradigm of separation of process and decision concerns is also
gaining weight [94, 197]. It has been observed in [18] that business
process models are often misused for modeling decision logic within
the control and data flow of process models. Because of such hard-
coding of decisions in process models, organizations often lack neces-
sary flexibility, maintainability and traceability in their business oper-
ations [177]. To create a standard approach for describing and mod-
eling repeatable decisions within organizations and ensure that de-
cision models are interchangeable across organizations, the Decision
Model and Notation (DMN) standard was developed by the OMG
group [142] . The DMN standard is aimed to be complementary to
the BPMN standard [138].
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The DMN standard appeared recently, and there exist only mostly
industrial-oriented guidelines, e.g., as the ones provided by Debevoise
et al. in [60]. Nevertheless, there exist works prescribing design of
decisions which can be reused for modeling DMN decision mod-
els. Thus, in [15], standard steps of decision making are presented,
such as defining the problem, identifying problem parameters, an se-
lecting method for decision making. In [208], Feng et al. propose a
more specific approach, Decision Dependency Design (D3), which is a
methodology for designing process decisions and their dependencies,
abstracting from detailed decision logic. The introduced notation is
somewhat similar to the DMN decision requirements diagram, but
the visualization of notations’ elements differ, and the information re-
quirements for decisions are more enhanced in D3 than in the DMN
standard. The authors describe the major phases that can be distin-
guished for creating corresponding decisions model such as gather-
ing requirements, eliciting input dependencies and constraints.

A similar approach for modeling DMN decision requirements
diagram is the Decision Requirements Analysis Workshop (DRAW) tech-
nique presented by A. Fish in [70]. DRAW is a structured workshop
technique allowing a methodical top-down analysis of a decision into
the structure recorded in the DRD, and it can be fully applied for
modeling DMN decision requirements diagrams. An approach for
modeling the DMN decision logic layer is described for decision ta-
bles in [160] through construction of a decision-goal tree partitioning
a decision into subdecisions.

All of the existing methodologies of manual design of decisions
models presented in the section above can be used independently or
complementary to our methodologies of semi-automated discovery
of decision models from event logs. We provide an overview of se-
lected works on manual design of decision models in Table 3 (rows
1 — 3), where we compare them with works on semi-automated de-
cision model design discussed in the next section (rows 4-8). The
manual decision model design can be used, when there exist neither
process models, nor event logs describing business process and its
behavior. In such cases, it is recommended that process or decision
analysts apply the methodologies discussed above to model process
and decision models “from scratch”.

3.5 AUTOMATED AND SEMI-AUTOMATED DECISION MODEL DE-
SIGN

While decision models can be created by experts, manual de-
sign of a decision model complementary to process model can be
a difficult and time-consuming endeavor. In order to construct cor-
rect and reusable process and decision models, one must be well-
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acquainted with the many elementary processing steps and their in-
terrelations [180]. Given the right tools, automating the process of de-
cision model design can yield major benefits, such as improved qual-
ity of decision models, their improved explanatory power, increased
consistency with the process, reduced human involvement, etc. Striv-
ing to increase the automation rate for the process of extracting deci-
sion models from process-related information, we developed a set of
corresponding techniques that constitute the core contribution of this
thesis presented in Part II.

The process of extraction of decision logic from process-related
information is also often called “decision mining” [147, 165]. Analo-
gously to this, we refer to the process of discovery of decision models
complementary to process models as “decision model mining”. The
difference between these two terms consists in the fact that decision
models consider not only stand-alone process decisions, but addition-
ally, decision dependencies and their requirements (see Definitions 12
and 13). Below we present related work for mining of decision models
from process models and data, event logs, and other process-related
information.

3.5.1 Discovering Decision Models from Process Models and Data

Although it is not considered good practice to model the de-
tailed decision paths in the business process model [197], there have
been a few works which propose concrete methods of externalizing
decision logic taking process models or data as inputs. An overview
of these works can be found in Table 3. Rows 1 — 3 refer to works
discussed in Sections 3.4, and Rows 4 — 8 refer to works discussed
below in this section.

The presented table firstly presents the selected works from the
previous section dedicated to manual design of decision models. It
can be seen from the table, that there exist just a few works on semi-
automated design of decision models complementary to process mod-
els, in comparison to works dedicated on manual design of such mod-
els.

There exist a few academic works proposing their own decision-
making ontology to be used complementary to processes, e.g., by
Kornyshova et al. in [104], or by Bock et al. in [30] (see Row 4 of
the table). Both of this works derive elements intrinsic to decision
processes and create independent decision-making ontologies. At the
same time, these two works are more conceptual and do not provide
means for automated discovery of the decision-making ontologies.
However, these ontologies contain a richer set of decision-related ele-
ments, such as decision stimulus or goals, than DMN decision models
used in our thesis. Although we see the work presented in this thesis
as a basis for discovery of decision models complementary to process
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models on example of DMN decision models, interested stakeholders
can utilize our approach and enrich DMN decision models with de-
cision elements presented by the mentioned ontologies. This would
require an appropriate mapping of corresponding decision elements.

There also exist a number of works which deal with improving
business process decision making based on past process executions,
e.g., [74, 203] (see Row 5 of the table). Since we are focused on extrac-
tion of decision models complementary to process models, improve-
ment of process and decision execution is not considered in our thesis.
Nevertheless, dynamic improving of decision making can be viewed
as a next step which can be applied to decision models once they are
discovered complementary to process models.

In [180], the authors propose a methodology for derivation of
DMN models complementary to BPMN process models from Product
Data Models (PDM) which lie at the core of the product-based work-
flow design concept (see Row 6 of the table). This work considers
only data-centric processes, whereas in our work we aim at discov-
ering decision-related information from process models like BPMN
models which contain both data and control flow. However, this work
can be recommended to use for discovery of decision models comple-
mentary to process models, if an interested stakeholder has no pro-
cess model at their exposure, but only a product data model or an
analogue of it.

Process models can also be discovered or generated from deci-
sion models. In [35] and [208], the authors decompose decision struc-
tures into goal graphs that are finally used to design a process model.
The advantage of such approach is that the process models generated
for decision models can provide an enhanced execution mechanism
for decisions, since a certain control flow for decision execution is
prescribed. However, execution of decision models goes beyond our
problem statement formulated in Chapter 1, as we are only interested
in the design phase of business process management and decision
lifecycle (see Section 2.2). With that, decision model execution refers
to the second phase of the lifecycle. However, it seems perspective to
consider the questions of generation of process models from decision
models in future works. The existing works mentioned above can be
recommended to stakeholders that have no process models, but only
decision models at their hands.

In general, it can be observed that there exists a research gap
on elaborated methodologies on extraction of decision models from
process models and data. This thesis is aiming to overcome this gap.
Our techniques for discovery of decision models from process models
and data are presented in Chapters 4 and 5 correspondingly. They
are based on our works by Batoulis et al. [18] (see Row 7) and by
Bazhenova et al. [20] (See Row 8). The distinguishing difference of our
techniques from existing works is that they extract decision models
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taking process models as an input. Thereby, the decision logic can be
externalized from the process model in a semi-automated way. As an
output, our approaches produce decision models that can be executed
complementary to process models, which realizes the separation of
concerns principle.

3.5.2 Discovering Decision Models from Event Logs

Decision-making in business processes typically results in a vast
amount of data, which can be analyzed afterwards according to cer-
tain parameters suitable for assessing the enterprises goals. To pro-
vide such kind of analysis, in Section 6 we propose a methodology
for deriving decision models complementary to process models from
event logs. More specifically, we adapted a widely applied decision
tree mining algorithm, C4.5 (see, for example, [205]), for solving the
machine learning problem of discovering of decisions from process
event log, and their dependencies. The methodology is based on
our publications [21] and [23]. We also provide an extension of the
methodology with fuzziness based on our work [24].

An overview of the related works on mining decision models
from event logs are presented in Table 4.

There exist multiple algorithms for discovery of the decision
rules, among them three approaches are most widely considered in
the literature [12, 116, 166]. The first one — solving the decision mining
by constructing a neural network — gives very accurate classifications,
but the output rules might be quite complex which is then hard to
translate into a self-explanatory decision model [12]. The second one
— mining the decision rules with the help of support vector machines —
also provide very accurate classifications, however, there are no exist-
ing solutions of translating the output support vector machines into
the business rules [116]. With that, the application of the third ap-
proach (see Section 6) — solving the rule classification problem with
the help of the decision tree classification — allows easy creation of
business rules from the output decision trees, although the classifica-
tion accuracy is worse in this case than in two approaches mentioned
above [166]. The authors of [120] also state that the output of decision
tree mining can easily be interpreted by humans and the extracted
knowledge can be clearly presented and visualized. That is why for
our algorithm for discovering decision models from event logs we
chose a variation of decision tree mining, C4.5 algorithm, as a ba-
sis. The results of applying of our approach for discovering decision
models from event logs highly depend on the input data. Investiga-
tions on sensitivity of the approach to different data inputs for the
algorithm used in our work - decision tree mining - can be found in

[9]-
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The work of Rozinat et al. [165] describes the extraction of deci-
sion rules for control flow decisions from event logs. In comparison
to this work, we additionally identify data decisions, and decision
dependencies. [53] extends [165], but in contrast to our paper, the
authors seek to improve the performance of the rule extraction al-
gorithm for control flow decisions, while we seek to complete the
decision knowledge derived from event logs beyond control flow de-
cisions. Another extension of [165] was done by Dunkl et al. in [64] by
augmenting the space of possible discovered decisions with attributes
obtained from event log.

Mining business rules from business process repositories was
also done in [149], but they focus on only activity execution logs,
without taking data flow at all into account, and also they do not
consider dependencies between sets of rules.

Mining of complex decision logic for process branching condi-
tions with the help of decision tree learning was done by Mannhardt
et al. in [122]. In particular, the authors put forward a general tech-
nique to discover branching conditions where the atoms are linear
equations or inequalities involving multiple variables and arithmetic
operators. In contrast to our work, this work does not mine depen-
dencies between process decisions, but rather focuses on discovering
of decision logic for standalone decision points. However, they are
able to discover more complicated decision rules, than are adapted
Cy.5 algorithm. Therefore, future works can consider investigation of
using their more algorithms for decision logic discovering in conjunc-
tion with our holistic approach to discover decision models and their
dependencies.

In [17], an approach to construct decision models from historic
process execution data is presented. It can be used also for solving
our problem, but comparison to our approach from Section 6, it uti-
lizes additional steps of derivation of a Bayesian network, followed
by creation of a corresponding influence diagram which is further
transformed into a DMN model. In our approach, we avoid these
intermediate steps by applying Cj.5 classification directly on data,
directly obtaining DMN model. Also, this approach only takes into
account dependencies between data attributes in the event log. How-
ever, we also incorporate discovery of control flow decisions into an
output DMN model, thereby making the output decision model more
fully explaining the process decisions.

Among other approaches for mining decisions from process data
is the one described in [107] where instance-specific probabilistic pro-
cess models and their translation to Markov chains enable predictions
about future tasks. Similarly, in [26], an approach based on proba-
bilistic finite automata to predict future events in running process
instances is developed. However, both works do not derive decisions
from obtained nodes and dependencies between them. In [147] the au-
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thors derive a probabilistic Markov decision process from event logs.
However, the authors look at business decision making only as at a
data-centric environment. In contrast, in our work we derive decision
models from both control and data flow execution data recorded in
event logs.

Another approach on mining decisions from event logs is pre-
sented in [146]. The approach is different from ours as it yields as
its outcome not really a decision model, but rather a decision process
which incorporates some elements of control flow like XOR-gateways.
Such approach might be helpful for decision-intense processes where
the whole process is about a decision. However, as we discuss in Sec-
tion 2.3, one of the principles that we pursue is the separation of
concerns principles, according to which process models should be
imperative, and complementary decision model should be declara-
tive.

In the recent work by De Smedt et al. [59], the authors propose
a framework to position the existing works related to decision discov-
ery, in the context of business processes. The authors introduce the
notion of maturity of decision models which are designed comple-
mentary to process models. According to the authors, the most ma-
ture decision model incorporates both the data recorded in the event
log that captures the process execution and the dynamic behavior of
the activities from the corresponding process model.

In the further work of De Smedt et al. [58], the first step was done
to approach such level of maturity for decision models discovered
from event logs. Taking an event log as input, the approach discovers
a decision requirements diagram that incorporates information about
the process model elements that carry a decisional value. In particular,
the presented approach focuses on different types of activities that
are present in a process model discovered from the event log, and
establishes how they contribute to the corresponding decision model.
The work of De Smedt et al. considers process activities as the drivers
of decisions, whereas we assume that the decision drivers are control
flow decision points and data attributes, as presented in details in
Chapter 6.

Correspondingly, the dependencies in the output decision re-
quirements diagrams that are derived with the help of the approach
presented in [58], reflect the connections between the decision-related
activities and data of processes. However, the dependencies in the
output decision requirements diagrams that are discovered by apply-
ing our methodology from Chapter 6, reflect the connections between
control flow decisions and data of process models that carry a deci-
sional value. Therefore, in comparison to the approach from [58], our
methodology to derive decision models outputs the decision require-
ments diagrams of a different nature. It can be recommended for
stakeholders to use the approach from [58] for the situations where
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activities of different types that carry decisional value are present in
an input event log. In the situations where rather control flow and
data attributes carry the decisional value, it would be recommended
to use our approach, which is presented in Chapter 6.

Enhancement of Decision Model Mining with Fuzziness

Commonly, decision logic is represented by rules built on top of
Boolean algebra. Since real-life decisions often deal with imprecision,
the formal nature of decisions based on Boolean algebra is often hard
for interpretation und utilization in practice [28, 38, 81, 209]. Opera-
tions research considers fuzzy logic, based on fuzzy algebra [209], as
a tool dealing with partial knowledge. In Chapter 7, we propose an
approach to incorporate fuzziness into DMN decision models. Fur-
thermore, we propose a methodology for discovering fuzzy DMN
decision models from event logs.

As business process modeling often describes uncertain and error-
prone behavior of humans, incorporation of fuzziness is helpful as
shown in [28]. The authors demonstrate that introducing fuzzy logic
in processes has following benefits: (1) it allows inaccurate data in
process executions; (2) effectively incorporates with assigning to vari-
ables linguistic terms coming from human such as “little”, “some”, or
“a few”. By choosing appropriate rules, the process modeler can in-
corporate in the model data coming from subjective sources “without
compromising the validity of the model”.

Initially, fuzzy logic was widely applied in control theory, sys-
tems analysis, and artificial intelligence [100]. Eventually, fuzzy logic
was also considered in business processes as a method for evaluating
of judgements of decision makers in business processes with the help
of fuzzy analytical hierarchy process in [164]. However, the method is
aimed rather at solving constraints problem in the presence of multi-
ple decision makers, and is not considered from processes or decision
notation points of view.

Incorporation of fuzziness within single decision tables was done
by Vanthienen et al. in [193]. Consideration of fuzziness in processes
is presented in [47] where the authors extend the BPMN notation
with fuzziness for modeling crime analysis processes being able to
capture both the vague nature of forensic data and the uncertainties
and conjectures characterizing the inference structures of this domain.
In this work, the authors extend the BPMN elements like data objects
and messages with fuzzy attributes and fuzzy constraints. In contrast
to two works mentioned above, our approach additionally allows for
designing of fuzzy decisions and their dependencies within a dedi-
cated decision model.

A methodology aimed at making fuzzy decisions again in the
context of crime business processes is introduced in [7]. The pre-
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sented approach works only with process events by grouping events
that share common properties, and thereby, grouping together series
of crime cases that assists in crime investigations. Further process el-
ements such as control-flow, data, or event logs are not considered.
However, in our work we do not consider that information stemming
from process events can additionally be included into a dedicated
decision model, so this could be done in future works.

The problem of mining decisions in the form of decision rules
was addressed in the literature from different perspectives. In [44,
79, 133], a concept of fuzzy rule bases and techniques to design them
are introduced. Fuzzy rules learning as introduced in [87, 89, 9o] can
be applied for solving our problem, but process context and metrics
were not taken into account. Fuzzy mining of rules represent a more
general case of mining crisp rule bases from data [12, 205].

The comparison of performance of fuzzy against non-fuzzy min-
ing of decision rules can be found in [10] where experiments show
that fuzzy classification trees outperform existing decision tree algo-
rithms on 16 real-world datasets. A comparison between a genetic
fuzzy and a neurofuzzy classifier results can be found in [88].

Fuzzy mining algorithms are also successfully applied in other
domains. Among them they are integrated with genetic algorithms
for data classification in database applications in [41]. Also, in [106]
they are applied for developing a financial forecasting model, where
they are also combined with a genetic algorithm. Minig of fuzzy rules
for helping decision making is addressed in [38] for the case of news-
paper demand prediction, but the solution is focused on a product,
and only a set of fuzzy prediction rules is produced, but not a full
explanatory decision model describing the process decision.

With respect to the problem of our thesis, discovering of fuzzy
decision models complementary to process models represents a re-
search gap, which we aim at overcoming in Chapter 7. The presented
results are based on our work which was published in [24].

36 SUMMARY OF RELATED WORK

In this chapter, we examined the work related to our thesis in
accordance to its classification structure presented in Figure 16.

In Sections 3.1-3.3, we presented works related to properties of
process decisions. Our literature review is based on the decision the-
ory works, from which we derived general decision characteristics.
We analyzed which of the derived characteristics are relevant to pro-
cess decisions which we consider in this thesis, as presented by us
in Chapter 2. With respect to the novelty characteristic, process deci-
sions are not unique, as they normally represent repeated operational
decisions happening in processes on a daily basis. With regards to
the structuredness characterstic, process decisions are normally well-
structured and they can be reused in multiple processes. From the
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point of view of information characteristics, decision models such
those expressed with the help of DMN capture decision-related in-
formation of any type, but quantitative objectively measurable data
is preferable. Representation of elements of decision problem is cap-
tured in DMN decision models through both decision requirements
and decision logic layers. Decision logic of DMN decision models is
most commonly expressed with the help of decision tables, and hit
policies of decision table encapsulate output requirements and crite-
ria choice of decision output.

Further, we discussed that decisions are mostly represented in
process models through exclusive gateways embedded in control-flow,
or by assigning of a business-rule type to activities. We also demon-
strated that the paradigm of separation of concerns where decisions
are modelled complementary to processes is gaining weight. How-
ever, there exist a research gap as there exist no related works ad-
dressing concrete implementation of the separation of concerns prin-
ciple by discovering decision models from process-related informa-
tion, which we aim to overcome in this thesis.

The literature related to discovery of decision models comple-
mentary to process models is presented in Sections 3.4-3.5. Firstly
we discussed works on manual design of process decisions. There
exist multiple methodologies and guidelines for manual design of
decisions, stemming from works on knowledge-based and expert sys-
tems, decision support systems, etc. These methodologies could be
used for design of decision models, if there exist no process-related
information such as process models, data, or event logs. Further, Sec-
tion 3.5 presents related works on automated and semi-automated
discovery of decisions from process-related information. Automating
the process of decision model can improve the quality of decision
models, their explanatory capability, consistency with the process,
and reduced human involvement. We demonstrated that there is also
a research gap in the area of extraction of decision models from pro-
cess models and data. We aim at overcoming this gap by providing
corresponding methodologies in Chapters 4 and 5 correspondingly.

Further, we discussed that application of various machine learn-
ing techniques can help in automating the process of discovery of
decision models from event logs recorded by information systems of
enterprises. Although there exist a lot of works on automated deriva-
tion of decision rules, none of existing works deal with discovery of
decision models which contain not just process decisions, but also
underlying decision rules and their dependencies. We propose corre-
sponding techniques to overcome this research gap in Section 6.

Often the decision logic is represented by rules based on Boolean
algebra, but the formal nature of is often hard to be interpreted and
utilized in practice, because imprecision is intrinsic to real-life de-
cisions. We presented a set of works dealing with incorporation of
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fuzziness into process and their decision rules. However, we demon-
strated that existing works have not considered discovering fuzzy de-
cision models from event logs. In order to overcome this, we propose

a methodology for deriving fuzzy DMN decision models from event
logs in Chapter 7.
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DISCOVERY OF DECISION MODELS FROM
PROCESS CONTROL FLOW

Ithough many process models from practice contain detailed de-
A cision logic encoded through control flow structures, it is not
considered good practice. This often results in spaghetti-like and com-
plex process models and reduces maintainability of the models. This
chapter presents our methodology to discover decision models com-
plementary to process models from control flow of process models.
In particular, we introduce a pattern-based semi-automatic methodol-
ogy to: (1) identify decision logic in process models, (2) derive a corre-
sponding decision model, and (3) adapt the original process model by
replacing the decision logic accordingly. Figure 21 outlines the input
and the outputs of the proposed methodology.

Chapter 4: Decision
Analysis of Process Model

~ _

S Control Flow . S
Process — 7. ,,\\77,,,\74

Model RS
Process
Model
(refactored)

Figure 21: Input and outputs of the methodology presented in Chapter 4

The development of the pattern-based methodology to discover de-
cision models complementary to process models is the contribution
of this thesis chapter based on results published by Bazhenova et
al. in [21] and Batoulis et al. in [18]. The preparation of the real-life
data from which the patterns were derived, the derivation of the pat-
terns, and the evaluation of the results is based on a joint work of
E. Bazhenova in co-authorship with K. Batoulis, A. Meyer, G. Decker,
and M. Weske, published in [18].

The rest of the chapter is structured as follows. Section 4.1 mo-
tivates the need to externalize process decision logic into a dedicated
decision model. Section 4.2 introduces the methodology to discover
decision models from control flow of process model, which is based
on the contribution of E. Bazhenova to the results published in [18]
and [21]. Section 4.3 introduces a set of decision patterns that can be
detected in control flow of process model, which adapts to the formal-
ization of patterns provided for the most part largely by K. Batoulis
and A. Meyer in [18]. Section 4.4 is based on the joint work of K.
Batoulis, A. Meyer, and E. Bazhenova published in [18] on the iden-
tification of the developed patterns in a given a process model. This
is followed by the decision model extraction algorithm presented in

79



8o

DISCOVERY OF DECISION MODELS FROM PROCESS CONTROL FLOW

Section 4.5, which is based on the contribution of E. Bazhenova in [18]
and [21]. Section 4.6 motivates the necessity to adapt output decision
and process models and presents the adaptation techniques, which
is based on a joint work of all co-authors from [18]. The chapter is
concluded by a discussion of the presented methodology.

4.1 INTRODUCTION

In order to get insights whether there exist any patterns of how
companies model decision logic in processes, we conducted an anal-
ysis of about 1000 real world process models from, amongst others,
insurance, banking, and health care, as presented in [18]. All the con-
sidered process models were designed with the help of BPMN.

Our analysis results show that part of the logic leading to de-
cisions is often encoded in process models resulting in models that
are hard to interpret and maintain. The BPMN standard allows to
represent decisions and their impact respectively. However, BPMN is
not meant to represent the detailed decision logic since modeling the
decision logic often results in spaghetti-like models. For instance, Fig-
ure 22 represents a process model of assigning credibility level to a
customer. The process is triggered by the start event Customer credibil-

Credibility
level 1

Check age

More than
18 years old?

No legitimate document

Individual

Private individual
or legal body?

Check
constituent
documenta-
tion

Legal body

Figure 22: BPMN model from banking domain illustrating misuse of pro-
cess control flow for modeling decision logic

ity request. Further, the request is processed by conducting the Initial
check activity. If the customer is a legal body, the constituent documen-
tation is checked. If the documentation is legitimate, credibility level 1
is assigned. Otherwise, credibility level 2 is assigned. If the customer
is a private individual, a number of corresponding checks is done.
Again, two possible credibility levels can be assigned, as depicted in
the figure.

It can be seen from the figure, that the decision logic of the pro-
cess is expressed in control flow through a set of exclusive split gate-
ways. The problem with such encoding of decisions in control flow
is that the “nests” of the gateways structures are hard for people to
read. Moreover, such process models are not flexible: once they are im-
plemented in information systems, a change in underlying decision
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logic would require a significant effort in changing the code [197].
Due to these reasons, the OMG consortium recommends to use the
separation of concerns principle (see Section 2.3.3) by externalizing
the decision logic to a corresponding decision model.

Our analysis of the industrial process models from our partner
shows that data-based decisions are most common. A data-based de-
cision is represented by a decision structure consisting of single and
compound decision nodes we refer to as split gateways represent-
ing exclusive or inclusive alternatives based on external information.
These decisions can be classified into three types:

* An explicit decision activity with succeeding branching behav-
ior, e.g., the decision about a customer’s age is taken in the
decision activity and, based on the result, credibility levels can
be assigned.

¢ Branching behavior is encoded in decision points, e.g., split gate-
ways with decision logic about the customer’s age encoded in
annotations to the gateways or to edges originating from such
gateway.

* There exists a decision activity without succeeding branching
behavior, e.g., set discount for a customer based on her age.

As discussed, in Section 2.3, BPMN’s scope comprises the business
logic containing information on what activities need to be executed
in which order by which resource utilizing which data objects. By con-
trast, DMN covers the decision logic modeling by specifying which
decision is taken based on which information, where to find it, and
how to process this information to derive the decision result. Since
both worlds existed long without proper integration, organizations
misused BPMN by including decision logic into process models.

While separation of concerns is easy for newly modeled pro-
cesses, the existing ones need to be kept usable as well. Otherwise,
the migration overhead is too large and organizations retain their
BPMN misuse. In the upcoming sections, we introduce means to
semi-automatically identify such misused decision logic fragments
in a BPMN model and to derive the corresponding DMN model
based on information given in the process model. For utilizing the
advancements of simplicity and easy maintainability, the original pro-
cess model gets adapted to replace the decision logic fragment with
a reference to the DMN model after its creation.

4.2 METHODOLOGY AND ASSUMPTIONS

Figure 23 visualizes the three main steps of our methodology
and the corresponding input and outputs. Given a BPMN model, we
first identify decision logic patterns based on the specifications of
Section 4.3. Based on our review of a set of real-world process model
repositories presented in Section 4.3.1, we defined three decision pat-
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terns based on the occurrence of activities and gateways as specified
in Section 4.3.2. However, we utilize such information in the refac-
toring or the post-processing steps which follow in this order upon
identification completion.

The identification step (see Section 4.4) is completed if a stake-
holder approves the identified patterns to be decision structures. Here-
with, multiple patterns may match for parts of the process model
such that the stakeholder also must decide which is the appropriate
pattern. The decision model extraction is presented in Section 4.5 and
comprises the translation of the identified patterns into a DMN model
and the adaptation of the process model.

The post-processing step, see Section 4.6, enables configuration
of the resulting BPMN and DMN model. Two configuration options
and their automatic application are discussed in the corresponding
section. Finally, both the BPMN process model and DMN decision
model are the outputs of our semi-automatic methodology.

Patterns’ .
specification Decision model

(Section 4. 3 2) (unadapted)

Identification of Post-processing of Decision model
Decision model P 9 X (adapted)
Process control-flow-based process and e

model decision patterns S?:;:;C;IZ% decision models |\
(Section 4.4) (Section 4.6) \ Process model
(refactored)

Figure 23: An outline of our methodology to discover decision models
from control flow of process models presented in the rest of
Chapter 4

Our analysis of the industrial repositories show that the majority
of them contain data-based decisions (cf. 4.3.1). Following the empiri-
cal results, in our work, we focus on process models with data-based
decisions that are taken within activities directly preceding a split
gateway where this gateway only routes the process flow based on
the taken decision. Figure 24 presents such decision structure consist-
ing of a single gateway in an insurance environment. Section 4.3.2
introduces three variants of this decision structure which essentially
constitutes the control-flow-based decision patterns.

Our methodology to derive decision models from control flow
of process models rely on two general assumptions on the process
model:

1. A process model is structurally sound, i.e., pm contains exactly
one start and one end event and every node of pm is on a path
from the start to the end event.

2. Decisions are taken in distinct process model activities such
that a split gateway only routes the process flow based on pre-
calculated decision values, since it is good modeling practice.
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Omission of the decision activity preceding the split gateway is
a common mistake made by inexperienced BPMN users [197].

When describing identified control-flow-based patterns (see Sec-
tion 4.3), we refer to activities described in the last assumption as to
de facto decision activities, independently of the types assigned to
them (cf. Definition 9). Note that these de facto decision activities are
not assigned with any type in our illustrations of contol-flow-based
decision patterns. Nevertheless, describing the post-processing tech-
niques for process models in Section 4.6, we state that these de facto
decision activities should be assigned with a business rule, or a hu-
man type, so that the output process model complies to our definition
of a decision-aware process model (cf. Definition 14).

4.3 CONTROL-FLOW-BASED DECISION PATTERNS

In order to get insights how decision logic is modeled in real-
life environment, in Section 4.3.1 we provide an examination of the
real-life process model repositories provided to us by our industry
partners, and identify the most common decision-related control-flow
structures. Based on this analysis, in Section 4.3.2 we present our spec-
ification of control flow patterns which is used further for extraction
of decision models complementary to process models.

4.3.1 Review of the Real-Life Process Model Repositories

Our review consisted of an analysis of eight industry reposito-
ries of process models from the domains of insurance, energy, health
care, information technology, banking, and quality control. In total,
1116 process models were reviewed. An overview of our analysis of
decision logic representation in the reviewed repositories is presented
in Table 5 by industrial segments.

The analysis of the repositories was conducted by us as follows.
Firstly, we conducted a manual examination of several process mod-
els for finding process model elements involved in modeling the pro-
cess decision making. Secondly, we conducted an automated count-
ing of process model elements identified in the first step in all the
models of the reviewed repositories.

Our initial manual examination of several process models showed
that the process decisions in the reviewed repositories were mainly
encoded in the control flow of process models. Therefore, we decided
to focus only on control-flow-based decision making and excluded
the data flow out of the scope of the conducted analysis (for consid-
eration of data-based decision making in process models, see Chap-
ter 5).
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4.3 CONTROL-FLOW-BASED DECISION PATTERNS

As discussed in Section 2.3.1, the control-flow structures related
to decision making are split gateways. Therefore, at the next step we
conducted the automated statistical analysis of the repositories and
counted the presence in the process models of three types of split
gateways: (1) Exclusive (XORs); (2) Inclusive (IORs); and (3) Event-
based. Table 5 shows the average occurrence (AVG) of each gateway
type per process model and the relative frequency of occurrence (RF)
in percent for each industry sector.

In general, a pattern is a concept that organizes knowledge re-
lated to “a problem which occurs over and over again in our environ-
ment, and then describes the core solution to that problem, in such
a way that you can reuse this solution” [8]. It can be seen from Ta-
ble 5 that the inclusive (IOR) and the event-based gateways are met
in less than 10% of the considered process models which is too low
occurrence value for being considered as a reusable decision pattern.
Therefore, do not consider such types of gateways for being included
into our patterns specification.

At the same time, our analysis shows that that XOR gateways
are the most important construct for decision modeling because they
occur in more than 80% of all business process models (cf. Table 5).
Thereby, we considered decision structures incorporating XOR gate-
ways for being viewed as control-flow-based decision patterns. The
manual investigation of process models containing such structures
shows that two additional considerations have to be taken into ac-
count: (1) the decision should happen in the activity preceding pre-
ceding the XOR gateway; (2) decision structures involving XORs can
contain multiple outgoing sequence flows; (3) decision structures in-
volving XORs can contain a sequence of split XOR gateways; and (4)
a sequence of XOR gateways can be separated by an activity that can
belong to the same process decision. We explain these considerations
in detail in the specification of control flow patterns related to process
decision making presented in the next chapter.

4.3.2 Patterns’ Specification

Based on our analysis of the real-life process model repositories
described in the previous section, we chose the top-three most fre-
quently encountered control-flow-based decision structures. In this
section, we define three patterns which are based on these structures.

