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Résumé—With newer complex multi-core systems, it is im-
portant to understand applications’ run-time behaviour to be
able to debug their executions, detect possible problems and
bottlenecks and finally identify potential root-causes. Execution
traces usually contain precise data about applications’ execution,
with which analysis and abstraction at multiple levels, they can
provide valuable information and insights about the applications’
run-time behaviour. However, with multiple abstraction levels, it
becomes increasingly difficult to find the exact location of detected
performance or security problem. Tracing tools provide various
analysis views to help understand these problems. However,
these views are not somehow enough to uncover all aspects of
the underlying issues. The developer is in fact the one who
best knows his application. Therefore, a declarative approach
that enables users to specify and build their custom analysis
based on their knowledge, requirements and problems can be
more useful and effective. In this paper we propose a generic
declarative trace analysis framework to analyze, comprehend
and visualize execution traces. This enhanced framework builds
custom analysis based on a specified modelled state, extracted
from a system execution trace and stored in a special purpose
database. The proposed solution enables users to first define
their different analysis models based on their application and
requirements, then visualize these models in many alternate
representations (Gantt chart, XY chart, etc.), and finally filter
the data to get some highlights or detect some potential patterns.
Several sample applications with different operating systems are
shown using trace events gathered from Linux and Windows
kernel and user-space levels.

I. INTRODUCTION

Debugging applications in distributed and multi-core en-

vironments and finding their performance bottlenecks and

runtime problems are difficult and almost imposable using

only the static data (e.g., source codes, documents and other

software artifacts). Instead, dynamic analysis is mostly used to

debug complex application, for which execution traces provide

a highly detailed data.
The principle behind execution tracing is to insert trace

points or probes at specific locations in the source code or

binary of an application. Those trace points are executed

and trace events/logs are generated when encountered during

program execution. The LTTng tracer (Linux Tracing Toolkit

Next Generation) [1], [2], DTrace [3], SystemTap [4] are some

of modern Linux operating system tracers which are referred

or used in this research.
Although tracing tools generate useful and precise data

about the runtime behaviour of a program, the collected data

may become very large and difficult to follow, when a system

with several nodes and multiple cores are traced. Therefore, it

is essential to have efficient analysis and filtering tools in order

to highlight the important portions of the execution, extract

useful information, detect problems and identify their possible

root causes.

There are several tools,e.g., LTTV (Linux Tracing Toolkit

Viewer)[5], Jumpshot [6], Triva [7], Trace Compass 1 available

to analyze trace events and give graphical representations

of different run-time aspects. However, a limitation of these

tools is that they are only available for a particular trace

type generated by a specific tracer. Another limitation is that

they only cover the most typical contexts and in fact give

less flexibility, forcing users to only use the available shipped

analysis, views and features.

Nevertheless, as problems are often complex and unique, it

is most likely that these default analyses do not help targeting

them sufficiently. We propose in this paper a tool architecture

to allow the users to easily extend the available analysis

tools according to the application’s custom characteristics and

needs. This approach is data-driven and potentially results

in different analysis models and views each time a new

declarative specification is chosen.

Using this approach, users can declaratively define the way

they deal with the input trace events, the type and quantity of

aggregated information they want to keep track, and also the

way they aim to represent the results. In comparison with the

previous works and tools, the proposed solution :

• increases useability of the existing tools by making it

easier to create new analysis and views for custom users

problems,

• increases expressiveness by replacing the current hard-

coded analysis and views by high-level declarative ana-

lysis and views,

• increases flexibility of the existing tools by supporting

different trace types and formats,

• increases maintainability of the existing tools, by re-

placing some parts of system (analysis modules) by

declarative modules, therefore less code to maintain,

• preserves and improves the performance of the tools by

compiling the declarative models to low-level codes and

1. http://www.eclipse.org/linuxtools/projectPages/lttng/



executing these codes in the run-time (will be explained

and experimented in the later sections).

The remainder of the paper is organized as follows : after

reviewing related work and the existing infrastructure, we

present the specification of the proposed declarative language

and detail the implementation. Then, we discuss several pos-

sible analyses and visualization views using an enhanced state

model, and validate the flexibility and performance of this

solution. Finally, we conclude and outline possible future

work.

II. ARCHITECTURE

As mentioned earlier, our proposed solution is a generic and

flexible solution which supports different trace formats. In this

section, we present the architecture of our declarative solution

which is shown in Figures 1, fig :arch2. In the following, we

explain the different modules of the architecture and the way

each module works. But, to give a sense of what a trace can

look like, we first define the general format of the traces that

our solution can support.

A trace is actually defined as a sequence of times-

tamped events e1, e2,...,ei,...,en, in which each event

eiti,r1,...,rn,v1,...,vm composed of a timestamp ti, a set of

system resources r1 to rn (i.e., machine, CPU, process, file,

function name, etc.) and a set of values v1 to vm (i.e., count,

return value, output, etc.). Each trace event is in fact the lowest

observable log unit to depict the system behaviour at a specific

time point (ti the timestamp of the event). Therefore, a trace

(i.e., a set of events) represents underlying system behaviour

during the time duration of its events : [t1 (timestamp of the

first event) ,tn(the timestamp of the last event)].

Common approach of trace analysis is gathering the trace

events from different distributed machines, parsing and ana-

lyzing and then aggregating them to some high-level models,

e.g., states [8], synthetic events [9], compound events [10],

as shown in Figure 1. These high-level models are fed, in

turn, into visualization process to display the analysis results

to users.

FIGURE 1. Common trace analysis approach.

Performing these two actual steps (trace -¿ models and

models-¿views) in most previous works are commonly hard-

coded. The main reason is that the trace type/format is known

in advance and the analysis models and views are also gene-

rally defined previously. However, a declarative approach is

used in our proposed architecture, which is depicted in Figure

2.

