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Abstract—Unlike arrays and tables, histograms in Python have usually been
denied their own object, and have been represented as a single operation
producing several arrays. Boost-histogram is a new Python library that provides
histograms that can be filled, manipulated, sliced, and projected as objects.
Building on top of the Boost libraries’ Histogram in C++14 provided interesting
distribution and design challenges with useful solutions. This is meant to be
a foundation that others can build on; in the Scikit-HEP project1, a physicist
friendly front-end "Hist" and a conversion package "Aghast" are already being
designed around boost-histogram.

Index Terms—Histogram, Analysis, Data processing, Data reduction, NumPy,
Aggregation

Motivation

As an example of a problem that becomes much easier with
histograms as objects, let’s look at the Python 3 adoption of several
libraries using PyPI download statistics. There are three columns
of interest: The package name, the date of the download, and
the Python version used when downloading the package. In order
to look at trends, you will want to answer questions about the
download behavior over time ranges, such as what is the fraction
of Python 2 downloads out of all downloads for each month.
Let’s look at what a solution to this would entail using traditional
histogramming methods [NumPy]:

• Date: You could make a histogram over datetime ob-
jects, but then you will be responsible for finding the
bin range (dates are just large numbers), probably using
np.searchsorted on the edges array, and then making
slices in the binned array yourself.

• Python version: You would have to force some sort of
artificial binning scheme, such as one with edges [2,
3.0, 3.59, 3.69, 3.79, 4], in order to collect
information for each Python version of interest. You would
have to use a 2D array, and keep the selections/edges
straight yourself; in practice, you would probably just
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create a Python dict of 1D histograms for each major
version.

• Package names: This would require making a dict and
storing each 2D (or set of 1D) histograms manually.
NumPy does not support category axes or strings.

If your data doesn’t fit into memory, you will have to build in
the batching and combining yourself. For each piece.

Now look at this with an object-based Histogram library, such
as boost-histogram:

• Package names: This can be string categories.
• Python version: You could simply multiply by 10 and

make these int categories, or just use string categories.
• Date: Use a regular spaced binning from start to stop in

the resolution you are interested, such as months. Use the
loc indexer to convert when slicing. No manual tracking
or searching. Use rebinning to convert months into years
in one step.

In the object-based version, you fill once. If your data doesn’t
fit into memory, just fill in batches. The API for ND histograms
is identical to 1D histograms, so you don’t have to use different
functions or change significant portions of code even if you add a
new axes later.

Now let’s look at using the object to make a series of plots,
with one shown in Figure 12. The code required to make the plot
is shown below, with minor formatting details removed.

for name in hist.axes[0]:
fig, ax = plt.subplots()
ax.set_title(name)
for vers in hist.axes[1]:

dhist = hist[bh.loc(name), bh.loc(vers), :]
(dt,) = d.axes.centers
xs = mpl.dates.date2num(pd.to_datetime(dt))
ax.plot_date(xs, dhist, label=f"{vers/10}")

Note how all the computation, and the version information is
stored in a single histogram object. The datetime centers are
accessible after the package and version number are selected.
Looping over the categories is trivial. Since the histogram is
already filled, there are no other loops over the data to slow down
manipulation. We could rebin or set limints or sum over axes
cleanly as well.

2. Code available at https://github.com/scikit-hep/scikit-hep-orgstats
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Fig. 1: A downloads vs. time histogram plot for iMinuit [iMinuit] by Python version, made with Matplotlib [Matplotlib].

Introduction

In the High Energy Physics (HEP) community, histogramming is
vital to most of our analysis. As part of building tools in Python
to provide a friendly and powerful alternative to the ROOT C++
analysis stack [ROOT], histogramming was targeted as an area in
the Python ecosystem that needed significant improvement. The
"histograms are objects" mindset is a general, powerful way of
interacting with histograms that can be utilized across disciplines.
We have built boost-histogram in cooperation with the Boost C++
community [Boost] for general use, and also have separate more
specialized tools built on top of boost-histogram that customize it
for HEP analysis (which will be discussed briefly at the end of this
paper).

