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ABSTRACT

Execution trace logs are used to analyze system run-time

behaviour and detect problems. Trace analysis tools usually

read the input logs and gather either a detailed or brief sum-

mary of them to later process and inspect in the analysis steps.

However, continuous and lengthy trace streams contained in

the live tracing mode make it difficult to indefinitely record

all events or even a detailed summary of the whole stream.

This situation is further complicated when the system aims to

compare different parts of the trace and provide a multilevel

and multidimensional analysis.

This paper presents an architecture with corresponding

data structures and algorithms to process stream events, gen-

erate an adequate summary -detailed enough for recent data

and succinct enough for old data- and organize them to enable

an efficient multilevel and multidimensional analysis, simi-

lar to OLAP analyses in the database applications. The pro-

posed solution arranges data in a compact manner using in-

terval forms and enables the range queries for any arbitrary

time durations. Since this feature makes it possible to com-

pare of different system parameters in different time areas it

significantly influences the systems ability to provide a com-

prehensive trace analysis. Although the Linux operating sys-

tem trace logs are used to evaluate the solution, we propose a

generic architecture which can be used to summarize various

types of stream data.

Index Terms— stream processing, multilevel analysis,

OLAP analysis, trace abstraction, Linux kernel.

1. INTRODUCTION

Many applications such as network monitoring, web log anal-

ysis and stock exchange analysis tools provide different statis-

tics over data streams [1, 2, 3]. In these applications, a system

administrator or an automated program monitors the statistics

of different system parameters (e.g., the usage of different

system resources) to detect any possible problems, patterns

or attacks. For instance, monitoring and counting the number

of half-open connections in a short duration and comparing

it to a predefined threshold (or to the number of completed

connections) may help to detect a denial of service attack.

In a previous work [4], we presented a framework to store

a history of (offline) trace summary in the trace reading phase

to compute and provide the different statistics of system pa-

rameters in the analysis phase. However, since the trace stream

size, despite the offline trace, is considered unlimited, it is

not possible to store a complete history of the stream. Thus,

heuristics are needed to select and store only the parts of the

input data that are enough to provide accurate statistics. In

other words, a trade-off between the size of the summary and

the accuracy of the query responses is necessary. But in gen-

eral, to guarantee the scalability of the solution the size of

data structures should be small, somewhat independent of the

length of the input trace stream or at most poly-logarithmic to

that.

The query response time is also an important factor in the

aforementioned stream data analysis applications. The sys-

tem should provide a fast response time, facilitate the inter-

active use of the system and satisfy the real-time constraints

of the streaming applications. The other factor is the process-

ing time of the input stream. Since a new event may arrive

at any arbitrary time, per event data processing rate should

be efficient so that the analysis system can operate without

congestion or having to drop input events.

Another challenge is providing a multidimensional and

multilevel analysis. Analysts usually wish to perform the

multidimensional analysis of the input trace stream on an ex-

pressive abstract level, including some multilevel exploration

operations like drill down or roll up to get more or less de-

tailed information [3]. Trace events are multidimensional in

nature and usually represent interactions of different dimen-

sions. For instance, a ”file read” trace event may contain

information from the running process, the file that has been

read, the current scheduled CPU for this operation and the

return value (i.e., the number of bytes read by the operation).



In this paper, we contribute data structures and correspond-

ing algorithms to construct stream cubes and provide OLAP
1 analyses over stream trace data. The solution incrementally

constructs a compact and scalable data store from the input

data, records it in the main memory (and possibly in the disk)

and provides an efficient query mechanism for any flat or hier-

archical queries over a system parameter or a group of them.

Using this approach, users will be able to compute statistics

of multiple system parameters, at different granularity levels,

and for any arbitrary time ranges of the system execution.

Another contribution is that the proposed solution sup-

ports efficient range queries over the time dimension. Other

approaches that support range queries usually work by stor-

ing a solid value of the data and counting or summing up the

values for the queried range. However, this method could be

a time-consuming task, especially when the selected range is

relatively large. By storing the summary data as intervals, our

solution provides an efficient query response time for range

queries, regardless of the size and position of the given range.

The rest of the paper is organized as follows: first, after

looking at the related work we present the architecture of the

solution, the data structures and the techniques used. Second,

we describe the different query types that the system supports.

Then, we discuss the evaluation and experimental results of

the proposed method. Finally, we conclude by outlining spe-

cific areas of investigation for future enhancements.

2. RELATED WORK

Stream analysis has many applications in network monitor-

ing, web logs and click stream analysis, call records analy-

sis, stock exchange and bank transaction analysis, medical

records monitoring, weather monitoring, etc [1, 5]. Several

research studies have been conducted in the literature on the

stream data management [6, 5], OLAP analysis over stream

data [3, 7, 8] and data mining [9, 10]. These studies present

interesting ideas and results on stream data analysis to extract

changes, trends and detect problems.

Several data structures have been proposed to store a his-

tory of stream data. Using a modified version of H-Tree, a

stream cube [3] is proposed to perform a multidimensional

and multilevel OLAP analysis over data streams. They use

different time granularities for recent and decent information

and a tilted time frame [11] to compress the data over the

time dimension. They avoid recording information of all lev-

els and only store the information along the critical paths.

With this technique, the information that is not stored directly

requires on-the-fly processing to be extracted. Even though

our method uses a time frame similar to the presented tilted

time frame, it uses different data structures and organizations

to manage the stream cube. In our method, all items of the

same time points can be extracted synchronously with a sin-

1Online Analytical Processing

gle query. Moreover, in our method the range query over the

time dimension is supported directly and efficiently.

Patroumpas et al. [12] propose a stream management ap-

proach that uses different window sizes. In their technique,

different windows are filled simultaneously. The problem

with this solution is that they duplicate data in the different

windows for the same time. In our approach, however, we

avoid duplicating data at different windows while we support

different windows and time granularities. Users can retrieve

information for the last n milliseconds, seconds, minutes or

even for any coarser granularities.

The fixed and moving sliding window methods are used

in the literature to analyze the stream data [1, 13, 12, 2]. In

these techniques, a recent window of items is kept, processed

and used for extracting the desired statistics. The fixed sliding

method refers to the case where a window (fixed or variable

size) is kept or monitored for fixed durations in the past (e.g.,

each 1 second, starting from 2:00 PM yesterday), while the

moving window refers to non-fixed start and end points that

move with the time and is measured using the current time

(e.g., every last 10 seconds) [1]. In our approach, we sup-

port both the variable-size fixed and moving sliding window

queries over the stream cube. At each point, user can ex-

tract multidimensional statistics for the last n time units or

can compute statistics for a fixed window in the past.