In the architecture shown in Figure 2, both the analysis steps

(trace -¿ models and models-¿views) are delegated to users.

Users can define the way they handle their trace events, they

way they extract the high-level notions and models, and the

way they visualize and display the models. This approach gives

FIGURE 2. Architecture of the proposed declarative trace analysis approach.

more flexibility to users. User in fact is the only person that

knows its application and the possible problematic points very

well, therefore, (s)he can easily customize the analysis and

the output, based on his application’s needs and requirements.

In the following we explain different parts of the above

architecture.

A. Data Model

Since we aim to propose a generic solution without forcing

users to use a specific trace format or pre-defined analysis,

the analysis model should be as generic as possible. In other

words, users will be able to define their own trace analysis,

probably customized for a particular problem and tuned to

focus on exactly what you’re looking for.

To do so, we define notion of ”state model” to let users keep

track of the status of different under interest parameters of the

system/application within the trace duration. The ”state model”

is in fact a generic ”state” container. Each state refers to a

”key”, a set of ”state values” and a time duration (a start time

and an end time ). The key, named ”attribute”, is to indicate

an entity for which the values will be kept track. An attribute

can be any system resources or any metrics or any custom

user-defined entities for which users aim to store data in the

model. ”State values” in turn refer to different possible values

assigned to the referred system elements (i.e., attributes) at

different time points during the execution of the system.

For example, if a user wants to study the status of a CPU,

in the above state model he can define an attribute as ”CPU

state” and the different possible status of that CPU during the

system execution as ”state values”, whether it is assigned/busy

or idle. Another example is defining the state for a process

(i.e., attribute), whether it is running, blocked, waiting for CPU

or waiting for IO (i.e., different state values). The definition

of state is not limited to only the system resources. Users

can define the state to keep track of status of any conceptual

entities. For example to see if a status of network connection is

connecting, established or closed. The state can also be used to

store the statistics values of a metric. For example, the number

of opened files, or number of established connections, number

of bytes read or written, number of functions called, etc. are

all examples of the metrics than can be stored as different

states in the state model.

B. State Provider : Extract States from Events

Once the logical state model is constructed at a high level,

the next step is to read the input trace events and extract the

required information and populate the state model from the

input data (Figure 2). State provider, which also contains a

mapping between events and states, is responsible to build the



state model. Trace events are passed chronologically through

this state provider and determine what changes to the model

are caused by each event. In a simple case, each event may

change only a few states in the model, so a simple mapping

table between events and states can be used. For instance,

a ”file open” event changes the state of a file to ”opened”.

In other cases, a series of events following each other in a

particular order may be required to make a change in the

model. For instance, a group of socket/network events with

a particular order may be required to change the state of a

network connection to ”half-opened” connection. In the latter

case, a pattern of events might be required. The state provider

designed in this system supports both types of the conversion.

In summary, state provider uses a simple or complex state

change patterns to extract the state model from the input

events. This mechanism called state change which is one of

the main elements of designed language. In the most common

case, the state changes can be seen as transitions in a finite

state machine which specify what changes to the model are

caused by each input event.

C. Visualization : Populate Views from the State Model

The state model constructed by the state provider can then

be used by users to query the analysis information and provide

an aggregated view of the underlying trace. It can also be used

to populate the various data-driven views to display the outputs

of the data analysis processes or the user supplied queries.

In this system, two generic Gantt-chart and XY-chart graphs

are defined and users can populate these graphs dynamically

from their models using data-driven specifications.

D. Model Container

We use the SHT (state history tree) data structure proposed

in a previous work [11], to store the proposed data model. SHT

is a special purpose disk-based database designed to store a

huge amount of intervals for incrementally-arriving trace data

[11]. This data structure is optimized for fast accesses on a

rotational disks allowing fast search queries (with logarithmic

time) on the stored interval for any given time [8].

Since SHT stores the data in interval format, it can be used

as a generic model container to store the user-defined models,

as long as the including data elements can be stored in interval

format. In the proposed state model each state value between

two consecutive state changes is modeled as an interval and

can be stored in the SHT container. Figure 3 shows an example

of how to store two consecutive state changes as an interval

value.

As shown in Figure 3, Event e1 (t1) makes a ”state change”

of the attribute atr1 from S0 to S1. At a later time, e2 (t2)

changes the value of the same attribute Atr1 to S2. Since the

state value for the Atr1 between t1 and t2 is S1, so it can

be stored in an interval like [Atr1, S1, t1,t2]. This interval

in fact indicates that the value for atr1 between t1, and t2 is

S1. Figure 3 shows also the other intervals [Atr1,S0,0,t1) and

[Atr1,S2,t2,T) for the other time ranges of the graph.

FIGURE 3. An example of state value changes and resulting intervals.

In addition to the interval tree to store the data intervals,

SHT uses another tree structure called ”attribute tree” to

organize the attributes. In this abstract data structure, attri-

butes are accessible through their own specific paths, like

in a file system, (for example ”/CPUs/CPU0/ Current

Thread”). This allows the analysis to make easy accessing

the attributes. An example of an attribute tree is shown in

Figure 4.

Attribute Tree

CPUs

CPU0

Status

Current Thread

CPU1

Threads

TID

Thread Name

Status

Parent ID

FIGURE 4. Example of an attribute tree

Please note that using the SHT interval container as the data

store for our model does not force any modifications in the

high-level models. Users define their own logical state model

and the conversion between events and states without having

to worry about the underlying container. The conversion from

state changes to the internal intervals is a low-level task

performed by the module, not the users.

III. LANGUAGE SPECIFICATION

As mentioned earlier, the proposed architecture lets user to

define their own custom models for specifying the behaviour of

an application or operating system. In this section, the detailed

specification of the proposed language is provided.