At the start of the project, there were many existing histogram
libraries for Python (at least 24 were identified by the authors),
but none of them fulfilled the requirements and expectations of
users coming from custom C++ analysis tools. Four key areas
were identified as key to a good library for creating histograms:
Design, Flexibility, Performance, and Distribution.

Before we continue, a brief description of a histogram should
suffice to set the stage until we describe boost-histogram’s ap-
proach in more detail. A histogram reduces an arbitrarily large
dataset into a finite set of bins. A histogram consists of one or more
axes (sometimes called "binnings") that describe a conversion
from data coordinates to bin coordinates. The data coordinates
may be continuous or discrete (often called categories); the bin
coordinates are always discrete. In NumPy [NumPy], this con-
version is internally derived from a combination of the bin and
range arguments. Each bin in the histogram stores some sort of
aggregate information for each value that falls into it via the axes
conversion. This is a simple sum in NumPy. When something
besides a sum is used, this is a "generalized histogram", which is
called a binned_statistic in scipy.stats [SciPy]; for
our purposes, we will avoid this distinction for the sake of brevity,
but our histogram definition does include generalized histograms.
Histograms often have an extra "weight" value that is available to
this aggregate (a weighted sum in NumPy).

Almost as important as defining what a histogram is limiting
what a histogram is not. Notice the missing item above: a his-
togram, in this definition, is not a plot or a visual aid. It is not
a plot any more than a NumPy array is a plot. You can plot a
Histogram, certainly, and customisations for plotting are useful
(much as Pandas has custom plotting for Series [Pandas]), but that
should not part of a core histogram library, and is not part of
boost-histogram (though most tutorials include how to plot using
Matplotlib [Matplotlib]).

The first area identified was Design; here many popular li-
braries fell short. Histograms need to be represented as an object,

rather than a collection of NumPy arrays, in order to naturally
manipulate histograms after filling. You should be able to continue
to fill a histogram after creating it as well; filling in one pass
is not always possible due to memory limits or live data taking
conditions. Once a histogram is filled, it should be possible to
perform common operations on it, such as rebinning to a courser
binning scheme, projecting on a subset of axes, selecting a subset
of bins then working with or summing over just that piece, and
more. You should be able easily sum histograms, such as from
different threads. You also should be able to easily access the
transform between data coordinates and bin coordinates for each
axes. Axis should be able to store extra information, such as a title
or label of some sort, to assist the user and external plotting tools.

The second area identified was Flexibility; there are a wide
range of things a histogram should be able to do; these tradi-
tionally are split into different functions and objects, but as we
show, a clear, consistent design makes it possible to unify around a
single object. Axes should support several forms of binning: vari-
able width binnings, regularly spaced binnings (a performance-
optimized subset of variable binning), and categorical binning.
Out-of-range bins (called flow bins, discussed later) are also key
for enabling lossless sums over a partial collection of axes. Axes
should also be able to optionally grow when a fill is out of range
instead. The bins themselves should support simple sums, like
NumPy, but should also support means (sometimes called profile
histograms). High-precision weighted summing is also useful.
Finally, if you add a sample parameter to the fill, you can also
keep track of the variance for each bin.

The third area identified was Performance; when dealing
with very large datasets that will not fit in memory, the filling
performance becomes critical. High performance filling is also
useful in real-time applications. A highly performance histogram
library should support fast filling with a compiled loop, it should
avoid reverting to a slower O(n) lookup when filling a regularly
spaced axes, and it should be able to take advantage of multiple
cores when filling from a large dataset. NumPy, for example, does
do well for a single regularly spaced axes, but it still does not
optimize for two regularly spaced axes (an image is an example of
a common regularly spaced 2D histogram).