3. PROBLEM STATEMENT

In this section, we describe formal notations and definitions

required to present the problem.

3.1. Preliminary Definitions

A dimension schema D is a tuple ≺ Name,LD,�≻ where:

Name represents a unique name for the schema, LD denotes

a set of levels, representing the multiple granularity levels of a

dimension, and � represents a partial order between elements

of LD that is a graph or a hierarchy of dimension member

items. Each level contains a set of members. A dimension

instance di is defined as a set of members dm from all lev-

els. Figure 1 shows an example of four dimension schemas:

Operation, Machine, Process and File.

In the example shown in Figure 1, the dimension instance

Process is defined as {(System � Process Group), (Process

Group � Process Name), (Process Name � Process ID)}.

Process Group 1, Apache, Firefox, etc. are also member items

of the Process dimension, shown in Figure 2.

A trace stream is defined as a sequence of timestamped

events . . . , ei, . . . ,en, in which, en is considered the most

recent event. Each event e = (dm1, ..., dmk, r1, ..., rm) repre-

sents an interaction between a set of dimensions (dm1, ..., dmk,

i.e., a set of system resources such as CPU, process ID, file-

name, disk block number that results in one or more return

numbers, r1, ..., rm. For instance, a file open event (open,



Fig. 1: Examples of dimension schemas.

Fig. 2: An instance of the Process dimension schema.

CPU1, process2, file0, 3) represents a file open operation that

is performed by a process process2 run by CPU CPU1 to open

a file file0. The result, number 3, shows the output of the op-

eration: the assigned file descriptor value.

One mandatory member of each multidimensional event

is the timestamp field ti ∈ T that is used to order the events.

T, the time dimension, is the set of Natural numbers: T=

{t|t ∈ N}. In this domain, a time interval [t1, t2] is defined

as {t ∈ T |t1 ≤ t ≤ t2}. We also assume that the timestamp

values are distinct and any two events ei, ei have different val-

ues, ti 6= tj . Figure 5 represents a set of trace stream events

gathered by the LTTng kernel tracer. LTTng [14] is a low-

impact and lightweight open source Linux tracing tool, and

provides detailed execution logs of operating system and user

space applications.

We define the term trace stream cube as a collection of

cuboids constructed over a trace data stream. Each cuboid

represents a possible group-by of a measure over a set of di-

mensions. The most specific cuboid, the base cuboid, con-

tains items from all dimensions. It can be used to gather the

statistics for any dimension combinations,e.g., return the IO

throughput for a particular process over a text file in a given

virtual machine. The most generalized cuboid that is also

called an Apex cuboid, contains the total value of a measure

for all dimensions, e.g., whole CPU utilization of the system.

Exploring downward from the apex cuboid to the base cuboid

is called drilling down and the opposite operation, going up-

ward from the base cuboids to the apex cuboid is called rolling

up.

Example. Having three dimensions D1, D2, D3 and a

measure M, the apex cuboid is (*, *, *, M), while the base

cuboid is (D1, D2, D3, M). The combination of all possible

cuboid forms a cube: (*, *, *, M), (D1, *, *, M),(*, D2, *,

M),(*, *, D3, M),(D1, D2, *, M),(D1, *, D3, M),(*, D2, D3,

M),(D1, D2, D3, M).

The term metrics is used to represent quantities to com-

pute, monitor, compare or evaluate the usage or performance

of the different system parameters at different levels of ab-

stractions. For instance, CPU utilization and network through-

put are examples of these metrics. We refer to these quantities

using both the terms ”metrics” and ”measures” in the remain-

der of this text.

Having defined these terms, we seek to perform a multi-

dimensional analysis: we will efficiently extract and compute

the different system statistics from the input trace stream for

not only the different single time points but also for any ar-

bitrary time ranges at the different levels of granularity. For

example, one might require the input/output (IO) throughput

of the whole system, a specific virtual machine, process or a

file, for a specific exact time, e.g., at 3:36’. or for the last 30

minutes.

3.2. Statistics to Monitor

Different types of statistics are supported in our approach:

1- Statistics such as sum, count and average are supported

for any combination of the defined dimensions. Typical ex-

amples are the IO throughput of all files in a particular folder,

the count of specific event types, or the average usage of a

specific CPU. Using these queries, it is possible to provide

frequency counting, or top-k elements, for any time range.

One obvious application of frequency counting is to detect

whether the statistics values exceed the predefined threshold

values. Similarly, top-k queries can be used to identify the

users, processes or applications that consume the majority of

the system resources.

2- Range queries (for the time dimension) are supported

for different time points and periods. The selected time range

could be a time duration completely in the past, e.g., retrieve

the desired statistics between 2 PM on February 3 to 3 AM on

February 4, or a range between a time in the past and now [t−
τ, t], e.g., retrieve the desired statistics for the last 30 minutes.

In other words, moving sliding windows [1] are supported,

in addition to the fixed sliding window where the user seeks

statistics per fixed time units, e.g., each 5 minutes.



3- Different time scales are supported in this method. The

selected time range could vary from milliseconds to days,

weeks or even months. For instance, users may ask queries

like ”return the desired statistics for the last n milliseconds,

seconds, minutes or any coarser granularity”. However, for

the earlier times we use a larger time granularity to extract

the finer grain statistics. In other words, for the most recent

time, any time range from the millisecond scale is supported,

while for time periods in the past, the precision is decreased

and coarser grain times are supported (i.e., hours or days in-

stead of seconds and minutes). This consideration is normal

in many applications [11], as users usually seek highly pre-

cise data for the more recent times and possibly coarser time

ranges for the more distant times. In short, the proposed solu-

tion guarantees that different time scales (larger than the base

time granularity) are supported and users can extract the de-

sired statistics for different time scales and ranges.

4- Hierarchical operations like drill down, roll up, slice

and dice are supported in this design, similar to the offline

OLAP systems. Users may query the system to get a higher

level aggregate value or may ask for more detailed statistics

values. For example, having total IO throughput of a virtual

machine, one may wish to access the detailed throughput of

its processes separately, or having the network traffic of each

IP address separately, one might see the aggregated traffic for

a range of network addresses in the past days.

For all of the above problems, the compactness of the data

structures and the construction and query performance of the

method are considered the main requirements.

4. ARCHITECTURE

A high-level view of the architecture is shown in Figure 3. In

this architecture, the trace reader reads and processes the input

data, extracts the required summary and records in a data store

named cube data model. Cube data model, in turn, contains

different structures to organize and manage the data summary.