To facilitate future functionality extensions of the language,

it was decided to use XML with XSD schema for the syntax

definitions. XML is extensible, widely used and capable of

being easily integrated with other existing tools. A graphical

user interface might be needed later to aid users in creating the

models in relatively high level using graphical elements and

generating XML specifications from these graphical models.

The developed descriptive language is able to create states

from the input events and store them in the state model, and

provides new analysis in a specific context.

A. Basic Definitions

In this section, we define the preliminary language ope-

rations necessary to define a analysis model. To clarify the

definitions, traces format and events of LTTng kernel tracer

[2] is used.
1) Access to attribute values: In order to access to a

particular attribute, we use a path such as the following :

/Threads/100/Status (1)

In Expression 1 The number 100 is in fact the thread number

and the whole path specifies the status of the thread 100.

Here, we only define the logical path of the attribute and

do not discuss its possible values (which can be RUNNING,

CRITICAL, WAITING, etc.). The possible values will be

defined later in the state provider section.

Sometimes in the actual path of an attribute, it might be

required to make a query and refer to another attribute. For

example to call the current running thread of a specific CPU,

we may write a path like is shown in Expression 2.

/Threads/${/CPUs/1/CurrentThread}/Status
(2)

Expression ${} is therefore used as a path component to

make a query on another attribute and replace the expression

by the result, as shown in Expression 2. The final result, after

replacing the query of the ${}, will be a path like is shown

in Expression 1.

In addition to make a query for another attributes, it is

also possible to use an input event field as a part of an

attribute path. An example is shown in Expression 3 in which

event/cpu_id is used to access the cpu id field of the

input event, in the context of kernel traces.

/Threads/${/CPUs/${event/cpuid}/...

...CurrentThread}/Status
(3)

In practice, for kernel traces, some information such as the

thread id is not available in all events. It is thus necessary

to use the context switch events to extract this information

and store them in the state model of each CPU core, for later

accesses. It is then possible to extract the current thread of

each event by simply knowing its CPU’s number and making

a query to the state model. Expression 3 indicates in fact the

path to the status of the current running thread of the event’s

CPU (i.e., current thread’ status).

2) Assignment: Another possible operation is the assign-

ment of a value to an attribute. This operation changes the

value of an attribute, ending the previous state interval and

starting a new one with the new value (remember the example

shown in Figure 3).

/CPUs/${event/cpu_id}/Status = RUN_IN_USERMODE

(4)
The value can be a constant, as in Expression 4, a reference

to another path in the model, or an event field, as in Expression

5.

/Threads/${event/tid}/Exec_name = /event/exec_name

(5)
3) Condition: Sometimes, we want to change a state value

if a certain condition is met. So to make a complex model it is

required to define conditional statements. A basic condition is

based on the event type to specify the changes each event can

make to the model. This condition type is somehow necessary

to sort the different state changes by event type, to allow the

user to easily correlate the changes with a trace event, in the

state provider declarations.
Conditions can also be based on a field of event or another

state value of the model. To do so, the same syntax to access

the variables is used, with classical boolean operators AND, OR,

and NOT for conditions. The condition shown in Expression 6

checks if the status of a specific file (event/fd) is OPEN and

the filename is ”.passwd”.

/File/${event/fd}/Status == OPEN and ...

.../event/filename == ".passwd"

(6)

It then becomes possible to choose the conditions, based on

either the information contained in an event or the information

already contained in the state model.

B. State Provider

As mentioned earlier, the state provider is the part that

defines the way to extract state values from the input events.

To be generic enough, a reference to the trace type, the name

of the state model and some other information are included in

the header of the state provider.
1) Locations, Constant Values and Variables: To identify

the possible state values which correctly describe the mo-

del, users can define constant and variable values and use

them later in the language. Example 7 shows two constant-

value definitions. Values can be abstract values, e.g., OPEN,

CLOSED, RUNNING, STOPPED, or a string that contains a

payload, e.g., the executable name of a process.

<stateValue name="RUNNING" value="1" />

<stateValue name="STOPPED" value="2" />

(7)

Location element is used to define a shortcut name

for a frequently used path of the attribute tree. Although



not mandatory, these shortcuts may be used in state change

declarations for conciseness and clarity purposes. Code 1

shows an example of the Location element. It actually

corresponds to the logical attribute path of Expression 8.

In most cases, user wants to store a list of indexed pro-

perties, like the status of all CPUs, all running threads, or

all opened files. To do so, we use a path with a wild-

card, like /Thread/*/Status, where each possible value

represented by * is a unique index. Here, the tid index is

obtained from the input event field.

/Threads/${event/tid}/Status (8)

Listing 1. Example of Location element

< l o c a t i o n i d =” C u r r e n t T h r e a d S t a t u s ”>
< a t t r i b u t e c o n s t a n t =” Threads ” />
< a t t r i b u t e e v e n t f i e l d =” t i d ” />
< a t t r i b u t e c o n s t a n t =” S t a t u s ” />

</ l o c a t i o n >

2) Event Handler: While the events type could have been

yet another field subject to conditions, it was decided to have

an explicit event handler, a top-level structure that defines

a namespace for each vent type. This choice simplifies the

addition of rules for new trace events as well as helps

to quickly specify what types of events are needed for an

analysis. It may also give a feedback to the tracer to only

collect data about some particular trace events.

Event Handler is a container for state changes, as shown in

Listing 2 :

Listing 2. Example of Event Handler element

<e v e n t H a n d l e r eventname =” s c h e d s w i t c h ”>
<s t a t e C h a n g e>

< a t t r i b u t e l o c a t i o n =” C u r T h r e a d S t a t u s ”/>
<v a l u e i n t =”$RUNNING” />

</ s t a t e C h a n g e>
<s t a t e C h a n g e>

< a t t r i b u t e l o c a t i o n =” P r e v T h r e a d S t a t u s ”/>
<v a l u e i n t =”$STOPPED” />

</ s t a t e C h a n g e>
</ e v e n t H a n d l e r>

In this example, the sched switch event causes two changes.