Each of the presented patterns is represented by a process frag-
ment pf (cf. Definition 7) that can be observed in a process model pm
(cf. Definition 8). We assume that each pattern is a process fragment
pf that consists of a single start node being an activity, multiple end
nodes being activities (one for each alternative), each node is on a
path from the start to some end node, and all nodes are not a merge
gateway. Also, we assume that XOR and IOR are possible control
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flow constructs of a process fragment pf referring to an exclusive
choice or an inclusive choice respectively. A gateway with multiple
incoming and outgoing edges is transformed in two succeeding gate-
ways with one representing the merge and the other the split in this
order.

The structure of the description of the patterns is following for
all the patterns. Firstly, we introduce the pattern informally on an ex-
ample process fragment, and then provide a semi-formal definition
of it. The detailed formal definitions of the presented patterns are
provided in Appendix A. For each pattern, we provide a reference
to the corresponding formal definition from this appendix. All the
examples represent modifications of the use case of providing a dis-
count for a certain product to the client (see Figure 5).

P1 — Single Split Gateway

Pattern P1 is a process fragment p f that contains a decision struc-
ture of an activity preceding a single split gateway with at least two
outgoing control flow edges. On each path, an activity directly suc-
ceeds the split gateway. Thereby, pattern P1 subsumes optionality de-
cisions as special case; paths directly connecting split and merge gate-
ways get automatically extended by t-transitions. We assume that the
decision is taken in the activity preceding the gateway (cf. Assump-
tion 2 from Section 4.2).

A formal definition of pattern P1 is provided in Appendix A by
Definition 28.

)
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-
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Decide on X >=18,<40 Yrey,| Assign 15%
discount discount
-/

)

<18yrs Assign 10%
discount
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Figure 24: Process fragment representing a split XOR gateway with more
than 2 outgoing edges

An example of pattern P1 is given by a process fragment in Figure 24
which consists of a gateway with three alternative paths following
it. The gateway is of type XOR, therefore, only one alternative can
be chosen. Based on the result of activity Decide on discount, i.e.the
taken decision about the customer’s loyalty, the discount assigned to
the customer is set to 20%, 15%, or 10% respectively. Possible results
of the decision are fixed by the annotations on the edges originating
from the split gateway.
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P2 — Sequence of Split Gateways (Decision Tree)

Pattern P2 is a process fragment p f that contains a decision struc-
ture of an activity preceding a split gateway with at least two outgo-
ing control flow edges. Thereby, on each path, an activity or another
split gateway with at least two outgoing control flow edges directly
succeeds the split gateway. In case of a gateway, this proceeds itera-
tively until all paths reach an activity; i. e.on each path from the first
split gateway to some end node of the fragment, there exists exactly
one activity — the end node. In accordance to Assumption 2 from Sec-
tion 4.2, we assume that the decision is taken in the activity preceding
the first split gateway.

A formal definition of pattern P2 is given by Definition 29 in

Appendix A.
Assign 25%
discount
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discount discount
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>= 18, < 40 y[s i
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discount
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'S )
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Figure 25: Process fragment representing a sequence of split XOR gateways
that represents a decision tree

Figure 25 is an example of pattern P2 which shows a corresponding
process fragment with altogether four alternative paths after the first
split gateway. Since, all gateways are of type XOR, only one alterna-
tive can be chosen. The actual routing based on the taken decisions
is distributed over two split gateways. The first routing decision is
based on whether the customer is a VIP client. If this is the case, the
discount assigned to the customer is set to 25%. Otherwise, the sec-
ond routing decision is taken based on the age of the customer, and
the corresponding discounts are assigned as depicted in the figure.
Due to the dependency of a routing decision on the ones taken be-
fore, this pattern represents a decision tree. Analogous to pattern P1,
the possible results of the decision are fixed by the annotations on the
edges originating from some split gateway:.

P3 — Sequence of Split Gateways Separated by an Activity

Considering that given is a process model pm, pattern P3 is a pro-
cess fragment pf that contains a decision structure of an activity pre-
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ceding a split gateway with at least two outgoing control flow edges.
On each path, an activity or another split gateway with at least two
outgoing control flow edges directly succeeds the split gateway. An
activity that succeeds a split gateway may be succeeded by another
split gateway. Otherwise, it is an end node of the process fragment.
Activities of type subprocess are also end nodes of the fragment. It-
eratively, this proceeds until all paths reach an activity that is not
succeeded by some split gateway.

A formal definition of pattern P3 is provided in Appendix A by

Definition 30.
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Figure 26: Process fragment representing a sequence of split gateways sepa-
rated by an activity
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Figure 26 presents a corresponding process fragment with al-
together four alternative paths after the first split gateway. Since all
gateways are of type XOR, only one alternative can be chosen. Each
activity of this process fragment that is succeeded by a split gateway
(activities Decide on discount and Check age in Figure 26) takes the ac-
tual decisions for the subsequent routing decisions. In case there exist
multiple split gateways (see decision tree in pattern P2), the activity
takes the decisions for the whole decision tree. This means, this pat-
tern can be composed of multiple decision trees as well as single split
gateways. Since multiple decisions are arranged in sequence, we con-
sider this structure as additional pattern to preserve the decision de-
pendencies instead of handling each decision separately. In Figure 26,
the choice between a discount of 20%, 15%, and 10% discount is taken
based on two decisions (VIP client and Age) while granting 25% dis-
count is clear after the first decision on whether the client is VIP or
not.

4.4 IDENTIFICATION OF THE SPECIFIED PATTERNS IN A PRO-
CESS MODEL

In this section, we describe our approach to identify the control-
flow-based decision patterns in a given process model. The overview
of the corresponding procedure is depicted in Figure 27.
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Figure 27: Step-by-step identification of the control-flow-based decision
patterns in a process model

The first step of the identification process is to determine for all
pairs of directly succeeding control flow nodes where the first one
is the decision activity and the second one is a split gateway. For
each such pair of nodes, we traverse forward the process model and
check for existence of a control flow structure aligning to the patterns
defined above.

For the detection of pattern P1, we check whether each path
originating from the split gateway contains an activity; such fragment
is referred to pattern P1. Otherwise, the identification of the pattern
is stopped.

For detecting pattern P2, we traverse forward on each path until
we identify a non-split-gateway control flow node, e.g., an activity
or a merge gateway, directly succeeding a split gateway. The initial
split gateway must be followed by at least one other split gateway.
Otherwise, the identification of the pattern is stopped.

For detecting pattern P3, we traverse forward on each path until
we identify an activity that is directly succeeded by some control flow
node that is no split gateway or until we identify a subprocess directly
succeeding a split gateway. In case a split gateway is not succeeded by
an activity or another split gateway or if an activity is not succeeded
by a split gateway, identification of pattern P3 is stopped.

If a fragment is determined, it is referred to the corresponding
pattern it was checked for, if it was not stopped. After checking each
determined pair, all fragments that refer to some pattern are pre-
sented to a stakeholder. Thereby, it is required to decide which ac-
tually represent a decision, as the process fragments may overlap.

For example, consider the process fragment pf depicted in Fig-
ure 26, which can be referred to pattern P3. However, there also exist
two other fragments pfi, pfo that can be referred to pattern P1, if ac-
tivities Decide on discount and Check age are viewed as start nodes of
fragments pf; and pf.

The specification of non-overlapping fragments that actually rep-
resent a decision structure concludes the first step of our methodol-
ogy to extract decision models from process models as visualized in
Figure 23.
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The procedure of identifying a set of control-flow-based deci-
sion patterns in a given process model represents, thereby, a semi-
automated step of the methodology presented in this chapter (cf.
Section 4.2). The involvement of an expert is needed to resolve the
possible overlapping of the patterns that can be discovered in an au-
tomated way.

4.5 DECISION MODEL EXTRACTION

Next, we discuss the derivation of decision models from a pro-
cess fragment satisfying one of the patterns presented in Section 4.3.
In Section 4.5.1, we introduce a mapping of BPMN constructs which
can be met in these patterns, to DMN contructs. Section 4.5.2 presents
an exemplary extraction of a decision model from a process fragment.

4.5.1  Mapping of BPMN and DMN constructs

The decision encoded in the process fragment representing one
of the control-flow-based decision patterns from Section 4.3 is parti-
tioned into a top-level decision connected to sub-decisions with op-
tional input data in DMN. If the decision logic is visible in the process
model, we also provide associated decision tables. For this purpose,
we devised the rules presented in Table 6 of corresponding model
elements that dictates how both the decision requirements level and
the decision logic level are constructed.

Below we introduce a correspondence relation M = {My, ..., Mg}
which relates the BPMN constructs that compose the control-flow-
based decision patterns presented in Section 4.3, to DMN constructs.
The correspondence relation is visualized with the help of correspon-
dence graphs in Table 6. The BPMN constructs represent process frag-
ments (see Definition 8). Hereby, da € DA, DA C T represents a
decision activity from the given process model pm. The DMN con-
structs represent both DRD fragments and decision tables. All the
DRD fragments are subgraphs of a DRD (cf. Definition 12), such that
deD, ID'CID. The decision table definition is given in Definition 13.
Thus, the correspondence relation M is defined by us as follows.

M1 A mapping M1 is a correspondence relation which shows that
data-based split gateway g is mapped to DMN decision element
d because often the data on which the routing is based results
from a decision. For example, in Figure 26, the value of the VIP
client gateway may need to be inferred from other data such as
the number of purchases made so far. Contrarily, note that the
value of the Age gateway in Figure 26 can be observed directly
so that in this case the gateway does not need to be mapped
to any DMN element. However, since it is hard to differentiate
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Table 6: Mapping of BPMN constructs which can be encountered in control
flow patterns presented in Section 4.3, to DMN constructs. The
labeled constructs are affected by some mapping while the non-
labeled constructs set the context where required.

these two situations automatically, the default is to map gate-
ways to independent decision elements. The stakeholders can
then decide during post-processing whether or not this is nec-
essary, as described in Section 4.6.

M2 A mapping M2 is a correspondence relation which shows that
BPMN decision activity da (preceding a gateway) is mapped to
DMN decision d, which is additionally associated with decision
table dt. Notice that we are able to specify decision tables for
decision activities (mapping M?2) but not for gateways (map-
ping M3). This is because the concrete value of the variable on
which the gateway routing is based usually is set by the activ-
ity preceding it, and we cannot derive how this is done by only
looking at the process model. In case of decision activities, the
situation is different since we can follow each path starting from
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activity da and ending at another activity and thereby construct

a decision table, as will be explained in mapping M3.

M3 Because the decision table associated with a decision activity
will contain the value of the gateway variable, we map the con-
nection of decision activity da and a succeeding gateway ¢ in
BPMN to a decision dependency between d; and d, in DMN.
This is shown in mapping M3 representing another correspon-

dence relation between BPMN and DMN constructs.

M4 A mapping M4 is a correspondence relation which illustrates
how BPMN data node dn is represented in DMN, if it is avail-
able. As just mentioned, we assume that the decision activity
sets the following gateway’s variable. If a data node is con-
nected to this decision activity, we assume that the data node
is used to arrive at this value. Consequently, in the decision
model, the data node is mapped to a DMN input data element
providing input to the decision element corresponding to the

gateway.

M5 A mapping M5 is a correspondence relation similar to mapping
M4. Decision activity da, succeeds da; without further decision
activities in-between them. Then, in the decision model, deci-

sion d; uses the output of d, as input.

M6 A mapping M6 is a correspondence relation which indicates
how decision table dt is derived from the corresponding BPMN
construct. The decision table belonging to the da decision activ-
ity is composed of all gateways that follow the decision activ-
ity. The gateway labels are mapped to column headers, and the
edge annotations to corresponding column values. There will
be as many rows as there are individual paths starting from ac-
tivity da and ending at another activity. If any of the gateways
on the paths is of the IOR type, the decision table’s hit policy (cf.
Definition 13) is set to collect, since several paths (or rows) can
be chosen. Otherwise, the unique hit policy is set. The header
of the conclusion column is derived from the decision activity’s
label and placeholders are used for its cell values. They are used
directly in the refactored process model and can be concretized

by the process stakeholders during post-processing.

The presented mapping is applied when a pattern from Sec-
tion 4.3 is found with the corresponding process fragment pf in the
given process model pm. Given a process fragment pf, we first iden-
tify the decisions, their dependencies and the input data (mappings
1 —5), which altogether constitute DMN decision requirements dia-
gram. Secondly, according to mapping 6, the corresponding decision
tables are created. An example extraction of a DMN decision model

from a process fragment is given in the next section.
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Thereby, the procedure of mapping the detected control-flow-
based decision patterns in a given process model, to a decision model,
is a step of our methodology (cf. Section 4.2) that can be fully auto-
mated.

4.5.2  Example Extraction
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Figure 28: Exemplary mapping for pattern P3: 1 — from BPMN activity to
DMN decision; 2 — from BPMN gateway to DMN decision; 3
— from BPMN data node to DMN input data; 4 — from DMN
decision table reference to actual DMN decision table; 5 — from
DMN rule conclusions of sub-decision to DMN rule conditions;
6 — from BPMN gateway to DMN rule conditions.

This section gives an example illustrating the decision model ex-
traction step described in the previous section using the process frag-
ment satisfying pattern P3 introduced in Section 4.3. The extraction
procedure is explained with the help of a Table 6 using the process
and decision models of assigning a client discount.

On the left side of Figure 28, one can see the process fragment,
whereas on the right side the decision model is shown. The latter is di-
vided into the decision requirements level (top) and the decision logic
level (bottom) consisting of decision tables. Also, we inserted arrows
to point out the correspondences of the two models’ elements. For
the sake of clarity, we omitted arrows when the correspondence was
already shown by another arrow. For example, Arrow 1 shows that
the process model’s decision activity Decide on discount corresponds
to the decision element Decide on discount in the decision model (map-
ping M2 from Table 6). Consequently, we did not draw an arrow for
the decision activity Check age.

Arrow 2 illustrates mapping M1 from Table 6 by mapping the
gateway labeled VIP client? to an equivalent decision element. The
correspondence between BPMN data nodes and DMN input data ele-
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ments (mapping M4 from Table 6) is demonstrated by Arrow 3. Note
that the connections between the data node and the activities in the
process model result in connections between the gateway decision
elements and the input data in the decision model.

Furthermore, mapping M3 from Table 6 is demonstrated by the
fact that the Decide on discount decision has the VIP client? decision
as an input requirement. Similarly, corresponding to mapping M5,
since the task Check age succeeds Decide on discount, the DMN decision
Decide on discount also requires Check age as an input.

Arrow 4 shows that decisions are connected to decision tables if
the decision logic is visible in the process model and Arrow 5 shows
that the output column of the sub-decision is used as input column
of the dependent decision. Arrow 6 visualizes that the headers of the
condition columns correspond to the labels of the gateways following
the decision activity and the cell values equal the edge conditions (cf.
mapping M6 from Table 6).

46 POST-PROCESSING OF PROCESS AND DECISION MODELS

After extracting the decision logic from a process model to a
decision model, both process and decision model need to be post-
processed. We devised two ways I and I to post-process process and
decision models, as presented below.

I — Process Fragment Adaptation

According to the specification of decision patterns given in Section 4.3,
the entire decision logic should be located in the first decision activ-
ity in a pattern. As discussed in Chapter 2, in decision-aware process
models, process activities that come to conclusions based on busi-
ness logic should be assigned with the business rule type (cf. Defi-
nition 14). Thus, for the adaptation we transform the activity corre-
sponding to this top-level decision to a business rule type. Since this
decision potentially subsumes the decisions corresponding to follow-
ing decision activities, these activities will not be required anymore
in the adapted model. Consequently, we delete each decision activ-
ity other than the first from the fragment. This means that also the
gateways succeeding the deleted activities can be removed, such that
only the first decision activity, the gateway succeeding it and the end
nodes of the process fragment are kept. For each end node, the gate-
way has an outgoing edge connected to it and the conditions with
which the edges are annotated equal the row conclusions of the top-
level decision table.

An illustration of such refactoring is presented in Figure 29a
for pattern P3. It is important to assign the correct conditions to the
different edges originating from the split gateway. For example, the
end node Assign 20% discount in Figure 29a is connected to an edge
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Figure 29: Process fragment adaptation for pattern P3

annotated with e. This is because in the original process fragment
in Figure 28 the conjunction of the conditions leading from the start
node to this end node equals No A (> 40 years) and the table row
representing this conjunction has e as its output value.

The annotations on the edges originating from a split gateway
are intentionally abstract in our approach. The stakeholder may man-
ually add more descriptive annotations by changing the correspond-
ing edge labels or the corresponding rows in the decision activity
output column.

After the process fragment is initially refactored, it can be rec-
ommended to further simplify process fragments by merging seman-
tically related activities that follow directly after decision-based gate-
ways, with focus on activity.

Considering the adapted process fragment shown in Figure 29a,
the activities following on each path represent the same action Assign
discount based on some data input representing the actual discount
value. Choice of this option adapts a process fragment as follows.
First, the initial split gateway and all succeeding control flow nodes
can be replaced by a single activity whose label the stakeholder has
to specify. Secondly, we a data node that is written by the decision
activity and read by the newly added activity, can be added. This data
node represents the information transferred from the decision to the
action taken based on the decision. For the fragment in Figure 29a,
the corresponding adapted process fragment is shown in Figure 29b.
The added activity is labeled Assign discount and the data node is
labeled Discount.

Investigations on how to automatically merge activity labels for
this situation is out of the scope of our thesis. A recommendation
for the stakeholders and for future work in this direction would be
to consider methods to measure the semantic similarity of the labels
which would allow to combine corresponding activities. The works
considering automatic retrieval and clustering of similar activity la-
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bels include [111, 115, 125].

II - Decision Model Adaptation
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Figure 30: Decision model adaptation for pattern P3: refactored decision
requirements diagram and decision table

The decision model, obtained by the decision extraction proce-
dure described in Section 4.5.1, can also be further adapted. An ex-
ample adaptation is presented in Figure 28. For instance, decisions
Age and Check age can be merged since the first bases on information
directly given in the customer information (time being a customer)
and requires no computation. In contrast, the VIP client? decision re-
quires computation whether a customer is considered loyal and may
not be merged with the Decide on discount decision. Furthermore, de-
cisions Decide on discount and Check age could be merged since both
contribute to the decision which actual discount shall be awarded to a
customer. Figure 30 shows the adapted DMN model based on the dis-
cussed decision mergers for the outcome of the P3 fragment given in
Figure 29a. Merging decisions requires a merge of the corresponding
decision tables, i.e., the dependent decision’s table is inserted into the
higher level decision’s table. The resulting table of merging decisions
Decide on discount and Check age is shown in Figure 30.

In such a way, the post-processing procedure of process and de-
cision models represents a semi-automated step of our methodology
from Section 4.2. The refactoring of process fragments corresponding
to the detected decision patterns (see Figure 29a for an example) can
be fully automated. However, combining the decision outcome activi-
ties to avoid the branching behavior of control flow (see Figure 29b for
an example) and the decision model adaptation are left for a stake-
holder’s consideration and execution. After configuring the output
models, the stakeholder may adapt the decision tables and the pro-
cess model a final time.

4.7 SUMMARY AND DISCUSSION

In this chapter, we provided a semi-automatic methodology that
allows extraction of decision models from control flow of process
models. The extraction is pattern-based derived from an intensive
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analysis of about 1000 real world process models provided by our
project partners. Afterwards, we introduced the procedure of the semi-
automated identification of the specified patterns in a process model.
Further, we presented the algorithm to derive DMN decision models
from BPMN process models.

All the patterns represent process fragments consisting of deci-
sion activities and split gateways, since those are the most common
decision structures used in real-world process models. Since parallel
gateways do not influence decisions and since explicitly considering
them would significantly increase the complexity of our methodology
and its formalization, we disregard AND gateways.

Although not stated explicit in the patterns, we also support
loops like WHILE x DO y, since in these cases, the same decision is
taken multiple times with varying input data values until the looping
condition evaluates to false. Future works on the extraction of deci-
sion models from control flow of process models should overcome
assumptions that we set for control flow decision structures to iden-
tify more patterns and to provide a complete overview about decision
logic modeling in process models.

The chapter is concluded by our proposals for the adaptation of
the original process model by replacing the decision logic accordingly,
and final configuration of the result during post-processing. We use
the presented procedures as a base for implementation and evalua-
tion of our methodology which we present further in Chapter 8.
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DISCOVERY OF DECISION MODELS FROM
PROCESS MODEL DATA

s the volume of data is growing, and the methods of analyz-
A ing it are constantly evolving, process modeling languages like
BPMN demonstrate increasing data awareness. For supporting the
separation of concerns during process design, it is crucial to under-
stand which data-related aspects of decision making captured by pro-
cess models should be externalized to a dedicated decision model.
The current chapter extends our methodology of extraction of deci-
sion models from control flow of process models presented in the pre-
vious chapter, with respect to the data perspective of process models.
Under process-related data we understand information that is gener-
ated, or consumed by process activities. In particular, we distinguish
a set of BPMN patterns capturing process-related data used for mak-
ing decisions. Then, we provide a formal mapping of the identified
BPMN patterns to corresponding DMN models. Figure 31 presents
the input and the outputs of the proposed methodology.

Chapter 5: Decision
= Analysis of Process Model
S Model Data s
Process — e

Model e el
Process
S Model
(refactored)

Figure 31: Input and outputs of the methodology presented in Chapter 5

The development of the pattern-based methodology to discover deci-
sion models from process model data, presented in this thesis chapter,
is based on results published by Bazhenova et al. in [19, 20, 25]. The
derivation of the patterns and the validation of the results on an ex-
ample process from medical domain is a joint work of E. Bazhenova
in co-authorship with F. Zerbato and M. Weske, published in [25].
The chapter is structured as follows. Section 5.1 introduces the
chapter by presenting a motivational use case demonstrating how
process data can be involved in decision making. In Section 5.2, we
outline our methodology to discover decision models from process
model data, and discuss its assumptions, which is based on the con-
tribution of E. Bazhenova to the results published in [19, 20, 25]. Sec-
tion 5.3 introduces a review of the BPMN standard from which we
derive a set of the data-centric decision patterns, and show how they
can be detected in a process model. The aforementioned section is
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based on a joint work of E. Bazhenova and F. Zerbato published in
[25]. Section 5.4 provides a formal mapping between the specifed pat-
terns and a decision model, which is based on the contribution of E.
Bazhenova to the results published in [25]. We validate our method-
ology on the motivating example in 5.5, which is based on the joint
work of E. Bazhenova and F. Zerbato, published in [25]. Finally, we
conclude the chapter by a discussion of the presented methodology.

5.1 INTRODUCTION

Organizations’ value creation is based on information about their
own value chain, customers, production, and research and develop-
ment cycles [202]. Such data is stored in different IT systems that
combine the enterprise-wide data utilized in everyday work. At the
same time, many decisions in processes are data-driven [129]. As a
result, the role of data in process models grew significantly, and it
became essential to model the data and its flow within processes.
Thereby, process modeling languages that emerged in the last decade,
as BPMN, demonstrate increasing data awareness.

In order to provide a mapping between process-related data
used for decision-making, and dedicated decision models, different
kinds of process-related data used for making decisions needs to be
considered. Such data spans from structured operational data to in-
formally defined domain knowledge. As discussed in Section 2.1.2,
in this thesis we focus on operational decisions taken in business pro-
cesses, because they can be well formalized, analyzed, implemented,
and reused in multiple processes. Such kind of decisions act on oper-
ational data, and, therefore, we consider this type of data for distin-
guishing different kinds of data-centric process decisions. By opera-
tional data we refer to the data that represents the actually manipu-
lated artifacts during the execution of process activities [129].

For providing an insight into how operational data is employed
for decision making in processes, let us consider the BPMN process
model depicted in Figure 32. This process model presents the initial
steps for managing patients with suspected diabetes, at a high level.
As shown in Figure 32, the process is triggered by the start message
event Patient Request, which contains the patient’s personal data and
the request reason. The request is further evaluated by a Nurse, who is
the process resource responsible for conducting the Evaluate Request
decision activity. The nurse evaluates the degree of emergency, ac-
cording to guidelines extracted from clinical documents and specified
in the text annotation attached to the decision activity. If the patient
does not require urgent treatment, the nurse proceeds with Nurse
Assessment, which consists in examining the patient and writing the
Nurse Report, represented as a data node. This report is later used by a
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Figure 32: Diagnostic process for patients with suspected diabetes con-
ducted in a healthcare institution. Several data kinds are used
by process activities for decision-making: @ start message event
models; ® resources; © text annotations; ©® data stores; & data
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Physician for conducting the Diagnosis decision activity, in conjunction
with the patient data retrieved from the Electronic Health Record (EHR),
shown as a data store. The outcome of the diagnosis determines if the
patient requires Inpatient Treatment or if the he or she is out of dan-
ger and the nurse can Plan Future Evaluation. In this latter case, the
nurse decides when the evaluation should be scheduled, based on
the patient conditions and on the physician’s availability, recorded
in the Ward Calendar. If a New Availability notification arrives during
the scheduling of the appointment, as depicted by the corresponding
boundary non-interrupting event, the time slot is rescheduled.

The process model from Figure 32 considers data carried by
BPMN data nodes, text annotations, data stores, events, and resources.
For supporting the separation of concerns, the process decision logic
need to be externalized to a dedicated decision model. However, it
is not immediately clear which process data carries decisional value,
and how the various kinds of process-related data should be differen-
tiated when externalized to a decision model. In order to help stake-
holders to overcome this problem, we distinguish a set of data-centric
patterns representing process decisions and show how to map such
patterns to decision models, based on examples of BPMN and DMN.

5.2 METHODOLOGY AND ASSUMPTIONS

Introduction of data-centric decision patterns aims at external-
izing the decision logic hidden in process models. The challenging
part in the identification of such patterns is that, as also discussed
in Chapter 4, we observed that process models from practice often
misuse control flow to encode decision logic [18]. In such a way, in-
dustrial companies tend to overlook data structures to be involved
into process decision making. It is worth noticing that all companies
that provided their process models for the study received a respective
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training from the vendor providing them the BPM modeling tool, and
they were aware of the BPMN modeling guidelines [43, 126]. Appar-
ently, the guidelines on modeling data flow in process models with
respect to decision making are not sufficiently clear.

To overcome this problem, we conduct a systematic qualitative
analysis of the BPMN standard in Section 5.3.1 and derive a set of
data-centric patterns that can be used for modeling decision making
in processes in Section 5.3. We describe how to identify these patterns
in a given process model in Section 5.3.3.

Patterns’ -
specification Decision model

(Section 5 3) ( unadapted)

Decision model
Identification of Post-processing of |
Decision model N (adapted)
Process data-centric process and 4
extraction
model decision patterns (Section 5.4.1) decision models [\
(Section 5.3) (Section 5.4.2) | “yProcess model
(refactored)

Figure 33: An outline of our methodology to discover decision models
from data of process models presented in the rest of Chapter 5

The process of discovering decision models from decision-related
process data from process models is presented in Figure 33. Given a
process model, in order to conduct data-centric pattern-based discov-
ery of a decision model from the process model, three steps should be
done: (1) Identify the specified decision patterns in a process model;
(2) Extract a decision model; (3) Post-process both process and deci-
sion models.

To extract data-centric decision patterns from a given process
model, we rely on the following assumption. There should exist a
mechanism interpreting which activities of a given process model
are decision activities. As a first step, we can consider BPMN activ-
ity types (cf. [138]) to identify whether an activity is of a business
rule, or user type (cf. Definition 9). However, user activities can also
represent activities which are not involved in decision making. Fur-
thermore, natural language processing of activity labels [111] can be
done with the goal to determine whether an activity is of a decision
type. Even in this case, the support of an expert might be needed, as
the labels of process model activities are succinct pieces of text, which
sometimes do not reflect the decision-making nature of an activity in
“as-is” process models. We assume that by any of the proposed ways,
the decision activities of a given process models are established.
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5.3 DATA-CENTRIC DECISION PATTERNS

In order to identify which combinations represent data-centric
decision making in processes, we conducted a systematic qualitative
review of the standard as described below. We use BPMN as it is the
most consolidated standard for business process modeling [60, 173]
and propose a formalization of the patterns. Firstly, we conduct a re-
view of the BPMN standard in Section 5.3.1. From this review, we
derived a set of elementary decision patterns representing combina-
tions of decision activities and other process model elements in Sec-
tion 5.3.2.

5.3.1 Review of the BPMN Standard

In order to identify which combinations represent data-centric
decision making in processes, we conducted a systematic qualitative
review of the BPMN standard [138] and the guidelines for its us-
age [43, 206]. The review results are presented below.

Our review question is “which BPMN elements represent data
in process models that can be related to decision-making activities?”.
The goal is to provide a selection of elements relevant to the review
question. On the one hand, there are data flow elements (e.g., data
nodes) which can be connected to decision activities. On the other
hand, there are control flow elements (e.g., control flow edges) that
can connect decision activities with other types of data represented
in a process model (e.g., events providing data for decision activities).
The source of the review data is version v.2.0.2 of the BPMN stan-
dard [138]. In total, all 116 elements of the standard were considered.

The five basic groups of BPMN elements are: (1) flow objects,
(2) data, (3) connecting objects, (4) swimlanes, and (5) artifacts. The
definitions of many of the elements can also be found in Section 2.3.1.
The graphical illustrations of some of the elements can be seen in Fig-
ure 6. A short review summary is presented in Table 7. In the table,
the relevance of the BPMN elements for representing data that can be
related with decision activities is denoted by “+” symbol for the full
relevance, by “-” symbol for the full irrelevance, and by “+/-” sym-
bols for the partial relevance, that is explained in the commentaries
column. We consider each basic category with respect to our review
question as follows:
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Groups

Elements

Rele-
vance

Commentaries

Flow Objects

Event models

+/-

Only start event models, intermediate
catching event models, and boundary
event models are relevant. Boundary in-
terrupting event models: the decision
activity is located on the outgoing ex-
ception flow. Boundary non-interrupting
event models: attached to a decision ac-
tivity.

Activities

Not relevant: activities are units of work
that are not meant to represent data.

Gateways

Not relevant as gateways are part of con-
trol flow which is not meant to represent
data.

Data

Data nodes
Data inputs
Data outputs

Relevant, combined with data associa-
tions that connect them to decision acti-
vities.

Data stores

Relevant, in combination with data asso-
ciations that connect them to decision ac-
tivities.

Connecting objects

Sequent flows

+/-

Only sequence flow that is connected to
decision activities is relevant.

Conditional flows

Not relevant, as they encompass auto-
matic “routing decisions”.

Message flows

Not relevant, as decision activities can-
not be of send or receive type.

Associations

Relevant, in combination with text anno-
tations.

Data associations

Relevant, in combination with data ob-
jects, data inputs, data outputs, or data
stores.

Exception flows

+/-

Relevant only when it connects a bound-
ary event attached to one activity with a
following decision activity.

Swimlanes

Lanes

Relevant, as it contains data about a re-
source responsible for execution of deci-
sion activities.

Pools

+/-

Relevant only if a pool consists of one
lane because a decision activity can be-
long to only one lane.

Artefacts

Groups

Not relevant because groups represent
only an informal visual mechanism for
grouping elements, and they do not
carry decisional data.

Text annotations

Relevant, combined with associations
that connect them to decision activities.