The fourth and final area identified was Distribution. A great
library is not useful if no one can install it; it is especially
important that students and inexperienced users be able to install
the histogramming package. This is one of Python’s strengths
compared to something like C++, but the above requirements
necessitate compiled components, so this is important to get right.
It also needed to work flawlessly in virtual environments and in
the Conda package manager. It also needed to be available on as
many platforms and for as many Python versions as possible to
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Fig. 2: An example of a 1D-histogram.

support both old and new data acquisition and analysis systems.
About a year ago, a new C++14 library was proposed to the

Boost C++ libraries called Boost.Histogram; it was unanimously
accepted and released as part of the Boost C++ libraries version
1.70 after the review process. It was a well designed header-only
package that fulfilled exactly what we wanted, but in C++14 rather
than Python. A proposal was made to get a full-featured Python
binding developed as part of an institute for sustainable software
for HEP [IRIS-HEP], as one of the foundations for a Python
based software stack being designed to be part of the Scikit-
HEP community [SkHEP]. We built boost-histogram for Python in
close collaboration with the original Histogram for Boost author,
Hans Dembinski, who had always intended Boost.Histogram to be
accessible from Python. Due to this close collaboration, concepts
and design closely mimic the spirit of the Boost counterpart.

An example of the boost-histogram library approach, creating
a 1D-histogram and adding values, is shown below, with results
plotted in Figure 2:

import boost_histogram as bh
import numpy as np
import matplotlib.pyplot as plt

ax = bh.axes.Regular(100, start=-5, stop=5)
hist = bh.Histogram(ax)

hist.fill(np.random.randn(1_000_000))

plt.bar(hist.axes[0].centers,
hist.view(),
width=hist.axes[0].widths)

For future code snippets, the imports used above will be assumed.
Using .view() is optional, but is included to make these
explicit. You can access ax as hist.axes[0]. Note that boost-
histogram is not plotting; this is simply accessing histogram prop-
erties and leveraging existing Matplotlib functionality. A similar
example, but this time in 2D, is shown in Figure 3, illustrating the
identical API regardless of the number of dimensions:

hist_2d = bh.Histogram(bh.axis.Regular(100, -3, 3),
bh.axis.Regular(100, -3, 3))

hist_2d.fill(np.random.randn(1_000_000),
np.random.randn(1_000_000))

X, Y = hist_2d.axes.centers
plt.pcolormesh(X.T, Y.T, hist_2d.view().T)
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Fig. 3: An example of a 2D-histogram.
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Fig. 4: The components of a histogram, shown for a 2D histogram.

Boost-histogram is available on PyPI and conda-forge, and the
source is BSD licensed and available on GitHub3. Extensive
documentation is available on ReadTheDocs4.

The Design of a Histogram

Let’s revisit our description of a histogram, this time mapping
boost-histogram components to each piece. See Figure 4 for
an example of how these visually fit together to create an 2D
histogram.

The components in a bin are the smallest atomic piece
of boost-histogram, and are called Accumulators. Four such
accumulators are available. Sum just provides a high-accuracy
floating point sum using the Neumaier algorithm [Neu74], and is
automatically used for floating point histograms. WeightedSum
provides an extra term to allow sample sizes to be given. Mean
stores a mean instead of a sum, created what is sometimes called
a "profile histogram". And WeightedMean adds an extra term
allowing the user to provide samples. Accumulators are like a 0D
or scalar histogram, much like dtypes are like 0D scalar arrays in
NumPy.

The above accumulators are then provided in a container
called a Storage, of which boost-histogram provides several. The
available storages include choices for the four accumulators listed

3. https://github.com/scikit-hep/boost-histogram
4. https://boost-histogram.readthedocs.io

https://github.com/scikit-hep/boost-histogram
https://boost-histogram.readthedocs.io
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above (the storage using Sum is just called Double(), and is the
default; unlike the other accumulator-based storages it provides a
simple NumPy array rather than a specialized record array when
viewed). Other storages include Int64(), which stores integers
directly, AtomicInt64, which stores atomic integers, so can be
filled from different threads concurrently, and Unlimited().
which is a special growing storage that offers a no-overflow
guarantee and automatically uses the least possible amount of
memory for a dense uniform array of counters, which is very
helpful for high-dimensional histograms. It also automatically
converts to doubles if filled with a weighted fill or scaled by a
float.