It first updates the status of the current thread to ”running” and

then changes the status of the previous thread to stopped.
3) State Change: The last part of the state provider is the

transcription of the state changes, for which an example was

shown previously. This construction contains a path and a

value, possibly with a condition. For example :

/Threads/${event/tid}/exec_name= /event/execname

(9)

Listing 3. Example of State Change element

<s t a t e C h a n g e>
< a t t r i b u t e c o n s t a n t =” Threads ” />

< a t t r i b u t e e v e n t f i e l d =” t i d ” />
< a t t r i b u t e c o n s t a n t =” exec name ” />
<v a l u e e v e n t f i e l d =” execname ” />

</ s t a t e C h a n g e>

A condition can also be added, which will be shown as a

complete example in the following section.

4) Example: Here is a simple example with traces genera-

ted from LTTng-UST (user-space) instrumentation [12]. The

objective is to debug an application to know the duration it

works and is active. We add two trace points : one at the

beginning called application:start, and one at the end

called application:end.

In our state model, we define two states : RUNNING and

STOPPED. We know in advance that there will be several

instances of the application. Therefore we define the attribute

Application/*/Status path to access the state values.

Listing 4. Complete example of a trace analysis

< s t a t e p r o v i d e r a n a l y s i s i d =” app . u s t ”>
<head>

< t r a c e t y p e i d =” u s t . c t f ” />
<view i d =” g a n t . view ” />

</ head>

<s t a t e V a l u e name=”RUNNING” v a l u e =”1” />
<s t a t e V a l u e name=”STOPPED” v a l u e =”0” />

< l o c a t i o n i d =” App Sta tus”>
< a t t r i b u t e c o n s t a n t =” a p p l i c a t i o n ” />
< a t t r i b u t e e v e n t f i e l d =” p i d ” />
< a t t r i b u t e c o n s t a n t =” S t a t u s ” />

</ l o c a t i o n >

<e v e n t H a n d l e r eventname =” app : s t a r t ”>
<s t a t e C h a n g e>

< a t t r i b u t e l o c a t i o n =” App Sta tus ” />
<v a l u e i n t =”$RUNNING” />

</ s t a t e C h a n g e>
</ e v e n t H a n d l e r>
<e v e n t H a n d l e r eventname =” app : end”>

<s t a t e C h a n g e>
< a t t r i b u t e l o c a t i o n =” App Sta tus ” />
<v a l u e i n t =”$STOPPED” />

</ s t a t e C h a n g e>
</ e v e n t H a n d l e r>

</ s t a t e p r o v i d e r >

Gantt Chart view is used to display the analysis output

which is shown in Figure 5. You can see in green the active

duration of processes and in grey the stopped ones.

C. Filtering

For managing a large volume of data in the state model,

filtering may be used to highlight the most interesting part of

the data. Filtering can be used to display the only important

data that obey the data-driven filtering criteria. It actually



FIGURE 5. Example of a UST instrumentation

works by minimizing the volume of analysis by discarding

the irrelevant information and retrieving only the desired data.
The proposed language supports filtering elements to help

users to navigate easily the constructed system model as well

as to specify triggers to debug the applications, or to detect the

potential performance or security attacks. In addition, filtering

can be used to add bookmarks in the trace, helping the user

to navigate directly where an interesting behaviour is occurred

(e.g., to bookmark the point that a problem is detected). Since

the filtering patterns are also similar to the patterns used

to convert the events to states, the same pattern syntax and

processing engine is used for the filtering.
These filters create in fact new virtual states which help to

explain the state intervals defined by the state provider. We

don’t use a persistent storage to store the filtering results, so

the filters must be reexecuted and recalculated at every reload

of the viewer.
The following example shows a filtering pattern to find

when a specific application is preempted because of a lack of

CPU resources. The new virtual state BLOCKED can be then

used to highlight the interesting portion of the trace. Since the

virtual states have the same characteristics as state intervals,

we can use the same views to display them.

Listing 5. Example of filtering a trace state model

< f i l t e r name=” f i l t e r 1 ”>
< i f >

< a t t r i b u t e l o c a t i o n =” App Thread ” />
< a t t r i b u t e c o n s t a n t =” S t a t u s ” />
<v a l u e i n t =”$STATUS WAIT FOR CPU” />

</ i f >
<then>

< a t t r i b u t e l o c a t i o n =” F i l t e r ” />
< a t t r i b u t e c o n s t a n t =” Blocked ” />
<v a l u e i n t =”$BLOCKED”>

</ then>
<e l s e >

< a t t r i b u t e l o c a t i o n =” F i l t e r ” />
< a t t r i b u t e c o n s t a n t =” Blocked ” />
<v a l u e i n t =”$UNBLOCKED” />

</ e l s e >
</ f i l t e r >

D. Views

As mentioned previously, the proposed architecture supports

two declarative visualization views to display the analysis

results : Gantt charts and XY charts. The Gantt chart can

be used to visualize activities along the execution time, for

example, CPUs or Threads activities at different time points.

In other hand, XY charts can be used to display the

statistics about the underlying system. Several useful metrics

are extracted from the state model [13]. For instance, to

measure the time spent by a process in state ”wait for a CPU”

or the amount of memory a specific process or a group of

processes consume during a particular time period or during

the the whole trace.

In the specification scripts, users can identify which parame-

ters and which part of the state model can be used to display

which graphical elements of the view. The colors, tool-tips

are specifiable through the script as well. The following script

(Listing 6) reveals the way to specify a Gantt chart view. An

example of the result view was previously shown in Figure 5.