Table 7: Relevance of the BPMN elements for representing data that can

be used by decision activities for making a decision. Full relevance
w.r.t. our review question is shown as a “+” symbol, full irrele-
symbol, and partial relevance is marked

vance is denoted by a

by a “+/-" symbol.
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¢ Flow objects are the main graphical elements to define the behavior
of a business process. BPMN defines three flow objects:

— Events models. There are three types of event models, based on
when they affect the flow: start, intermediate, or end. We con-
sider only such events that affect execution of decision activi-
ties. Therefore, only the start and intermediate event models
preceding a decision activity are relevant, since the end events
can happen only after its execution. Within the scope of start
and intermediate event models, we consider catching event
models and exclude throwing event models. Indeed, catch-
ing events can react to certain triggers that define the cause
for the event. If a decision activity is connected to a catching
event model, it means that it can utilize the data carried by
the event in decision making. Throwing events can also carry
data, but they “throw” it to an element which is different from
the decision activity (otherwise, a data node should be used).
Hereby, we include into our selection start and intermediate
event models of any type (e.g., message, or timer), since the
decision logic based on data of any nature can be eventually
externalized into dedicated decision models.

— Activities. An activity is a generic term for work that company
performs. Naturally, activities are not meant to represent data
in processes, therefore they are not relevant for our selection.

— Gateways. Gateways are used to control the divergence and
convergence of sequence flow in a process. In such a way, gate-
ways are part of process control flow, so they do not represent
data in processes. Even if gateways execute data-based rout-
ing decision, the actual decision shall happen in the activity
preceding the decision gateway. Omission of such decision is
a mistake made by an inexperienced user [60, 197].

* Data is represented with the following elements:

— Data nodes, data inputs, data outputs. Data nodes provide infor-
mation about what activities require to be performed, or what
they produce. Data inputs and data output provide the same
information for processes. Therefore, data nodes, data inputs,
and data outputs, combined are naturally relevant to be in-
cluded in our selection. As we also see later in the description
of the connecting objects, the considered data nodes, data in-
puts, and data outputs should be used in combination with
data associations.

— Data stores. A data store provides a mechanism for activities
to retrieve or update stored information that will persist be-
yond the scope of the process. Naturally, data stores provide
information to activities relevant for decision making, so we
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include data stores in our selection. Again, data stores should
be used in combination with data associations.

¢ Connecting objects represent four ways of connecting the flow ob-
jects to each other or other information:

— Sequence flows. A sequence flow can be used to show a partial
ordering of activities in a process. As mentioned, activities
are not relevant for our selection, therefore, combinations “se-
quence flow plus decision activity” are also not relevant.

— Conditional flows. A conditional flow is a special kind of se-
quence flow having a condition expression that is evaluated
at runtime to determine whether that flow can be used or
not. Despite relying on the evaluation of a data-based condi-
tion, they encompass an automatic “routing decision”. Since
decision-wise their behavior is similar to that of exclusive gate-
ways, they are not relevant for our selection.

— Message flows. A message flow is used to show the flow of
information messages between two participants that are pre-
pared to send and receive them. Thereby, the send or receive
types should perform such information exchange. However,
the decision activities shall serve a purpose of pure decision
making, and we assume that they can be only of either a busi-
ness rule, or user (cf. Definition 9). Therefore, we exclude mes-
sage flows from our selection.

— Associations. An association is used to link text annotation
with BPMN graphical elements. Thereby, text annotations can
contain data related to process decision making. In such a way,
we include combinations of “association plus text annotation”
into our selection.

— Data associations. A data association is used to link data nodes
or data stores with BPMN graphical elements. Thereby, data
nodes or data stores can contain data related to process deci-
sion making. In such a way, we include combinations of “data
node, or data store plus data annotation” into our selection.

— Exception flow. Exception flow occurs outside the normal flow
of the process and is based upon an intermediate event model
attached to the boundary of an activity that occurs during the
performance of the process. Hereby, we consider both inter-
rupting, and non-interrupting event models, as events of both
types can carry data which can be used by a decision activity.

¢ Swimlanes group the primary modeling elements by two ways:

— Lanes. Lanes are used to organize and categorize activities.
The assignment of a resource to an activity is done by plac-
ing an activity in the lane.
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— Pools. A pool is the graphical representation of participants of
the process. It can consist of several lanes. A decision activity
can belong to only one lane of the pool. Again, the assign-
ment of a resource to an activity is done by placing an activity
within the lane. In such a way, the case of pools can be re-
duced to the case of lanes.

e Artifacts are used to provide additional information about the pro-
cess:

— Groups. BPMN defines groups as a “visual mechanism to
group elements of a diagram informally”. Groups can not
be connected to any BPMN elements, and they do not affect
the process flow. In principle, they serve to ease perception
of process models to users. Since our goal is to provide a for-
mal specification for data-centric patterns that are relevant for
operational decision making in processes, we do not include
groups into our selection.

— Text annotations. Text annotations are a mechanism for a mod-
eler to provide additional information in natural language to
help the readers of a process model. These artifacts can con-
tain significant information guiding decision making in pro-
cesses, therefore, we include them into our selection.

Based on the presented review of relevance of the BPMN ele-
ments for representation of data that can be related with decision
activities, we define next a set of patterns that can be used for fur-
ther externalization of process decision logic into a dedicated decision
model.

5.3.2 Data-Centric Decision Patterns

In order to enable the extraction of process decision logic into
a dedicated decision model, we define a set of data-centric decision
patterns I11—116 that can occur in a process model. The patterns
are derived from our systematic review of the BPMN standard (cf.
Table 7). Next, we discuss the detection of these patterns in a given
process model.

The overview of the discovered patterns is presented in Fig-
ure 34. Each pattern corresponds to a process fragment, that is, a
subgraph of a process model, which represents a data-centric deci-
sion that can be externalized into a separate decision model. For
better readability, we always show one process elements of a kind,
thus omitting the representation of multiple elements of the same
kind connected to a single decision activity. For example, pattern
I11 shows only one data node connected with a decision activity, al-
though the formalization of IT1 provides that multiple data nodes can
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be attached to a single decision activity. Note, that in our illustrations,
the decision activities can be of two types: business rule, or user.
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Figure 34: BPMN data-centric decision patterns showing decision activi-
ties identified by experts (cf. Definition 2). The possible plurality
of the elements connected to a single decision activity (data ar-
tifacts, annotations, or boundary event models) is omitted for
better readability reasons.

Let pm = (N, DE, TA, %, C, F, Z, H, a5, at, ag, B, ¢, ) be a
process model (cf. Definition 7), and let DA C T be the set of decision
activities for pm (cf. Definition 9). A process fragment pf = (N, DE/,
TA', ¥, C', F, Z!', H', s, 11, 114, %, 0, {) is a connected subgraph of
the given process model pm (cf. Definition 8). We refer to patterns
I11—1I16 as to elementary patterns. An elementary pattern is a process
fragment which consists of a decision activity and related elements.
We devise the formalization of the discovered patterns, as presented
below.

IT1 Data nodes used by a decision activity. A decision activity da € DA
uses the set of data nodes DN’ C DN iff for each dn € DN/,
(dn,da) € F. II1 is a process fragment that consists of decision
activity da, a set of data nodes DN’ C DN, and a set of data
associations Fpyn = {(dn,da) | dn € DN’} C F.

IT2 Text annotations used by a decision activity. A decision activity
da € DA uses the set of text annotations TA’ C TA iff for each
ta € TA', (ta,da) € Z. I12 is a process fragment that consists of
decision activity da, a set of text annotations TA’ C TA, and a
set of undirected associations Z’' = {(ta,da)| ta € TA'} .

I13 Data stores used by a decision activity. A decision activity da € DA
uses the set of data stores DS’ C DS iff for each ds € DS/,
(ds,da) € F. I13 is a process fragment that consists of decision
activity da, a set of data stores DS’ C DS, and a set of data
associations Fpg = {(ds,da) | ds € DS’} C F.
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IT4 Decision activity associated with a specific resource. A decision activ-
ity da is based on data related to the associated process resource
h € H iff (da,h) € . IT4 is a process fragment that consists of
decision activity da and associated resource h.

IT5 Event data used by a subsequent decision activity. A decision ac-
tivity da € DA uses the data carried by a previously occurred
evente € E iff (¢,da) € C’, where C’' C C. According to the kind
of triggered event, we distinguish two variants of this pattern:
II5—a is a process fragment that consists of decision activity da,
start event ¢, and control flow (e,da) € C'.

I15—0 is a process fragment that consists of decision activity da,
intermediate event e, and control flow (e, da) € C'.

IT16 Boundary event data used by a decision activity. A decision activity
da may be influenced by the occurrence of the set of bound-
ary events E; C Ep during its execution iff for each e, € Ej,
(ep,da) € x, x : T — 2F5, and e}, occurs while da is being exe-
cuted. This holds only for human decision-making, or for sub-
processes, which usually take a certain amount of time to be ex-
ecuted, during which an event can occur and provide data that
influence decision outcomes. Indeed, a standalone business-rule
decision activity is assumed to invoke a decision model which
is executed instantly [142]. Accordingly, we distinguish two pat-
tern variants:

I16—a is a process fragment that consists of decision activity da,
the boundary event ¢, such that (e, da) € «x, where as(da) =
{task} and a; = {user}.

IT16—b is a process fragment that consists of decision activity
da, boundary event e, such that (ey,da) € x, where as(da) =
{subprocess}.

It is worth noticing that not all kinds of data specified within pro-
cess models need to be externalized in dedicated decision models.
For instance, let us consider event-based gateways. In this case, the
event occurrence drives instantaneous decisions, which are managed
by process engines. Such kind of process-engine decisions should not
be included in decision models, as they are rather based on process
logic and routing rules, which are out of the control of a (human) de-
cision maker. On the contrary, information used for decision-making
and included in decision models may not be explicitly represented in
process models. For instance, domain knowledge, Key Performance
Indicators (KPIs), or process execution logs often drive decision mak-
ing, but they are represented as meta-information rather than being
included in process models.
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5.3.3 Identification of the Specified Patterns in a Process Model

The detection of the data-centric patterns in a given process
model should be done in the following way. Firstly, according to As-
sumption 2 given in Section 5.2, a process or decision analyst detects
all decision activities. In particular, the analyst identifies the decision
activities based on his or her process knowledge, or consults the pro-
cess participants. A semi-automated support of this step can be done
by using natural language analysis of activity labels [111] to recom-
mend candidate decision activities which shall be confirmed by an
analyst. Another option for semi-automated support of this step is to
identify the split gateways in a given process model, and recommend
the activities preceding the gateways as candidate decision activities.
Again, an analyst should confirm that the selected activities actually
encompass decision making. In practice, there are frequent situations
where the decision activities are omitted before split gateways [18].

Next, for each decision activity it is checked whether it is in the
control-flow or data relation with other elements in accordance to
II1—II6. This step can be automated by a corresponding parsing of
the process model. The output of the procedure is the set of detected
patterns for each decision activity identified by an analyst. Note
that each decision activity can be involved in several patterns at the
same time. The examples of elementary patterns extracted for the
motivating example (see Figure 32) and the detail regarding their
detection can be found in Section 5.5.

5.4 DECISION MODEL EXTRACTION

In order to externalize the decision-related process data to a
dedicated decision model, a mapping between process and decision
model needs to be provided. Section 5.4 introduces the formal map-
ping between the set of data-centric decision patterns introduced in
Section 5.3 and corresponding decision models. In Section 5.4.2, we
show how to adapt both process and decision models after the extrac-
tion of the decision model.

5.4.1 Formal Mapping

As a basis for decision models we use the DMN standard, but
we also provide the formalization of the mapping. DMN decision
models consist of two layers - the decision requirements diagram (cf.
Definition 12) and the decision logic most often represented through
decision tables (cf. Definition 13). For extracting a decision model
from process model data presented in this chapter, we only utilized
the decision requirements level. The reason for this is that by identifi-
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cation of the data-centric decision patterns introduced in Section 5.3,
decision activities are identified by analysts independently of their
further influence on the process, so that the decision outcomes are not
considered. This is the opposite approach to the identification of the
control-flow-based decision patterns presented in Section 4.3, because
there the decision patterns included decision activities and their out-
put expressed in the control flow. However, the data-centric decision
patterns introduced in Section 5.3 consider only the decision activi-
ties and their inputs. Thereby, the decision logic is not represented in
the combinations of decision activities and process data, so decision
tables can not be constructed based on this knowledge. Herewith, the
process data can be utilized when detecting the requirements for the
decision model. In the remainder of the section, we propose a map-
ping of the presented data-centric decision patterns to the decision
requirements level of the decision model.

Below, we introduce a set of DRD fragments A = {Al,..., A6}
which corresponds to the set of identified BPMN data-centric decision
process patterns IT = {II1,...,I16}. Further, we provide a correspon-
dence relation I' = {I'l,...,I'6}, such that I' C IT x A. All the DRD
fragments are subgraphs of a DRD (c.f. Definition 12) containing one
decision d, such thatd € D,ID’ C ID,KS’ C KS,IR' C IR, AR’ C AR.
The correspondence relation I' is visualized with the help of corre-
spondence graphs in Figure 35, and discussed below. In Figure 35, the
shading of the shapes denotes that the corresponding DRD elements
are optional for both decision representation and execution. Again,
for readability reasons, we do not show the possible plurality of ele-
ments of the same kind connected to a decision activity. In detail, the
correspondence relation I'i maps decision activity da of each BPMN
decision pattern I1i to decision d of the corresponding DRD pattern
Ai, where i = {1, ...,,6}. Bearing this in mind, we define and discuss
the remaining BPMN and DRD elements.

I'l A mapping I'l is a correspondence relation between the
BPMN pattern IT1 = (da, DN',Fpyr) and the DRD fragment
Al1=(d,ID’,IR’"). Thereby, each data node dn € DN’ corre-
sponds to input data id € ID’ as they both represent operational
data used by the decision. Each corresponding data association
fan € Fpn' corresponds to information requirement ir € IR’

I'2 A mapping I'2 is a correspondence relation between the BPMN
pattern I12 = (da,TA’,Z') and the DRD fragment Al =
(d,ID’,KS’, IR, AR"). Text annotation ta € TA’ corresponds to
input data id € ID’ if it represents operational data needed for
making the decision. In this case, undirected association z € Z’
should be mapped to information requirement ir € IR’. Alterna-
tively, text annotation ta € TA’ may be mapped to knowledge
source ks € KS' if it represents a non-functional requirement
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Figure 35: Mapping of the introduced BPMN patterns to DRD fragments.

I3

Shading of the DRD shapes means that the elements are op-
tional for modeling and execution.

for decision-making. In this latter case, undirected association
z € Z' should be mapped to authority requirement ar € AR'.
However, as text annotations do not always represent data used
for making decisions, both input data and knowledge source
in the DRD fragment are represented as optional for modeling
and execution.

A mapping I'3 is a correspondence relation between the BPMN
pattern I13 (da,DS’,Fpg/) and the DRD fragment A3
(d,ID’,IR"). Each data store ds € DS’ corresponds to input data
id € ID' as it represents operational data used by the decision.
Each data association f;5; € Fpg corresponds to information re-
quirement ir € IR’

I'4 A mapping I'4 is a correspondence relation between the BPMN

pattern I14 (da,h, (da,h)) and the DRD fragment A4
(d,id, ks,ir,ar). Resource h can be mapped to input data id €
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ID’ if it represents role information used for decision-making.
In this case, (da,h) €  should be mapped to information re-
quirement ir. Alternatively, resource h can be mapped to knowl-
edge source ks € KS' if it represents a non-functional require-
ment for making the decision, and then (da, h) € ¢ should be
mapped to authority requirement ar € AR'.

I'5 A mapping I'5 is a correspondence relation between the BPMN
pattern II5 = (da,e, (e,da)) and the DRD fragment A5 =
(d,id,ir). Both II5—a and II5—b are implied, as they have the
same formal structure. Event e carries process data influencing
the decision, and it corresponds to input data id € ID’. The
corresponding control flow edge (e,da) € C’ is mapped to in-
formation requirement ir € IR’.

I'6 A mapping I'6 is a correspondence relation between the
BPMN pattern I16 = (da, E}, x) and the DRD fragment A6 =
(d,ID',IR"). Each boundary event e, € Ej carries data influ-
encing the decision, and it corresponds to input data id € ID’.
As well, the corresponding relation (ey, da) € x is mapped to
information requirement ir € IR’. As the boundary event in
both cases might not occur at all, the corresponding input data
element in the DRD fragment is shown as optional.

The decision nodes in the DRD fragments presented above can addi-
tionally reference the business knowledge nodes reflecting decision
logic. This is recommended if the decision logic is reused by multiple
decisions. In this case, the corresponding knowledge requirements
nodes should be provided. Also, text commentaries can be added in
the output DRD fragments to additionally specify the DRD elements.

Thereby, the procedure of mapping the detected decision pat-
terns in a decision-related data of a process model, to a decision
model, is a step of our methodology (cf. Section 5.2) that can be fully
automated.

5.4.2 Post-Processing of Process and Decision Models

Given that a set of the DRD fragments is consequently derived from
the set of BPMN data-centric decision patterns according to the pre-
sented mapping, two post-processing steps need to be done. Firstly,
a complete DRD model needs to be constructed. This should be fol-
lowed by a compilation of the derived DRD fragments into a com-
prehensive decision requirements diagram and by the reduction of
repeated elements. When a decision activity produces data nodes or
text annotations that are reused by another decision activity, an in-
formation requirement should be added between these two decisions.
Otherwise, DRD fragment represents an independent DRD model.

113



114

DISCOVERY OF DECISION MODELS FROM PROCESS MODEL DATA

The example of construction of a DRD model from derived data-
centric process fragments for the motivation example is provided in
Section 5.5.

After a DRD model is constructed for a given decision model,
the original process model needs to be adapted. Firstly, an analyst
should identify whether the process related data elements involved
in the specified patterns should be kept in the given process model, or
they should only be kept in a dedicated decision model. Secondly, for
the determined decision activities of the process model, undirected
association links to the corresponding elements of the extracted DRD
model should be added, e.g., at the implementation level.

In contrast to the adaptation of a process model following the
control-flow-based decision model extraction (as presented in Chap-
ter 4), the process model post-processing in case of the data-centric
decision model extraction is not a necessary step. This is due to the
fact that we consider that the process model control flow is misused
if the decision logic is embedded in the control-flow structures (cf.
Section 4.1). However, the decision-related process data is rather rep-
resented through process model data elements aiding the decision
activities, but not encoding the decision logic.

5.5 APPLICATION OF THE METHODOLOGY TO A REAL-WORLD EX-
AMPLE

In this section, we apply the methodology introduced for dis-
covering decision models from process model data to a real-world
example, introduced in Section 5.1, to show its applicability and
validate it.

Pattern Detection

Firstly, we analyzed the BPMN process model from Figure 32 and de-
tected that there are three decision activities which reflect the process
of choosing an output from some alternatives, namely Evaluate Re-
quest, Nurse Assessment, and Plan Future Evaluation. According to the
presented classification of the BPMN data-centric decision patterns
from Section 5.3.2, an aggregate of the process fragments correspond-
ing to these decision activities was detected (see Figure 5.5): (I) The
Evaluate Request decision activity and the start message event Patient
Request; (IT) The Evaluate Request decision activity and the text annota-
tion connected to it; (III) The Evaluate Request decision activity and the
Nurse resource; (IV) The Diagnosis decision activity and the Nurse Re-
port data node; (V) The Diagnosis decision activity and the EHR data
store; (VI) The Diagnosis decision activity and the process resource
Physician; (VII) The Plan Future Evaluation decision activity and the
Ward Calendar data node; (VIII) The Plan Future Evaluation decision
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activity and the New Availability notification; and (IX) The Plan Future
Evaluation decision activity and the Physician resource.

Further, we applied the mapping from Section 5.4.1 on the
detected fragments and provided the corresponding DRD fragments,
as shown in Figure 5.5. The cases including optional mappings were
treated as follows. In Fragment II, the text annotation is mapped to
the knowledge source and not to input data, as it is a non-functional
requirement for executing decision activity Evaluate Request decision
activity. All the resources were mapped to knowledge sources (Frag-
ments III, VI, and IX), as they are constant for the exemplified process
model, whereas input data rather reflects changeable operational
data. Accordingly, the New Availability boundary event model (Frag-
ment VIII) is mapped to the input data.

Post-Processing

The discovered fragments were consequently combined together and
compiled into two decision requirements diagrams, presented in Fig-
ure 37. As the output of the Evaluate Request decision activity is writ-
ten in the EHR data store which is read by the Diagnosis decision
activity, an information requirement between the corresponding two
decisions was added, as shown in Figure 37a. Since the Plan Future
Evaluation decision activity is connected with the other decision ac-
tivities only through the process control flow, it is designed as an
independent DRD in Figure 37b.

| . Nurse
Physician %‘ ‘ Diagnosis | Report
—

S L =

\EHR / | Evaluate ®°° _/”
- Request

Plan Future ‘. Nurse J
Evaluation ‘ P

I BN

_/

...| Ifthe patient
T E"%e‘?’””i | () o)
. oL alendar wvalliability
==y B S
(a) The first extracted DRD (b) The second extracted DRD

Figure 37: Extracted DMN model corresponding to the BPMN process
model from Figure 32

The extracted DMN model in Figure 37 serves as an explana-
tory decision model for the BPMN process model from Figure 32, as
it incorporates explicitly the decision-related process data. Herewith,
the extracted decision model can be executed complementary to the
process model, and thus, the principle of separation of concerns [197]
is supported. Thereby, the original BPMN process model should con-
tain the undirected association links of decision activities to the corre-
sponding elements of the extracted DMN decision model, which can
be realized during implementation.
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5.6 SUMMARY AND DISCUSSION

In this chapter, we presented a pattern-based methodology to
externalize process-related data used for making decisions into ded-
icated decision models. In general, companies tend to overlook the
inclusion of data into process decision making, perhaps, because the
guidelines on modeling data flow in process models with respect
to decision making are not sufficiently clear. To overcome this gap,
we conducted a qualitative analysis of the BPMN standard in Sec-
tion 5.3.1. This allowed us to derived and formalize the set of data-
centric decision patterns that can be used for modeling decisions in
process models in Section 5.3. Section 5.3.3 describes how to detect
the specified patterns in a given process model.

Similarly to our methodology from Chapter 4 (cf. Section 4.7),
the methodology presented in this chapter can handle loops if they
are present in an input process model. In such cases, the same deci-
sion is taken multiple times with varying input data values until the
looping condition evaluates to false.

Our assumption on the process model is that there exists a
mechanism interpreting which activities of the given process model
are decision activities. In future work, such assumption can be over-
come, for example, by improving identification of decision activities
in process models based on activity labels and textual content pro-
cessing [111].

The introduced specification of the data-centric decision patterns
allowed us to introduce the pattern-based mapping between the de-
tected set of process model patterns and corresponding fragments
of the decision requirements diagrams. The mapping considers the
different nature of data artifacts specified in process models.

We demonstrated and validated the presented methodology to
discover decision models from process model data by applying it to
an example taken from the healthcare domain. The evaluation of the
presented techniques is provided further in Chapter 8. In particular,
we present results of the application of our methodology to discover
decision models from a real-life process model set, and further ex-
plore the advantages and limitations of the presented methodology.
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DISCOVERY OF DECISION MODELS FROM EVENT
LOGS

o far, we have addressed the ways of discovering decision mod-
S els complementary to process models by the analysis of process
model control flow and data. However, knowledge about ”as-is” de-
cision making can also be retrieved by analyzing process event logs
and discovering decision models from this information. In this chap-
ter, we propose an approach for semi-automatic derivation of decision
models from process event logs with the help of decision tree classi-
fication. Thereby, we extended a state-of-the-art approach to derive
control flow decisions from event logs with additional identification
of data decisions and dependencies between them. Figure 38 outlines
the input and the output of the proposed methodology.

Chapter 6:
Event Log Analysis

Decision
Model

Event Log

Figure 38: Input and output of the methodology presented in Chapter 6

The development of the methodology to discover decision mod-
els complementary to process models from event logs is the contribu-
tion of this thesis chapter based on results published by Bazhenova
et al. in [21] and [23]. The development of the algorithms from this
chapter and their implementation is a joint work of E. Bazhenova in
co-authorship with S. Buelow and M. Weske, published in [23].

The rest of the chapter is structured as follows. Section 6.1 in-
troduces the chapter by providing a motivating example demonstrat-
ing how process decision logic can be incorporated in an event log.
Section 6.2 outlines our proposed methodology to extract decision
models from event logs, complementary to processes, and discusses
assumptions that we rely on, which is based on the contribution of
E. Bazhenova to the results published in [21] and [23]. In Section 6.3,
we distinguish between different types of decisions that can be de-
tected in an event log and propose an algorithm on their extraction
from the event log, which is based on the contribution of E. Bazhen-
ova to the results published in [21] and [23]. Section 6.4 introduces
our algorithm to discover dependencies between extracted decisions.
In Section 6.5 we validate the presented methodology by applying
it to a simulated event log. Sections 6.4-6.5 is based on a joint work
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of all co-authors from [21] and [23]. The chapter is concluded by a
discussion of results.

6.1 MOTIVATING EXAMPLE

Amount
Rate .
Premium .‘,.Esk
Duration .
Claim | e, Evaluation|
details H report
o

> Send
» Full check
Send
rejection

Figure 39: Process model of the loan application in a bank

&
@ Register Decide X Standard
claim check type check
Request p1

for credit

P4 Request
processed

In order to illustrate how decision logic of processes can be in-
corporated in event logs, in this section we provide a motivating use
case. Consider an example process representing a loan application
in a bank, as shown in Figure 39. The process is triggered when the
Request for credit message event arrives. Further, the Registration claim
activity is executed. Claim details are recorded in the bank system as
the attributes of the activity output data node: the claimed Amount
(e.g., in EUR), the desired payback Rate (e.g., in EUR) per month, the
payback Duration (e.g., in months), and if the customer has a Premium
status. Afterwards, an expert executes the Decide check type activity,
in order to determine what type of check should be executed next.
Thereby, when the corresponding type of check is determined, the
activities Full check, Standard check, or No check represent recording of
the corresponding decision in the bank system by the process expert.
That said, the activities Full check and Standard check also represent
the actual checks executed for the claim. The process proceeds with
execution of the Evaluate claim activity, whereby the expert decides if
the client’s claim is accepted or rejected. Accordingly, the claim Risk
is recorded as the attribute of the Evaluation report data node. After
sending an approval, or a rejection letter, the request is considered
processed.

Once the example business process is designed and configured,
it can be executed with the help of a process-aware information sys-
tem (PAIS). Thereby, an event log (cf. Definition 17) is a central artifact
of process execution.

Table 8 shows an example fragment of the event log for the
process depicted in Figure 39. For each event instance e, the event
log records the event ID, the trace ID referring to the corresponding
process instance, the name of the executed activity, and the set of
other event attributes 4 € A logged when the corresponding activ-
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ity writes the attributes of the output data node. For example, the
event instance 1 has the following attributes: Amount a; = 84 [EUR],
Rate ay = 2.8 [%)|, Duration az = 30 [Mths], Premium ay = false.
All other information, e.g., the timestamps of event instances is dis-

carded.

Event ID | Trace ID Name Other attributes
1 1 Register claim | Amount = 84 [EUR], Rate = 2.8 [%], Duration =
30 [Mths], Premium = false
2 1 Full check -
3 2 Register claim | Amount = 8o [EUR], Rate = 4.4 [%], Duration =
18 [Mths], Premium = true
2 No check -
1 Evaluate claim | Risk =3
6 1 Send rejection | -

Table 8: An excerpt of the event log for the process depicted in Figure 39

The main problem with managing such decision making is that
the decisions done by experts are only implicitly contained in the
event log. For example, an expert from a bank compliance depart-
ment would not be able to identify if the logic behind the decision
recorded in the event log (see Table 8) is non-discriminatory, since the
decision rules are not logged anywhere. The existing techniques on
rules mining [205] allow the knowledge about the process decisions
to be empirically derived from the logged expert decisions depicted
in Table 8 in the form of credit evaluation rules. However, the corre-
sponding process model depicted in Figure 39 does not allow for de-
cision knowledge to be obtained. Moreover, direct application of the
empirically derived rules for the development of credit scoring sys-
tems can lead to the unjust treatment of an individual applicant, e.g.,
judging the applicant’s creditability by the first letter of a person’s last
name [37]. Thus, it seems reasonable to use automated credit scoring
systems [137] complemented with an explanatory model. Therefore,
we propose further in this chapter a methodology to derive a decision
model from the process event log, using DMN for decision modeling.
An advantage of utilizing a DMN decision model complementary to
the business process model from Figure 39 is that it supports the
separation of process and decision logic principle described by us in
Section 2.3.3.

6.2 METHODOLOGY AND ASSUMPTIONS

Existing approaches for discovery of decision rules in the busi-
ness process context concentrate on the retrieval of control flow deci-
sions but neglect data decisions and dependencies that are contained
within the logged data (for details, see the related work presented
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in Section 3.5.2). To overcome this gap, we extended an existing ap-
proach to derive control flow decisions from event logs [165] with
additional identification of data decisions and dependencies between
them. Furthermore, we proposed an algorithm for detecting depen-
dencies between discovered control flow and data decisions. The re-
sult of the application of our methodology is a complete DMN deci-
sion model which explains the executed decisions, and can serve as a
blueprint for further decision management.

Figure 40 visualizes the four steps of our methodology and
the corresponding input and output. Given an event log (cf. Defini-
tion 17), we first detect process decisions based on the specifications
of Section 6.3. The detected decisions should be mapped to the corre-
sponding elements of a decision model, in adherence to a technique
presented in Section 6.3.3. Next, the dependencies between discov-
ered decisions should be detected according to techniques presented
in Section 6.4. The detected dependencies should also be mapped to
the corresponding elements of a decision model, in accordance to a
technique presented in Section 6.4.3. The output of the methodology
is a decision model which explains “as-is” decision making in the
given event log.

Decisions’ Specification of decision
specification dependencies
(Sections 6. 3 1 6.3.2) (Section 6.4. 1)

Dlscovery of Mapping of Dlscovery of Mapping of
discovered decision discovered .
Event process decisions Decision
decisions to a dependencies dependenciestoa f—»
log (Sections 6.3.1, model
6.3.2) decision model (Section 6.4.1, decision model
(Section 6.3.3) 6.4.2) (Section 6.4.3)

Figure 40: An outline of our methodology to discover decision models
from event logs presented in the rest of Chapter 6

In addition to the techniques presented in this chapter, a process
model can be extracted from the event log. Thereby, both process and
decision models can be used in a complementary way which realizes
the separation of concerns principle (cf. Section 2.3.3). There exists a
well-established process mining discipline which provides means for
automated discovery of process-related information from event logs
created by IT systems [63, 184]. Thereby, the process mining dicsovery
is out of the scope of this thesis, but we assume that the correspond-
ing process model can be extracted from a given event log, and out-
put process models can be used complementary to decision models
discovered from the log according to the techniques developed by us.

For extraction of a decision model from a given event log, we
rely on several general assumptions as follows:

1. Historical process information (i.e., the start or end of activ-
ities) is available as an event log (cf. Definition 17). Addi-
tionally, a process model is available, which can be extracted
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from the event log by any process mining algorithm, e.g., from
[32, 55, 57, 113, 184, 187].

2. Given event log corresponds to a process model which is struc-
turally sound, i.e., pm contains exactly one start and one end
event and every node of pm is on a path from the start to the
end event. This assumption is reasonable, as usually models
exhibiting deadlocks, or livelocks are assumed to be subject to
modeling errors [61].

3. If the input event log encodes execution of processes incorpo-
rating split gateways, the decisions for them are assumed to
be taken in distinct process model activities preceding the split
gateways. It is considered as a mistake made by many inexperi-
enced BPMN users to omit the decision activity preceding the

split gateway [197].