The next piece of a histogram is an Axis. A Regular axis
describes an evenly spaced binning with start and end points,
and takes advantage of the simplicity of the transform to pro-
vide O(1) computational complexity. You can also provide a
Transform for a Regular axes; this is a pair of C function
pointers (possibly generated by a JIT compiler [Numba]) that
can apply a function to the transform, allowing for things like
log-scale axes to be supported at the same sort of complexity
as a Regular axis. Several common transforms are supplied,
including log and power spacings. You can also supply a list of
bin edges with a Variable axis. If you want discrete axes,
Integer provides a slightly simpler version of a Regular
axes, and IntCategory/StrCategory provide true non-
continuous categorical axes for arbitrary integers or strings, re-
spectively. Most axes have configurable end behaviors for when a
value is encountered by a fill that is outside the range described
by the axis, allowing underflow/overflow bins to be turned off, or
replaced with growing bins. All axes also have a metadata slot
that can store arbitrary Python objects for each axis; no special
meaning is applied by boost-histogram, but these can be used for
titles, units, or other information.

An example of a custom transform applied to a Regular
axis is shown below using Numba to create C pointers; any ctypes
pointer is accepted.
import numba

@numba.cfunc(numba.float64(numba.float64))
def exp(x):

return math.exp(x)

@numba.cfunc(numba.float64(numba.float64))
def log(x):

return math.log(x)

transform_log = bh.axis.transform.Function(log, exp)

bh.axis.Regular(10, 1, 4, transform=transform_log)

You need to provide both directions in the transform, so
that boost-histogram can add values to bins and find bin
edges. Note: don’t actually use exactly this code; there is a
bh.axis.transform.log already compiled in the library.

A Histogram is the combination of a storage and one or more
axes. Histograms always manage their own memory, though they
provide a view of that storage to Python via the buffer protocol and
NumPy. Histograms have the same API regardless of whether they
have one axes or thirty-two, and they have a rich set of interactions
defined, which will be the topic of the next section. This is an
incredibly flexible design; you can orthogonally combine any
mixture of axes and storages with associated accumulators, and
in the future, new axes types or accumulators and storages can be
added.

Interactions with a Histogram

A Histogram supports a variety of operations, many of which
use Python’s syntax to be expressed naturally and succinctly.
Histograms can be added, copied, pickled (special attention was
paid to ensure even accumulator storages are pickled quickly and
efficiently), and used most places a NumPy array is accepted.
Scaling a histogram can be done simply by using Python’s
multiplication and division operators.

Conversion to a NumPy array was carefully designed to
provide a comfortable interface for Python users. The "flow" bins,
which are the bins that are used when an event is encountered
outside the range of the current axis, are an essential feature
for partial summations. These extra bins are not as common in
NumPy based analyses (though you can create flow bins manually
in NumPy by using ±∞), so these generally are not needed or
expected when converting to an array. The array interface and all
external methods do not include flow bins by default, but they
can be activated by passing flow=True to any of the methods
that could be affected by flow bins. You can directly access a
view of the data without flow bins with .view(), and you can
include flow bins with .view(flow=True). The stride system
is descriptive enough to avoid needing to copy memory in either
case. Views of accumulator storages are NumPy record arrays,
enhanced with property-based access for the fields as well as
common computed properties, like the variance. Finally, there is
an explicit .to_numpy() method that returns the same tuple
you would get if you used one of the np.histogram functions.

Axes are presented as a property returning an enhanced tuple.
You can use access any method or property on all axes at once
directly from the AxesTuple. Array properties (like edges) are
returned in a shape that is ready for broadcasting, allowing natural
manipulations directly on the returned values. For example, the
following snippet computes the density of a histogram, regardless
of the number of dimensions:

# Compute the "volume" of each bin (useful for 2D+)
volumes = np.prod(hist.axes.widths, axis=0)

# Compute the density of each bin
density = hist.view() / hist.sum() / volumes

Unified Histogram Indexing

Indexing in boost-histogram, based on a proposal called Unified
Histogram Indexing (UHI)5, allows NumPy-like slicing and is
based on tags that can be used cross-library. They can be used to
select items from axes, sum over axes, and slice as well, in either
data or bin coordinates. One of the benefits of the axes based
design is that selections that traditionally would have required
multiple histograms now can simply be represented as an axes in
a single histogram and then UHI is used to select the subset of
interest.