Listing 6. Specification of a graphical view in the proposed system

<t imeGraphView i d =” c o n t r o l f l o w ”>
<head>

<a n a l y s i s i d =” k e r n e l . l i n u x . sp ” />
< l a b e l v a l u e =” Thread A c t i v i t y ” />

</ head>
<!−− C o n t r o l Flow View −−>
<e n t r y p a t h =” Threads /∗”>

<d i s p l a y t y p e =” c o n s t a n t ” v a l u e =” S t a t u s ” />
<p a r e n t t y p e =” c o n s t a n t ” v a l u e =”PPID” />
<name t y p e =” c o n s t a n t ” v a l u e =” Exec name ” />

</ e n t r y>
</ t imeGraphView>

E. Language Limitation

The proposed language allows some operations to access

and assign the memory of the state model. It is also possible

to define conditions in the views. However, it is not included

unrestricted conditional or unconditional branching. This pre-

vents looping and accordingly infinite loops, insuring that the

processing time is finite. This only allows a finite number of

state changes for each event. Because of this limitation, our

descriptive language is not Turing complete.

IV. APPLICATIONS AND PERFORMANCE ANALYSIS

In this section, we will examine applications that have been

achieved with the proposed tool. The proposed tool, with the

declarative language and generic use of the state model and

views, is implemented in Trace Compass, which is publicly

available on web 2. The tests to validate the performance of the

implemented tools have been performed under Ubuntu Linux

12.04, on a dual quad-core Intel Xeon E5405 2Ghz with

8GiB of RAM. In this project, LTTng [2] is used to generate

trace events for the Linux applications. This tracer, available

for the Linux (Kernel and user-space), is optimized for low

overhead and collects kernel and user-space events.

A. Performance Analysis

We were able to compare the conciseness and performance

between the declarative and hardcoded Java versions. Since the

2. https ://projects.eclipse.org/projects/tools.tracecompass



Linux Kernel model was our starting point, it was expected

that the required expressiveness would be provided.

1) Construction time: In this benchmark, we propose to

evaluate whether there is a performance degradation between

a version implemented using Java (hard-coded way) and a

version using the proposed XML syntax (declarative way).

For this, we used two kernel traces : a 13.4 MiB trace

available as a CTF sample in LTTng website 3 and a 100 MiB

kernel trace. The tests were repeated 25 times to get an average

value and standard deviation.

Trace 13.4 MiB Java XML
Average time (s) 8.687 8.979
Standard Deviation (s) 0.218 0.277
Min (s) 8.263 8.387
Max (s) 9.141 9.797

TABLE I
CONSTRUCTION TIME OF THE STATE MODEL FOR A 13.4 MIB KERNEL

TRACE.

Trace 100 MiB Java XML
Average time (s) 49.359 50.025
Standard Deviation (s) 1.034 1.140
Min (s) 47.054 44.325
Max (s) 52.670 52.427

TABLE II
CONSTRUCTION TIME OF THE STATE MODEL FOR A 100 MIB KERNEL

TRACE.

The results in Tables I and II show that the XML version is

very slightly slower. However, the difference is smaller than

the standard deviation between the different tests. Variations

between instances are mainly associated with the garbage

collection of the necessary objects to create and store state

intervals. The main reason is to the (almost) similarity of the

results is that in the proposed model, the declarative language

is compiled and converted to internal JAVA modules and the

trace events are examined by this internal modules. So, the

possible time differences equals to the time required to parse,

compile and convert the input specification (written in XML

language) to the internal JAVA modules.

B. Generic Kernel Model

we mentioned that this work is generic and can be used for

any trace format. It is because the language does not force any

limitation on the format and name of the events that users can

define. The only important part is that the users should mention

in the language the way the system should deal with each input

event and the way this event should be converted to states and

stored in the state model. To prove this we have tested our

model with trace events come from different tracers running

in different operating systems (i.e., Linux and Windows kernel

tracers).

For the Linux, we were able to easily represent the Linux

Kernel model with our XML syntax. More impressive was

the fact that the new declarative language was used to parse

Event Tracing for Windows (ETW) kernel traces. Therefore, the

3. http://lttng.org/download

method supports also Windows operating system kernel traces

with the same level of information as Linux kernel traces.

An example of both trace analyzes will be provided in the

coming sections. The support of both Linux and Windows

trace formats is already added to the Trace Compass tool and

is usable by the public.
1) An Illustrative Example : Linux and Windows Compa-

rison: The way to represent an operating system operations

with a Gantt chart view, and to describe threads activities, is

fairly common. However the strength of our model is that it

can be easily interfaced to all platforms with different tracers.
By studying the ETW tracer on Microsoft Windows, we

have noticed that this tracer has equivalent events and can be

used to model the system in the same way. It was then possible,

with a simple revision of the XML file, to get the same

views, already available for Linux, with Microsoft Windows.

This actually shows the independence of the work with the

operating system and input trace.
This independence of the work with the input trace da-

ta/format is a big gain and can lead to use the same trace

analysis tool for the different traces, different analysis with

different purposes. In addition to that, it makes possible to

compare different executions from different operating systems

and different applications. For example, the tool can be used

to compare the differences of how the same (or different)

application behaves in different execution environments (e.g.,

different operations systems or different loads). For instance,

to see the comparison of the Chrome browser executions in

two different operating systems.
In this way, we have designed a simple test to compare

the behaviour of the two operating systems : Windows and

Linux. In this example. at every second we start a new process

that makes a CPU burn and the objective is to see how

these increasingly numerous threads are distributed on a single

computer with 4 CPUs. The result is shown in Figures 6 and 7.

The interesting part is that the both of these views are defined

and generated decoratively without writing of even one line

of JAVA code.