4. Further, we assume that the process decisions do not appear
within loops. This would result in several instances of one de-
cision within one process execution, which is a known obstacle
for classifying decisions in event logs of processes [165]. For
example, an event log obtained by execution of the process
model from Figure 41 may contain multiple occurrences of ac-
tivities B and C associated with one process instance. However,
only the first occurrence of either of them should be related to
the control-based decision made in gateway pl. On the other
hand, the occurrences of activities B and C can be related to
the control-based decision p4. Since the classification problem
can not be fully specified for such situations in a general way,
these cases require a special handling. We leave this handling
out of the scope of the current thesis, but we provide a discus-
sion of the possible workarounds on how to preprocess an event
log containing the looping decisions in the chapter conclusion.
These workarounds are demonstrated when we apply the de-
vised methodology on a real-life event log in Chapter 8.

Figure 41: A process model involving decision looping

5. For discovering the decision models from event logs, as pre-
sented in Section 6.2, we solve the classification problem where
the classes are process decisions, and the training examples are
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the process instances recorded in the event log. Hereby, in the
presented algorithms, we assume that the classification correct-
ness is such that outcome decision models consists of elements
that classify all training instances correctly. Thereby, in real-life
applications, the classification correctness can be adapted for
business needs by using a user-defined correctness threshold
in percent. We provide experiments with a user-determined
threshold in Chapter 8.

Relying on the presented assumptions, in the next sections we present
the steps of our methodology to discover decision models from event
logs in accordance to the outline presented in Figure 4o0.

63 DISCOVERY OF DECISIONS FROM EVENT LOGS

In this section, we introduce different types of decisions that can
be detected in a given event log. Section 6.3.1 presents control flow
decisions, and Section 6.3.2 presents decisions over the data attributes
from the event log, which we call for simplicity “data decisions”. In
both cases, we provide algorithms to detect the decisions in the event
log. Further, we provide a technique to map the discovered decisions
with the corresponding elements of a decision model, on the example
of DMN decision model in Section 6.3.3.

6.3.1 Control Flow Decisions

The results of our analysis of how companies design their de-
cision making, presented in Chapter 4, show that the split gateway
pattern (cf. Definition 28) is the most common pattern for modeling
process decisions. With respect to the existing works, the notion of a
decision point, introduced by Rozinat et al. in [165], is closely related
to this pattern. In particular, a decision point represents the case of
the split gateway pattern which incorporates a gateway of the exclu-
sive split type. When the decision activity from the decision point is
executed, the gateway routes the process towards execution of one
from the alternative activities, to which we refer as decision outcomes.
In Figure 39, for example, such decision on process routing occurs
when a decision activity Decide check type is executed, and gateway
p1 routes the process towards execution of one from the alternative
activities Full check, Standard check, or No check.

We assume that the decision activity, preceding the exclusive
split gateway, refers to the same business decision as the gateway
(Assumption 3 from Section 6.2). Omission of this decision activity is
a common mistake made by inexperienced BPMN users [197]. Un-
der this assumption, further we define the notion of control flow
decisions that can be encountered in a given process model. Also,
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we propose an approach to discover control flow decisions from a
given event log. Thereby, the control flow decision defined by us cor-
responds to the decision point notion which was introduced rather
informally in [165].

Given an event log, the corresponding process model can be dis-
covered from it by any process mining algorithm, e.g., from [32, 55,
57, 113, 184, 187]. According to Assumption 1 from Section 6.2, such
process mining algorithm is available, so we leave handling the pro-
cess mining procedure out of the scope of our work.

Given that a process model pm (cf. Definition 7) is discovered
from an event log L (cf. Definition 17), we determine constructs of di-
rectly succeeding control flow nodes which represent a gateway suc-
ceeded by an activity on each of the outgoing paths. The step output
is a set of split exclusive gateways of the process model pm. Further,
the control flow decision rules for these gateways can be established
by analyzing the choices which have been made in past process ex-
ecutions. In particular, we consider that the input expression of a
corresponding control flow decision rule can be mapped the values
of attributes recorded in the event log, and the rule output can be
mapped to decision outcome of the control flow decision. Thus, we
formally define a control flow decision in Definition 18 as follows.

Definition 18 (Control Flow Decision). Given is an event log L that
has a set of attributes A = {A1, ..., Ay },v € NT, and a corresponding
process model pm. Let P C G be a set of split exclusive gateways of
pm, such that a¢(p) = XOR for each p € P. Additionally, let T, =
{t1, -tk }, T, CT, ke IN™ be a finite non-empty set of activities of
pm directly succeeding each gateway p € P, such that for each activity
t € T, there exists a directed flow edge (p,t) € C. A gateway p € P is
a control flow decision if there exists a finite non-empty set of mappings
(decision rules) R = {Ry, ..., R, }, n € NT, which relate a subset of the
given set of attributes A to one of the activities t; € T),i€IN* directly
succeeding this gateway, as follows:

w
Vie [n]Ri: \(Ajopiq) —ti, 1<w<vj,weNT (3)

j=1
where the attributes A, ..., Ay are decision inputs, opy,...,0p, are
comparison predicates, g1 € Dom(A1), ..., g» € Dom(Ay) are con-
stants representing values from the domains of the attributes, and
t; € Ty, is a decision output. o

For example, the decision rule for the control flow decision p1 (see
Figure 39) is:

Premium = false, Amount < 50 — Full check (4)
Thereby, the detected control flow decisions described in Definition 18

correspond to decision nodes in the DMN decision requirements dia-
gram (cf. Definition 12). The decision nodes are especially useful for
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describing the process decision making when they additionally refer-
ence the decision logic level. In our work, we use the decision table
notion for expressing the decision rules of processes (cf. Definition 13).
Thus, the control flow decision rules from Definition 18 represent a
special case of the decision rules from Definition 13, where the rule
inputs are data attributes from the event log, and the rule output are
decision outcomes of the control flow decision.

The control flow decision rules can be derived using the ap-
proach introduced in [165]. It is based on the idea that a control flow
decision can be turned into a classification problem, where the classes
are process decisions that can be made, and the training examples are
the process instances recorded in the event log.

In accordance with [165], we propose to use decision trees for
solving the presented problem. Among other popular classification al-
gorithms are neural networks [12] and support vector machines [116].
Pursuing the goal of deriving an explanatory decision model for a busi-
ness process, we utilize the decision tree classification mechanism, as
it delivers a computationally inexpensive classification based on few
comprehensible business rules with a small need for customization
[13]. Also, the decision tree classification algorithms are able to deal
with continuous-valued attributes, missing attribute values, and they
include effective methods to avoid overfitting the data [205]. Also
according to [120], decision tree algorithms are very popular method-
ologies since the algorithms have a simple inference mechanism and
provide a comprehensible way to represent the model in the form
of a decision tree. The output decision tree can be straightforwardly
transformed into a decision table, since each path in the decision tree
represents a decision rule [12].

Case ID|Amount|Premium|Rate|Duration Class false true

1 97 false | 6.9 14 Full check |::>
2 68 true 6.8 10 No check @
<

] 30 false 3 10 Standard check
>50

50
Standard
Full check

(a) Training examples (b) Decision tree

Figure 42: Control flow decision p1 represented as classification problem

To illustrate the classification problem on our running example,
we visualized it in Figure 42. The possibly influencing attributes for
the control flow decision pl are: Amount, Premium, Rate, Duration.
The learning instances are created using the information from the
event log as presented in the table in Figure 42a, where lines repre-
sent process instances, and columns represent possibly influencing
attributes. The Class column contains the decision outcome for a pro-
cess instance. An example of the classification of process instances by
a decision tree is presented in Figure 42b.



63 DISCOVERY OF DECISIONS FROM EVENT LOGS

6.3.2 Data Decisions

Besides the explicit control flow decisions, process models can
contain implicit data decisions. By data decisions we understand such
process decision making when values of the atoms in the decision
rules can be determined for a certain process instance by knowledge
of the variable assignments of other attributes. For example, in Fig-
ure 39, it is not exhibited how the value of an attribute Risk is assigned.
However, in practice, it depends on the values of attributes Amount,
Rate, Premium and Duration recorded in the system while registering
the client’s claim. We distinguish the data decisions into functional
and rule-based data decisions.

Definition 19 (Rule-Based Data Decision). Given is an event log L
that has a set of attributes A = {A1,.., Ay},v € NT. An attribute
Ay, 1<k<v, k,v € INT is a rule-based decision if there exists a finite
non-empty set of mappings (decision rules) R = {Ry,.., Ry}, ne INT
which relate a subset of the given set of attributes A to the aforemen-
tioned attribute Ay, as follows:

Vie [Ln] Ri: \ (A opj q;)) — Dom(Ax), 1<w<v, j,w € Nt (5)
j=1

where the attributes Ay, ..., Ay, are decision inputs, opy,...,0p, are
comparison predicates, g1 € Dom(A1), ..., g» € Dom(Ay) are con-
stants, and the attribute Ay, is a decision output. S

For example, it might be established based on executions of process
model from Figure 39 that the attribute Risk is a rule-based data de-
cision. An example decision rule for Risk in such case would be the
following rule:

Premium = false, Amount < 50, Duration < 10 — Risk =4 (6)

Definition 20 (Functional Data Decision). Given is an event log L
that has a set of attributes A = {A1,.., Ay},v € NT. An attribute
Ay, 1<k<wv, k,v € N is a functional data decision if there exists a
function f : {Ay,...,Ap} — Dom(Ay), 1<w<v, w € NT which
relates a subset of the given set of attributes to the aforementioned
attribute Ay. o

For example, it might be devised based on executions of process
model from Figure 39 that the attribute Duration is a the following
functional data decision:

Duration = Amount/Rate (7)

In Algorithm 1, we propose a way to retrieve data decisions using
a process model pm, an event log L, and a corresponding set of at-
tributes of the event instances A = {Aj,...,Ay},v € N7 as inputs.
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As any of the attributes from the set A can potentially be the ouput
of a data decision, the procedure runs for each attribute 2 € A (line
2).

Algorithm 1 Discovery of Rule-Based and Functional Data Decisions
from an Event Log

1: procedure FINDDATADECISIONS(processModel pm, eventLog L,
attributes A)
foralla € A do

2:
3 Ajnf < possibly influencing attributes for a
4 dt < decision tree for a using A;,s as features
5 if dt correctly classifies all instances then
6: return rule-based data decision for a
7 else
8: if 2 has a numeric domain then
o: Ainf < attributes from A;,r with numeric domain
10: operators < {+,-,%, /}
11 funcs < {function “a 0 b” | a,b € Ay, N
0 € operators}
12: for all func € funcs do
13: if func correctly determines value of a for
all instances then
14: return functional data decision for a
15: break
16: end if
17: end for
18: end if
19: end if
20: end for

21: end procedure

Firstly, in line 3, a set A;s of attributes possibly influencing a is
determined using the assumption that all the attributes are recorded
in the event log before or equal to the transition to which the at-
tribute a is referred. Afterwards, the procedure detects whether an
attribute a represents a rule-based data decision (lines 4 - 6). For this,
we build a decision tree dt classifying the values of the attribute a
using the set of possibly influencing attributes A;,r as features. If
the built decision tree classifies all training instances correctly, a rule-
based data decision for the attribute is yielded (we assume that the
classification correctness can be adapted for business needs by us-
ing a user-defined correctness threshold in percent, cf. Assumption 5
from Section 6.2). If no set of rules was found, the algorithm searches
for a functional data decision for attribute a (lines 8 - 18). For this, we
consider only such attributes which have a numeric domain. We de-
termine the function form by a template representing combinations
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of two different attributes from A;,; connected by an arithmetic op-
erator (10). The functions representing all possible combinations of
such kind, are tested for producing the correct output for all known
instances (lines 11 - 12). If that is the case, a functional data decision
for a is returned (line 14). If it is determined that an attribute a is
neither a rule-based, nor a functional data decision, a is discarded as
a possible data decision and is treated as a normal attribute.

For our running example, the algorithm finds a rule-based data
decision for attribute Risk depending on the attributes Amount, Pre-
mium, and Duration as presented in Figure 43a. An instance of a func-
tional decision is Equation 7.

6.3.3 Mapping of the Discovered Decisions with the DMN model

The detected decisions represent decision nodes in the DMN de-
cision requirements diagram (cf. Definition 12) which conforms to the
original process model. The algorithm for constructing this diagram
is straightforward. Firstly, for each discovered control flow decision
p € P, we create a new decision node d € D which is added to the set
of decision nodes D of the decision requirements diagram. Further,
for each attribute of the event log A; € A = {Ay,..., Ay}, v e NT it
is checked whether it is a rule-based or functional decision over other
attributes from the set of attributes A. If this is the case, then a new
decision node d € D corresponding to this attribute A; is added to
the output decision requirements diagram DRD. Otherwise, we cre-
ate a data node id € ID corresponding to this attribute A; which is
added to the set of input data nodes ID of the decision requirements
diagram. The decision nodes reference the corresponding decision ta-
bles containing the extracted rules. An example mapping is presented
in Figure 45a.

The decision layer of the output DMN model is represented by
the output decision tables (cf. Definition 13) which we obtain from de-
cision trees discovered in accordance to techniques presented above
in this section. Thereby, the decision nodes from the DRD layer are
associated with corresponding decision tables from the decision logic
layer.

64 DISCOVERY OF DECISION DEPENDENCIES FROM EVENT LOGS

The decisions discovered in process models as presented above,
are used for creating a set of the decision nodes D in the output
decision requirements diagram DRD. For now, these decisions rep-
resent isolated nodes in the decision requirements diagram, and to
“connect” them by the information requirements IR, in this section
we propose an algorithm of discovering the decision dependencies
from the event log. Section 6.4.1 presents the base algorithm to detect
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dependencies between process decisions. This algorithm makes the
assumption that a decision d; € D that depends on another decision
d> € D cannot additionally depend on attributes from the event log
that d; depends on. Section 6.4.2 shows how to overcome this assump-
tion and introduces an improved approach for finding dependencies
between process decisions.

6.4.1 Base Algorithm

We propose to distinguish between two following types of deci-
sion dependencies.

Definition 21 (Trivial decision dependency). If a decision 4 in the set
of decision nodes detected in the event log (d € D) depends on the
attribute a, € A,k € N from the event log and this attribute is de-
tected to be a data decision (dd € D), then there is a trivial dependency
between this decision d and the decision dd. o

Definition 22 (Non-trivial decision dependency). Non-trivial decision
dependencies are dependencies between detected decisions of any type
and control flow decisions influencing them. Let a decision d € D be
in the set of decision nodes detected in the event log. A control flow
decision d;, s also detected in the event log (d;,,¢ € D) is considered as
possibly influencing for decision d if two conditions are satisfied: (1)
dinf is bound to a transition in the model that lies before or is equal
to the transition of d; and (2) the set of influencing attributes of d;,y
is a subset of the set of influencing attributes of d. o

To find the dependencies between either control flow, or data deci-
sions detected in the event log of a process model, we propose Algo-
rithm 2. The inputs to the algorithm are process model pm, event log
L, and a corresponding set D of the detected decisions. Each decision
d is tested for being influenced by other decisions (line 2). Firstly, the
algorithm searches for trivial decision dependencies (lines 3 - 6). In line
3, we identify all attributes A;,;¢ influencing the decision d (those are
the attributes appearing in the set of rules or in the function of the
decision). For each attribute 4,7 in the set of influencing attributes
Ains, we check if there is a data decision deciding a;,¢. If this is the
case, the algorithm yields a trivial decision dependency between this
data decision on 4;,; and the decision d (line 6).

Afterwards, the algorithm searches for non-trivial decision dependen-
cies (lines 9 - 14). We firstly identify a set of control flow decisions
Dy possibly influencing the decision d in line 9. Data decisions
are not considered, because a data decision influencing another de-
cision always results in a trivial decision dependency. Any decision
dins € Diys should satisfy two conditions: (1) dj, ¢ is bound to a tran-
sition in the model that lies before or is equal to the transition of
d; and (2) the set of influencing attributes of d;,s is a subset of the
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Algorithm 2 Discovery of Decision Dependencies from an Event Log

1: procedure FINDDEPENDENCIES(processModel pm, eventLog L, de-
cisions D)
foralld € D do

2
3 Aing < attributes influencing d
4: for all Ainf S Ainf do
5: if D contains a data decision dd for a;,s then
6: return decision dependency dd — d
> trivial dependency

7: end if
8: end for
o: D;uf < possibly influencing control flow decisions for d
10: for all dinf € Djnys do
11: Feat < Aj,s - attributes influencing d;, s U {d;, s}
12: dt < decision tree for d using Feat as features
13: if dt correctly classifies all instances then
14: return decision dependency d;, s — d

> non-trivial dependency
15: end if
16: end for
17: end for

18: end procedure

set of influencing attributes of d. Next, the algorithm detects whether
there is a non-trivial decision dependency between each found pos-
sibly influencing decision d;,s and d. For this sake, we determine a
new set of features Feat for the decision d (line 11). This set consists
of the attributes influencing d without the attributes influencing d;;,
but with the output of decision d;,,. Using the features from Feat, we
build a new decision tree deciding on d. If the tree is able to correctly
classify all training instances, we have found a non-trivial decision
dependency between d;,,r and d.

In our example, the decision on attribute Risk depends on the
attribute Duration (Equation 6). As we identified Duration as being a
data decision (Equation 7), there is a trivial decision dependency be-
tween the decisions Duration and Risk. For an example of a non-trivial
dependency, have again a look at the Risk decision in Figure 43b. The
found decision tree for Risk depends on the attributes Amount, Pre-
mium and Duration. We identify the control flow decision pl as a
possibly influencing decision, as (1) the decision p1 happens before
the decision Risk; and (2) its influencing attributes (Amount, Premium)
are a subset of the influencing attributes of the decision Risk. Further,
we can build a decision tree that correctly classifies all instances by
using the output of decision p1 instead of the attributes Amount and
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Premium. Note that the attribute Duration is in the output decision
tree in Figure 43b, as it is not part of the decision p1.

/Control flow decision p1 )
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Figure 43: Decision trees for attribute Risk

It might be the case that circular dependencies between at-
tributes in the same transition in process model are discovered. For
example, in Equation 7, the discovered functional data decision Du-
ration depends on Amount and Rate. However, as Duration, Amount
and Rate appear in the same transition, Algorithm 2 finds the data
decisions for Amount depending on Duration and Rate, as well as for
Rate depending on Duration and Amount. However, in the output de-
cision model two of these three data decisions should be discarded to
avoid cyclic dependencies. We leave it to the process expert to deter-
mine which decision out of a set of cyclic data decisions is the most
relevant for the output decision model.

6.4.2 An Improved Approach to Find Non-Trivial Decision Dependencies

The decision dependencies in Algorithm 2 are retrieved under

the assumption that if an arbitrary decision d; depends on another
decision d; (k,i € IN™), then this decision di can not additionally de-
pend on attributes that d; depends on. This problem is illustrated in
Figure 44: here, d; depends on attribute A’ and d; depends on deci-
sion d; and additionally on the attributes A’ and A”. The Algorithm 2
tries to rebuild the decision tree for dy without considering the at-
tributes of d;, and it only utilizes attribute A”. Thus, this algorithm
finds no dependency between d; and dy, which is not correct.
To overcome this problem, we propose an alternative Algorithm 3
for finding non-trivial decision dependencies in the process event log
(finding of trivial decision dependencies is equivalent to lines 3 to 8
in Algorithm 2). Firstly, the Algorithm 3 identifies a set of possibly
influencing control flow decisions D;,s and for each d;,; € Djyy it
builds a decision tree dt;, containing (1) one root node, that splits ac-
cording to d;,; (2) as many leaf nodes as d;,s has decision outcomes,
thereby, each of them containing a set of learning instances. Then, for
each leaf node a subtree is built that decides on d for all learning
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Algorithm 3 Improved Retrieving of Non-Trivial Decision Dependen-
cies
1: procedure FINDDEPENDENCIESNEW(processModel m, eventLog L,
decisions D)
foralld € D do

2:

3 D;uf < possibly influencing control flow decisions for d
4: for all dinf S Dinf do

5: dtiyf < decision tree where the root node splits

according to d;

6: Atnew — dtinf

7: for all leaf € dt;, do

8: dtjeqp < decision tree for d classifying instances

from leaf

9: dtnew +— add dtlmf to the leaf of dt ey
10: end for
11: levels;, F number of levels of dt;.y,
12: levels,yig <—number of levels of original decision tree
13: if (levels;y 2r:dlevelsorig then
14: return decision dependency d;, s — d
15: end if
16: end for
17: end for

18: end procedure
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<c3 2¢3

(a) The decision tree for decision d;  (b) The decision tree for decision dj

Figure 44: Decision dj depends on another decision d;, and on the at-
tributes influencing d;

instances of this leaf, thereby the features are all attributes that were
used in the originally found decision tree for 4. In lines 7, all subtrees
are attached to dt;, 7 resulting in dt,ey Which is a decision tree for d.
Next, it is checked that the complexity of the newly constructed tree
dtuew has not increased in comparison to the original decision tree for
d by measuring and comparing the corresponding maximum number
of nodes from the root to the leafs (lines 11 - 14). If this is the case,
then the algorithm outputs a decision dependency between d;, s and
d.

6.4.3 Mapping of Discovered Decision Dependencies with DMN model

In Section 6.3.3, we presented how the decisions discovered in
process models can be mapped to the corresponding elements of the
DMN model. Thereby, at this step of our methodology, there should
exist: (1) a set D of decision nodes in the DRD diagram; (2) a set ID of
input data nodes in the DRD diagram; and (3) a set of decision tables
corresponding to the decision nodes in the DRD diagram.

Thereby, at this step of our methodology, the trivial and non-
trivial decision dependencies detected in the process event log are di-
rectly mapped to the set of information requirements IR represented
by directed arrows between the discovered decision nodes D and
input data nodes ID in the output decision requirements diagram
DRD. Herewith, if new classification decision trees are identified by
Algorithm 3, the updated decision tables are recorded at the decision
logic layer correspondingly. An example mapping is presented in Fig-
ure 45b.

Since our methodology for discovery of decision models from
data recorded in event logs is based on the decision tree classifica-
tion, the output decision tables consist of non-overlapping rules that
are assigned with the unique hit policies (cf. Definition 13). As dis-
cussed in the related work (cf. 3.5.2), there also exist an approach
which deals with discovery of overlapping decision rules [122] for
standalone decisions. However, future investigations could be done
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in order to discover decision models which contain interconnected
decision tables that consist of overlapping decisions

65 APPLICATION OF THE METHODOLOGY ON THE EXAMPLE LOG

To validate our methodology of the decision model discovery
from an event log of a process model, we implemented it. In the
following section, we discuss application of our methodology to the
test example, represented by a process model in Section 6.1 (see Fig-
ure 39). The details of our implementation, and the evaluation of the
methodology by applying it on a real log can be found in Chapter 8.

For analysing the test process, we created an event log with the
help of the simulation system CPN Tools". To create the input for the
methodology, we needed to obtain an event log for the process model
from Figure 39. Estimating the distributions of parameters from a
real credit-risk data set [12], we simulated the event log using the
simulation parameters presented in Table 9.

Task / Attribute Name | Simulation Parameters

Trace ID 1 to 200 (incrementing)
Amount discrete(2,99)
Premium random boolean
Duration discrete(2,30)
Rate Amount / Duration
Risk if Amount > 50 and Duration > 15 : Risk = 4

if Amount > 50 and Duration < 15 and Duration > 5 : Risk = 3
if Amount > 50 and Duration < 5: Risk = 2

if Amount < 50 and Duration > 20: Risk = 3

if Amount < 50 and Duration < 20 and Duration > 10 : Risk = 2
if Amount < 50 and Duration < 10 : Risk =1

pl if Amount > 50 and Premium = false : Full check
if Amount < 50 and Premium = false: Standard check
if Premium = true: No check

r3 if Risk < 2: Send approval
if Risk > 2: Send rejection

Table 9: Simulation parameters for generating the event log of the process
from Figure 39

Further, we discovered control flow decisions from the simu-
lated event log, according to the technique presented in Section 6.3.1.
Afterwards, all data decisions were discovered from the log ac-
cording to our algorithm presented in Section 6.3.2. The validation
experiment was concluded by discovery of decision dependencies in
accordance to our algorithm presented in Section 6.4. The results of
execution of these steps are presented below.

1 http://cpntools.org/
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Discovery of decisions

Assuming that only the input event log is available, we mine the pro-
cess model using the Prom software® for process mining. Further, ac-
cording to approach from Section 6.3.1, we identify two control flow
decisions: (1) p1 with decision alternatives Full check, Standard check,
and No check; and (2) p3 with decision alternatives Send approval and
Send rejection. An example decision tree constructed for p1 is depicted
in Figure 42. Executing Algorithm 1, we find: (1) A rule-based deci-
sion Risk (Figure 43a); (2) A functional decision Duration (Equation 7).

The aggregate of the decisions discovered by the program is
presented schematically in Figure 45a. Those are the elements which
are used further for the construction of the decision requirements
diagram: (1) Data nodes (Premium, Amount, Rate); (2) Data decisions
(Duration, Risk); and (3) Control flow decisions (p1, p3).

Discovery of decision dependencies

Further, we execute Algorithm 2 to mine the dependencies between
the discovered decisions from Figure 45a, and it outputs the fully
specified DMN decision model as depicted in Figure 45b. Thus, the
program finds the trivial dependencies between the decisions Dura-
tion and Risk, as well as between Risk and p3, also, the non-trivial
dependency between the decisions pl and Risk. In case of circular
dependencies, a random decision is kept.

The extracted decision model (Figure 45b) shows explicitly the
decisions corresponding to the process from Figure 39, and thus,
could serve for compliance checks by explaining the taken decisions.
Also, the derived decision model can be executed complementary to
the process model, thereby supporting the principle of separation of
concerns [197].

=
" p1" ] [Duration]

,,,,, ’,,'?,u,rf'fi,??,,‘,’,,,,ﬁi,s,k,,,,,‘,,,,,,,,th,qde,d§iq'1§
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(a) Discovered decisions (b) Discovered decision require-

ments diagram

Figure 45: The discovered decisions and the DMN model for the example
process

2 http:/ /www.promtools.org/
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6.6 SUMMARY AND DISCUSSION

In this chapter, we provide a methodology enabling the extrac-
tion of decision models from event logs, on the example of DMN.
Firstly, we present the procedures to identify decisions in a process
model. Secondly, we present the extraction of the decision logic con-
taining the data dependencies derived from the event log. Thereby,
we provide the algorithms to construct a fully specified DMN deci-
sion model.

Our methodology is an extension of the existing approach to
derive control flow decisions from event logs with additional iden-
tification of data decisions and dependencies between them. Thus,
data decisions are discovered from the input event log with the help
of decision tree classification in case of rule-based data decisions, or
with a template-based approach in case of functional data decisions.
Furthermore, we proposed a modified approach to rebuild decision
trees to identify the dependencies between discovered decisions and
overcame the problem of reusing attributes in a dependent decision.

The extracted DMN decision model reflects the decisions de-
tected in the event log of a process model, which could be served as
an explanatory model used for compliance checks. Additionally, exe-
cuting this model complementary to the process model supports the
principle of separation of concerns by providing increased flexibility,
as changes in the decision model can be executed without changing
the process model.

One of the limitations of the presented methodology is that the
decisions do not appear within loops. Whereas we do not provide a
formal approach for handling the looping decisions, in a real-world
setting, the following heuristic can be applied. In particular, the input
event log can be preprocessed in such a way that process instances
that contain several decisions with respect to the current decision
point, should be split up. In such a way, the looping is avoided, and
these different process instances serve as multiple learning instances.

We validated our methodology by applying it to a test event
log. The results show that the methodology yields a comprehensi-
ble decision model which can be used as complementary to the pro-
cess model obtained by the process mining algorithms. The event
log was simulated by taking into account limitations stated in Sec-
tion 6.2. Moreover, in the presented algorithms of discovery decisions
and their dependencies, we used the requirement of correct classi-
fication of all the instances. The extended evaluation of presented
methodology is presented further in Chapter 8. In particular, we ap-
ply the introduced methodology to discover decision models to a real-
life event log, and by that we explore its advantages and limitations
in a real-life context.
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DISCOVERY OF FUZZY DECISION MODELS FROM
EVENT LOGS

The closer one looks at a real-world problem, the fuzzier
becomes its solution.
— Lofti A. Zadeh, Creator of Fuzzy Logic

n the previous chapters, we addressed discovery of decision mod-
I els complementary to process models from event logs, whereby
the decision logic is represented by decision rules based on Boolean
algebra. The formal nature of such decision rules is often hard for in-
terpretation and utilization in practice because imprecision is intrin-
sic to real-life decisions [193]. Operations research considers fuzzy
logic, based on fuzzy algebra, as a tool dealing with partial knowl-
edge [27, 209]. In this chapter, we explore the possibility of incor-
porating fuzziness into DMN decision models. Further, we propose a
methodology for discovering fuzzy DMN decision models from event
logs. Figure 46 outlines the input and the output of the proposed
methodology.

Chapter 7:
Event Log Analysis

WiFUZZ\;J

Decision
Model

Event Log

Figure 46: Input and output of the methodology presented in Chapter 7

The proposed methodology to discover fuzzy DMN decision models
from event logs is mostly based on a joint work of E. Bazhenova in co-
authorship with S. Haarmann, S. Thde, A. Solti, and M. Weske, which
was published in [24]. Additionally, the proposed methodology incor-
porates discovery of crisp decision requirements diagrams, which is
based on results published by Bazhenova et al. in [21] and [23] and
which is discussed in Chapter 6.

The rest of the chapter is structured as follows. Section 7.1 intro-
duces the motivation for deriving fuzzy DMN models on an example.
Section 7.2 presents our formal framework describing the incorpora-
tion of fuzziness in decision models, which is based on results con-
tributed by E. Bazhenova to [24]. Section 7.3 introduces the method-
ology to discover fuzzy decision models from event logs, which is
based on a joint work of E. Bazhenova and all co-authors from [21],
[23], and [24]. We validate the presented methodology on the motivat-
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ing example in Section 7.4, which is based on results of a joint work of
E. Bazhenova in co-authorship with S. Haarmann and S. Ihde, which
was published in [24]. The chapter is summarized in Section 7.5.

7.1 MOTIVATING EXAMPLE

To assist enterprises with efficient decision management, knowl-
edge about “as-is” decision making needs to be retrieved. In Chap-
ter 6, we proposed a methodology to achieve this by analyzing pro-
cess event logs and discovering decision rules from them. Thereby,
we assumed that decision logic is represented by crisp decision rules
based on Boolean algebra (cf. Definition 16). However, application
of this concept is limited in the real world, because humans often
deal with concepts which do not have precisely defined boundaries.
For example, the natural language concepts (facts) such as many, very
short, much heavier than, quite old, etc. are true only to some degree
and they are false to some degree as well. The fuzzy logic is a math-
ematical tool created for dealing with imprecision and information
granularity which was introduced by Zadeh in [209] and has been
widely applied in different disciplines [27].

Fuzzy rules represent strings encoding the semantic meaning of
a certain probability behind a value range, e.g., “If loan duration is
long, then risk is very high”. Since the meaning can be derived di-
rectly from the representation, it is generally considered that fuzzy
rules are more comprehensible compared to crisp rules [89]. More-
over, using literals across rules increases decision flexibility, as it al-
lows a consistent adaptation of all rules by adjusting only the under-

lying mappings.

Event ID | Trace ID Name Other attributes

1 1 register claim | duration = 14 [Mths], amount = 597 [EUR], pre-
mium = false

2 1 full check -

3 2 register claim | duration = 28 [Mths], amount = 200 [EUR], pre-
mium = true

4 2 no check -

1 evaluate risk = high
6 1 send rejection | -

Table 10: An excerpt of the example event log which serves as an input for
discovery of fuzzy decision models. The attribute values of the
event log contain both numerical and nominal values.