Query engine is responsible to handle and respond queries

received from the users. These modules will be explained in

detail separately in the following sections.

Fig. 3: A high-level view of the architecture.

4.1. Trace Reader

The first step in trace analysis is to extract the required data

from the input trace events. Trace events usually describe the

system in a very low-level form (Figure 5), and useful and

synthetic information (e.g., the statistics data we are looking

for) are usually hidden behind these low-level events. Some

data analysis steps are required to extract the desired high-

level information from the original trace data. To do so, for

each statistic metric, a set of events is registered and moni-

tored. For instance, socket-based events like socket connect,

socket send, socket receive, etc. are registered and monitored

to collect statistics about the network traffic. When one of the

registered events arrives from the input stream, it is analyzed

and the desired information is extracted and stored for future

use.

Since the observed trace events are too low-level, some

high-level statistics measures are not obviously recognizable

and may require a more sophisticated analysis of the input

stream. For instance, calculating the number of file down-

loads (as a high-level measure) is not obvious, as it is nec-

essary to integrate firstly some specific low-level events [15]

to generate the higher-level data to be able to compute their

high-level statistics.

Fig. 4: Circular buffer to read and process the stream events.

One issue in the stream events data extraction is that the

distance of consecutive events could be less than the time re-

quired to process them. Indeed, this may happen when the

events are too low-level (as shown in Figure 5) and must be

abstracted out to higher levels before extracting the statistics

information. In our implementation, we use a separate thread,

rather than the thread used to read the stream, to process the

incoming events. To do so, a circular buffer is initialized and

preliminary information gathered from the events are copied

into that buffer (as shown in Figure 4). The processing thread

then operates on the buffer, gathers the statistics information,

and stores it in the history data store.

However, for the time periods in which too many events

are received, e.g., when the system is too busy and the tracer

module generates many events, the buffer may overflow due

to the slow computation. In this case, two following solutions

may solve the problem. First, by increasing the gaps between

the processing and database updating steps, the statistics can



1 k e r n e l . s y s c a l l e n t r y : 509 .147214537 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 0 x7f0b0eb96cbd , 0 [

s y s c a l l 0 ] }
2 k e r n e l . s c h e d s c h e d u l e : 509 .147214752 ( k e r n e l 7 ) , 0 , 0 , swapper , 0 , 0x0 , s y s c a l l { 48 , 0 , 1 }
3 f s . r e a d : 509 .147220219 ( f s 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 8176 , 21 }
4 k e r n e l . s y s c a l l e x i t : 509 .147220604 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , use r mode { 241 }
5 f s . w r i t e : 509 .147227093 ( f s 5 ) , 568 , 538 , r s : main Q: Reg , 1 , 0x0 , s y s c a l l { 66 , 4 }
6 k e r n e l . s y s c a l l e x i t : 509 .147227571 ( k e r n e l 5 ) , 568 , 538 , r s : main Q: Reg , 1 , 0x0 , use r mode { 66 }
7 k e r n e l . s y s c a l l e n t r y : 509 .147234027 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 0 x7f0b0eb96cbd , 0 [

s y s c a l l 0 ] }
8 k e r n e l . s y s c a l l e n t r y : 509 .147235150 ( k e r n e l 5 ) , 568 , 538 , r s : main Q: Reg , 1 , 0x0 , s y s c a l l { 0 x7fcb30146c5d

, 1 [ s y s c a l l 1 ] }
9 n e t . s o c k e t r e c v m s g : 509 .147236434 ( n e t 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 0 x f f f f 8 8 0 1 8 8 c 9 0 5 8 0 , 0

x f f f f 8 8 0 1 9 9 f e 1 d 7 0 , 4096 , 64 ,

10 f s . r e a d : 509 .147237217 ( f s 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , s y s c a l l { 4096 , 3 }
11 k e r n e l . s y s c a l l e x i t : 509 .147237564 ( k e r n e l 1 ) , 1697 , 1697 , l t t c t l , 1 , 0x0 , use r mode { −11 }
12 k e r n e l . s y s c a l l e n t r y : 513 .772101451 ( k e r n e l 4 ) , 2334 , 2334 , / o p t / go og l e / chrome / chrome−sandbox , 2037 , 0x0 ,

s y s c a l l { 0 x7fccc73b0007 , 2 [ s y s o p e n +0x0 / 0 x30 ] }
13 f s . open : 513 .772106530 ( f s 4 ) , 2334 , 2334 , / o p t / g oo g l e / chrome / chrome−sandbox , 2037 , 0x0 , s y s c a l l { 3 , ” /

e t c / l d . so . cache ” }
14 k e r n e l . s y s c a l l e x i t : 513 .772107125 ( k e r n e l 4 ) , 2334 , 2334 , / o p t / go og l e / chrome / chrome−sandbox , 2037 , 0x0 ,

use r mode { 3 }

Fig. 5: LTTng trace events for common files accesses.

be computed and the database updated less frequently (e.g.,

update the database every 10 seconds instead of every 1 sec-

ond). The other solution is to disregard the extra events and

not process them until the system returns to its normal state.

In the experimental results section, we discuss an evaluation

of the distance between the incoming events and the time re-

quired to process them. However, it is outside the scope of

this research to discuss all possible cases and the detailed so-

lutions for each. We focus here on the data structures and

the way we manage the processed data in a long, continuous

stream data.

4.2. Cube Data Model

The proposed method works by extracting the preliminary

and punctual statistics from trace events and storing them in a

disk-based data structure. It incrementally builds an efficient

history of data, so as to be readily retrieved when needed. The

overall view of the cube data model is shown in Figure 6.

As shown in Figure 6, the cube data model contains two

main structures: dimension tree and history data store. Di-

mension tree models the different system dimensions and pa-

rameters and acts as a set of key references for the history

data store. History data store is the real storage of the data in

which the summary of input trace is stored. This history data

store contains different cubes for different time frames (Fig-

ure 6). The cubes in turn are implemented by tree structures.

In other words, each cube corresponds to a time frame (range)

and contains an interval tree that stores the information of that

time frame. Each interval has a key from the dimension tree,

a value that is gathered from trace, a start time and an end

time. More details will be provided for each structure in the

following subsections.

Fig. 6: Two internal structures of the cube data model.

h contains different parts that are explained in this section.

Dimension Modeling

One may wish to gather statistics about several types of sys-

tem resources (e.g. memories, processes, files, devices, etc).

In our model, each resource (i.e., dimension) is structured as

a hierarchy and the metrics of interest are defined between

these hierarchies. Figure 7 shows two dimensions -Process

and File- and the IO usage metrics that are defined between

these two resources.