C. Multi-level Tracing

A second usage scenario for the proposed tool was to define

more complex models based on the generic kernel model. For

this objective, we have tried the same application but running

in different levels (Kernel and User space) to integrate different

sources of trace events.
1) Kernel and User Space Traces: We chose an already

instrumented application, Google Chromium [14], whose ar-

chitecture behaviour is only visible with both user-space and

kernel traces. Indeed, it uses both numerous system-level

threads and user-level task queues. The UST (User Space

Trace) model of Chromium has already been defined and is

used by the Chrome internal tracer 4. This model use two event

types to know the beginning and end of a code portion. Not

all functions are instrumented, but only the key functions of

the application.

4. chrome://tracing in the Chromium browser



In our experiment, we want to use these events to maintain

a stack of the functions running for each thread. We use the

Begin event to push the function name on the stack, and the

End event to pop this stack.

By combining the kernel and UST data, we know what

functions are running in each thread we well as when threads

are preempted or which system calls are executed for each

function. In Figure 8, we see the current stack in the ”State

System Explorer” view, a view to debug the state model and

see the values of different states of the different attributes.

As shown in Figure 8, we see that the stack depth is 4, and

the top is OnDispatchMessage. The name of this function is

also used as label in the green portion in the Gantt chart view.

2) Virtual Machines Monitoring: Another application is

the instrumentation of a physical server which is hosting

some virtual machines. The host and virtual machines are

computers that can be traced independently with the separate

tracers. However, there is a potential gain of information by

grouping together the different traces, which is possible in our

framework and shown in this experiment.

A simple example is to add the information of the CPU

resources of the host in the virtual machine. We can then see

if the virtual machine is running or preempted in the host

machine. This information is then added to the model of the

virtual machine. In this case, we see if the threads, thought

to be running on the virtual CPUs, have real accesses to the

physical CPUs, or if they are in fact preempted.

An example of virtual machines monitoring is displayed in

Figure 9 (the idea of this example is taken from one previous

work [15]). It shows CPU statuses of two virtual machines

hosted in the same physical machine. There are three general

states in this figure : when the virtual CPU is active while the

second one is preempted, the first virtual CPU is preempted

while the second one is active and running and finally the

case that both virtual CPUs are preempted. The first two cases

show the fact that there is competition with the virtual CPUs to

acquire the main CPU (the shared resource) to execute their

codes. The last case, however, indicates the fact that there

is possibly another thread competing with these two virtual

machines on that shared resource (the physical CPU).

Creating such analysis from the different sets of trace events

(gathered from Linux, Windows or even mobile devices) is

completely possible using the declarative expressions in our

proposed framework, without needing to have a pre-support

of such analysis in the trace tool.

FIGURE 9. Competing of two virtual CPUs to be executed in the physical
CPU.

3) Anomaly Detection: As mentioned earlier, it is possible

to use the proposed method to detect system problems that

can not be detected (or difficult) with the existing tools. Here

we show an example of the way we use our method to find a

bug in Google Chromium application.

Multilevel trace analysis is one of the advantages of our

work with respect to the other previous works (as well as the

Chromium built-in tracer). For instance, in comparison with

the Chromium built-in tracer, our tool can use the events of

operating system kernel level, e.g., information about system

calls, CPU schedules, disk blocks, etc. in addition to what the

Chromium tracer can provide for the analysis.

The Chromium architecture is a highly parallel architecture,

in which more than a dozen of executions are executed by each

process. However, from the operating system level view, there

is at most one thread of execution which is assets per processor

at each time. Kernel traces can help us to see the active thread

as well as to see if a particular thread is preempted by other

processes at every moment of the trace.

This information is not available at the application level.

For example, with only using the Chromium trace events, one

will not be able to see what is really happening between the

start and end points of a function which may prevent to detect

some design or execution problems.

To prove this, we use traces has made with the help of a

virtual machine with two virtual processors. It will therefore

be two active simultaneous executions at each time (i.e.,

one for each CPU). The expected behaviour is to never

block the Chromium browser by the system calls of disk

IO (reading/writing) tasks. To achieve this goal, the main

thread crRenderMain calls the ChildIOThread to perform the

input/output requests (Figure 10). This IO thread is executing

in a lower priority rather than the main execution thread. This

example is shown in Figure 10, in which green and blue shows

the active states of the threads, while the yellow is waiting and

orange is preempted states.

In this representation, the main execution thread has priority

over the one who manages the inputs/outputs. The latter may

be executed only when the other does not have more to do.

Otherwise, it is preempted. However, under certain conditions,

the behaviour of Chromium is not the one that is expected.

Figure 11 shows an execution in which each time the main

execution thread sends a message to start a task, it is preempted

by the IO maintainer thread. This type of behaviour is very

penalizing for the user interface. Although it has no impact

on the overall calculation time of the software, this behaviour

slows the display and negatively affects the perception of the

UI fluidity.

It’s easy to automatically detect such problems by using

filters on state model in our system. Just specify a

shape condition : if CrRenderMain == Preempted and also

Chrome ChildIOThread == Current Active Thread.

A Design Challenge: Combining multiple kernel traces

together presents a new challenge for the state model. Indeed,

the number of attributes increases very rapidly with the number

of virtual machines. Moreover, there query time cost in per-

formance increases linearly with the number of attributes, as

shown in Figure 12. This is why it is necessary to consider the



FIGURE 6. Thread activities view in Linux.

FIGURE 7. Thread activities view in Windows.

FIGURE 8. UST instrumentation combined with kernel events.



FIGURE 10. Google Chrome execution threads

FIGURE 11. Fault identification example for Google Chrome application

way to split the model into several separate internal structures.

Please note that this splitting operation is a low level task

which i performed by the tool and is hidden from the high

level users.
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FIGURE 12. Average time to query a random interval in function of the
number of different attributes in the state system.