To demonstrate how fuzzy logic can be utilized for designing de-
cision models complementary to process models, we again consider
the example business process of credit-risk assessment from Section 6
(see Figure 39). For this chapter, we modified the example by: (1) con-
sidering only three attributes that are recorded in the bank system in
the Claim details data node — duration, amount, and premium; (2) consid-
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Crisp decision tables Fu decision tables
amount
Inputs Output Inputs Output
amount | premium | Decision p1 B b= i amount premium | Decision p1
\ - .
>=500 FALSE full check 0.5 k S low is high FALSE full check
\

<500 FALSE | standard check 0 L M- ——high is low FALSE | standard check

TRUE no check 0 200 500 800 is high orislow| TRUE no check

duration

1 —\ short 1 normal
0.5 0.5
Inputs Output 0 0 inputs Output

0 5 10 15 20 25 0 5 10 15 20 25

amount| duration | Decision risk

>=500 <24 high 1 ﬂng 1 . is high | is short high
— 05 05 / very long
<500 >=24 low ) 0 islow | islong low

0 5 10 15 20 25 0 5 10 15 20 25

amount| duration | Decision risk

Figure 47: Two possible types of decision tables corresponding to the deci-
sion logic of the example process

ering previously numerical attribute risk as nominal with the possible
values very high, high, normal or low. Hereby, there is an equal amount
of numerical and nominal attributes, the values for which are stored
in the event log. In the case presented in the current chapter we use
the names for activities and attributes that start with the lowercase
letters.

The process steps are the same as in Figure 39. The process
starts with the registration of the user’s claim details such as duration,
amount, and premium in the bank information system. At p; the type
of application check is chosen, and at p3 the claim is evaluated for
approval which happens alongside with assigning risk to the claim.
An excerpt of the example event log is given in Table 10. The main
motivation for discovery of fuzzy decision models is similar to the
crisp case: the event log stores only the results of decision making,
but it does not explicitly contain the decision logic behind this result.
To obtain an explanatory decision model, we propose to derive DMN
decision model from the event log.

The DMN models consist of the decision requirements diagram
(DRD) and the decision logic layers. The DRD is a model consisting
of a set of elements and their interdependencies (cf. Definition 12),
thereby, it is crisp by nature. However, the decision logic correspond-
ing to the DRD can be designed in the form of either crisp, or fuzzy
decision tables, as shown in the Figure 47. As mentioned earlier,
fuzzy rules are considered to be more comprehensible, as a user has
an intuitive understanding of the linguistic concepts to which fuzzy
rules refer. An example of such mappings are visualized in Figure 47:
(1) a trapezoidal membership function representing the membership
grade of attribute amount in fuzzy sets low, and high; and (2) a trape-
zoidal membership function representing the membership grade of
attribute duration in fuzzy sets short, long, normal, and very long.

An additional motivation for utilizing fuzzy decision models is
that they are highly flexible, since it is possible to execute changes in
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rules only by adjusting the membership functions. For instance, as it
can be seen from the decision rules in Figure 47, the range values of
amount higher than 500 [EUR] are considered as high. Imagine that
the business environment changes, and the boundary value of amount
should be reconsidered as equal to 8oo [EUR]. In the case of crisp
decision tables that do not have corresponding membership functions,
it would be necessary to change the input values for amount four
times in corresponding rules. However, in the case of fuzzy decision
tables, only the membership function has to be adjusted once.

As discussed in the related work about the mining of fuzzy de-
cision models (cf. Section 3.5), the question of deriving fuzzy deci-
sion models complementary to process models from event logs has
not received much attention yet. In this chapter, we address this gap
by proposing a methodology to derive fuzzy DMN decision models
from event logs. The methodology is based on our formal framework,
which we present in the next section.

7.2 DEFINITIONS OF FUZZY DECISION CONCEPTS

Facilitation of fuzzy logic implies that the crisp values of data
attributes from event logs are to be perceived as a matter of truth
values ranging between completely true and completely false [27]. In
order to facilitate handling of decision rules discovered from an event
log (cf. Definition 17) in a fuzzy manner, below we introduce a set of
necessary definitions.

Definition 23 (Fuzzy Subset, Membership Function). Given is an
event log L that has a set of attributes A = {A;,..., Ay}, veENT. A
domain set Dom(a) for an attribute ac A has K* fuzzy subsets charac-
terized by tuples FS{ = {(y ,If, ] )|y€Dom(a)}, if for each i € [1; K”]
there exist:

¢ linguistic terms [? labelling fuzzy subsets FS¢;

e membership functions pj : Dom(a)—[0,1] which represent the
grade of membership of attribute values from Dom(a) in a fuzzy
subset FS{ by mapping each value yeDom(a) to a real number in
the interval [0, 1]. ©

We identify a fuzzy set with its membership function. An example
of a membership function is presented with the help of a graph in
Figure 47 for the attribute amount. In this case, K" =2, and the do-
main set Dom(amount) has two fuzzy subsets FS{""" and FS5mount
characterized correspondingly by membership functions pf"o"“" and
yfi’lﬁ””t. This example is illustrated with the help of trapezoidal mem-
bership function, as one of the most widely used types of membership

functions.
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Definition 24 (Trapezoidal Membership Function). The trapezoidal
membership function is a function ¢ of an attribute 2 € A from the
given event log which depends on four scalar parameters y1, y2, y3,
and y4, whereby vy1,12,y3,Y4, are real numbers such that y; < y» <
y3 < ya, and for any y € Dom(a) the following holds:

(

0, y<yiVy>uyy
Iy <y <y
py) = ¥2 7 ®)
1, Yo <y < x3;
Ya—VYy < < .
7}/4_%, Y3y <VYsy

<

Nevertheless, the approach proposed in our thesis is general
and can be used for the other types of membership functions, e.g.,
triangular-shaped, Gaussian curve, etc. [27].

Fuzzy logic of decision models can be expressed through fuzzy
decision rules and fuzzy decision tables. Fuzzy decision tables consist
of fuzzy rules which represent “if-then” mapping between a subset
of event log attributes associated with corresponding linguistic terms,
and an output process variable associated with a set of labels. We
formally define a fuzzy decision table, which consists of elemental
fuzzy decision rules, as follows.

Definition 25 (Elemental Fuzzy Decision Rule, Fuzzy Decision Ta-
ble). Given is an event log L that has a set of attributes A =
{A1,..., Ay}, vEINT, and given is a finite non-empty set of labels C =
{C1,...,C.},zeINT. A fuzzy decision table (FDT) is a finite non-empty
set of mappings (elemental fuzzy decision rules) R = {Ry,..,R,},
n € N, which relate a subset of the given set of attributes A to one
of the labels ¢; € C,icIN™, as follows:

w
Vi€ [1;n] R : \(Aiis 1) — ¢;, 1<w<o, j,w,zeN* )

j=1
where the attributes A;,. .., A, are decision rule inputs, lfll, ey, l,’g;” are
linguistic terms labeling fuzzy subsets associated to the decision rule
inputs, such that 1<x;<K41,...,1<x, <K%, and ¢; € C,ieNT is a
decision output. o

In Definition 25, the decision output is represented by a label ¢; €
C,ieINT which represents a linguistic term labeling a process deci-
sion. As we demonstrate later in this chapter, these labels can refer
to either a data attribute from the event log, or to an activity of the
process model that can be discovered from the event log. For exam-
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ple, there can exist the following elemental fuzzy decision rules for
the fuzzy decision table from Figure 47:

amount is high, premium is FALSE — py = full check  (10)

amount is low, duration is long — risk = low (11)

The definition of elemental fuzzy rule sets can be extended to conjunc-
tive normal form of fuzzy rules (CNF), where each attribute A;, 1<i<v
can be associated with a set of p€IN several linguistic terms {léfl, ey
lfifp} which are joined by a disjunctive operator. Fuzzy rule bases in
CNF form are also called Mamdani rules [27]. An example of CNF

fuzzy rule is following (see also FDT in Figure 47):
amount is high or low, premium is TRUE — p1 = no check (12)

Mapping a runtime input for a set of fuzzy rules to an output is
called inference. There exist multiple inference techniques, and the
method that is most closely matching the real-world problem should
be chosen [27]. We address this question further in the chapter (see
Section 7.3.6).

7.3 METHODOLOGY FOR FUZZY DECISION MODEL DISCOVERY

This section introduces our methodology to discover fuzzy deci-
sion models from event logs. Section 7.3.1 presents the approach and
the assumptions made, and outlines the rest of Section 7.3.

7.3.1  Methodology Outline and Assumptions

As we show in the related work (cf. Section 3.5.2), existing ap-
proaches to decision discovery consider only either mining of inde-
pendent fuzzy rule sets [89], or crisp decision models [23, 53, 165].
In order to provide useful insights into the discovery of fuzzy DMN
decision models from event logs, we propose a methodology which
consists of five steps, see Figure 48. Given an input event log, the steps
to discover fuzzy DMN decision models from the log are: (1) Identi-
fication of fuzzy subsets and corresponding membership functions
corresponding to the data attributes from the event log, as discussed
in Section 7.3.2; (2) Discovery of process decisions and dependencies
between them, as presented in Section 7.3.3; (3) Application of fuzzy
learners for fuzzy rules discovery which is presented in Section 7.3.4;
(4) Construction of fuzzy decision tables based on discovered rules
in accordance to techniques presented in Section 7.3.5; and (5) Iden-
tification of fuzzy hit policy for decision tables, as discussed in Sec-
tion 7.3.6.
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Event log Discovery of Fuzzy rules Transformation| (ldentification of
E;(/)ent) preprocessing DRD discovery of fuzzy rules hit poI|C|es for | L romn

into FDT rows
(Section 7.3.2) | |(Section 7.3.3)| |(Section 7.3.4) (Section 7.3.5) Sectlon 7.3.6)

Figure 48: Our approach for discovering Fuzzy DMN (FDMN) models
from event logs

DMN decision model consists of a DRD representing decisions
and its dependencies, and of a decision logic layer expressed by sets
of rules. As discussed also in Section 7.1, fuzziness is not relevant for
the DRD models, because they represent a finite number of decisions
that are acts of determining output from inputs, and dependencies be-
tween these acts. In contrast, decision rules might incorporate fuzzi-
ness through the usage of fuzzy sets of input values in rules. Such a
view does not violate the DMN standard, so we adopt it and use the
term Fuzzy DMN (FDMN) for such kind of decision models. Thus,
the output of our methodology is a FDMN model.

For extraction of a fuzzy decision model from a given event log,
we rely on several general assumptions as follows.

1. Historical process information is available as an event log, and
additionally, a process model is available which can be extracted
from the event log by any process mining algorithm (cf. As-
sumption 1 in Section 6.2).

2. The given event log corresponds to a process model which is
structurally sound (cf. Assumption 2 in Section 6.2).

3. If the input event log encodes execution of processes incorpo-
rating split gateways, the decisions for them are assumed to
be taken in distinct process model activities preceding the split
gateways (cf. Assumption 3 in Section 6.2).

4. In addition to soundness of the process model from the previ-
ous assumption, the decisions do not appear within loops (cf.
Assumption 4 in Section 6.2).

5. There exists a mechanism that describes numerical attributes of
the input event log in linguistic terms, e.g., that the value of
an attribute is low or high. This should be done by an expert,
as hereby, the domain knowledge is required. Thereby, we pro-
vide experts with guidelines on how to increase the automation
rate of assigning the log attributes with linguistic terms in Sec-
tion 7.3.2.

6. For discovering the decision models from event logs, we solve
classification problem where the classes are process decisions
that can be made, and the training examples are the process

145



146

DISCOVERY OF FUZZY DECISION MODELS FROM EVENT LOGS

instances recorded in the event log. Hereby, in the presented al-
gorithms, we assume that the classification correctness is such
that outcome decision models consists of elements that classify
all training instances correctly (cf. Assumption 5 in Section 6.2).
Thereby, we provide the stakeholders with suggestions for tun-
ing the termination criteria for algoritms in Section 7.3.4.

Note that Assumptions 14, and Assumption 6 are similar to the as-
sumptions for the approach to discover crisp decision models from
Chapter 6, since the input event log is the same in both cases. Thereby,
Assumption 5 refers to the fuzzy extension of mining the decision
models from event logs.

Relying on the presented assumptions, we introduce further the
steps of our methodology to discover fuzzy decision models from
event logs in accordance to the outline presented in Figure 48.

7.3.2 Event Log Preprocessing

Given is a an event log L, and a corresponding set of attributes
of the event instances A={A3,..., Ay}, v€IN™. Firstly, we preprocess
log data in such a way that fuzzy learning of rules can be applied on it.
For that, for each attribute there should exist membership functions
that describe them in linguistic terms (cf. Definition 23), e.g., that the
value of an attribute is “low” or “high”. Specifically, we need to find
ui : Dom(a)—[0,1],i € [1;K?] for each attribute 1€ A from the event
log, which we propose to do by the procedure CoNsTRUCTMF from
Algorithm 4.

In the presented procedure, we iterate over all attributes from
the event log. If the attribute domain is nominal by itself, the mem-
bership function is constructed as a characteristic function (Lines 5-8).
Otherwise, if the attribute domain is numerical, an expert should set
the number K* of fuzzy subsets for this domain, that are to be gen-
erated, and assign corresponding linguistic terms. For our use case
(see Figure 47), the expert would set K?=2 for attribute amount, and
assign two linguistic terms: low and high.

Function BUILDNUMATTRIBUTESMF can be realized by using two
approaches. The first approach involves experts which express their
opinions on how well attributes ac A can be associated with fuzzy
subsets FSY, i€[1;K?]. The details of constructing the membership
functions based on expert opinions are out of scope of this thesis, as
they can be found in [211]. The expert approach can be recommended
when there is not enough input data allowing to derive the member-
ship function automatically. As the input event log in our case is sup-
posed to be large, we propose to utilize the second approach — the
Fuzzy C-Means (FCM) algorithm described in [44], as it allows to auto-
matically derive membership functions for data attributes from event
logs. Applicable to our case, the FCM-algorithm is able to calculate
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Algorithm 4 Preprocessing of Data Attributes from Event Log

1: procedure CoNsTRUCTMF(eventLog L, attributes A)
foralla € A do

2:

3 if Dom(a) is a set of nominal values then

4 for all y € Dom(a) do

5 if y = [ then

6: ui =1

7: else

8: ui =0

o: end if

10: end for

11: else
12 K" <— a number of fuzzy subsets

> Expert input
13: for all i € [1;K] do
14: [ <+ assign a linguistic term
> Expert input, e.g., “low”, “high”
15: #{ =BUILDNUMATTRIBUTESMEF()
> Either expert input or FCM

16: end for
17: end if
18: end for

19: end procedure

the degree of membership yj. of data attribute value a from the event
log in each of i clusters, such that 1<i<K”. FCM requires the number
of clusters as an input, which is equal to the number of fuzzy subsets
obtained from an expert in Line 12. Example membership functions
for our use case are visualized in Figure 47 for variables amount and
duration with respective values.

7.3.3 Discovery of DRD

Discovery of DRDs from event logs represents a classification
problem over crisp data which was discussed in Chapter 6. Therefore,
we present below only a short description of the problem, in order to
provide a bridge for the terminologies and notions between Chapter 6
and the current one.

Thus, we distinguish between two types of process decisions: (1)
control flow decisions represented in process models by split gateways
(e.g., decision from Equation 10), and (2) data decisions reflecting de-
pendencies between values of data attributes in the event log (e.g.,
decision from Equation 11). We use the Cg4.5 classifier for learning
both types of decisions by taking event log attributes and transition
labels as features, because it generally delivers a computationally in-
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expensive classification based on few comprehensible business rules,
with a small need for customization [205]. For finding dependencies
between decisions, we utilize the same classifier, taking the event log
attributes and found decision outcomes as features. Each mined de-
cision is added to the set of decision nodes D;,, of the output DRD.
Each attribute influencing these decisions which is not a decision by
itself is added to the set of input data nodes ID of the output DRD.
All dependencies are added to the set of information requirements
IR of the output DRD.

The output of this step is a DRD (see Figure 47
for an example) consisting of a set of PDNeINT decisions
{(A1,Cq),...,(AppN,CppnN)}, where PDN stands for process deci-
sions number. Herewith, A,;, = {A1, ..., Ag}CA, 1<g<v,pdn €
[1,...,, PDN], are attributes influencing these decisions. The more de-
tailed description of mining DRDs from event logs is presented and
discussed in Chapter 6.

7.3.4 Fuzzy Rules Discovery

After discovering process decisions (Apdn,den), 1<pdn<PDN
from the event log, we aim at the discovery of fuzzy rules correspond-
ing to these decisions. Thus, we iterate over the set of PDN decisions
and solve for each of them the classification problem presented in
Figure 49. Here the training data is comprised in the event log sub-
set L7, CL @ ApzCA containing only values of attributes that are
influencing the given process decision.

Process decisions (Apgn , Cpdn)

lasses  pan Set of f decision r les
eat res attrib tes Apg, infl encing Cpgn =~ learner --+ corresponding to process
Training e amples Lyg, decisions (Apdn , Cpan)

Membership f nctions corresponding to
attrib tes Apan

Figure 49: Classification problem of discovering fuzzy decision rules from
event logs

As our goal is to output the explanatory models describing decisions
made in the past and recorded in the event log, we take into account
that the fuzzy learners should provide good accuracy and interpretabil-
ity of results. To explore the appropriateness of known fuzzy clas-
sification algorithms in achieving our goals, we did experiments on
applying the genetic [89] and NEFCLASS [133] algorithms, both of
which are well-known fuzzy classifiers that infer fuzzy classification
rules. Below we provide short descriptions of algorithms taking into
account modifications needed for solving our problem of deriving
fuzzy rule sets from event logs.
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7.3.4.1 Genetic Algorithm (GA)

Genetic algorithm (GA) is successfully applied for solving
fuzzy classification tasks [44, 79, 89]. Also, GA suits us because it is
applicable for training sets with large dimensions, which is typical
for event logs. The heuristic character of GA does not guarantee
optimality of solution, but it provides approximate solutions close to
optimal, which is appropriate for business environments. Below we
consider the adaptation of GA applicable to our problem.

GAo.  For utilizing GA, we firstly need to represent our problem
in a genetic form. For that, we view fuzzy decision rules (FDR) dis-
covered from event logs as so called chromosomes. Given is a process
decision (Apgn, Cpan) where Ay, = {Ay, ..., Ag} CA, 1<¢<vis a set of
influencing attributes from the corresponding event log subset L.

Definition 26 (Chromosome). A chromosome corresponding to the
event log subset Lpdn is a string Gy, teINT, which is a concatenation
of two bit strings S; and B, where:

e S;={s1,...,50} is a string of bits s;, 1<i<g indicating the presence
of an attribute €A 4, in a rule antecedent of the chromosome;

® B;={by,...,b,} is a string of bits by denoting the presence of a lin-
guistic term [? labeling fuzzy subsets FS/,ic[1;K?] in the rule an-
tecedent of the chromosome, where u,ke(1; 2]5:1 K%]. o
Fuzzy rules are composed of a chromosome serving as the rule an-
tecedent, and of a consequent that is chosen according to the majority
class of the training instances covered by the rule antecedent. Exam-
ple fuzzy rules are presented in Figure 50a.

amount_duration_premium amount jamount  jduration jduration | premium
s S S liow Inigh lio Tnigh " 1 P p1 amount

Tow

Rule full

from 1 0 1 0 1 0 0
£q. 10 check duration

. low
Rule no
fEror;Z 1 0 1 1 1 0 0 check

9: amount

high
ldumliun
(a) Example chromosomes with correspond- high
ing consequents for rules from Equa- (b) Example perceptron

tions 10, 12

Figure 50: Example representation of rules for the GA and NF classifiers

GA1 At this step of GA, in each iteration t€IN' a chromosome
consisting of a fuzzy rule G; is randomly generated. Next, the rule
error E(Gy) is computed by checking its degree of matching between
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the rule antecedent of instances from the event log subset L,;, and
the generated rule antecedent:

E(G) = Dalca i wz%t, (13)
Y.q Wallg,

We utilize a boosting approach from [89] which modifies it-
erative fuzzy rule learning in an incremental fashion. The idea is
to repeatedly train a weak classifier on various training data distri-
butions, which shows a considerable improvement in accuracy of
the results. The weights of event instances ey, 1<k<n from the cur-
rent distribution that are correctly classified by the rule G; are re-
duced by a factor reflecting the error rate of the generated rule:
wr(t+1) = wi[(1 - E(Rt))/E(Gt)]”%f. Misclassified or uncovered ex-
amples keep their original weights. Thereby, boosting increases the
relative weight of those examples which are “hard to learn”. We cal-
culate the chromosome consequent c; as an output of the boosting
classifier considering the vote of the rule G;, weighted by logarithmic
accuracy, on event instances from the event log L,4, by t-norm (cf.

[89]):

1- E(Gt) w(®) a

¢y = argmax log ———=~— min p] (14)
Cm Gtgcm E(Gt) ]:1 l]
GA:. For building next generation of chromosomes, the rules

that have a good fitness are kept. We calculate fitness function as a
product of normalized values of such functions as class coverage CC,
rule coverage RC, and rule consistency RCS:

f(Gt) = CC(Gt) x RC(Gr) x RCS(Gy) (15)

The class coverage CC is defined as the ratio of the number of
training instances covered by the rule G; to the overall number of
training instances carrying the same class label ¢;: CC(G;) =

Za\ca:q wﬂ]’l?}t/ Za\ca:ct Wg.

1, n>keop;
RC(G) =13 1 Yafeymc, walt;, 0/w "
kcov Zﬂ Wa , |

The rule coverage RC reflects the fraction of instances covered by the
rule ke, irrespective of the class label (see Equation 16). If MEINT is
a number of classes having the same number of instances in the event
log, a reasonable choice for fraction of covered instances is kc,=1/M,
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as no rule can cover more than such fraction of instances without
covering other (false) instances. For example, the number of classes
for decision p; (see Figure 47) is equal to 3, therefore, k.o, is chosen
as 0.33.

0, ntxe<n;
RCS(Gr) = { o+ — ne (17)

The rule consistency RCS demands that a rule covers a large num-
ber of correctly classified weighted instances nf = Y5, —c, Wak(,
, and a small number of incorrectly classified weighted instances
nZ = Yale,£c Wak,- Herewith, parameter e€[0;1] determines the
maximal tolerance for the error made by an individual rule (see
Equation 17). Specific for our use case, as it contains not so many de-
cision classes, we choose £=0.2. If classes from the log have unevenly
distributed number of instances, it is advisable to choose smaller
values of .

GA3. The GA algorithm iterates t=t+1 and repeats steps GA1, GA2
until a given condition is fulfilled. The termination conditions can be
chosen by a process analyst, depending on the requirements stem-
ming from the business environment. For example, the algorithm can
stop if a prespecified minimal rule coverage is reached. Also, if the
number of rules, that are not added to the rule set, reaches a pre-
specified threshold, the algorithm can be stopped in order to avoid
obtaining only redundant or low-performing rules. We discuss in the
evaluation section, on the example of our use case, the possibility of
combining termination criteria related both to properties of rule sets,
and resulting fuzzy decision tables into which the discovered rules
are transformed later.

7.3.4.2 Neurofuzzy Algorithm NEFCLASS (NF)

Neural networks are also broadly applied to solve fuzzy clas-
sification problems, and the NEFCLASS algorithm (NF) is one of
the most widely used [89]. NF is also known for producing simple
and comprehensible fuzzy rules [133], which is appropriate for the
business environment. Below we consider the adaptation of NF
applicable to our problem.

NFo.  For using NF, we firstly need to represent our problem in a
neuro-fuzzy terminology. In such a way, we view the system assisting
with mining fuzzy decision rules as a 3-layer fuzzy perceptron, or sim-
ply perceptron. Again, given is a process decision (A4, Cpan) Where
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Apin = {A1, ..., Ag}CA, 1<g<v is a set of influencing attributes from
the corresponding event log subset L,;,. An example perceptron is
visualized in Figure 50b.

Definition 27 (Perceptron). A perceptron is a network representation
of fuzzy classification problem in the form of a neural network IT =
(U,0,Y), where

e U=U;Ul,UU3 is a union consisting of a set Uj={A1, ..., A¢} of at-
tributes influencing the process decision (input neurons), a set
Up={By, ..., B;},r€INT of fuzzy rules (hidden neurons), and a set
Us={cy,...,cz},zEINT of the process decision classes (output neu-
rons);

* O(a,b)=pj is a fuzzy weight defined as the membership grade of
the value of input neuron acU; in a fuzzy subset provided by the
hidden rule unit beUy;

* Y is a mapping that assigns activation functions as follows: Y,=

. . Lveu, Q(B, )Yy
min, O(a,b) if uel;UU,, and Y, = 2 ifuels .¢o
ﬂeul ( ) 1 c Zbeuz Q(B, C)
NF1. At each step of the algorithm, an event instance from

the event log subset L,;, is chosen consequently. Based on this

instance, a rule B; : A is lfl],. cor Apin 18 lg‘;i” — ¢ is generated,
where Ay, is a subset of influencing attributes, and ¢; is the label
of the process decision (Apg,, Cpan), that is the output of the rule
B;, teIN',. Further, initialization of the perceptron should be done
by creating ¢ nodes in input layer U;={Aj, ..., Ay, } corresponding
to each attribute in the generated rule. Each input neuron acl; is
characterized by K* fuzzy sets FS?, i€[1;K”]. Thus, at the iteration
t, for each input neuron a;€lU; the membership function is found
the perceptron does not have a hidden rule node b&B such that
Y(A1,b) = y‘;ll,...,Y(ag,b) = ‘u?j, then such node is created. Hereby,
the class c; is assigned as the consequent of the rule.

NFz. When adding the generated rules to the outcome rule
base, only the rules that have good fitness are kept. For tuning the
perceptron weights, we apply the rule B; on each instance e, =
(A®,c"),we NT from the event log L,4, with the overlapping an-
tecedent and compare the factual class assigned from the event log
c¥, and class predicted by the perceptron. We identify the rule fitness
as the ratio of the number of the correctly classified instances by the
rule TP(B;) to the sum of number of the correctly and incorrectly
classified instances FP(B;) in the event log subset L,

TP(B;)
f(B) = TP(B;) + FP(By)

(18)



7.3 METHODOLOGY FOR FUZZY DECISION MODEL DISCOVERY

For example, in our further implementation we only keep rules with
fitness f(B;)>0.1.

NF3. The algorithm iterates t=t+1 and repeats steps NF1, NF2
until a given condition happens. Again, different termination condi-
tions can be chosen with respect to the business environment. As a
new rule is generated for each event instance, the algorithm can be
stopped when the complete event log is processed. As this might
produce a large amount of rules, the number of first rules to be gen-
erated can be prespecified. More complex termination criteria for the
NF classifier can be found, e.g., in [89].

7.3.5 Transformation of Fuzzy Rules into FDT rows

The outcome of application of fuzzy learners described at the
previous step are fuzzy rule sets corresponding to each discovered
process decision (Apdn,den), 1<pdn<PDN, therewith, PDN is the
number of discovered process decisions, and Az, = {A1, ..., Ag}CA,
1<g<v are attributes influencing them. For each of the process
decisions (Apgn, Cpan), a corresponding set of frn fuzzy rules is dis-
covered: Rz, = {Rq, ..., Rfm}, frneINT. Next, the discovered fuzzy
rule sets need to be transformed into fuzzy decision tables (FDTs),
which are to be used further during process execution. Therefore,
the FDT interpretability is of the highest importance. However, direct
application of discovered fuzzy rule sets might provide low FDT
interpretability because of duplications and overlapping of rules
and attributes. Below, we describe these issues in more detail and
propose the ways to overcome them. Some of the steps are similar to
the stages of manual designing of fuzzy decision tables described in

[193]-

Step 1: Removal of duplications. Duplicated rules lead to FDT with
duplicated rows. Therefore, at the first step we remove all duplicate
rules.

Step 2: Splitting CNF Rules. Some fuzzy rule learners, as the genetic
one, might generate the rule bases consisting of fuzzy rules repre-
sented by CNF. As the CNF rules can represent very complex struc-
tures, to improve the linguistic interpretability, we propose to replace
them by a set of equivalent elemental rules. In particular, each dis-

covered rule de"QRf’d", 1<y<frn,y€INT can be represented in the

following form: Rypdn = (U4, yfj(Aj),yfj),cy,Z), 1§j§g,1§i§KA/'.
]-,Z- 1 1

Then, the corresponding set of elemental rules RS;dn can be identi-

fied as the Cartesian product of (1) all possible subsets of the rule

antecedent containing all attributes of the rule in a couple with the
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single value of the corresponding fuzzy subset; and (2) the value of
the rule class:

dn Aj
RS} = Uy i (4)) x ¢y, 1<y<frm, yeN' 09)
ji

For example, let the following rule R be given in natural language:

R: amount is high or low, duration is short or long —
risk = high

Then, the corresponding set of simple rules is RS = [JR;, 1<i<4,
i

Ry : amount is high, duration is short — risk = high
Ry : amount is low, duration is short — risk = high
Rs : amount is high, duration is long — risk = high

Ry : amount is low, duration is long — risk = high

Step 3: Mapping simple rules to FDT rows. Further, each elemental
rule ngdn, 1<y<frn is mapped to a corresponding row in a FDT
which represents a union of all the fuzzy elemental rules U, RSy’”d”.
If a rule has no linguistic literal for an attribute, the corresponding
cell is left blank, meaning that this attribute has no influence on the

outcome.

Step 4: FDT optimization. There can be rules represented by multiple
rows, which differ only in the irrelevant attributes” values. If we find
such rules, we aggregate them into one row by removing these at-
tributes, because they do not impact the outcome. For example, see
Figure 51 where the contracted FDT is derived from the expanded
FDT by combining logically adjacent rows that leads to the same ac-
tion configuration.

Inputs Qutput Inputs Output
amount | duration | premium risk |:<> amount| duration [premium| risk
low short false low low short _ low
low short true low

Figure 51: Example of rule reduction in a FDT

7.3.6 Identification of Hit Policies for FDT

Each discovered fuzzy rule, for which its antecedent matches the
runtime input, contributes to an output through the compositional
rule called inference. In DMN, inference is described by hit policies
which specify how the table output is obtained, if there are multiple
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rule matches for a given set of inputs (cf. Definition 13). The activa-
tion of a hit policy corresponds to the phase of process execution.
During instantiation of processes, the process activity that invokes a
corresponding decision model supplies the decision-making system
with input data which can be crisp or fuzzy. Below we propose a hit
policy formula for FDT.

Given is a process decision (A4, Cpan), 1<pdn<PDN, where
PDN is a number of discovered process decisions, and Aps, =
{A1,..,Ag} € A, 1 < g <o are attributes influencing them. For the
process decision (A gy, Cpan), a corresponding FDT consisting of a set
of discovered fuzzy decision rules Rpdn — U]' Rj,j €N is processed
according to the procedures from the previous section. Let an event
instance e occur further during the process execution. Then, the acti-
vation A for a rule R;, jEIN™ describes the probability of a value from
the class Cp4y, to be correct for the given instance e. For calculating
the activation rule value, we propose to utilize an adapted “min-max”
operator, one of the most widely used composition operators suitable
for Mamdani rule bases [209]:

M(R;) = min[ |J max (Jpf) ], (20)
ke(1;¢] i€[L;K%]

where 1<k<g :ar€e, ay€Ap4y, so only attributes of an event instance

which influence the process decision are evaluated.