In this organization, that is called dimension (metrics) tree,

it is possible to define the metrics between any set of resources

at any granularity. For example, as shown in Figure 7, one

may define the metrics node between the process and file di-

mensions to compute the IO throughput of a particular file/-

folder performed by a specific process, e.g., to place the de-

sired metrics between the Chrome and /Home nodes to com-

pute the number of bytes read or written for all files in the



Fig. 7: Dimension hierarchies and metrics.

/Home directory by the ”Chrome” process.

As explained, an important feature of this tree is its ability

to define the metrics at any granularity levels. For instance,

some users may only be interested in a specific high level

granularity (e.g. the IO throughput of a whole virtual ma-

chine, and not their containing processes), thus the system

can avoid storing finer or coarser values, thus saving a signifi-

cant amount of storage. We will further study the gains of this

design in the Experimental Results.

In the aforementioned dimension (metrics) tree, the met-

ric nodes (indicated by dotted rectangles) comprise a link to

the corresponding value records in the history data store. They

also keep track of pointers to the first and last occurrences of

the metrics value in the stream, representing the operational

scope of the metrics. These pointers increase the speed of

queries for the points that are beyond the operational scope.

History Data Store

For any predefined metric, we keep a history of its values dur-

ing its whole trace lifetime. To do so, when a registered event

arrives and the corresponding statistic value is changed, we

create and store a summary of that change in the history data

store. We model this change as an interval record and store

an interval instead of two single records. For each interval,

the bounding points (start time and end time), a key and a

value are all stored. The key is a combination of a set of di-

mensions and a measure referring to the metric nodes (dotted

rectangles) in the dimension (metrics) tree. The value rep-

resents the statistics value for the chosen metric in this time

interval. For example, suppose a ”file read” event is regis-

tered in advance for the IO throughput metric. Then when a

file read event (e.g., process p1 read 400 bytes of file f1 in

time t2.) is arrive, and changes the value of a corresponding

metric (i.e., the IO throughput), we create and store an inter-

val record for this change: {IO throughput of process p1 and

file f1, 400 bytes, t1, t2}. This record actually shows that the

IO throughput of process p1 that is read/written from/on file

f1 between time t1 and time t2 is 400 bytes. Here the time t2

is the current event timestamp and t1 is a time that a previous

registered event (read event or write event or etc.) is seen and

processed.

Using the above technique, we store statistic summary

as interval values instead of single values which enables the

range queries. Hence, to store the interval values, any interval

container, such as an R-tree [16], the SLOG2 file format [17]

or a State History Tree [18] can be used.

Significant space is required to store the summary of a

stream in this way, which means after a short while, both the

main memory, and finally the disk will be filled. To solve the

problem, we use some heuristics to solve this problem. One

heuristic uses a proper granularity degree (GD) [4], and stores

a cumulative interval instead of each single interval. To do so,

for any k (i.e., the GD value) consecutive intervals, we store

a single record representing the statistics value between the

time ranges of those intervals. In the example shown in Figure

8, for each 7 operations, only one data interval is created and

stored (instead of 7 separate interval records). A small GD

value increases the history storage space while a larger GD

value reduces the precision of the statistics. Thus, a careful

consideration of the proper GD value is important and can be

achieved through balancing the importance of the metrics and

the available storage space.

Another heuristic that can be used to alleviate this prob-

lem is using the so-called Tilted Time Frame technique [11]

to compress the time dimension. The idea is to use a coarser

granularity degree (GD) for the older history, yet a finer value

for the most recent history.

Fig. 8: Efficient updating the history data store.

Time Frame

In the trace analysis applications, the most recent history is

more interesting than older history [3]. Thus, for the long

term history, we can use coarser granularity degrees. For ex-

ample, as shown in Figure 9, for the last 5 minutes of the trace

a minimal granularity degree (e.g., 1 second) is used, and for

the last 24 hours range, a larger granularity degree (e.g., 5

minutes) is used. With this method, after reading any 5 min-

utes of the input stream, aggregate statistics of the last 5 min-



utes are calculated and passed through the cube in the other

level. After 60 minutes, another aggregation is calculated and

stored in another cube level.

A high-level view of the time frame is shown in Figure

(10). In this method, for the duration of each time unit, a sep-

arate stream cube is constructed and materialized. The cube is

actually implemented using the dimension (metrics) tree and

the history data store. In other words, to manage and store

the cuboids we do not use any external database applications,

as is common in the OLAP applications, but instead we im-

plement each cube using two tree-based structures, the one is

used to mange the dimensions (dimension tree) and the inter-

val tree that contains the real data for the current time frame

(history data store) (Figures 6, 14).

Each cube is used to answer the queries inside the cor-

responding time duration. After passing this time yet before

dropping the cube, an aggregate of this cube is computed and

stored in the cube at one step coarser.

Using this method, one can store a history of the statistics

values for a long time and utilize a small amount of storage

space. We will now explore the storage space this method

requires to keep track of the intervals.

Fig. 9: Different granularity degrees for different time dura-

tions.

Let us assume there exist n metric nodes in the dimension

(metrics) tree. We also assume that all metrics have changed

each second and a new interval must be created for each met-

ric and each second. For the recent 5 minutes, 5 × 60 × n =
300n record spaces are required to store all the interval val-

ues for these n metrics. In the same way, the other 24 hours

require: (24 ∗ 60) ÷ 5 × n ≈ 300n. Similarly, for two

weeks and 2.5 months, (14 ∗ 24) ÷ (1 × n) ≈ 300n and

(75 ∗ 24)÷ (6× n) ≈ 300n respectively are required. Thus,

for a 2.5-month period, 300n+ 300n+ 300n = 900n record

spaces are required which is 1/10000 of the case that uses a

uniform time frame (i.e., 900n ÷ (75 ∗ 24 ∗ 60 ∗ 60 ∗ n ≈
6480000n) ≈ 1/10000).

Cubes Construction

Using the tilted time frame, different trees (cubes) correspond

to different time units and one must pass a set of aggregated

values to a granular tree (cube) when the time unit is changed.

In other words, after crossing the first tf1 time units (e.g., the

first 5 minutes), this method aggregates the statistics and in-

serts these aggregated values into the tree of another time unit,

such as tf2 (Figure 11). This also occurs after crossing any

Fig. 10: A separate sub-cube for each time unit.

other tf1 time units (e.g., each 5 minutes). In the same way,

after crossing tf2 time units (e.g., 24 hours), one must per-

form another aggregation of the values of tf2 time units and

insert into the coarser time unit tree. This process is repeated

after each time unit changes.