The attribute tree is divided into groups of attributes

(examples : CPUs, Threads, Files...). In the case of virtual

machines monitoring, we use the name of the computer node

as the first level (see Figure 13). Then, each group may be

stored in a separate SHT tree to divide the problem size. A

strategy to define folders as mount points, like in POSIX

filesystems, could easily be added in the XML state provider

header. This would allow the user to choose the backend used

for each subfolder in the state model.

D. Query Optimization

Another interesting performance challenge is with queries

for the views. In order to have a good performance level, it

is essential to minimize the number of queries in the system.

Several query types are supported, and the performance de-

pends on the information that we want to display. We detail a

few use cases in this section.

Attribute Tree
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CPU0

Status

Current Thread

CPU1

Threads

TID

Thread Name

Status

Parent ID

Attribute Tree

CPUs

CPU0

CPU1

Threads

TID

Host
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CPU0
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Threads

TID

Virtual Machine 1

Virtual Machine 2

FIGURE 13. Adaptation of the structure of the attribute tree for the VM’s
application.

1) Complete Query: The most expensive case is when we

try to put bookmarks in places where we have detected an

anomaly. Since it is necessary to check all state intervals for

an attribute, possibly scanning the whole state model, these

queries can be long and time consuming, especially if the

attribute often changes its state. For example, CPUs may

change scheduling state many times within a single second

in a kernel trace.

Initially, we do not have much information on the nature of

the filter, so we cannot easily predict the time needed to get

the query information. But, if users can predict in advance the

filters they will need (which is the case in some applications),

it would be possible to integrate the filter into the state model

construction and pre-construct the required model. Then, the

filter results will be available quickly in the user interface.



2) Resolution Query: Another optimization is the strategy

implemented to quickly populate the Gantt chart view. The

Gantt chart is generally rendered by reading the whole infor-

mation stored for an attribute along the time axis. But reading

all of the information for an attribute (like a ”CPU state”

attribute that may be changed a lot during only a fraction

of a second) may consume much of display time.

However, in the reality we can prevent reading all state

information of an attribute. This is achieved by adding the

notion of resolution. The size of the visible screen (the whole

displaying time duration) or the number of available pixels

for the same duration of a trace can play a key role to decide

how to query the underlying model. Suppose the case that

the screen is used to display only 5 seconds of execution.

Of course the amount and dept of information that is queried

and displayed is completely different with the case that the

same screen is assigned to display the 5 hours of execution.

In the former case, a pixel of screen is assigned to a small

range of trace data, while in the latter case it is assigned

for a very larger trace duration. Therefore, the same querying

and rendering algorithm should not be used for both cases,

otherwise the performance of the view will be degraded for

the large execution duration.

To solve this problem and achieve almost the same query

time for all trace duration and all display sizes, we add the

notion of resolution. In this optimization, the algorithm goes

pixel by pixel, queries only a few states within the duration

of each pixel (e.g., the starting and ending states of the pixel,

when the resolution value of a pixel is 2), and ignores the

remaining state intervals. If these queries can specify the view

color and value for that pixel it is passed and processing of the

next pixel is started, otherwise a black dot is put in the view,

indicating that there are some more information and values

existing in that pixel. This black dot notify users that they can

zoom in on this pixel to dig into that and get more information.

This strategy is used to have a quick and significant overview

of the trace at high level views without querying the whole

state model.

This strategy may reduce the precision of the view and the

amount and even the correctness of information a view can

naturally display, but the gain is a speed rendering of the

view (because the query time and display time is reduced).

So, we do not in fact suggest this strategy for any kind of

views. However, in some use cases this strategy can be very

useful, specially when a quick displaying of an overview of

the underlying model can help a lot and guide users directly

to the problematic or interesting points of the execution very

quickly (e.g., statistics use cases).

As an example, suppose we use the state model to store

and render some statistics about our application of interest.

Bu defining resolution values, it is not necessary to query all

underlying state intervals to display the values. The resolution

value in fact defines a sampling ratio to estimate characteristics

of the whole interval. For example, to display a bar chart

about the statistics of a thread execution (if the thread time is

consumed by user space, it is executed in Kernel mode or it

is in Blocked or Waiting states), we can query a fixed number

of state intervals (based on the pre-defined resolution value)

instead of querying all stored values within the state model,

and define a confidence interval for this metric.
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FIGURE 14. Average query time in function of the maximum number of
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This optimization gives a logarithmic performance gain

for the query time, depending on the maximum number of

intervals we want to query in total, as shown in Figure 14.

The resolution provides information for every iteration step.

However, if the state interval is longer than the iteration step,

we don’t make a query for each step. This way, on average,

we have a logarithmic gain, as shown in Figure 14.

3) Partial query with a time Range: The last case is when

the user wants to display the results of a filter (virtual states)

in the Gantt chart view to highlight some certain sections. A

possible optimization is to calculate and query only the filtered

time ranges. This technique is very responsive and is already

used to populate the Gantt chart view when we use the zoom.

This query type is useful to reduce the query time. We have

a linear improvement of the query time performance, see Table

III and Figure 15. In addition, it is possible to combine this

optimization with the resolution optimization.
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Query Complete (ms) Resolution (ms)
Full range 168.3 57.38
50% range 74.90 33.60
25% range 36.52 17.16
10% range 15.44 7.32
1 % range 3.46 1.62

TABLE III
AVERAGE QUERY TIME IN FUNCTION OF THE THE TIME RANGE

PERCENTAGE.

V. LITERATURE REVIEW

In this architecture, we use a stateful approach to model

the system and give the user a comprehensive image of the

application runtime behaviour. For example, the state of a

process may change over time between states start, running,

waiting and stopped. These changing states of a process is

stored in an ”attribute” that is named status of the process.