For example, let the loan application process be executed
with the following instance data: amount = 200[EUR], duration =
30[mths], premium = TRUE. Next, we calculate the value of the
activation rule from Equation 11. Here k=2, and, consulting the
membership functions (see Figure 47), we establish that pmount —

4 . low
1, yﬁ?;‘;l“”t = 0, and pduration — (6, yduration — (4 Then, the value

short long
of the activation rule from Equation 11 is calculated as follows:
M(R) = min [Jmax({1;0},{0.6;0.4})] = 0.6. Analogously, the ac-
tivation values for all the rules in the set RP9" = U]- Rj, JENT are
evaluated, and the rule maximizing the value of the activation rule is
chosen.

Let several rules overlap in the discovered fuzzy decision table,
and let the activation rule from Formula 20 return the same value for
the overlapping rules. In such case, it is possible to use the collect hit
policy (cf. Section 2.3). Then, the output result is the list of all the
matching output values.

However, if an unambiguous single output is desired, we pro-
pose to additionally weight the discovered rules by their error rate on
instances from the event log, according to the following formula:

A(R]) = W(R], Lpdn) * M(R]) (21)

In the formula above, the weight variable W(R;, L,4,) characterizes
how good the rule classifies the instances from the event log sub-
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set L4, corresponding to the process decision (Apdn, den). The cal-
culation of the weight value depends on the applied fuzzy learner.
For GA, this value is equal to the logarithmic accuracy of the rule
log(1 — E(Rj))/E(R]') from Equation 13. For the NF, this value is
equal to the rule fitness f(R;) = TP(R;)/(TP(R;) + FP(R;)) from
Equation 18. Assigning the weights to rules in such a way can also
contribute to satisfying the condition of exclusivity of decision rules
in FDT, if that is required by user. Then, the rows are sorted by their
weights, and while iterating over the rows, a rule is removed if it over-
laps with the previous one. The low quality rows can also be removed,
if some threshold is established.

Inputs Output
Weight
premium amount Decision p1
0.15 FALSE is low standard check
0.09 FALSE - full check
0.11 - is high no check
0.17 FALSE is high full check

Figure 52: Example of a fuzzy decision table that consists of weighted
rules, which can be discovered from an input event log. The
fuzzification of the matching input values for the numeric in-
puts is executed during run-time, with the help of the prede-
fined membership function (see Figure 47). If multiple outputs
are allowed, then the hit policy can be of the customized collect
type, which incorporates the fuzzy activation operator (see For-
mula 20). However, in the cases when only one output is re-
quired, the hit policy is provided by Formula 21, which incor-
porates the fuzzy rule activation operator weighted on the error
rate of the discovered rules in the event log.

For an example of applying the fuzzy hit policy proposed by us
in Formula 21, consider the decision table from Figure 52. This fuzzy
decision table is an example table that can be derived from the event
log of the loan application process. The weights of the decision rules,
represented in the first column of the table, are example weights that
can be derived from the event log in accordance to the formulas from
the previous paragraph. Further, let the loan application process be
executed with the instance data premium = FALSE, and amount =
200[EUR)].

As mentioned in Section 7.3.2, the membership functions of
the nominal attributes are represented by their characteristic func-

tion. Therefore, for the premium variable from our example, we es-

tablish that yﬁfgzm = 1. Consulting the membership function for

the amount variable (see Figure 47), we establish that for the value
amount = 200[EUR], the membership function values are: pf/o#" =

1, y%ﬂ””t = 0. The first case corresponds to a higher value of the

membership function. Therefore, the value amount = 200[EUR] is
mapped to the expression amount is low.
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Further, we observe that the rule predicate premium =
FALSE, amount is low matches the first two rows of the table from
Figure 52. Therefore, we detect a case of the overlapping rules match-
ing the same input. The usage of the weights provides us with an
additional information, which allows us to make a choice between
these rules.

Non-weighted activation rules of the two match-
ing fuzzy rules can be calculated with the help of For-
mula 20, that is M(R;)=min [Jmax({1},{1;0})]=1 and
M(Rz)=min [Jmax({1},{1;0})]=1. Since the non-weighted ac-
tivation rule for fuzzy rule inference returns the same result, the
overlapping is not resolved. As mentioned above, if the collect hit
policy is assigned to this table, then a set of matching outputs is
returned. However, in this example it is reasonable to require that
only one output should be chosen, as the types of checks in the loan
application process are exclusive. Therefore, we apply the weighted
activation rule from Formula 21 using the weights of the rules from
Table 52, thatis A(R1) = 0.15%1 = 0.15, and A(R2) = 0.09 * 1 = 0.09.
Since the value of the weighted activation rule for the first rule is
higher, this rule should be applied, which yields standard check as
the decision output.

With respect to the DMN standard, all the DMN hit policies
can be applied to FDMN. Fuzzy activation rules are not foreseen yet.
However, the standard recommends to implement custom post pro-
cessing steps in combination with the collect policy, which can be used
considering the activation rule from Equation 21.

7.4 APPLICATION OF THE APPROACH ON THE EXAMPLE LOG

To validate our methodology to discover fuzzy decision models
from an event log presented in Section 7.3, we implemented it and
applied it to a simulated event log. The details of our implementation,
and the evaluation experiments can be found in Chapter 8. In the
following section, we discuss application of our approach to the
motivating example presented in Section 7.1.

Event Log Simulation

For analyzing the example business process, we again simulated the
event log with the help of the CPN Tools software. The newly gener-
ated event log contains two numeric attributes duration and amount,
and two nominal attributes premium and risk.

To be able to create an event log with the simulation parameters
for some of the process decisions described in linguistic terms, we as-
sign linguistic terms to the input numerical attributes and define the
corresponding membership functions. This is an essential step, as we
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Linguistic literal X1 X X3 X4
low MIN_INT | MIN_INT 20 50
high 20 50 MAX_INT | MAX_INT

Table 11: Values for defining points of the trapezoidal membership func-
tion for the numeric attribute amount (the units used are EUR)

Linguistic literal X1 X X3 X4
short MIN_INT | MIN_INT 5 10
normal 5 10 10 15
long 10 15 15 20

very long 15 20 MAX_INT | MAX_INT

Table 12: Values for defining points of the trapezoidal membership func-
tion for the numeric attribute duration (the units used are months)

need to describe the simulation parameters for some of the process
decisions in linguistic terms, in order to validate that our algorithms
for fuzzy rules discovery, presented in Section 7.3.4, produce appro-
priate classification results.

Thereby, we need to assign the linguistic terms to them and de-
fine the corresponding membership functions. As discussed in Sec-
tion 7.2, we utilize the trapezoidal membership functions for the
demonstration of our approach. The curve for this function is defined
by four parameters xi, x2, x3, x4 (cf. Definition 24). Table 11 presents
the parameters of the membership function determined by us for the
attribute amount. Table 12 presents the parameters of the membership
function identified by us for the attribute duration. The visualization
of corresponding curves are presented in Figure 47.

To create the input event log, we used the distributions of
the numerical attributes that were used also in Section 6.5. For the
nominal attributes we created corresponding sets of fuzzy rules. The
summary of all the simulation parameters is presented in Table 13.

Discovery of FDMN model

As discussed in Section 7.3.3, discovery of DRD models from event
logs represents a classification problem over crisp data. We applied
the corresponding algorithms from Chapter 6, and discovered the
DRD model for the generated log as presented in Figure 53a. Thereby,
three process decisions were discovered: (1) control flow decision p;
with influencing attributes amount and premium; (2) control flow de-
cision p3 with the influencing attribute risk; and (3) data decision risk
with influencing attributes duration and amount.
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Task / Attribute Name | Simulation Parameters

Trace ID 1 to 200 (incrementing)
amount discrete(2,99)
premium random boolean
duration discrete(2,30)
risk if duration is very long and amount is high : very high

if duration is long and amount is high : very high

if duration is normal and amount is high : very high
if duration is short and amount is high : normal

if duration is very long and amount is low : high

if duration is long and amount is low : low

if duration is normal and amount is low : low

if duration is short and amount is low : low

pl if amount is high and premium is false: full check
if amount is high and premium is false: standard check
if premium is true: no check

p3 if risk is low: accept
if risk is normal: accept
if risk is high: reject
if risk is veryhigh: reject

Table 13: Simulation parameters for generating the event log of the process
from Figure 39

Next, we applied both the GA and the NF classifiers for discover-
ing FDTs corresponding to the DRD model from Figure 53a. Thereby,
we consequently applied the techniques from Section 7.3.5 for con-
structing the fuzzy decision tables from the discovered rule bases.
An example of a fuzzy decision table for the rule-based data deci-
sion risk discovered with the help of the GA algorithm is presented
in Figure 53b.

The decision rules in the constructed decision tables are assigned
with weights that show how good the rule classifies the instances
from the event log. In the running example, we utilize this informa-
tion through the usage of the weighted activation rule as the hit policy
for the discovered fuzzy decision table (see Formula 21). For exam-
ple, during the execution of the process, the numeric input can be
mapped, with the help of the corresponding membership functions,
to such values of the duration attribute as very long, and of the amount
variable as high. In this case, the second and the fifth decision rules
from Figure 53b can be applied. In this case, the rule output for which
the value of the weighted activation rule from Formula 21 is higher, is
chosen, and the corresponding output, risk is very high or risk is high,
is returned. An example of the application of Formula 21 is provided
in Section 7.3.6.

The decision rules in the discovered fuzzy decision table from
Figure 53b classify the event log characterized by the simulation pa-
rameters from Table 13 quite well, since 6 out of 8 rules for the risk at-
tribute are determined correctly. However, some differences can also
be observed. We discuss in details the accuracy of the output FDMN
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Inputs Output
Weight duration amount risk

0.22 is long is high | very high

0.22 isverylong | ishigh | veryhigh

p1 - check risk 0.22 is short is high normal

1 0.11 is very long is low high
0.26 isverylong | ishigh high
/ 0.26 is normal is high high
0.33 is short is low low
ps3 - approval 0.18 is normal is low low

(a) The discovered decision require- (b) Discovered fuzzy decision table
ments diagram for the example for the rule-based data decision
process risk

Figure 53: The discovered decisions and the DMN model for the example
process

model by doing a set of evaluation experiments on the simulated
event log in Chapter 8.

7.5 SUMMARY AND DISCUSSION

In this chapter, we introduced a novel methodology to mine
fuzzy decision models that can be used complementary to process
models from event logs. Firstly, we introduced a formal framework
describing incorporation of fuzziness in a decision model in Sec-
tion 7.1. Section 7.3 introduces the steps of deriving a fuzzy DMN
decision model from the input event log.

In particular, we presented identification of fuzzy subsets and
corresponding membership functions corresponding to the data at-
tributes from the event log. As fuzziness is only relevant for the de-
cision logic of the output decision tables, we discussed that the DRD
models represent a classification problem over crisp data. Therefore,
the approach to discover DRD models from event logs from Chapter 6
can be reused. Hereby, for learning fuzzy decision rules, we explored
application of the genetic and NEFCLASS classifiers. We showed how
to construct and simplify fuzzy decision tables. Additionally, we pro-
posed a formula for the fuzzy activation rule as a hit policy for dis-
covered fuzzy decision tables. Usage of FDMN models that consist of
crisp DRDs referencing fuzzy decision tables and fuzzy hit policies,
as proposed by us, is not yet foreseen by the DMN standard, but is
fully compliant with it.

Finally, we validated the proposed methodology on a simulated
event log of the example credit-risk assessment process in Section 7.4.
The derived FDMN explains in linguistic terms the decision making
recorded in the event log. The derived decision model can be auto-
mated and executed complementary to the process model. During
the execution, process instance data consisting of both numerical and
nominal attributes is evaluated against the set of fuzzy decision rules
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that converts inputs to outputs. Fuzzy decision tables are able to cap-
ture vagueness and imprecision of the execution data with the help of
membership functions that are mappings describing the uncertainty
in the data values by assigning them to predefined linguistic terms
with a certain probability.

With regards to the limitations of the proposed methodology,
for some steps of it, the domain knowledge is required. For example,
an analyst has to describe the fuzzy subsets for the attributes from
the event log. Also, it is recommended that an expert tunes the pa-
rameters of the fuzzy classifiers, such as termination criteria, or rules
fitness threshold, depending on requirements of the business environ-
ment. FDMN mining, like other classification problems, often leads
to the necessity to find a compromise between interpretability and ac-
curacy of the output model. We conduct a set of experiments to eval-
uate the interpretability and accuracy of the output decision models
resulted from application of our methodology on the example event
log later in Chapter 8.
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EVALUATION OF THE DECISION MODEL
DISCOVERY METHODOLOGIES

he previous chapters lay the foundations and introduce the

methodologies to discover decision models complementary to
process models, taking both process models and event logs as inputs.
This chapter focuses on the evaluation of the presented methodolo-
gies, which constitute the last step of the design science research
methodology, applied in this thesis as discussed in Section 1.4.
Thereby, we conduct a series of experiments in order to observe how
the presented methodologies perform in real-world settings. The
chapter is based on results published in [18, 20, 21, 23, 24, 25].

Since the methodologies presented in Chapters 4—7 assume different
inputs to the decision model discovery algorithms, we present a ded-
icated section describing relevant experiments on real-life data, for
each technique corresponding to these chapters. The rest of the chap-
ter is structured as follows. Section 8.1 outlines the chapter in detail
and provides the description of the applied evaluation methods. Sec-
tion 8.2 provides the evaluation of the approaches to discover decision
models using a process model as input. Section 8.3 provides the eval-
uation of the approaches to discover decision models using an event
log as input. Section 8.4 summarizes the chapter.

8.1 EVALUATION OUTLINE, METHODS, AND METRICS

Below, we provide the structural outline of our evaluation, the
applied evaluation methods, and the utilized evaluation metrics.

OUTLINE In Part II of this thesis (cf. Chapters 4—7) we designed
techniques to extract decision models by taking into account two per-
spectives using both process models and event logs as inputs. Pro-
ceeding with the design science steps (cf. [204]), in the current chapter
we evaluate the applicability and usefulness of the developed method-
ologies in a real-life environment.

Figure 54 shows the outline of this chapter. The current sec-
tion describes the evaluation outline and introduces the applied eval-
uation methods. Next, two different perspectives to discover deci-
sion models are considered. Section 8.2 evaluates our approaches to
discover decision models taking a process model as an input. Our
methodology of control-flow-based decision model discovery from
Chapter 4 is evaluated in Section 8.2.2. The data-centric decision
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8. Evaluation of the
Decision Model
Discovery Techniques

8.1 Evaluation : :
g 8.2 Using Process 8.3 Using Event 8.4 Chapter
Outline, Methods,
Long Metrice Model as Input Log as input Summary
8.2.1 8.3.1

Impler‘riehtation

Implementation

8.2.2 Control-

8.3.2 Cris
Flow-Based Decision Mopdel
Decision Model Discover
Discovery y
8.2.3 Data- 8.3.3 Fuzzy
Centric Decision Decision Model
Model Discovery| Discovery

8.2.4 Summary
and Discussion

8.3.4 Summary
and Discussion

Figure 54: Outline of the evaluation of the presented methodologies

model discovery from Chapter 5 is evaluated in Section 8.2.3. In Sec-
tion 8.3, we evaluate our approaches to discover decision models from
event logs. The evaluation of our methodology to discover crisp deci-
sion model from Chapter 6 is presented in Section 8.3.2. The method-
ology to discover decision model extended with fuzziness from Chap-
ter 7 is evaluated in Section 8.3.3.

METHODS To conduct the evaluation experiments, we performed
the design and implementation of the prototypes validating the presented
methodologies. Section 8.2.1 introduces the prototype, which was de-
veloped to support the discovery of decision models complementary
to process models using a process model as an input. Section 8.3.1
introduces the prototype for the discovery of decision models com-
plementary to process models from event logs.

The evaluation goal is to investigate the interaction of the developed
methodologies with their real-world context, and thus we considered the
application of the presented methodologies by providing, as input
into the developed prototypes, the following real-world objects: (1)
real-life process model repositories; (2) real-life event logs, and (3)
synthetic event logs simulated with the parameters representing a
real-life environment.

METRICS The applied evaluation metrics differ by the perspective,
from which the decision model is discovered. The methodologies us-
ing a process model as input (cf. Section 8.2) are pattern-based. There-
fore, the main evaluation metric to determine the usefulness of the
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proposed methodologies, is the patterns occurrence frequency in real-
life process model repositories. The patterns occurrence frequency
shows if the identified patterns are frequently used in practice [212],
and, therefore, if the discovery of decision models based on these pat-
terns has relevance and applicability to real-life context. Additionally,
as the control-flow-based discovery incurs a major refactoring of the
input process model, the complexity of input process models [92] be-
fore and after refactoring is evaluated. We measure the complexity
with regards to the number of the process model elements, e.g., the
number of the split XOR gateways.

The methodologies that discover decision models using event
logs as inputs (cf. Section 8.3) are based on solving the classification
problem where the classes are process decisions that can be made,
and the training examples are the process instances recorded in the
event log. One of the main evaluation metrics showing how a discov-
ered model performs is accuracy [205]. In particular, in our setting,
the decision model accuracy is the average number of event instances
that are correctly classified by either decision tables, or functions cor-
responding to the discovered decisions which constitute the output
DRD model, divided by the total number of all instances in the test
log. Furthermore, since achieving a better interpretability for the out-
put decision model [27] is our motivation to incorporate fuzziness
into decision model discovery, we use it as an additional evaluation
metric. For evaluating interpretability of the discovered decision mod-
els, we take into account such parametres as the number of discovered
decision rules, and the presence of dependencies between the discov-
ered decision rules in the output decision model.

8.2 USING PROCESS MODEL AS AN INPUT

In this section, we evaluate the methodologies to discover de-
cision models using process models as input (cf. Chapters 4-5).
The results presented in this chapter are based on a collaborative
project with our partners who provided us with the real-world pro-
cess model repositories, extracted from the various industries. Sec-
tion 8.2.1 presents the implementation details of the research proto-
type to discover decision models using process model as an input.
The implementation is co-authored by all contributors from [18]. Fur-
ther, we utilize the presented prototype for conducting a series of
the evaluation experiments, which is a novel contribution of this the-
sis. The evaluation of the control-flow-based discovery of decision
models from process models is presented in Section 8.2.2. The experi-
ments pertaining to the data-centric discovery of decision models are
presented in Section 8.2.3. Section 8.2.4 provides a summary and a
discussion of these experiments.
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8.2.1 Implementation

Our algorithm to discover decision models process models is im-
plemented in the Promnicat [1] framework, an open-source platform
for analyzing process model repositories. The framework is written in
the Java programming language [11]. This platform provides import-
ing functionality for a set of process collections, modeled by nota-
tions widely used in research and industry, e.g., the BPMN standard.
The Promnicat framework provides the functionality to explore, trans-
form, and extract information from process model collections [65].
We further extended the functionality of Promnicat by implementing
our own Decision Model Discovery plug-in, for the discovery of deci-
sion models from process models. The implementation, associated
documentation, and several example process models are available at
http://bpt.hpi.uni-potsdam.de/Public/BpmnDmn.

The architectural overview of our implemented plug-in, to dis-
cover decision models, is presented in Figure 55 with the help of
a FMC block diagram*. Block diagrams represent active system com-
ponents called agents (rectangular shape) and passive system com-
ponents called locations (rounded shape). Agents communicate with
each other via channels depicted as lines with a small circle. The com-
bination of a solid triangle and the letter R next to the circle indicates
that one agent request information from another agent which in turn
responds (the triangle vertex points to the receiver).

Process Expert

Promnicat ()A () A
R R

Decision Model Process Model

. Collection
Discovery
Rp Rp

Pattern Finder —(—{ DMN Extractor [~ Model Adaptor Decision Model

Collection

!

Process Model
Parser

Figure 55: FMC block diagram depicting the implemented Decision Model
Discovery Promnicat plug-in

1 Fundamental Modeling Concepts (FMC) is a modeling notation where block dia-
grams are used to illustrate compositional structures as a composition of collaborat-
ing system components [103]
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As can be seen from Figure 55, the Decision Model Discovery plug-
in extension of Promnicat consists of three blocks: the Pattern Finder,
the DMN Extractor, and the Model Adaptor.

The work of the developed prototype starts when a process
model is imported from the Process Model Collection storage. The pro-
cess model has to be represented in XML format. Next, the process
model is parsed with the BPMN Parser component of Promnicat. Fur-
ther, the Pattern Finder component analyses the imported process
models and identifies a predefined set of process patterns (e.g., in ac-
cordance to the steps from Section 4.4). Additionally, the DMN Extrac-
tor component obtains DMN decision models (see Section 4.5) which
are stored in the Decision Model Collection storage. The Model Adap-
tor realizes the post-processing of both process and decision models
(e.g., in accordance to Section 4.6). The process expert is then used for
choosing one of the overlapping patterns discovered by Pattern Finder,
and performing the linguistic adaptation of process models that are
refactored by the Model Adaptor. The output decision models are also
stored in XML format. Promnicat does not have a built-in visualizer,
but the output process and decision models can be visualized by any
suitable external process model editor supporting the import of XML
models, e.g., Signavio Process Explorer [172].

We used this implementation to evaluate the impact of our ap-
proaches to discover decision models from the real-life process model
repositories, which are presented in the following sections.

8.2.2  Control-Flow-Based Decision Model Discovery

In this section, we evaluate the methodology to discover decision
models from the control flow of process models presented in Chap-
ter 4. To evaluate the presented methodology, we conducted a series
of experiments on the real-life process model repositories obtained
from our project partners, which were introduced in Section 4.3.1.

Firstly, for every process model in the each of the repositories,
the control-flow-based pattern identification from Section 4.4 was ap-
plied. During this step, all the detected patterns were considered,
even if they were overlapping each other. The relative frequency of
detected control-flow-based patterns (cf. Section 4.3) was calculated,
as presented in Figure 56. The detailed numerical results of this eval-
uation experiment can be found in Table 15 from Appendix B.

It can be seen from Figure 56 that pattern P1 is the most frequent
pattern. In average, it was identified in 63.26% of the process models
of the real-life process model repositories. Pattern P2 was detected
in 17.83% of the analyzed process models. Finally, pattern P3 was
identified in 10.04% of the considered process models. These numbers
show that the identified patterns are frequently used in practice, and
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Occurence frequency of patterns (in percent)
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Figure 56: Relative frequency of control-flow-based patterns from the real-
life process model repositories presented in Section 4.3.1

thus, the discovery of decision models based on these patterns has
relevance and applicability to real-life context.

Next, we conducted the steps of decision model extraction from
the set of identified patterns (cf. Section 4.5) and post-processing of
process and decision models (cf. Section 4.6). For the evaluation of
this part of the introduced methodology, we measured the rate of the
refactored models in the given real-life process model repositories.
We define this rate as the number of models for which both process
model refactoring and decision model creation took place. The results
are presented in Figure 57. The detailed numerical results of this eval-
uation experiment can be found in Table 16 (see Appendix B).

Amount of refactored process models (in percent)

o

20 40 60 80 100

Health Insurance

IT Governance
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IT Service Management
Banking

Industrial repository

Figure 57: Relative percentage of refactored models in the real-life process
model repositories from Section 4.3.1

The weighted average rate of the refactored models in the con-
sidered repositories is 67.12%. Thus, more than two-thirds of the con-
sidered process models were modified, and the decision models were
generated successfully.
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To get more insights into the effect of the performed model trans-
formations, we calculated the occurrence ot the split XOR gateways in
the process models before and after refactoring of the process models
in the real-life repositories. Figure 58 visualizes the results, whereas
the detailed numerical results of this evaluation experiment can be
found in Table 17 from Appendix B.

Number of split XOR gateways per model
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M Before refactoring After refactoring

Figure 58: Number of the split XOR gateways per model in the real-life
process model repositories from Section 4.3.1 before and after
the refactoring experiment

On average, the number of split XOR gateways reduced by
20.81% in the process models after their refactoring. This result is
achieved by externalizing the complex XOR structures into dedicated
decision models. This reduction rate implies a reduced number of
process model elements, thereby significantly improving the readabil-
ity of the refactored process models.

We can therefore conclude, that the application of our method-
ology for extracting decision models from the control-flow of process
models increases the readability and flexibility of real-life process
models. Also, the extracted decision models provide a more struc-
tured design for process decision making, and they can be executed
complementary to process models which realizes the separation of
concerns principle.

There are, nevertheless, also limitations of the proposed method-
ology with respect to its application in a real-world environment.
Firstly, as discussed by Assumption 2 of Section 4.2, we assumed
that decisions are taken in distinct process model activities preceding
the split XOR gateways in the control-flow-based patterns. However,
our manual consideration of the process model repositories revealed
that sometimes the decision activities were omitted in the process
models, and we had to insert them manually. As a result, depicted
in Table 17 from Appendix B, the average number of activities in
the refactored process models has increased by 2.14%. In such a way,
manual checking of the real-life repositories for their correctness is
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required. Additionally, as discussed in Section 4.4, involvement of an
expert is required for resolving the conflicts which occur if several
control-flow-based patterns match overlapping process model frag-
ments.

Another limitation originating from the design of our methodol-
ogy is connected to the post-processing of process and decision mod-
els after extraction of the decision model. As discussed in detail in
Section 4.6, the linguistic adaptation of process and decision labels af-
ter process model refactoring is needed, which at the current moment
is supposed to be done by a process expert.

8.2.3 Data-Centric Decision Model Discovery

In this section, we evaluate the methodology to discover deci-
sion models from the data flow of process models presented in Chap-
ter 5. Many real-life process models are activity-centric, and further
modeling artifacts, such as data, are often not supported [128]. The
process model repositories from the previous experiments were no ex-
ception to this. Therefore, to evaluate our data-centric decision model
discovery, we considered another repository, referred to as the hospi-
tal repository, which was rich in data-centric real-life process models.
Thus, our partners provided us with a set of real-life process models,
modeled for a project which had the goal of establishing a business
process management system in a hospital’s surgery department. The
project was a collaborative effort of practitioners and process model
experts, and therefore, the data output process models were well de-
fined. The details of this project can be found in the publication of
Kirchner et al. in [98].

In total, we considered a set of 43 process models. All of them
were dedicated to a rather complex liver transplantation process and
its supporting processes. All the process models provided to us were
designed, with the help of BPMN, by a collaborative team of physi-
cians and process designers. Examples of the corresponding process
models can be found in [98]. The process models were provided to
us as pictures, therefore, it was not possible to conduct the parsing
of the process models and we conducted the manual analysis of the
repository.

Firstly, for each process model in the hospital repository, the
data-centric decision pattern identification from Section 5.3.3 was ap-
plied. Thereby, the relative frequency of detected data-centric decision
patterns I11-116 (cf. Section 5.3.2) was calculated, as presented in Fig-
ure 59. The detailed numerical results of this evaluation experiment
can be found in Table 18 from Appendix B.

As can be seen from the figure, the most highly used patterns
are pattern I12 which was detected in 44.19% of the process models,
and I11 which was detected in 39.53% of the process models. Thus,
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Figure 59: Relative frequency of data-centric decision patterns in the hospi-
tal repository

the usage of text annotations (I12) and data nodes (I11) are the most
commonly used data structures to incorporate decision making.

The second most frequent group of patterns consists of pattern
I16—a which was detected in 25.58% of the process models and pat-
tern I16—a which was detected in 18.60% of the process models. How-
ever, our observation shows that these two patterns incorporating
boundary events and the corresponding exceptional flows were fre-
quently misused for modeling the non-exceptional control flow. Al-
though this fact does not influence the derivation of decision models
according to the methodology proposed by us, the stakeholders that
are interested in improving the quality of their models could take this
into account and conduct a model re-design.

Patterns I15—a, detected in 11.63% of the process models, and
I15—b, detected in 16.28% of the process models, were slightly less
common. This can be explained due to the fact that start and interme-
diate events, preceding the decision activities, most often serve as the
triggers of decisions rather than bearing decision-related data.

Pattern II4 representing the involvement of a resource in the
decision making was detected in 11.63% of the process models. This
can be explained by the fact that the hospital does not provide many
resources for the execution of one clinical pathway. It has to be noted
that the influencing resource was sometimes related to the decision
activity through an icon of the responsible person attached to the
activity, and not through process lanes.

It can also be seen from Figure 59 that pattern I13, which rep-
resents data stores used by a decision activity, was not detected in
any of the process models of the considered repository. This can be
explained by the fact that the domain experts involved in the pro-
cess model design were the hospital physicians who did not deal
extensively with IT-systems. Thus, several years ago from now, the
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electronic patient files were not so common in the hospital, and the
majority of the documentation was paper-based.

Next, we summarize the evaluation results of data-centric de-
cision model discovery using a process model as an input. On the
one hand, embedding of a major part of process decision making by
data-centric decision patterns could be explained by the fact the pro-
cess models were designed under time pressure in a series of work-
shops [98]. On the other hand, the process designers were not aware
of the principle of separation of process and decision concerns, espe-
cially due to the fact that the process models were designed several
years when the DMN standard did not exist yet. Thereby, in average,
the data-centric decision patterns occurred quiet frequently in the
considered repository. In such a way, the identified patterns present
suitable candidate fragments to be externalized into a dedicated deci-
sion model.

Following the evaluation of the patters, we manually conducted
the step of decision model extraction from the set of identified pat-
terns (cf. Section 5.4) and post-processing of process and decision
models (cf. Section 5.4.2). Again, for the evaluation of these steps, we
measured the rate for both process and decision models that were
refactored. In total, 32 process and decision models were refactored,
which is a refactoring rate of 74.42%. Thus, almost three quarters
of the considered process models were refactored, and the decision
models were generated successfully.

We can therefore conclude, that the application of our method-
ology to discover decision models from process model data shows
positive results. The extracted decision models describe process de-
cision making in a compact way, and they can be executed further,
complementary to process models which realizes the separation of
concerns principle.

The presented approach has certain limitations though. Firstly,
the process or domain experts have to manually identify which activ-
ities of the input process model are decision activities (cf. our assump-
tion from Section 5.2). This limitation is due to the fact that the BPMN
standard does not provide a mechanism to explicitly demarcate deci-
sion activities, e.g., the user task type activities could also incorporate
decision making but do not have to. Secondly, during the refactoring
of the process models, we had to add 16 extra decision activities since
they were omitted in the original models. This corresponds of a rate
of 0.37 decision activity per process model from the repository. This
step of our methodology also required an expert’s input.

According to our post-processing recommendations from Sec-
tion 5.4.2, an analyst identifies if the elements of the detected patterns
should be kept in the input process models, or if they should be fully
externalized as a dedicated decision model. Our analysis of the hos-
pital process model repository shows that the data is not misused for
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modeling decisions, but rather has an informational function. This is
in contrast to the misuse of control flow for modeling the decision
logic revealed to us earlier (cf. Chapter 4). Thus, during the first ex-
traction of a decision model from for the input process model, we
recommend to keep the decision-related data elements in the process
model. Since the process are executed mostly manually, extra recom-
mendations might ease the understanding and usage of the process
models by users. Once the staff gets sufficient experience with the pro-
cess models, and the processes become more automated, we would
recommend further simplification of process models by excluding the
elements present in the decision models from process models. Future
works could address this problem in a more systematic way.

8.2.4 Summary and Discussion

The section above considers the perspective of discovering deci-
sion models using process models as input. This perspective incor-
porates both control-flow-based decision model discovery, presented
in Chapter 4, and data-centric decision model discovery, presented in
Chapter 5.

The first evaluation method that we use is the design and imple-
mentation of a prototype validating our methodologies. The Promni-
cat framework is an open-source platform that is designed specifically
for research on process model repositories. Therefore, we extended
Promnicat with the Decision Model Discovery plug-in which is used
for our experiments.

The second evaluation method that we use is the investigation of
how our methodologies interact with the real-world context. In order
to do this, we conducted a series of experiments on a set of available
real-life process model repositories from several industries.