As shown in Figure 11, a separate cube corresponds to

each time unit, one for the area with minimum time scale

tf0, one for the area with the minimum time scale tf1 and

so on. After passing the first tf1 time, an aggregation pro-

cess is called and the aggregated records are inserted into the

other level tree. This process is repeated when it passes the

tf2 time. Let us now explore the costs of these aggregate up-

dates.

Fig. 11: Moving the aggregated values from one tree to an-

other.

Again, let us assume that there are n metrics in the met-

rics tree and the statistics values for all metrics are changing

at each time unit. After crossing the tf1 time, we must ag-

gregate all values of the tf1 time period and insert them into



the cube corresponding to the tf2 period (Figure 11). Since

there are n metrics in total, each metric requires one record;

thus, n records all metrics together. Each record shows the

statistics value of the corresponding metric in the completed

time range. Thus, at each step any time unit change requires

n aggregate updates into the higher-level cube. Therefore, us-

ing the parameters shown in Figure 11, formula 1 can be used

to calculate the number of updates from one tree to another.

ψall =
(tf2 ÷ tf1)× n+
(tf3 ÷ tf2)× n+
· · ·+
(tfn ÷ tfn−1)× n.

(1)

The above formula calculates the required number of ag-

gregate updates from one tree to a coarser level tree. The

resulting value is a very small portion of all whole tree inser-

tions:

Let us calculate the total number of insertion operations in

all trees and compare that to the number of aggregate update

operations. Suppose that for each tf0 duration (the smallest

time unit in the proposed time frame for which values can be

gathered directly from the input trace events), the values of all

metrics are changed. Thus, we will have n updates for each

tf0 duration. For the larger level, tf1 duration, the number of

insertion and update operations in the history will be:

Φtf1 = (tf1 ÷ tf0)× n. (2)

Similarly, the number of insertions for each tf2 duration:

V alAB = V alB − V alA = x1 + x2 + x3
Φtf2 = [(tf2 ÷ tf1)× ((tf1 ÷ tf0)× n)]
= (tf2 ÷ tf0)× n.

(3)

And:

Φtfm = [(tfm ÷ tfm−1)× ((tfm−1 ÷ tf0)× n)]
= (tfm ÷ tf0)× n.

(4)

Totally:

Φall = Φtf1 +Φtf2 + ...+Φtfm

= (tf1 ÷ tf0)× n+ (tf2 ÷ tf0)× n+ . . .
+(tfm ÷ tf0)× n

=

∑i=m

i=1
tfi × n

tf0
.

(5)

Therefore, the fraction of the aggregate updates with respect

to all insertion and update operations equals:

Portion =
ψall

Φall + ψall

. (6)

For the example shown in Figure 9, this proportion is

0.00006 = 0.006 %. In other words, the aggregate update

cost is a very small proportion of all operations and is not an

issue. The challenging issue is the time required for the tree

construction, which will be investigated in the Experimental

Results section.

We use another heuristic to reduce the number of tree in-

sertions: when a metrics value is unchanged in two or more

consecutive time units, no update is required in the tree. To

do so, we store the current value of the metric in a temporary

structure and wait for a change. After the first change, a node

is inserted in the tree representing the value of the metrics

for all unchanged time durations. This technique reduces the

number of insertions in the history data store.

Sliding Window

One use-case of this research is to support the sliding win-

dow queries, both the fixed and moving sliding windows. In

this subsection we propose a technique to support the sliding

window queries.

As explained, at regularly defined time points, the algo-

rithm aggregates the values of the current tree and inserts

them into a coarse tree, belongs to a larger time frame.The

fixed sliding window is obviously supported, because the val-

ues of any previous time ranges are available in the data struc-

tures. But to support the moving sliding window one ineffi-

cient way is to update the history for all new trace events. In

other words the algorithm should update all trees at any gran-

ularity levels for each new event, after passing the first tf0
time (e.g., a second). However, it would be too costly to up-

date the tree structures, remove the old entries and insert a

new one, for each new time unit tf0 (e.g., a second).

The way we support the moving sliding window is by de-

laying the aggregate moving from one tree to another tree. In

other words, we do not immediately move the aggregate value

to another tree, but wait for another tf1 time and then aggre-

gate the tree and move to the coarser tree. Figure 12 depicts

this technique (with respect to Figure 11).

Fig. 12: Supporting the moving sliding window by delaying

the aggregate updates.

To illustrate this point, we use the values shown in Fig-

ure 9. Instead of aggregating the tree for the last 5 minutes

and discarding the detailed tree, we keep these details in the

memory and continue for another 5 minutes. At the end of the

second 5 minutes, we simply aggregate the first tree, (the tree



from the first 5 minutes), move it to a coarser level tree, and

discard that tree from the memory. At the query time, when

users ask for the last k, say 7, minutes, we can easily use these

two trees (the trees of the first and second 5 minutes) to an-

swer the query. As shown in Figure 12, the duplication and

delay in aggregate propagation are used in all time frames,

enabling the extraction of the desired statistics values for any

arbitrary k time units with a varying time precision.

5. QUERY

The proposed method, as explained in the previous sections,

reads the input trace events and extracts the statistics from the

data. Then, the statistics data is stored in a tree-based history

data store. In this history, the more details are stored for re-

cent data and less for older data. Using this configuration, it

is possible to reduce the details from the older history, while

still satisfying the queries for recent history with a higher pre-

cision. In general, different types of queries are supported.

We first look at the range queries and subsequently address

the other types of queries.

5.1. Range Queries

The records in the history data store, collected from the trace

events, represent the cumulative statistics values for the spec-

ified metrics and the corresponding time range between the

start and end points. Thus, to retrieve the statistics value at

any point, one can simply find and explore the correspond-

ing tree and find a node that contains the required point. The

extracted value represents a cumulative statistic between that

query point and a base time point. In the same way, to extract

the statistics values for a time range, one may perform two

stabbing queries and subtract the results to yield the desired

statistics value. Figure 13 shows an example of a range query.

Fig. 13: Performing range query in the stream history.

As shown in Figure 13, to extract the statistics values in

any time range, say [t1, t6], two stabbing queries are required,

one for t1 and another for t6. These two stabbing queries re-

turn two cumulative values with respect to a fixed start point.

Then, the subtraction of the two values will provide the re-

quired statistics value (the increment within the interval).

Example: Suppose we have three records in the history:

([0,2), metrics1, 0), ([2,6), metrics1, 20), ([6,10), metrics1,

30). Each record contains a time interval, a key and a value.