The key design is that any indexing expression valid in both
NumPy and boost-histogram should return the same thing regard-
less of whether you have converted the histogram into an array via
.view() or np.asarray or not. Freedom to access the unique
parts of boost-histogram are only granted through syntax that is
not valid on a NumPy array. This is done through special tags that
are not valid in NumPy indexing. These tags do not depend on
the internals of boost-histogram, however, and could be written

5. https://boost-histogram.readthedocs.io/en/latest/usage/indexing.html

https://boost-histogram.readthedocs.io/en/latest/usage/indexing.html
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by a user or come from a different library; the are mostly simple
callables, with minor additions to make their repr’s look nicer.

There are several tags provided: bh.loc(float) con-
verts a data-coordinate into bin coordinates, and supports ad-
dition/subtraction. For example, hist[bh.loc(2.0) + 2]
would find the bin number containing 2.0, then add two to it. There
are also bh.underflow and bh.overflow tags for accessing
the flow bins.

Slicing is supported, and works much like NumPy, though
it does return a new Histogram object. You can use tags when
slicing. A single value, when mixed with a slice, will select out
a single value from the axes and remove it, just like it would in
NumPy (you will see later why this is very useful). Most interest-
ing, though, is the third parameter of a slice - normally called the
step. Stepping in histograms is not supported, as that would be a
set of non-continuous but non-discrete bins; but you can pass two
different types of tags in. The first is a "rebinning" tag, which can
modify the axis -- bh.rebin(2) would double the size of the
bins. The second is a reduction, of which bh.sum is provided;
this reduces the bins along an axes to a scalar and removes the
axes; builtins.sum will trigger this behavior as well. User
provided functions will eventually work here, as well. Endpoints
on these special operations are important; leaving off the endpoints
will include the flow bins, including the endpoints will remove the
flow bins. So hist[::sum] will sum over the entire histogram,
including the flow bins, and hist[0:len:sum] will sum over
the contents of the histogram, not including the flow bin. Note that
Python’s len is a perfectly valid in this system - start and stop tags
are simply callables that accept an axis and return an index from
-1 (underflow bin) to len(axis)+1 (overflow bin), and axes
support len().

Setting is also supported, and comes with one more nice
feature. When you set a histogram with an array and one or more
endpoints are empty and include a flow bin, you have two options;
you can either match the inner size, which will leave the flow
bin(s) alone, or you can match the total size, which will fill the
flow bins too. For example, in the following snippet the array can
be either size 10 or size 12:
hist = bh.Histogram(bh.axis.Regular(10, 0, 1))
hist[:] = np.arange(10) # Fills regular bins
hist[:] = np.arange(12) # Fills flow bins too

You can force the flow bins to be explicitly excluded if you want
to by adding endpoints to the slice:
hist[0:len] = np.arange(10)

Finally, for advanced indexing, dictionaries are supported, where
the key is the axis number. This allows easy access into a
large number of axes, or simple programmatic access. With
dictionary-based indexing, Ellipsis are not required. There is also
a .project(*axes) method, which allows you to sum over all
axes except the ones listed, which is the inverse to listing ::sum
operations on the axes you want to remove.

Performance when Filling

A histogram can be viewed as a lossy data compression tool;
you lose the exact details of each data point, but you have a
have a representation that does not depend on the number of data
points and has several very useful properties for computation. One
common use beyond plotting is distribution fitting; you can fit an
arbitrarily large number of data points to a distribution as long as
you choose a binning dense enough to capture the details of your

Setup Single threaded X Multithreaded X

NumPy 1D 74.5 ± 2.4 ms 1
BH 1D 41.6 ± 0.7 ms 1.8 13.3 ± 0.2 ms 5.5
BHNP 1D 43.1 ± 0.8 ms 1.7 13.8 ± 0.2 ms 5.4
NumPy 2D 874 ± 22 ms 1
BH 2D 77.6 ± 0.6 ms 11 28.7 ± 0.7 ms 30
BHNP 2D 85 ± 3 ms 10 29.6 ± 0.5 ms 29