Since the methodologies to discover decision models using pro-
cess model as an input are pattern-based, we chose the patterns occur-
rence frequency as the main evaluation metric. The real-life repositories
reviewed by us consist in total of 1159 process models. The developed
control-flow-based patterns are detected in the repositories in 10% to
63% of all the process models. The pattern representing a single split
gateway is the most commonly occurring pattern, which is detected
in more than 63% of all the process models.

The data-centric patterns occur in the considered hospital pro-
cess repository in 11% to 44% of the process models. From this range,
we excluded the occurrence frequency for the pattern representing a
data store used by a decision activity which was not detected in the
repository. This is possibly due to the fact that the domain experts
involved in the process model design did not deal with the hospital
IT-system. The most frequently used data-centric pattern to describe
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decision logic is by using a text annotation which was detected in
more than 44% of all the process models in the repository.

Overall, the patterns occurrence in the considered repositories
demonstrate that the identified patterns are frequently used in real-
world. In all the cases, there is possible explanation for the extensive
encoding of the decision logic, either in the control flow or the data
of process models. It is due to the fact that the domain experts in-
volved in the process model design were not provided with the instru-
ments to separate decision logic from process logic. Thus, the DMN
standard appeared after the considered process model repositories
were created. In such a way, the usage of the considered patterns as a
base to discover decision models complementary to process models
is valid and provides the potential for application in practice.

After detecting the decision patterns in the process models, we
were able to refactor more than two thirds of all the considered pro-
cess models by externalizing the decision logic into dedicated deci-
sion models, which can be used complementary to process models.
Thereby, it was confirmed that, with the help of the methodologies
developed by us, it is feasible to bring into practice the principle of
separation of process and decision concerns (cf. Section 2.3.3). The
advantage of applying this principle can be especially well seen for
the control-flow-based decision discovery. Since the control flow of
the considered process models was clearly misused for decision mod-
eling, the corresponding control flow structures were externalized
into dedicated decision models. This provide a significant simplifica-
tion of the input process models. Thus, the number of the split XOR
gateways was reduced for more than 20% of the considered process
models. A broader implication of reducing the complexity of process
model to such an extent means that the provided methodologies can
serve as tools for business process improvement, the effect of which
could be explored in future works.

The evaluation experiments introduced limitations of the pre-
sented methodologies. The main limitation for discovering decision
models using process models as input, is that it can not be fully au-
tomated. It often requires the involvement of an expert at some steps
of the process. Firstly, when the overlapping patterns are detected
in the process models, the expert has to choose which patterns are
the best candidate to be included into a dedicated decision models.
Secondly, we assumed that the decision activities are those preced-
ing the split XOR gateways, which was not always the case, and the
expert involvement is needed to identify and insert the missing deci-
sion activities. Our experiments show that the omission of decision
activities in the input process models required their insertion at the
refactoring phase, which increased the average number of activities
in the process models by about 2%. However, this slight increase in
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process model complexity is fully compensated by a significant sim-
plification of process control flow.

Another limitation occurs during the post-processing of both
process and decision models after the externalization of the decision
logic. It is recommended that this be done with the guidance of an ex-
pert, since in some situation, the domain knowledge is required. One
of the firsts step in this direction was done by Wang et al. in [199] by
exploring which structures of process model should be presented in
the business rules. The extension of this work, e.g., with the concepts
represented by the DMN decision models, could be done in future
works. Also, the automated adaptation of process and decision labels
after model refactoring based on the linguistic analysis [111] could
replace the expert work.

83 USING EVENT LOG AS AN INPUT

In this section, we evaluate the methodologies to discover deci-
sion models from event logs (cf. Chapters 6—7). Section 8.3.1 presents
the implementation details of the research prototype, which discovers
decision models using an event log as input. The implementation of
the crisp decision model discovery is co-authored by all contributors
from [23]. We utilize the presented prototype to conduct a series of
the evaluation experiments to discover decision models from event
logs. The approach to discover crisp decision models from event logs
is evaluated in Section 8.3.2. The evaluation of the methodologies to
discover decision models using event log as an input is a novel con-
tribution of this thesis. The approach to discover fuzzy decision mod-
els from event logs is evaluated in Section 8.3.3. The implementation
of the fuzzy extension to discover decision models from event logs
is co-authored by all contributors from [24]. The evaluation of the
methodology to discover fuzzy decision models from event logs is
based on results published in [24]. Section 8.3.4 provides a summary
and a discussion of the presented experiments.

8.3.1 Implementation

To conduct experiments on our methodologies for both the crisp
and fuzzy discovery of decision models from event logs, we imple-
mented them as respective plug-ins for the ProM framework*. ProM
is an open-source framework for collecting tools and applications for
process mining [188]. The detailed ProM architecture can be found in
the documentation provided by Verbeek et al. in [195].

The framework is written in the Java programming lan-
guage and is extensible by plug-ins. Thus, we extended the

2 http:/ /www.promtools.org/
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existing plug-in Decision Miner3 with the functionality relative
to our concepts. To implementing our methodology for discov-
ering crisp decision models from event logs (cf. Chapter 6),
we developed the DMN Extractor plug-in. The corresponding
Java-based implementation and the example log are available
at https://owncloud.hpi.de/index.php/s/dxeGULElonesXxC. To implement
our methodology for discovering fuzzy decision models from event
logs (cf. Chapter 7 ), we developed the FDMN Extractor plug-in. The
respective Java-based implementation and documentation are avail-
able at https://bpt.hpi.uni-potsdam.de/Public/MiningFuzzyDMN.

Process Expert
ProM ~
R
Process Miner Event Log
2 A0 C )

Decision Decision Model

Miner Collection

Collection

DMN Extractor FDMN Extractor
Process Model

Figure 60: FMC block diagram of the implemented ProM plug-ins to dis-
cover both crisp and fuzzy decision models taking an event log
as input

The architectural overview of the implemented plug-ins to dis-
cover both crisp and fuzzy decision models is presented in a FMC
block diagram in Figure 60. The input is the event log, represented in
MXML which is an XML-based markup language that is commonly
used to implement business logic [56]. When the input event log is
imported into ProM, the framework provides multiple possibilities
for its analysis. To be able to run the Decision Miner plug-in for the
discovery of control flow decisions, a process model is firstly discov-
ered with the help of the Process Miner plug-in which could be one
of the numerous dedicated ProM packages, e.g., the package using
the Alpha++ process mining algorithm [113]. The discovered process
model is stored in the Process Model Collection storage, as shown in
Figure 60.

Once the process model is discovered, the DMN Extractor plug-
in extracts a DMN decision model, which can be stored in the Decision
Model Collection storage, as shown in the figure. The FDMN Extractor

3 http://www.processmining.org/online/decisionmining
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requires an additional user input for defining the membership func-
tions for the attributes of the generated event log. Once the FDMN
model is generated, it can also be stored in the decision model collec-
tion. The advantage of using the ProM platform is that further analy-
sis of discovered models can be done with several analysis packages.

Figure 61 shows the user interface of ProM. The screenshot is
done at the step, when an input event log is opened. Once the input
log is loaded, different ProM functionalities can be applied, such as
model mining, analysis, conversion, export, etc.

L2 ProM[52]

| s R e = i e TR

Fiie| fiining Anaiysis Conversion Exporis Wiindow Heip
o LTd

T ove 25 32

Open Aris graph format
Open BPEL 1.1 file »
Open lioa BPMN file

Open DOT file

Open E-mail log file

Opecn EDML Hlo >
Open FSM file »
Open Fuzzy Model import
Open HN file »
Open Log Filter (advanced)
Open Org Model file »
Open oWFN file L2
Open PDM file »
Open Petrify file »
Open PNML file »
Open Protos XML Export file »
Open TPN file »
Open VDX file »
Open YAWL file »
Open newYAWL file
Open Workflow State file

Recent files

Figure 61: Screenshot of the user interface of the open-source framework
ProM 5.2 that we extended with the plug-in to discover DMN
decision models from event logs. The input event log can be
loaded in various formats. For our experiments, we utilize the
MXML log file format.

The work of the developed plug-in is best demonstrated on the
example event log which we discussed while conducting the valida-
tion experiment in Section 6.5. Thus, we simulated an event log with
the help of CPN Tools parameters described in Section 6.5. The screen-
shot from Figure 62 presents an excerpt of the test event log for the
process model from Figure 39 in the MXML file format. It can be
seen that the activity instances are recorded in the log in combination
with the corresponding data attributes (see the abstract example of
the event log in Table 8).

As the next step, a process model corresponding to the event log
can be discovered with the help of a process mining algorithm, e.g.,
the Alpha++ process mining algorithm [113].

Further, the analysis of the event log is done with the help of
the DMN Extractor plug-in which outputs the DMN decision model
as presented in the screenshot in Figure 63. In the Decision points tab,
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A A A A

<la=
[H<Workflow

og>
<Source program="XES MXML serialization" openxes.version="1.0RC7"/>

<Process "null (filtered on simple heuristics)"

ption="process with id null (filtered on simple heuristics)">

|
= d
=

= <Data>

11 ' <attribute name="concept:name">null (filtered on simple heuristiecs)</attribute>

I </Datax>
ﬁ <ProcessInstance id="1" description="instance with id 1">
14 B <Data>
<attribute name="concept:name">1</attribute>
</Data>
17 B3 <AuditTrailEn
=] <Data>
<atc ="duration">14</acc uce>
<attr name="amount">97</attribute>
1 <attr. premium">false</attributes>
2 <attr "concept:name">Register claim</attribute>
<attribute name="rate">6.93</attribucte>
4 H </Data>
<WorkflowModelElement>Register claim</WorkflowModelElement>
<EventIype>complete</EvenctIype>
7 </AuditTrailEntry>

Figure 62: Excerpt from the test event log for the process model from Fig-
ure 39 in the MXML file format

the plug-in outputs discovered control-flow decisions p1 and p3, and
data decisions risk and duration (cf. Section 6.5). In the center of the
screenshot, the output decision model is shown which shows the de-
cision requirements level reflecting the data nodes, discovered deci-
sions, and their dependencies.

The decision logic discovered by our plug-in can be found in
both Decision Tree and Decision Tables tabs, depending on which rep-
resentation of a decision a user wants to see. In Figure 64, a screen-
shot of the decision table corresponding to control flow decision p1 is
shown.

The ability of the tool to derive decision models from event
logs can also be found in a screencast available at https://bpt.hpi.uni-
potsdam.de/foswiki/pub/Public/WebHome/DMNanalysis.mpg using the
running example from Section 6.5. The screencast reflects our step-
by-step approach proposed for the discovery of decisions from event
logs, which is described in Section 6.5.

In the next sections, we use the presented implementation to
evaluate the impact of our methodologies to discover both crisp and
fuzzy decision models from event logs.

8.3.2  Crisp Decision Model Discovery

To evaluate our methodology for discovering crisp decision
models (cf. Chapter 6), we apply it on a real-life event log. For the
evaluation experiments, we consider the road fines event log which
was extracted from an information system handling road-traffic fines
by the Italian local police [52]. Below, we firstly prepare the log
for the application of our decision model discovery methodology.
Secondly, in accordance to our methodology (cf. Section 6.2), we
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Figure 63: Screenshot of the DMN decision model discovered by our devel-
oped plug-in for the event log considered in Section 6.5
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Figure 64: Screenshot of the excerpt from the decision table discovered for
the control flow decision p1 from Figure 39

conduct three steps of the decision model discovery: (1) Discovery
of control flow decisions; (2) Discovery of data decisions; and (3)
Discovery of decision dependencies. Thereafter, we conduct experi-
ments, measuring the accuracy of the discovered decision model for
two event logs: (1) real-life road fines event log; and (2) synthetic
loan assessment log considered in detail in Section 6.5.

Preprocessing of the Road Fines Event Log

The considered event log contains 150,370 process instances with
561,470 event instances. The process instances recorded in the log
were observed and recorded in the period from 2000 until 2013.The
event log contains records for occurrence of 11 activities, namely: Cre-
ate Fine, Send Fine, Insert Fine Notification, Insert Date Appeal to Prefec-
ture, Appeal to Judge, Add Penalty, Send for Credit Collection, Send Ap-
peal to Prefecture, Notify Result Appeal to Offender, and Payment. The
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considered event log is especially suitable for our experiments since
it records not only activities, but also the following data attributes:
Amount, Article, Dismissal, Expense, LastSent, Matricola, NotificationType,
PaymentAmount, Points, TotalPaymentAmount, and VehicleClass.

In order to prepare the log to be imported into our developed
plug-in (see Section 8.3.1), we conducted a preliminary log analysis
with the help of the Disco* platform that provides extensive possibili-
ties for the filtering and visualization of logs. The log analysis shows
that the direct application of our methodology on the raw data would
output wrong results, as the log contains a lot of inconsistencies, e.g.,
incomplete process instances. At the same time, preprocessing of a
real-life event log is a standard procedure, required to adapt the log
for analysis [85]. Below we summarize the conducted preprocessing
steps:

1. Only complete process instances were considered. Without com-
plete information in the event log, the decision rules can not be
discovered. Thereby, consulting the process description provided
for the data set (cf. [52]), we chose 2 activities that could serve
as end event instances (cf. Definition 17) for complete process in-
stances: Payment (67,201 process instances), and Send for Credit Col-
lection (58,997 process instances). In other words, we only chose
such cases (process instances) when either the fine was eventually
paid or it was sent for a credit collection. Further, we filtered the
log with the Disco endpointer filter to remove the process instances
which did not end with the execution of any of these 2 activities.
Thereby, all the process traces contain the Create Fine activity, so
it was chosen as a start event for all the traces. The filtered log
contains 126,198 process instances with 498, 816 event instances.

2. Very rare traces in process instances were excluded due to the con-
sideration that if a trace occurs very rarely, it is unlikely to become
a rule. Moreover, it is generally not recommended to use machine
learning techniques on small sets of input data [205]. Such filter-
ing provides the modified log with 126,198 process instances and
495,396 event instances. Up until this point, we preserved 99.95%
of all the events in the log.

3. As discussed in our assumptions for the discovery of crisp deci-
sion models from event logs (cf. Section 6.2), the decisions in the
event log should not appear within loops. Therefore, we applied
the Disco filter which eliminates looping subsequences of traces. In
particular, the Payment activity was recorded several times within
a loop, so we filtered the log by eliminating such paths. The event
log filtered at this step contains 116,553 process instances with
437,380 event instances. It is worth noticing that by executing this

4 https:/ /fluxicon.com/disco/
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tilter, we now consider 88.29% of the process instances from the
log modified at the previous step. This is a reasonably legitimate
threshold [184], and, therefore, this assumption can be considered
However, addressing this assumption in the future works, would
provide even further enhancements of our presented methodology.

46,371

10,175

Figure 65: Heuristic net representing the road fines event log, preprocessed
for our experiments for the discovery of decision models from
event logs

The visualization of the event log obtained by the preprocessing steps
described above is presented by a heuristic net in Figure 65. A heuris-
tic net is a directed graph showing causal relations between activi-
ties [201]. The numbers in the figure represent the amount of traces
corresponding to the causal relations between activities presented in
the log.

The entries in the processed log do not explicitly specify the start
and end events. In order to utilize the process mining techniques in
the most correct way, we artificially specify the start and end events

183



184

EVALUATION OF THE DECISION MODEL DISCOVERY METHODOLOGIES

in the filtered log. It can be seen from Figure 65 that, whereas the
process model clearly has one start Create Fine event, there are several
possible end events. From the description of the road fine process
provided in [52], it is clear that the Payment activity is executed in
different contexts. Thereby, relabeling events is a valid procedure that
allows a user to explore different representations of the same log [118].
Thus, in accordance with the provided description, we relabel the
Payment activity that follows directly after the Create Fine activity as
the Direct Payment activity. If the Payment activity directly follows the
Add Penalty activity, we relabel it as the Payment after Penalty activity.
In case where the Payment activity follows the Send Fine activity, we
keep the original name of the activity. The Send for Credit Collection
activity represents another possible end event.

The process model shown in Figure 66 shows the BPMN pro-
cess model of the road traffic management process. We designed this
process model manually using the discovered heuristic net from Fig-
ure 65, our assumptions on the process activities and events stated
above, and the description of the process provided in [52]. The activi-
ties of the process model from the figure correspond to activities from
the discovered heuristic net. The data nodes of the process model cor-
respond to data attributes recorded in the event log with the corre-
sponding activities.

The process starts with the Create Fine activity which records
the fine information in the VehicleClass, Points, Article, Dismissal, and
Amount data nodes. This can be directly followed by the Direct Pay-
ment activity. If this is not the case, the fine is sent to the offender by
executing the Send Fine activity which incurs certain costs recorded
in the Expense data node. If the fine is physically handed over to the
offender (e.g., by means of a parking ticket), the offender is able to
immediately pay the fine which is done by executing the Payment
activity. In the other case, the offender receives the fine, and the in-
formation about this receipt is recorded by the Insert Fine Notification
activity in the NotificationType and LastSent data nodes. This is fol-
lowed by the execution of the Add Penalty activity which updates the
Amount data node. Afterwards, if the offender pays the fine, the Pay-
ment After Penalty activity is executed. If the offender does not pay, the
fine is sent for credit collection (i.e., Send for Credit Collection activity).
In all cases of payment, the corresponding information is recorded in
the data nodes Payment Amount and Total Payment Amount.

With the help of the DMN Analysis plug-in developed by us (cf.
Section 8.3.1), next, we conducted all the steps of our methodology
for decision model discovery from Chapter 6.2. The maximal error
for the classification results is set to the value of 0.2. Below is the
detailed description of the obtained results.
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Discovering Control Flow Decisions from the Road Fines Event Log

With respect to our methodology for discovery of control flow deci-
sions from event logs (cf. Section 6.3.1), the program discovers one
control flow decision p1 preceding the Direct Payment, or Send Fine ac-
tivities. The decision depends on the Points, Article, and VehicleClass
data attributes. The decision table corresponding to the discovered
decision is presented in Table 14:

It is worth noticing that not all the split gateways of the process
model (cf. Figure 66) were detected as control flow decisions. Thus,
the split gateways p2 and p3 only route the process control flow
without underlying decision rules. As discussed in Section 5.3, such
decisions are managed by process engines and they should not be
included into dedicated decision models.

Discovery of Data Decisions from the Road Fines Event Log

Executing the algorithms to discover data decisions from event log (cf.
Section 6.3.2), the program did not initially detect any data decisions.
Thereby, if a data attribute from the road fines event log would repre-
sent a rule-based data decision classifying the influencing attributes
with an error less than 0.2, our implementation of Algorithm 1 would
have detected it. Therefore, there was only one possible way to try es-
tablish whether there are any data decisions in the log, and this was
the modification of the part of Algorithm 1 that detects the functional
data decisions. The possible reason for the fact that no functional
data decision was discovered from the considered event log is that
none of the functional operators +, —, *, / used in Algorithm 1 could
correctly classify enough of instances from the event log.

Inputs Output
Points Article VehicleClass pl
>0 - - Send Fine
<=0 >170 - Send Fine
<=0 <=170 AM Send Fine
<=0 <=149 C Send Fine
<=0 >149;<=170 C Direct Payment

Table 14: Decision table corresponding to the p1 control flow decision dis-
covered from the road fines event log

In order to obtain more insights into potential existence of the
other kinds of functional data decisions in the considered event log,
we manually conducted the statistical analysis by consequently tak-
ing the values of the attributes of the log as classes and the corre-
sponding values of their influencing attributes as training instances.
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The analysis was conducted with the help of the Weka library>. The
results provided by the linear regression models for both discovered
functional decisions were yielding the results with the mean square
error less than 0.2.

Note that the linear regression form of representation of a data
decision adheres to our definition a functional data decision (cf.
Definition 20). Therefore, we adapted our implementation of the
Line 11 of Algorithm 1 by replacing the funcs function with the lin-
ear regression form: funcs < {function “ko + k1 * a; + ... + k; x a,” |
a1, ...,z € Ainf,,,}, where ay, ..., a; € Ay, . are attributes influencing
the data decision, and ko, ..., k, are the regression parameters. This
modification of the implementation and parameter determination is
done based on the Weka library.

In this new setting, two functional data decisions were de-
tected: (1) TotalPaymentAmount with the influencing attribute Pay-
mentAmount, and (2) PaymentAmount with the influencing attributes
Points and Article. The TotalPaymentAmount functional decision repre-
sents a linear regression over the Total Payment Amount data attribute,
identified with the mean absolute error 0.12:

Payment Amount = 0.99 x Total Payment Amount + 0.11 (22)

The TotalPaymentAmount functional decision represents a linear re-
gression over the Article, and Points data attributes, identified with
the mean absolute error 0.15:

Total Payment Amount = —0.02 x Article + 0.11 * Points + 13.70 (23)

There exist an abundance of the other non-linear regression functions
that can potentially be used to discover the functional data decisions,
such as polynomial, hyperbolic, power, exponential, and other types
of regression functions [205]. The consideration of such types of
functional data decisions are out of the scope of this thesis. However,
we demonstrated above, using the example of linear regression, how
the other types of functional data decisions can be discovered by
adapting Algorithm 1.

Discovery of Decision Dependencies from the Road Fines Event Log

The aggregate of the discovered elements of the DRD diagram
is presented schematically in Figure 67. The depicted elements which
are used for the construction of the decision requirements diagram:
(1) data nodes (Points, Article, VehicleClass), (2) data decisions (Pay-
mentAmount, TotalPaymentAmount), and (3) control flow decision (p1).
With regards to the decision logic layer, the program identified a de-
cision table for the control flow decision p1 (cf. Table 14), and the

5 http://www.cs.waikato.ac.nz/ml/weka/
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corresponding functions for the PaymentAmount, and TotalPaymentA-
mount functional data decisions (cf. Equations 22—23)

Points Article Vehicle
Class

I _________ Data nodes _ _
Payment TotalPayment
Amount Amount .
B Data decisions
pl
Control flow decisions

Figure 67: Discovered elements of the DRD diagram for the road fines
event log

In the last step of the decision model discovery algorithm (cf.
Section 6.2), our plug-in discovers the dependencies between the dis-
covered DRD elements from Figure 67. Thus, the program finds the
trivial dependencies between the data decisions PaymentAmount and
TotalPayment Amount. Also, the information requirements between the
discovered decisions and influencing data attributes, represented by
the corresponding data nodes, were added to the output DRD model.

The extracted DRD model is presented in Figure 68. The model
explicitly shows the decisions corresponding to the process from
Figure 66. As it was derived from the event log, it serves as an
explanatory decision model for historical decision making and thus,
could also serve for compliance checks. If the derived decision model
is implemented as a decision service [142], it can be executed com-
plementary to the process model, thereby supporting the principle of
separation of concerns (cf. Chapter 2.3.3).

payment
Amount

T

totalPayment
Amount

pl

Figure 68: Discovered DRD diagram for the road fines event log

Model Accuracy for the Loan Assessment and Road Fines Event Logs

As far as the evaluation metrics are concerned for assessing the per-
formance of the discovery algorithm, we measure the accuracy of the
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output decision model . In our setting, the decision model accuracy
is the average number of event instances that are correctly classified
by either decision tables, or functions corresponding to the discov-
ered decisions which constitute the output DRD model, divided by
the total number of all instances in the test log.

The statistical and machine learning theories refer to over-
fitting [205] which is a common methodological mistake to learn and
test the performance of a discovered model on the same data as the
generated model. The problem with such approach of model discov-
ery is that it might exhibit good accuracy on the training data but
perform very poorly on a new set of input data. To avoid over-fitting,
the available data should be separated into a training data set that is
used to generate the model, and a test data set that is used to evaluate
the accuracy of the generated model. The most common approach to
do this is called k-fold cross validation (cf. [205]), and this is the evalu-
ation method that we use to evaluate the accuracy of the discovered
decision models.

With the k-fold cross validation, the log is split into k approx-
imate equal sized partitions called folds. Each fold is used exactly
once as the test set while all the remaining data is used as the training
set. The overall performance of a technique is calculated by averaging
the performance of that technique on each fold. To evaluate the accu-
racy of the output decision model, we conducted a commonly used
10-fold cross validation [205] over the considered event log.

It is a common practice to additionally evaluate the behavior of
the discovery algorithms by evaluating the accuracy of the model dis-
covered from “noisy logs” as input. Normally, these logs are created
by adding incorrect event labellings. Therefore, we introduced noise
in the test event log by randomly selecting from 0% to 10% of the
event log instances, and randomly replacing their class labels with
distinct class labels.

With respect to the introduced noise, the resulted mean accuracy
of the discovered models in 10 folds is presented in Figure 69 for the
real-life road fines event log considered above. The detailed numeri-
cal results of this evaluation experiment can be found in Table 19 from
Appendix C. In order to provide a comparison of the classification re-
sults with a synthetic setting, we also measured, in the same way, the
accuracy of models discovered from the synthetic loan assessment
event log which was described in Section 6.5. The detailed numerical
results of this evaluation experiment can be found in Table 20 from
Appendix C. The run time for discovering the DMN decision model
was 0.9 s for the synthetic log, and 2.6 s for the preprocessed real-life
log.

As can be seen from Figure 69, our algorithm to discover deci-
sion models from event log provides overall a good mean accuracy
of 1.00 and 0.84 in the absence of noise for synthetic and real-life logs
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Figure 69: Accuracy of the decision models extracted from both the syn-
thetic loan assessment event log, and from the real-life road
fines event log

correspondingly. Naturally, the accuracy of the decision model dis-
covered from the synthetic loan assessment event log is higher, and
the algorithm stability is better than for the real-life road fines event
log.

For comparison, Baesens et al. in [12] conduct experiments on
the decision tree classification by C4.5 algorithm to discover decision
tables on three large real-life data sets containing 20, 33, and 33 data
attribute inputs, which yield the mean accuracy of 0.81, 0.78, and 0.83
correspondingly. However, these accuracy values can be compared
with our results only in an approximate fashion, since the accuracy
of the output decision model from our approach is calculated as a
mean of the values of all the discovered decision logic structures as-
sociated with the decisions in the output DRD. As it also pointed out
in the related work in Section 3.5.2, the discovering of decision mod-
els complementary to process models from event logs has not been
explored in the related works yet, so to the best of our knowledge,
there are no other experimental results based on which we could pro-
vide a more detailed analysis of the accuracy of the output decision
model. At the same time, future works could consider the applica-
tion of other classifiers to discover decision models from event logs,
and the comparison of the model accuracy could be done, e.g., by
adapting the SVM-based decision discovery [205] to our problem.

8.3.3 Fuzzy Decision Model Discovery

For the evaluation of our methodology for decision model discovery
extended with fuzziness (cf. Chapter 7), we conducted the evaluation
experiments on a credit-risk assessment process from Section 7.4.
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As was stated by Assumption 5 in the approach description in
Section 7.3.1, in order to conduct the discovery of a fuzzy decision
model from an event log, there should exist a mechanism that de-
scribes numerical attributes of the input event log in linguistic terms.
This should be done by a process expert, since domain knowledge
is required. The involvement of a process expert at this stage was
not possible, and therefore, we considered the synthetic credit-risk
assessment event log described in Section 7.4 for the evaluation
experiment. Although the event log is simulated, it represents a
real-world context as it was simulated by us based on our knowledge
of its real-world parameters from [12].

Experimental Setup

For the test data, we considered the process of a loan assessment from
Section 7.4 and processed an event log consisting of 1000 process
instances, modeled close to real data from [12] with the help of the
simulation software, CPN Tools [3]. The simulation parameters are
presented in Section 7.4. The generated log contained two numerical
attributes, duration and amount, and two nominal attributes, premium
and risk. The assigned linguistic terms and membership functions for
amount and duration can be seen in Figure 47. With the help of our
implementation (cf. Section 8.3.1), a corresponding DMN decision
model was discovered, as described in detail in Section 7.4. For fuzzy
rules corresponding to decisions in the output DRD model which
was obtained by the GA classifier, the maximal rule error was set to
0.2, the minimal coverage was set to 0.42, and the minimal fitness
was set to 0.1. The minimal fitness for NF was also set to 0.1. We
ran the GA classifier until the number of low-performing rules, that
were not added to the output rule sets corresponding to process
decisions, reached a threshold of 50000 rules. The NF classifier was
running until the entire event log was processed. Both algorithms
also stopped if the output decision table was complete, which means
that for all the combinations of input values there was a rule that
covered it. The average run time for discovering FDT per process
decision was 44.2 s for the GA classifier, and 1.8 s the for the NF
classifier.

Interpretability of the output FDMN

A screenshot of the FDMN, which our application outputs for the
input log, is presented on the right side of Figure 70. Corresponding
to each decision in the DRD are the FDTs, which are obtained by the
NF classifier, and post-processed according to our methodology. In
the left sreenshot one can see the direct application of the “state-of-
the-art” NF classification for process decisions check, which yields a
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Figure 7o: Screenshots of the results from our prototype

large fuzzy rule base that is difficult for humans to interpret. In con-
trast, FDMN, derived by our methodology, (in the right screenshot of
Figure 70) consists of compact FDTs incorporating rule weights and
fuzzy hit policies, and it shows dependencies between decisions. It
has to be noted that the interpretability of the output FDMN highly
depends on the fuzzy algorithm applied for learning the model.
According to our observations, NF often leads to a smaller amount
of rules than GA.

Accuracy of the output FDMN

To evaluate the accuracy of the output FDMN, we again used the
10-fold cross validation over the test log [205]. Here, the accuracy is
equal to the average number of event instances that are correctly clas-
sified by the rules in FDTs divided by the total number of all instances.
Further, in order to introduce a noise in the input event log, we again
created incorrect log entries by randomly selecting from 0% to 10%
of the event log instances, and randomly replacing their class labels
with distinct class labels. The resulted accuracy of the classifiers with
respect to the introduced noise is presented in Figure 71. The de-
tailed numerical results of this evaluation experiment can be found
in Appendix C: the classification results obtained by the application
of the neurofuzzy classifier are presented in Table 21, the classifica-
tion results obtained by the application of the genetic classifier are
presented in Table 22.

Both classifiers achieved high accuracy for the event log with-
out noise. Further, it can be seen, that NF shows good stability, as it
preserves a very good accuracy of ca. 90.21% in the presence of 10%
input data noise. GA shows less stability, as its accuracy reduces to
ca. 82.10% in the presence of 10% input data noise. Setting the algo-
rithms parameters can be used to adjust the desired user’s output. For
example, if a smaller amount of rules for better human interpretabil-
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Figure 71: Mean FDMN accuracy in 10 folds with respect to introduced
noise in the log

ity is needed, the threshold has to be higher than 0.1 used in our case,
although the accuracy might decrease. Further experiments on evalu-
ating the accuracy with regards to tuning of termination criteria are
planned for future work.

8.3.4 Summary and Discussion

The considered perspective in the section above is the discovery
of decision models using event log as an input. This perspective incor-
porates both crisp decision model discovery presented in Chapter 6
and its fuzzy extension presented in Chapter 7.

The first evaluation method applied by us is the design and im-
plementation of a prototype validating the presented methodology.
The Prom framework is an open-source platform that is designed for
collecting tools and applications of discovering process models from
event logs. We extended the Decision Miner plug-in of ProM for crisp
decision model discovery, and developed an extension of it with fuzzi-
ness, both of which we use throughout our evaluation experiments.

The second evaluation method that we use is the investigation
of how the developed methodologies interact with the real-world con-
text. The presented methodologies to discover decision models using
event log as an input are based on solving the classification problem,
where the classes correspond to process decisions, and the training
examples are the process instances from the event log. Therefore, we
use the accuracy of the output decision model as the main evaluation
metric. The evaluation of the fuzzy decision model discovery required
measuring the interpretability of the output decision model as an ad-
ditional evaluation metric. Also, the evaluation of the discovery of a
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crisp decision model, and of a fuzzy decision model from an event
log required different types of the real-wold context.