For instance, the first record shows that the value for metrics1

between times 0, 2 is zero. These records show that we have

value changes in times 2, 6 and 10, since we create a new

interval record only when a value changes, (here the GD value

is 1). Using this history, the metrics1 statistics value between

any time range in [0,10), say [3,9], will be the subtraction of

the statistics value at 9 and 3 = 30 - 20 = 10, because time

point 3 crosses the second interval record and time point 9

crosses the third record.

The stabbing query -finding the intervals that contain a

given query point- is shown in Algorithm 1. Since our pro-

posed solution does not force using the interval tree container,

Algorithm 1 shows a general stabbing query for any typical

interval trees. The maximum number of items in the result list

L will be n, the number of metrics. Sometimes it is possible to

have less than n intervals in the result list L. This means that

some metrics do not have values for the given point, meaning

that the corresponding resources were not active at that point,

e.g., looking for the IO throughput of a process in a time prior

to its starting time.

After performing a stabbing query, the result set L will

contain statistic values of all metrics. Thus, one must filter

out the result list L to find the value of the desired metrics.

Algorithm 1 Stabbing query.

Require: an interval tree v and a query point t.

1: if root node r contains the point t then

2: add r to the result list L.

3: end if

4: if there is any children for node r then

5: for any children of v like c(v) do

6: call the algorithm for c(v) , t.

7: end for

8: end if

9: return list L as result;

As explained earlier, we have different trees for different

time points: more details for recent times and less for older

times. The proposed stabbing and range queries work for all

cases, for a time range within a single tree or several trees.

For all cases, we can find the statistic values for the desired

time range, by using two stabbing queries for the boundary

points of each interval.

The last point in this section relates to calculating the ag-

gregate values of a tree and moving that to a coarser tree.

To calculate the aggregated values of all metrics for any time

range, one must perform two stabbing queries, one at the start



and one at the end point of that time range. Each stabbing

query returns the values for all n metrics together, so it is not

necessary to repeat this algorithm for each metric separately.

Therefore, calculating the aggregate values of a tree is not

costly. It simply requires two stabbing queries for the start

and end points of the tree.

Top-K Queries

Sometimes it is important to detect when the values exceed

a predefined threshold, or find virtual machines or processes

which integrate more system resources than others. To sup-

port these query types, the system should be able to answer

top-k queries, for any arbitrary k. To do so, we first use the

mentioned range queries to extract the statistics values of all

metrics, and then use an optimal sorting algorithm to find the

top-k values from a maximum of n values.

The cost of this algorithm is O(logm1 + logm2 + n ×
logn), where m is the number of nodes in the history tree and

n is the number of metrics. In this equation, logm1 is the

time required to perform the stabbing query for the history

tree at the start point of the given query interval, logm2 is

used to extract the statistics value at the end point of the query

interval, and n × logn is used to sort the n items, the output

of the stabbing queries. The cost is obviously dependent on

the count of metrics, n, and the depth of the tree, as one or the

other may be more dominant depending on the situation.

5.2. Sliding Window Queries

This solution supports both the fixed and moving sliding win-

dow queries. As outlined earlier, the techniques used enable

us to extract the statistics values for the last k time units for

the fixed or moving values of k. An example of a fixed slid-

ing window is reporting the statistics values after each k time

units. In this case, after finishing the predefined k time units,

say 1 second or 1 minute, the algorithm aggregates and re-

turns the values for the desired time range. For instance, one

may wish to retrieve a minute by minute report of the CPU

usage. To do so, after finishing each minute, the program ag-

gregates and reports the CPU usage for the preceding minute

by summing up the values of small-scale chunks (e.g., by

summing up the CPU usages of all 60 seconds of that whole

minute).

Sometimes users wish to obtain values for a moving or

sliding value of k, by taking into account the precision of the

time unit. Suppose that we are in the 6th minute of the trace

and the user asks for the CPU usage for the last 3 minutes. If

we had aggregated the tree at the 5th minute, we would not be

able to answer this query, since we need 2 more minutes from

the history. However, we would not have the requested values

with the desired precision if these values were already aggre-

gated for that 5-minute interval. To solve this problem, the

algorithm delays moving the aggregated values to a coarser

unit tree for another time unit (e.g., another 5 minutes). For

example, using the tree shown in 12, it is possible to provide

values for any previous time range (less than the current time

unit) e.g., last 3 minutes, last 58 minutes, last 11 hours, etc.

5.3. Multilevel Queries

Since in many applications, users may wish to perform some

operations like group by, drill down or roll up, we investigate

this type of queries here.

Due to the required storage space and processing time, it

is not possible to generate and store all possible cuboids along

the stream. To support multilevel queries, we propose two

general solutions: minimal and partial cube materialization.

The first solution, minimal materialization, defines all met-

rics in the finer level - for the leaf nodes of the dimensions-

and only stores the base cuboids (the history values for the

leaf nodes of the metrics tree). Any other high-level met-

rics (none-base cuboids including apex cuboid) are computed

on the fly using these low-level metrics. For instance, in the

above example, it is possible to compute the IO throughput

of virtual machines by performing aggregate functions (i.e.,

sum) over the low level history values, i.e, by summing up

the IO throughput of all processes belonging to each virtual

machine. Figure 14-1 shows a view of this solution.

Partial materialization [3], the second approach, is used

when the high-level nodes, for which the analytical data will

be queried, are predictable. Therefore, the solution creates

metrics for these high-level nodes and keeps track of history

values for them as well. For instance, in Figure 7, suppose

the system is notified in advance that users wish to retrieve

the IO throughput for all virtual machines together in addi-

tion to each process separately. In this case, a metric node

representing the desired granular level is created in the met-

rics tree and a history is kept within the history data store.

Figure 14-2 depicts a view of this solution.

Depending on the number of high-level nodes, the par-

tial materialization solution may require more storage than

the minimal materialization solution to store the data for the

coarser or finer granularity scales. However, the later may

require more processing time to aggregate and compute the

desired high-level statistics on the fly using the low-level in-

formation.

A tradeoff between the processing/response time, the stor-

age space and the user and application requirements is gener-

ally required to determine which strategy should be used. In

some applications, a small number of high-level nodes may be

critical to users and therefore data should be kept to directly

and quickly retrieve answers. In this case, a partial cube ma-

terialization method is used to only materialize the important

high-level nodes in addition to all leaf-level nodes.