The approach to index and retrieve the system state history has

been used previously [16], [17]. The states selected to model

the system are very important, and depend on the system and

the problem we want to investigate. To study a performance

degradation for example, we should track states of important

resources (e.g. what are the CPU usage, the currently running

thread, the files being accessed, or the network usage). Such

metrics can help administrators understand the problem and

possibly find a way to eliminate the underlying cause.

An approach to model the state from a system trace has

already been studied [8] and implemented in the Eclipse

Tracing and Monitoring Framework, Trace Compass 5. It is

based on a state manager and a special purpose database, State

History Tree (SHT), used to efficiently store, navigate and

display the state in the trace analysis softwares.

State History Tree (SHT)

With the huge trace data size, a special purpose database

was designed to store all produced state intervals on hard disk

[11]. The general idea of the approach is to incrementally

extract and store the information of each relevant trace event

and create different interval values in a custom designed

database called State History Tree (SHT). This State History

Tree allows the state system to make fast queries for any

system parameter and attribute at any time during the trace.

Furthermore, all state intervals are inserted by sorted end time.

The State History Tree uses this property to optimize its layout

for fast access on a rotational disk. This property obviates

the need for re-balancing the tree, but preserves the property

of logarithmic search. As a result, this data structure is well

optimized to be used with trace files as large as 1TB.

A. Trace Analysis Tools

Several tools exist to analyze and visualize execution traces.

Viewers like LTTV (Linux Tracing Toolkit Viewer)[5], Jump-

shot [6] or Triva [7] display different analysis metrics of the

underlying system execution (CPU usage, memory consump-

tion, critical path analysis, etc.). Trace Compass 6 is another

5. http://www.eclipse.org/linuxtools/projectPages/lttng/

6. http://www.eclipse.org/linuxtools/projectPages/lttng/

tool used to perform different trace analysis on traces collected

from different sources (e.g., LTTng Traces, Network packet

traces or custom defined traces, etc). Trace compass supports

the aforementioned State History Tree, to manage the states of

the system parameters. It provides various views like statistics

view, Gantt charts and histograms. You can see in Figure 16

the data representation for Linux kernel traces : CPU usage,

threads activities, statistics for the number of events, etc.

However, a limitation of these tools is that it is only

available for a particular trace type generated by a specific

tracer. Moreover, they only offer some specific views forcing

users to use only specific set of analysis. Users are not able to

define their own custom analysis based on their data and based

on their specific requirements. However, In the new proposed

architecture, the event-to-trace conversion (state provider),

underlying state model and the display views are completely

generic, and easily definable and customizable.

B. Descriptive Languages

There are many types of languages dedicated to system

analysis. Interesting reviews of trace analysis systems are avai-

lable from Matni [18] and Waly [19]. Declarative languages

for patterns in network traces and logs are used by SNORT

[20] or SECnology [21].

SNORT is an open-source Network Intrusion Detection

System based on a collection of rules. This software provides

a simple declarative syntax for defining intrusions in network

connection packet traces. Nonetheless, by looking at each

packet in isolation, this technique alone is not very efficient

for defining complex analysis such as those in State Providers.

Imperative languages like RUSSEL (RUle-baSed Sequence

Evaluation Language) [22] offer better expressiveness. Rules

can trigger other rules. If rules are viewed as procedures, it is

similar to procedural languages.

Another language is the D language, designed by DTrace

[3] to dynamically define the instrumentation probes. However,

this is more of a generic imperative language. SystemTap [4],

another Linux kernel tracer, also provides a similar imperative

scripting language, triggered by kernel-level events.

Automata-based languages are closer to the requirements of

defining state transitions from events. This kind of language

uses a finite state machine to describe the problem, with states,

transitions and actions. STATL (State Transition Analysis

Technique Language) [23] is a good example of a generic

state machine diagram language that is extensible and usable

by different applications in intrusion detection field. However,

STATL is not completely declarative because the users should

detail the transitions and the way they performed.

However, these languages are not necessarily adapted to use

with a backend data model like a state model, which is closer

to a database. They are also designed to specific domains and

not to work with any trace data. On the other hand, query

languages like SQL are limited to only tabular data rather

than un/semi structured trace data. What we actually propose

in this paper is a generic trace-specific language to extract

users specific and custom purpose model from the trace data



FIGURE 16. Multiple data views for a Linux Kernel Trace display with TMF

and use this model to analyze and display the desired outputs,

used in system performance analysis as well as attack and

intrusion detection purposes.

VI. CONCLUSION AND FUTURE WORK

There is a tremendous amount of data available in execution

traces and logs. However, it remains difficult for the developer

or the system administrator to extract the right information to

find the causes of his problems. Trace analysis software and

trace viewers help to have meaningful analysis and graphical

representations, but these analysis and representations are

often designed for specific purposes, and not very adaptable

to other usages and contexts.
In this paper, we presented a new tool architecture based on

a generic declarative specification. This framework allows the

developer to put his knowledge of the product directly inside

a model that can be used by the viewer to display synthetic

information. The framework proposes a generic way enabling

users to define their input trace events, their custom model,

the effect of each event in their model and finally the way of

displaying the analysis outputs.
We have shown throughout this paper many successful

applications of this proposed architecture. This work has

generalized the way to model the state information of a

system. It is now possible to obtain a detailed view of the

operating system/application internals and compare them with

different systems of completely unrelated origin, like Linux

and Windows. In addition, we demonstrated the use of this

approach to model more complex systems with multi-level

traces, by combining User-space tracing and Kernel tracing,

or Kernel tracing in several virtual and physical computers.
However, the possibilities are even greater. This declarative

specification describes generic models and events. We can use

it to create models with network events, telephony servers,

financial records, etc. Moreover, the XML syntax is extensible.

Thereby, the next step is to add more features, like critical

path analysis and more visual view types. Another possibility

for future work is to optimize the framework by applying a

parallel way of event parsing and construction of the users

defined models.
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