In order to do conduct the crisp decision model discovery, we
conducted a series of experiments on the real-life road fines event log.
In order to apply our methodology for discovering a decision model,
the event log has to be preprocessed by: (1) consideration of complete
process instances; (2) exclusion of rare traces which are unlikely to
contain decision rules; (3) excluding looping subsequences of traces;
and (4) adding artificial start and end events as the log does not ex-
plicitly specify such events. This preprocessing goes in line with our
assumptions on the presented approach (cf. Section 6.2).

The application of our methodology to derive crisp decision
model from the road fines event log preprocessed in the above men-
tioned way was successful and yielded a valid DMN decision model
explaining the historical decision making, recorded in the input event
log. A major insight obtained from the application of our approach
to derive crisp decision model from the test log was concerning the
derivation of functional data decisions. Thus, in the initial example
implementation of our methodology to discover functional data deci-
sions (cf. Algorithm 1), we assumed only four arithmetical operators
that could be used in order to detect corresponding data decisions.
However, our manual analysis of the road fines event log showed
that some of the data attributes represent a linear regression over the
other data attributes from the log.

Although any type of a functional dependency was foreseen by
our theoretical framework (cf. Definition 20), we had to adapt our
implementation. This was done by considering functional dependen-
cies between the data attributes in the log, and then the output de-
cision model, which additionally contained the functional data deci-
sions that represented linear regressions of one data attribute over
the other data attributes from the log. However, there can exist many
other types of non-linear regression functions that can also be used
to discover the functional data decisions, e.g., polynomial, or expo-
nential. The implementation of the discovery of these types of func-
tional dependencies are out of the scope of this thesis, but future
works could consider such implementations and corresponding ex-
periments to find the most suitable type of functional dependencies
in case several of them can be detected for the same data attributes
in the input event log. Currently, for conducting this step we recom-
mend the involvement of a process expert which is a limitation of the
presented methodology.

With regards to the accuracy of the output decision model, the
application of our methodology on the road fines event log yield the
result value of about 84% which is a good result compared to the
state-of-the-art techniques to mine decision rules. In order to test sta-
bility of the algorithm, we introduce a noise level from 0% to 10% in
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the input event log, and conducted a 10-fold cross validation of the
training instances. Even in the presence of 10% of noise in the test
log, the mean accuracy of the output decision model has the value
of about 64% which again is good result compared to state-of-the-art
and which demonstrates that the presented algorithm is quite stable.

With respect to the fuzzy extension of the decision model dis-
covery methodology, we could no longer use the road fines event
log for the evaluation. In order to conduct the fuzzy decision model
discovery, we would have to involve an expert who would describe
numerical attributes of the input event log in linguistic terms (cf. As-
sumption 5 in Section 7.3.1). Since the process expert involvement
was not possible, for the evaluation experiments we considered the
syntethic credit-risk assessment event log described in Section 7.4 as
it we simulated by us based on our knowledge of its real-world pa-
rameters from [12].

The application of our methodology to derive fuzzy decision
model from the credit-risk assessment event log was successful and
yielded a valid fuzzy DMN decision model. To evaluate its inter-
pretability, we also conducted the state-of-the-art discovery of a set of
fuzzy rules corresponding to the test event log. Our results show that
state-of-the-art techniques for mining fuzzy decision rules provide a
large fuzzy rule base that is difficult to be interpreted by humans. In
contrast, the decision model derived by our methodology provides
the user with compact fuzzy decision tables, shows dependencies be-
tween decisions, and it incorporates fuzzy hit policies.

A major insight obtained from the application of the fuzzy de-
cision model discovery from the test event log is that choosing the
criteria for the termination of the discovery algorithm can be chal-
lenging, and highly depends on the requirements of the business en-
vironment. In our experiments, both genetic and neurofuzzy classi-
fiers terminated their work when the output decision table was com-
plete, which means that for all combinations of input values there
was a rule that covered it. However, other termination criteria could
be used, e.g., reaching certain rules or other criteria considered by us
in Section 7.3.4. Therefore, choosing the best suitable termination cri-
teria should be done by a stakeholder who is interested in applying
our methodology.

With regards to the accuracy of the output fuzzy decision model,
we conducted the same experiment of testing it against introduction
of the noise from 0% to 10% and measuring the mean accuracy with
the 10-fold cross validation. Both classifiers show almost perfect ac-
curacy of more than 99% in the absence of noise. The neurofuzzy
classifier shows a better stability, as it preserves a very good accuracy
of more than 90%, whereas the resulting accuracy provided by the ge-
netic classifier goes down to about 82%. However, setting the param-
eters of classifiers can also be used to adjust the input which would
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be the most beneficial to the business environment. For example, if
a smaller amount of decision rules is more preferable, the minimal
rule fitness should be set higher than 0.1, which is used in our exper-
iments. On the other hand, that might decrease the accuracy of the
output fuzzy decision models. Future works can consider finding a
desired balance between accuracy and interpretability of the output
fuzzy decision models.

The application of both the genetic and the fuzzy classifier re-
vealed the following limitations of our methodology. Since the dis-
covery of fuzzy rules requires a predefined membership functions
and linguistic literals, the discovery accuracy depends on the quality
of those literals. If the membership functions are inaccurate, the num-
ber of misclassified instances in the training data increases. That is
why in most cases the definition of the membership functions has to
be done by an expert. Otherwise, it can lead to a higher probability
of wrong rules which has a negative impact on the accuracy of the
discovered decision model.

8.4 CHAPTER SUMMARY

The main purpose of this chapter is to evaluate the introduced
methodologies for the discover decision models complementary to
process models. As the first evaluation method, we chose to design
and implementation prototypes to perform the evaluation. As the
second evaluation method, we evaluated the application of the devel-
oped methodologies in the real-life context. Thereby, two perspectives
of decision model discovery were considered. Section 8.2 presents
the evaluation of the methodologies to discover decision models us-
ing process model as an input. Section 8.3 considers the evaluation
of the methodologies to discover decision models using event log
as an input. We presented the evaluation summary, and discuss the
obtained insights with respect to these two perspectives. For each dis-
covery perspective, we presented the corresponding implementation,
detailed steps performed during the experiments, an analysis of the
results obtained, the limitations of the methodologies, and sugges-
tions for future work.

In conclusion, we showed that all of the approaches are able to
derive a valid output decision model. In cases where process models
are used as an input, our pattern-based-discovery shows high occur-
rence frequency of the developed patterns in real-life process model
repositories. Our approach also allows us to reduce the complexity
of input process models by the simplification of process model struc-
tures that are externalized in a dedicated decision model. In cases
where an event log is used as an input, both crisp and fuzzy ap-
proaches to discover a decision model demonstrate high accuracy
and stability. A common drawback for all methodologies is that the
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involvement of a process expert is needed for controlling some steps
of the decision model discovery. Apart from that, preprocessing of
the event log, and post-processing of the output models is needed.

The evaluation results and insights provide input for a roadmap
which can be used for future research that can further enhance the dis-
covery of decision models complementary to process models, which
we discuss in the next chapter.
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his last chapter serves as a conclusion for the presented thesis.

Section 9.1 summarizes the thesis results, i.e., the formal frame-
work for complementary process and decision modeling, the method-
ologies to discover decision models using process models as input,
and the methodologies to discover decision models using event logs
as input. In Section 9.2, we discuss limitations of our work and high-
light opportunities for future work on the discovery of decision mod-
els complementary to process models.

9.1 THESIS RESULTS

Business Process Management (BPM) offers competitive benefits
for organizations, that take advantage of BPM to run the day-to-day
processes of the organization, in both the public and private sectors.
Process modeling is an essential stage of BPM projects. Process mod-
els are a tool used to design and execute business processes. In the
course of BPM projects and organizational activities, situations fre-
quently occur, where it is required to make a choice between several
alternatives. The choice made can have a significant impact on the
future direction of a process and even an entire organization. Thus,
decision making plays an important and vital role in such situations,
making it an important component in any organization. The need for
making effective decisions is clear and decision models can comple-
ment process models to assist with this. Decision models are used to
model and execute decision making in business processes.

Recently, integrated frameworks that provide support for mod-
eling and execution of both processes and its decision making have
been appearing. Complementary business process and decision man-
agement improve the process by both focusing on the way decisions
are made and directing the processes that incorporate decision mak-
ing. However, modeling and executing decisions complementary to
processes is a challenging task, most due to the fact that the separa-
tion of process and decision logic is not straightforward in real-life
business processes. At the same time, the existing works lack guide-
lines on how to achieve the separation of concerns in complementary
business process and decision management.

In this thesis, we tackle this problem by introducing a set of con-
cepts and methodologies to discover decision models complementary
to process models. To achieve this, we make use of the information
about the process decision making which exists in companies, such
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as process models and event logs. After an extensive research process,
the results achieved in this thesis can be summarized as follows.

(1) Identification of the formal specification of the elements and the rela-
tionships that form a decision model, which can be designed and executed
complementary to the process model.

The major part of this contribution is presented in Chapter 2. In par-
ticular, we introduced a novel formal framework for decision-aware
process modeling, and process-aware decision modeling. Addition-
ally, the formalisms connected to the execution of processes and de-
cisions, such as process and decision instantiation, and event logs,
were introduced. Furthermore, considering that real-life decision pro-
cesses are often exposed to imprecision, we extended our base formal
concept with the notion of fuzziness of decision models in Chapter 7.
In Sections 3.1—3.3 of Chapter 3, we related the state-of-the-art works
to the formal specification for complementary process and decision
modeling presented in this thesis.

The introduced specification denotes abstract concepts that
are independent of modeling notations used by companies, and
therefore, can be reused and adapted by stakeholders for modeling
decision models complementary to process models with respect
to their information systems and notations. At the same time, all
the introduced formal specifications are illustrated with the help of
graphical constructs by utilizing BPMN for process modeling, and
DMN for decision modeling.

(2) Development of the methodologies to extract decision models from control
flow and data of process models.

The methodology to extract decision models from the control flow of
process models is presented in Chapter 4 of this thesis. The method-
ology to extract decision models from control flow of process models
is presented in Chapter 5 of this thesis. Both methodologies represent
semi-automatic approaches to: (1) Identify either control-flow-based
(Chapter 4) or data-centric decision patterns (Chapter 5) correspond-
ingly in a given process model; (2) Derive a corresponding decision
model; and (3) Refactor the original process model by replacing the
decision logic accordingly. The identification is pattern-based, and is
derived from an intensive analysis of more than 1000 real-world pro-
cess models. In Section 3.5.1 of Chapter 3 we review other approaches
that attempt to discover decisions from process models, and provided
an extensive comparison of them with our work.

We implemented our methodologies and provided statistical in-
sights about pattern utilization in the real-world process models, ob-
tained from several different industries. Overall, the patterns occur-
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rence in the considered repositories demonstrate that the identified
patterns are frequently used in the real-world. Therefore, the usage
of the considered patterns as a base to discover decision models com-
plementary to process models is valid and provides a high potential
for application in practice.

Based on the detected decision patterns in the real-world pro-
cess models, we were able to refactor more than two thirds of all
the considered process models by externalizing the decision logic
into dedicated decision models which can be used complementary
to process models. At the same time, it was confirmed, with the help
of the methodologies developed by us, that it is feasible to bring into
practice the principle of separation of process and decision concerns.
The demonstrated reduction of process model complexity indicates
that the provided methodologies can serve as tools for business
process improvement.

(3) Development of the methodologies to extract crisp and fuzzy decision
models from event logs.

The methodology to extract crisp decision model from an event log is
presented in Chapter 6 of this thesis. The extension of it is the method-
ology to extract fuzzy decision model from an event log which is
presented in Chapter 7. The introduced methodologies extend an
existing approach to derive control flow decisions from event logs,
with the additional identification of data decisions, their dependen-
cies, and fuzzy concepts. The methodology to derive a crisp decision
model from an event log is based on the semi-automatic decision
tree classification of process instances in the log. The methodology to
derive fuzzy decision model from an event log is based on the semi-
automatic fuzzy classification, whereby the genetic and neurofuzzy
classifiers are applied. Section 3.5.2 of Chapter 3 reviews the other ap-
proaches to discover decisions from event logs, and compares them
to our work.

We implemented the presented methodologies and provided sta-
tistical insights for the derivation of both crisp and fuzzy decision
models from real-life and simulated event logs. With regards to the
classification accuracy of the output decision model, the application
of our methodologies on the test event logs yield good result in
comparison to the state-of-the-art techniques used to mine decision
rules. The proposed algorithms were tested for stability by introduc-
ing noise into the input event logs, and compared the results against
the state-of-the-art, which showed that the algorithms demonstrate
good stability. Additionally, we were able to demonstrate that the
interpretability of the output fuzzy decision model, derived by our
methodology, is higher compared to the results obtained by tradi-
tional fuzzy rule mining.
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To sum up, the application of all the developed methodologies
to derive decision models complementary to process models, using
both process models and event logs as inputs, yielded valid deci-
sion models, explaining the historical decision making which was
recorded in the input process models and event logs. Thus, it can
be stated that the stakeholders are provided with tools for the semi-
automated design of decisions, complementary to processes, utilizing
the knowledge about “as-is” process decision making. As the output
decision models explains the existing or historical decision making
at the organization, the application of the presented methodologies
can be used, for example, for compliance checks among other uses
which could improve the organizations decision making. Addition-
ally, the constructed decision models serve as blueprints for execut-
ing decisions complementary to process models, which support the
separation of concerns principle.

9.2 LIMITATIONS AND FUTURE WORK

While this thesis has provided the groundwork for the discovery
of decision models complementary to process models, there are also
limitations of our work. This section summarizes the limitations that
have been found during our evaluation and gives an outlook on
potential research directions for future work.

Alignment of our Formal Constructs with BPMN and DMN

We chose to base the presented methodologies on the formal con-
structs which were aligned with BPMN for process modeling, and
DMN for decision modeling. By choosing BPMN process models,
we faced the challenge related to detecting the decision activities in
process models as the standard does not allow explicit representation
of the decision activity type, e.g., the user activities can denote
decision activities but do not have to. Thus, we assumed that the
decision activities are those preceding the split XOR gateways, which
was not always the case, and the expert involvement was needed
to identify and insert the missing decision activities. This limitation
could be overcome if the process model notation utilized by a stake-
holder can unambiguously denote if an activity is of a decision type.
Alternatively, the activity label analysis [111] can be applied in order
to detect the decision activities.

Expert Involvement
A common limitation, occurring in all of the presented methodologies

to discover decision models, is that they are semi-automated, since
the involvement of an expert at some of the steps is required.
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With regards to the methodologies for the discovery of decision
models using process models as input, when the overlapping patterns
are detected, the expert has to choose which patterns are the best
candidate to be included into a dedicated decision model. Secondly,
as mentioned above, we assumed that the decision activities are those
preceding the split XOR gateways, which is not always the case, and
the expert involvement is needed to identify and insert the missing
decision activities.

Also, our methodologies assume that the post-processing of
both process and decision models after the externalization of the
decision logic is done by an expert, as hereby, domain knowledge is
required. One of the firsts step in this direction was done by Wang
et al. in [199] by exploring which structures of process model should
be presented in the business rules. An extension of this work, e.g.,
with the concepts represented by the DMN decision models, could
be a solution to this constraint. Also, the automated label adaptation
after model refactoring based on the linguistic analysis [111] could
potentially replace the expert work.

Implementation Limitation

Another limitation on the input event log for our methodologies to
discover decision models form event logs is rather related to the
methodology implementation. Although any type of a functional
dependency was foreseen by our methodology to discover decision
models from event logs (Chapter 6), as a result of application of it to
the real-life road fines event log, we had to adapt our implementation.
This was done by considering functional dependencies between the
data attributes in the log, and then the output decision model, which
additionally contained the functional data decisions that represented
linear regressions of one data attribute over the other data attributes
from the log. However, there can exist many other types of non-linear
regression functions that can also be used to discover the functional
data decisions, e.g., polynomial, or exponential. The implementation
and experimentation on the discovery of these types of functional
dependencies are out of the scope of this thesis. Future works could
consider such implementations and corresponding experiments to
find the most suitable type of functional dependencies in case several
of them can be detected for the same data attributes in the input
event log. Currently, for conducting this step we recommend the
involvement of a process expert.

Assumptions on the Input Process Models and Event Logs

In our methodologies to discover decision models from process
model we assume that input process models are structurally sound,
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i.e., they contains exactly one start and one end event and every node
of the process model is on a path from the start to the end event. This
assumption is reasonable, as usually models exhibiting deadlocks, or
livelocks are assumed to be subject to modeling errors [61].

For the methodologies to discover the decisions from event
logs, we also assumed that an input event log corresponds to a
process model which is structurally sound. Moreover, we assumed
that the decisions do not appear within loops as this would result in
several instances of one decision within one process execution which
would need special handling. The DMN standard, which we use as
a base for decision modeling, does not support the design of looping
decisions. Therefore, we did not have it as a goal to incorporate
decision looping in the outcome decision model. However, it is
possible to have situations where the process model handles the
decision looping with the help of the control flow structures. This
would require special handling, which future research could explore.

Balance between Accuracy and Interpretability

This limitation refers to the methodologies to discover decision
models from event logs which are based on solving the classification
problems (cf. Chapters 6—7). The tension between classification accu-
racy and interpretability is a fundamental trade-off question when
using machine learning algorithms for prediction [205]. Simpler
predictive algorithms, which are more easily interpreted by humans,
tend to be less accurate than more advanced methods that are not as
easily explained. Further experiments on the parameters of classifiers
for the discovery of decision models from event logs could be con-
ducted in future works since we have already developed the plugin
which allows this. Thus, the task can be set to find the optimal input
which would be the most beneficial for the business environment.
For example, if a smaller amount of decision rules is more preferable
for the output decision model, the minimal rule fitness over the
input event log should be set higher. But on the other hand, that
might decrease the accuracy of the output decision models. Future
works can consider finding a desired balance between accuracy and
interpretability by using our settings to discover both crisp and fuzzy
decision models from event logs.

Further Enhancements of Decision Model Discovery

The more information we know about the process, the more precise
the decision model extracted from this information could be. In such
a way, our approaches to discover decision models complementary
to process models from process-related information can be further
enhanced.
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An important process characteristic is its performance. The per-
formance of a business process can be measured with the help of
key process indicators (KPIs) [63, 95, 134, 157]. In the context of deci-
sion making in the business processes, often KPIs reflect the strategic
information, like, for example, knowledge about the time or risks as-
sociated with alternative actions to be taken.

The factors that can be considered as performance indicators are
domain specific. For example, in the credit-risk assignment we refer
to credit scoring quality measures for consumer credit applications
presented by Leonard in [109]. Such additional factors can be con-
sidered to enhancing our presented approaches to further discover
decision models complementary to process models.

Additional extensions of our work could include context-aware
analysis of process executions for aiding process decisions. For exam-
ple, context-aware analysis of event logs for aiding resource allocation
decisions that are presented in [175], could be used for the enhanced
mining of decision models. In this thesis, we do not consider process
context data in our analysis, but in future works, such analysis could
be done.

Another direction for enhancement of decision model mining
could be based on the translations of natural text expressions, e.g.,
which exists at enterprises in the form of textual documents, into
decision models. One of the first steps in this direction was done in
[101] where DMN models are derived from SVBR rules. In [39], more
than sixty formally grounded business rule patterns are presented
that could be used for expressing decision logic in DMN models, and
then corresponding decision mining techniques should be provided.
Further metrics such as the reliability of data and the trust and repu-
tation of the data provider [93] could be used in order to preprocess
data before extracting it into a decision model complementary to a
process model.

According to Rosenblueth and Wiener [163], “no substantial part of
the universe is so simple that it can be grasped and controlled with-
out abstraction.” Taking into account that the work presented by us is
one of the first in the direction of discovering decision models comple-
mentary to process models, it was inevitable that even an extensive
study, such as that conducted in this thesis, would contain limitations.
Nevertheless, this research and associated limitations provide a con-
tribution to the research community for future work, which could
investigate and propose solutions to these limitations and challenges.
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FORMAL DEFINITIONS OF
CONTROL-FLOW-BASED DECISION PATTERNS

Below we introduce the formal definitions of three control-flow-
decision patterns, which were introduced by us in a semiformal way
in Chapter 4 (cf. Section 4.3). All three patterns represent process frag-
ments (cf. Definition 8) that can be observed in a process model (cf.
Definition 7). We use subscripts, e.g., Ny, or Nyy, to denote the rela-
tion of sets and functions to process model pm or process fragment
pf and omit the subscripts where the context is clear.

Pattern P1 is a process fragment representing a split gateway
with at least two outgoing control flow edges. Considering that given
is a process model pm , we define pattern P1 as follows.

Definition 28 (Pattern P1). Let pf be a process fragment of process

model pm and let X, ¢ denote the conditions assigned to control flow

edges. Then, pf represents P1 if

* [Gpl =1A[ge| =2 (15(8) = XORV15(g) = IOR), g € Gy

(the fragment contains exactly one split gateway);

|Ty¢| = |g®|+ 1 (the number of activities of pf equals the num-

ber of outgoing edges’ of the split gateway g plus 1);

e og =daN|eg| =1,da € T, (decision activity da is the only
predecessor of the split gateway),

e | eda| =0 (decision activity da is the start node of pf);

* Vt € Tyr\da: et = g (all activities other than the one preceding
the split gateway g directly succeed g);

e Vt € Tyf\ da: |te| =0 (all activities other than the one preced-
ing the split gateway g are end nodes of pf); and

e Vt € Tyr\da ,c € Cys such that (g,t) = c: 0(c) € Z,f (all outgo-
ing edges of the split gateway are annotated with a condition).
o

Pattern P2 is a process fragment representing a sequence of split
gateways that represents a decision tree. We consider that given is a
process model pm. Then, we define pattern P2 as follows.

Definition 29 (Pattern P2). Let pf be a process fragment of process
model pm and let ¥, denote the conditions assigned to control flow
edges. Then, pf represents P2 if
* Vg € Gy i |ge| = 2N (175(8) = XORV1e(g) = IOR) (all
gateways of the fragment are split gateways);

the number of outgoing (incoming) edges directly translates to the number of direct
successors (predecessors) and vice versa

209



210 FORMAL DEFINITIONS OF CONTROL-FLOW-BASED DECISION PATTERNS

3da € Typ: |eda| =0AV te T\ da: | et| =1 (decision activity
da is the start node of pf);

Vt € Tyf\ da : |t e | = 0 (activities other than the start node da
are end nodes of pf),

Vg € pr:Vn cge:nc Tprpr

(all successors of a gateway are an activity or a gateway); and
Vt € Typ\da,g € Gyf,c € Cpf such that (g,t) =cV(g,g) =c:
o(c) € Zyf (all outgoing edges of a split gateway are annotated
with a condition). o

Pattern P3 is a process fragment representing a sequence of split

gateways separated by an activity. Considering that given is a process
model pm , pattern P3 is defined by as follows.

Definition 30 (Pattern P3). Let pf be a process fragment of process
model pm and let X,r denote the conditions assigned to control flow
edges. Then, pf represents P3 if

Vg € Gps: |ge] = 21 (15(g) = XORVig(g) = IOR) (all
gateways of the fragment are split gateways),

3da € Typ : |@da| =0AVt € Typ\da: | et| =1 (decision activity
da is the start node of pf),

Vt € Tys such that [te | =1:t € T, (all activities being no end
node are a task),

Vg € Gy :Vn € go:n € Tyr UGy (all successors of a gateway
are an activity or a gateway),

Vn € N,s such that [ne| = 0 : n € T, (all end nodes are
activities),

Vt € Tyf\da, g € Gy, c € Cpp, such that (g,t) =cV(g,g) =c:
o(c) € Z,f (all outgoing edges of a split gateway are annotated
with a condition). o



EXPERIMENTAL RESULTS ON DECISION MODEL
DISCOVERY FROM PROCESS MODELS

Industrial repository

Occurrence of patterns

P1 P2 P3
Health Insurance 93.87 18.40 23.31
IT Governance 71.43 42.86 35.71
Health Care 14.91 16.15 13.04
Energy Supplier A 67.70 19.47 7.96
Energy Supplier B 71.95 15.24 7.32
ISO 48.53 10.29 0.00
IT Service Management 61.44 22.22 3.27
Banking 100.00 66.67 33.33
Weighted average H 63.26 17.83 10.04

Table 15: Occurrence frequency of the control-flow-based patterns in the

industrial repositories

Industrial repository Available Refactored
Absolute Relative
Health Insurance 163 155 95.09%
IT Governance 14 12 85.71%
Health Care 161 52 32.30%
Energy Supplier A 226 156 69.03%
Energy Supplier B 328 242 73.78%
ISO 68 33 48.53%
IT Service Management 153 96.00 62.75%
Banking 3.00 3.00 100.00%
Weighted Average H 67.12%

Table 16: Amount of process models before and after the refactoring experi-

ment in the industrial repositories
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Industrial repository Split XOR gateways Activities
Before After Before | After
refac- refac- refac- refac-
toring | toring toring | toring
Health Insurance 4.48 4.05 13.59 13.66
IT Governance 4.57 2.08 11.67 12
Health Care 3.58 2.81 9.56 10.38
Energy Supplier A 5.03 4.26 16.96 17.15
Energy Supplier B 3.00 2.77 10.76 10.86
ISO 3.24 3.03 13.21 13.27
IT Service Management 4.57 3.76 15.57 15.69
Banking 3.00 2.00 3.00 3.33
Weighted Average H 3.91 ‘ 3.06 ‘ 11.79 ‘ 12.04

Table 17: Number of elements per model in industrial repositories before
and after the refactoring experiment

Amo- Occurrence of patterns
unt

I11 112 113 I14 | I15—a| II5—b| I16—a| 116—b

Abso- 17 19 0 5 5 7 11 8
lute

Rela- || 39.53 | 44.19 | 0.00 | 11.63 | 11.63 | 16.28 | 25.58 | 18.60
tive % % % % % % % %

Table 18: Occurrence frequency of the data-centric decision patterns in the
hospital repository from Section 8.2.3



EXPERIMENTAL RESULTS ON DECISION MODEL
DISCOVERY FROM EVENT LOGS

ljr:)t;oe Fold Number
1234567 ]8]9]10
0 1.00| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
1 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
2 0.98| 0.98 | 0.98 | 0.98| 0.98| 0.98 | 0.98 | 0.98 | 0.98 | 0.98
3 0.98 | 0.98 | 0.98| 0.98| 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98
4 0.97 | 0.96 | 0.97| 0.97| 0.97| 0.97| 0.97 | 0.97 | 0.97 | 0.97
5 0.97 | 0.97| 0.96| 0.97 | 0.96 | 0.97| 0.97 | 0.97 | 0.97 | 0.97
6 0.96 | 0.96 | 0.96 | 0.96| 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
7 0.96 | 0.96 | 0.96 | 0.96| 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
8 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
9 0.95] 0.94| 0.95| 0.95| 0.95| 0.95| 0.95| 0.94 | 0.95| 0.95
10 0.94 | 0.94| 0.94| 0.94 | 0.94| 0.94 | 0.94 | 0.94 | 0.94 | 0.94

Table 19: Mean accuracy of the discovered decision models in 10 folds for
the synthetic loan assessment event log (cf. Section 8.3.2)

I?Tr(l)tze Fold Number
1234567 ][8]9]10
0 0.84| 0.83| 0.84| 0.84| 0.84| 0.84| 0.83| 0.84 | 0.83| 0.84
1 0.83]| 0.83| 0.83] 0.83| 0.83| 0.82| 0.82| 0.83| 0.83| 0.83
2 0.83| 0.82| 0.83] 0.83] 0.82| 0.83| 0.83| 0.82| 0.83| 0.82
3 0.83| 0.82| 0.83] 0.83] 0.82| 0.83| 0.82| 0.81| 0.83| 0.82
4 0.82] 0.82| 0.82| 0.82| 0.81| 0.82| 0.81| 0.81| 0.82| 0.81
5 0.80| 0.80| 0.80| 0.80| 0.80| 0.80| 0.80| 0.79 | 0.80 | 0.81
6 0.78 | 0.78 | 0.75| 0.78 | 0.77| 0.78 | 0.79 | 0.78 | 0.78 | 0.78
7 0.75| 0.75| 0.75 | 0.75| 0.75 | 0.76 | 0.75| 0.76 | 0.75 | 0.75
8 0.72| 0.72| 0.72| 0.72| 0.71 | 0.72| 0.73 | 0.72| 0.72 | 0.73
9 0.67| 0.63| 0.67| 0.67| 0.66| 0.67| 0.68 | 0.66 | 0.67| 0.66
10 0.63| 0.63| 0.63 | 0.63| 0.63| 0.63| 0.64 | 0.65| 0.63| 0.64

Table 20: Mean accuracy of the discovered decision models in 10 folds in
the real-life roads fine event log (cf. Section 8.3.2)
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Tftjoe Fold Number
12345678910
0 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
1 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
2 0.98| 0.98| 0.98 | 0.98 | 0.98 | 0.98| 0.98 | 0.98 | 0.98 | 0.98
3 0.98 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96
4 0.94 | 0.94| 0.94| 0.94 | 0.94| 0.94 | 0.94 | 0.94 | 0.94 | 0.98
5 0.94| 0.94| 0.94| 0.94 | 0.94| 0.94| 0.94 | 0.94 | 0.94 | 0.94
6 0.94| 0.94| 0.94 | 0.94 | 0.94| 0.94 | 0.94 | 0.94 | 0.94 | 0.94
7 0.92| 0.92| 0.92| 0.92| 0.92| 0.92 | 0.92 | 0.92 | 0.92 | 0.92
8 0.92| 0.92| 0.92| 0.92| 0.92| 0.92 | 0.92 | 0.92 | 0.92 | 0.92
9 0.92| 0.92| 0.92| 0.92| 0.92| 0.92| 0.92 | 0.92 | 0.92 | 0.92
10 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90

Table 21: Mean accuracy in 10 folds for the synthetic loan assessment of
the decision models discovered from the credit-risk assessment
event log by the NEFCLASS classifier (cf. Section 8.3.3)

Noise

o Fold Number
in %

123 ]af[s5]e6]7]8]9]10

0 0.96 | 0.98| 0.92| 0.99 | 0.95| 0.97| 0.96 | 0.96 | 0.99 | 0.99
1 0.99 | 0.95| 0.94 | 0.92 | 0.93 | 0.94| 0.96 | 0.96 | 0.98 | 0.98
2 0.95| 0.97| 0.96 | 0.91 | 0.95| 0.97| 0.96 | 0.95 | 0.98 | 0.96
3 0.93| 0.89| 0.97| 0.88| 0.96 | 0.91| 0.89 | 0.89 | 0.93 | 0.94
4 0.95| 0.95| 0.91| 0.91 | 0.93 | 0.95| 0.89 | 0.91 | 0.94 | 0.92
5 0.93| 0.88| 0.93| 0.93| 0.87| 0.95| 0.92| 0.92 | 0.92 | 0.92
6 0.93| 0.92| 0.83| 0.85| 0.92| 0.96| 0.87| 0.90 | 0.89 | 0.86
7 0.92| 0.92| 0.87| 0.82| 0.88| 0.94| 0.94 | 0.88 | 0.86| 0.86
8 0.85| 0.88| 0.92| 0.87| 0.84| 0.84| 0.81| 0.85| 0.86| 0.8
9 0.85| 0.78| 0.82| 0.84 | 0.73] 0.81| 0.73| 0.81 | 0.74 | 0.84
10 0.83| 0.74| 0.87| 0.73 | 0.82] 0.86| 0.85| 0.91 | 0.87| 0.78

Table 22: Mean accuracy in 10 folds for the synthetic loan assessment of
the decision models discovered from the credit-risk assessment
event log by the genetic classifier (cf. Section 8.3.3)
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