To extract the high-level statistics (rolling up) for a given

time point, when the requested value is not directly in the his-

tory, one must perform a stabbing query at the given point,



Fig. 14: Hierarchical queries. 1) Minimal cube materializa-

tion, using aggregate functions to compute hierarchical val-

ues, 2) Partial cube materialization, storing data at the multi-

ple levels.

extract the values of all low-level nodes of the queried dimen-

sions and finally aggregate the results (sum up, count or so

on.). Since a single stabbing query will return all values for

the given point, the rolling up query requires the same time

as low-level queries, except for the extra time required to per-

form the aggregation over extracted values. For instance, to

compute the IO throughput of a folder, one must aggregate the

IO throughput of the files inside that particular folder, which

can be obtained directly with a single stabbing query.

6. EXPERIMENTAL RESULTS

The experiments were performed on a Core i7 2.80 GHz sys-

tem with 6GB of main memory, running Linux kernel version

2.6.38.6 instrumented with the LTTng tracer. The algorithms

were programmed in Java using the Eclipse plug-in for Java

and will eventually be contributed to the free software TMF

(Tracing and Monitoring Framework)2. The tests were per-

formed with real trace logs gathered from the LTTng kernel

tracer. Since the original logs are too low-level, techniques

are adopted from [15, 4] to abstract out the raw data to higher

level and extract the desired statistics data. We also use the

locally developed State History Tree [18] as the interval con-

2http://lttng.org/eclipse

tainer for the interval values. With respect to the other ap-

proaches in the literature, this format works better for cases in

which the input data arrives sporadically (in an unpredictable

manner) and cases in which the tree is constructed incremen-

tally. To generate the trace logs, system activity is generated

using recursive operations like grep -r, wget -r -l, ls -R, etc.

The experiments will be discussed in three sections: pro-

cessing time, memory usage and query response time.

6.1. Processing Time

In the first experiment, we aim to investigate the efficiency

of the proposed trace analysis module, and whether a trace

stream can be processed in real time (events are analyzed in

less time than their rate of occurrence).
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Fig. 15: Delay between trace events and processing time for

one event (average over a batch of 10000 events).

Figure 15 shows the average delay between trace events

in different areas of a trace. Each delay is calculated as the

average time for 10000 subsequent events. Similarly, the pro-

cessing time to analyze the trace is computed as the average

over 10000 events. The analysis time per event does not vary

much. The average delay between events varies significantly

depending on how busy the traced system is. In our tests, the

processing time remains much lower so that the average delay

and the analysis is thus efficient enough to accept a streaming

trace in real time. In extreme cases, where events are much

closer to each another, buffering the events and performing

a delayed processing, or even dropping some events, will be

required. We may investigate these techniques in more detail

in future work.

Figure 16 shows the different times required for reading

and processing the trace stream. The first case only reads

the trace without processing any data. The other curve shows

both the trace reading and simple processing of the events:

reading the trace stream, extracting the statistics values and

aggregating each base time unit (e.g., 1 second). However,

it does not include the time needed to store this data in the



data structure. Other cases show the time required to store

the processed data to the different cubes in the history data

store. In each case, the time frame is set so that the requested

level cube is constructed. For example, in the case with only

the first time unit, one cube is materialized, while in the case

with two time units, the first and second levels are materi-

alized and so on. Figure 16 shows that the first cube level

requires the longest processing time. This is not surprising

since the first cube level is updated for each base time unit

(e.g., 1 second), while the others are called at granular time

units (e.g., 5 minutes) and require less time.
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Fig. 16: Processing time for different stream processing steps.
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Fig. 17: Processing time for parallel cube updating

Figure 17 shows the same processing steps while perform-

ing a parallel analysis, in which a separate thread is assigned

to each single cube update. The parallel cube update is pos-

sible since different cubes correspond to different areas and

the data gathered from unique trace portions can be written to

the different cubes simultaneously. In this method, after per-

forming a preliminary analysis over the trace and extracting

the statistics data, a separate thread is assigned to each cube

and, as a result, updates are done separately yet parallel to

each other.

It is important to note that in all the above experiments,

1000 measures are used. As explained earlier, each metric

is considered as a measure between two or more dimensions.

For instance, the metric CPU usage is defined between the

virtual machine, process and CPU dimensions and could also

be shown as (virtual machine, process id, CPU number, CPU

usage).

6.2. Memory Usage

One of the important aspects of any useful stream process-

ing method is the ability to use as little memory as possible.

In this section, we show the memory usage for our proposed

method. The history data store, which records the temporary

and intermediate values, stores the data on disk rather than

in memory, enabling it to store a longer period of abstract

streaming data.

As explained earlier, there are three cube materialization

methods: full, partial and minimal. In all experiments below,

the partial materialization stores 10% of higher-level cuboids

in addition to the lowest level cuboids.
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Fig. 18: Memory usage for different trace areas.

Figure 18 shows the memory usage for different areas of

the trace stream. Different trace areas may have more or less

events depending on how busy the underlying system is. In

Figure 18, the curve shown with Trace 1 belongs to a busy

area of the trace (where the number of events per second is

higher than in other places). The data used for drawing the

curve shown with Trace 3 belong to a less active area of the

trace, with fewer events. In all three cases, the number of

metrics used is again 1000. Additionally, the time units are

from Figure 9. In other words, the memory is used to store

three levels of cubes: the first level for the last 5 minutes,

the second for the last 24 hours and the third for the last 12

days. However, we have used a one-day trace duration to test

all three cube levels. The results show that the configuration



used is desirable and readily usable. The maximum required

memory is approximately 35 MB, which can easily reside in

the main memory. However, as will be discussed shortly, the

required memory may increase depending on the number of

metrics or time units. This low memory usage is achieved
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Fig. 19: Memory usages comparison for tilted and non-tilted

time units.

at the cost of removing the more detailed history from the

most distant time periods. It is obviously not feasible to store

all information at the most detailed level for the whole trace

duration, unlike for relatively small traces in offline tracing

mode [4]. Figure 19 compares a comparison of the memory

usage of two methods: storing all history for the whole tracing

duration, and removing the old history from the data store

(please note that a logarithmic scale is used for the y axis).
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Fig. 20: Memory usages for different number of measures.

Another experiment was performed to see the effect of the

number of metrics. It is possible to define different measures

in different levels between the existing dimensions. For ex-

ample, IO throughput can be defined between a file or folder

in one hand,and a process or a group of processes in other

hand. It is also possible to add a virtual machine to this mea-

sure, making it a threefold measure. Figure 20 shows the

memory usage for different numbers of measures. In fact,

the memory usage depends on both the type and number of

measures. Indeed, the count and frequency of the events re-

quired to compute the values of a measure is the key factor

to compute the memory required to store statistic values of

that measure. The number of accesses to a specific web site

requires events of type http that connect to the specified web

site and can rarely be observed in the events. However, the IO

throughput measure is based on the type of events (i.e., read

or write events), which occur very often in any system exe-

cution, and thus require more storage space. The same met-

ric, IO throughput, defined between three dimensions, (virtual

machine, process and file), is used to gather the results in Fig-

ure 20. To increase the number of measures, for instance from

1000 to 3000, we have added new tuples (virtual machines,

files and processes) to the existing tuple list. The results show

that increasing the number of measures has a direct (but not

linear) effect on the memory usage.
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Fig. 21: Memory usages for different cube materialization

strategies.

The final experiment was conducted to investigate the dif-

ferent materialization methods. To do so, three modes are de-

fined for 1000 measures: Minimal cubing, in which all mea-

sures are defined in the leaf nodes of the metrics tree (dimen-

sion tree); Full cubing, in which measures are defined in all

levels and the history data is stored for all levels; and Partial

cubing, which is something in-between, defining all but 10 %

in the leaf nodes. These 10% extra measures which are de-

fined in the non-leaf nodes, can be considered as measures

frequently requested by users, thus being less desirable to

compute on-the-fly. Figure 21 shows the difference in mem-

ory usage for these three methods. Full cubing method de-

mands more memory (three times or more to store the history

in each and every level), while the partial and minimal cubing

methods act very similar.



The above memory usage experimental results demon-

strate that the size of the data store is relatively stable and

independent of the stream data size. Indeed, the design is such

that it stores only minimal data for the distant history, and the

memory usage therefore increases very slowly (logarithmic)

with the size of the stream. This is a very important feature of

the proposed data store that makes the solution scalable and

usable for any size of input stream data.

6.3. Query Response Time

A proper response time is an important factor for most stream

processing applications. Indeed, these tools may be used in-

teractively to monitor the system runtime behaviour and track

problems. We have performed different analysis tests to mea-

sure the response time for different configurations.

In the first experiment, the single point query is exam-

ined using 1000 measures and for all three materialization

strategies. To obtain a comparable result, the same points are

queried in all three cube materialization modes. The results

show that the base case is the minimal cubing mode, since in

that case the history size is smaller than with the two others.

Figure 22 depicts the comparisons of these three methods.
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Fig. 22: Response time for single point queries.

A similar comparison is undertaken for the range queries.

As explained earlier, one of the continuations of this work

is to support the range queries without having to count and

aggregate the values for the whole range. In our solution,

this is achieved by performing a few queries for the start and

end points of the range and subtracting the values. Figure 23

shows this comparison. To obtain the comparison results, dif-

ferent time periods are examined within the last n minutes of

the test. For instance, the values in time point 5, are obtained

by testing time ranges within the last 5 minutes. Similarly, the

results for point 25 are obtained by using random time points

within the last 25 minutes. Since the time units are chosen

randomly, they could occur in one or more time units. Fur-

ther, the same ranges are used for all three cases. The results
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Fig. 23: Response time for range queries.

show that the time required to perform the range queries is re-

lated to the number of measures and materialization strategy,

not the time interval duration.
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Fig. 24: Response time for roll-up queries.

Figure 24 shows the response time for roll-up queries, to

extract a high-level value given the low-level values. In the

minimal case, to compute any higher level measure, the val-

ues from the leaf level (lowest level) should be extracted from

the history data store and then aggregated on-the-fly. For the

full cubing, all the values already exist in the history and sim-

ply need to be extracted. The partial cubing is somewhere

in-between: some non-leaf measures have their own values

in the history data store and some must be treated like the

minimum cubing. We separate these two cases and consider

them separately. Due to the values shown in Figure 24, the

best query time belongs to the partial cubing with the 10%

measures that data are stored. The minimal cubing method

is similar but requires slightly more processing time. The re-

sults show that carefully choosing the non-leaf measures is

an important factor, and can affect the response time. In this



comparison, the same time points are used for all four cases

and the results are computed for the single point queries.

In summary, partial cubing with carefully chosen non-leaf

measures is considered the best solution. The memory usage

for this method is almost equal to the minimal cubing, but the

partial cubing has the best response time. However, select-

ing the potential measures to keep in non-leaf nodes is not an

easy task. They can be chosen statically by a system expert

or dynamically based on the users’ feedback and experience.

The memory requirements for the metrics (depending on the

associated events) or usage statistics could be two important

factors in dynamically selecting the non-leaf measures to ma-

terialize.

7. CONCLUSION AND FUTURE WORK

In this paper, a multilevel architecture, and corresponding

data structures and algorithms are proposed to construct a

cube storage for very large, theoretically unlimited, trace streams

to enable different multilevel trace analyses. Reasonable mem-

ory usage, efficient response time and support of different

query types (single point, range queries, drill-down and roll-

up, sliding window queries) are important features of the pro-

posed approach. A customized form of a so-called tilted time

frame is used to compress the time dimension. In this con-

figuration, a separate cube is constructed for each time frame,

where the cubes for the most recent times are kept more de-

tailed, while the cubes for older times are kept less detailed.

Each cube stores the statistics values in the interval forms

(it stores the value and also the time range that value is valid)

instead of storing the single values. Storing the data in in-

terval forms enables the time range queries, not only within

a cube, but also between the different cubes. This feature

supports querying the system for any given time range of the

input stream.

We have tested the proposed solution by using a stream of

execution trace events gathered by the LTTng kernel tracer.

The results show the possibility and efficiency of of perform-

ing OLAP-based multilevel multidimensional analysis over a

live trace stream. Having this possibility, this technique may

be extended to monitor the system runtime behaviour and de-

tect different host and network based problems and attacks.

Several experimental results indicate the memory usage

and response times of the proposed method for different cases

and configurations. The results generally show that the mem-

ory and speed of the proposed method is reasonable and ef-

ficient. Indeed, for the range queries of any arbitrary length

time ranges, the results show that the response time is unre-

lated to the size of the range. This achievement is important as

the proposed solution enables us to efficiently perform long-

lived historical (time-based) queries.

We defined the partial cubing using statically defined met-

rics. However, a possible future work will be to dynami-

cally choose the non-leaf cuboids to be materialized, or to

dynamically switch between two solutions (minimal and par-

tial) based on the users’ feedback or the defined queries. Ex-

tending the proposed solution to detect system problems and

conduct complex analyses with data mining techniques is an-

other possible future work.
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