TABLE 1: Comparison of several filling methods and NumPy. BH
stands for boost-histogram object mode (as seen above). BHNP
stands for boost-histogram NumPy clone, which provides the same
interface as NumPy but powered by Boost.Histogram calculations.
Multithreaded was obtained by passing threads=8 while filling.
The X column is a comparison against NumPy. Measurements done
on an 8 core 16 MBP, 2.4 GHz, Regular binning, 10M values, 32-bit
floats.

distribution function. The performance of the fit is based on the
number of bins, rather than the number of measurements made.
Many distribution fitting packages available outside of HEP, such
as lmfit [LMFIT], are designed to work with binned data, and
binned fits are common in HEP as well.

Filling performance was a key design goal for boost-
histogram. In Table 1 you can see a comparison of filling methods
with NumPy. The first comparison, a 1D histogram, shows a
nearly 2x speedup compared to NumPy on a single core. For a
1D Regular axes, NumPy has a custom fill routine that takes
advantage of the regular binning to avoid an edge lookup. If you
use multiple cores, you can get an extra 2x-4x speedup. Note
that histogramming is not trivial to parallelize. Internally, boost-
histogram is just using simple Python threading and relying on
releasing the GIL while it fills multiple histograms; the histograms
are then added into your current histogram. The overhead of doing
the copy must be small compared to the fill being done.

If we move down the table to the 2D case, you will see Boost-
histogram pull away from NumPy’s 2D regular bin edge lookup
with an over 10x speedup. This can be further improved to about
30x using threads. In both cases, boost-histogram is not actually
providing specialized code for the 1D or 2D cases; it is the same
variadic vector that it would use for any number and any mixture
of axes. So you can expect excellent performance that scales well
with the complexity of your problem.

The rows labeled "BHNP" deserve special mention. A spe-
cial module is provided, bh.numpy, that contains functions that
exactly mimic the functions in NumPy. They even use a spe-
cial, internal axes type that mimics NumPy’s special handling
of the final upper edge, including it in the final bin. You can
use it as a drop-in replacement for the histogram functions in
NumPy, and take advantage of the performance boost avail-
able. You can also add the threads= keyword. You can pass
histogram=bh.Histogram to return a Histogram object, and
you can select the storage with storage=, as well. Combined
with the ability to convert Histograms via .to_numpy(), this
should enable smooth transitions between boost-histogram and
NumPy for Histogram filling.

One further performance benefit comes from the flexibility
of combining axes. In a traditional, NumPy based analysis, you
may have a collection of related histograms with different cuts or
criteria for filling. We have already seen that it is possible to use
axis and then access the portion you want later with indexing; but
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if you have categories or boolean selectors, you can still combine
multiple histograms into one. Then you no longer loop over the
input multiple times, but just once, filling the histogram, and then
make your selections later. Here is an example:
value_ax = bh.axis.Regular(100, -5, 5)
valid_ax = bh.axis.Integer(0, 2,

underflow=False,
overflow=False)

label_ax = bh.axis.StrCategory([], growth=True)

hist = bh.Histogram(value_ax, valid_ax, label_ax)

hist.fill([-2, 2, 4, 3],
[True, False, True, True],
["a", "b", "a", "b"])

all_valid = hist[:, bh.loc(True), ::sum]
a_only = hist[..., bh.loc("a")]

Above, we create three axes. The second axis is a boolean axes,
which hold a valid/invalid bool flag. The third axis holds some
sort of string-based category, which could label datasets, for
example. We then fill this in one shot. Then, we can select the
histograms that we might have originally filled separately, like the
all_valid histogram, which is a 1D histogram that contains all
labels and all events where valid=True. In the second selection,
a_only, a 2D histogram is returned that consists of all the events
labeled with "a".

This way of thinking can radically change how you design for
a problem. Instead of running a series of histograms over a piece
of data every time you want a new selection, you can build a large
histogram that contains all the information you want, prebinned
and ready to select. This combination of multiple histograms and
later selecting or summing along axes is a close parallel to the way
Pandas combines multiple NumPy arrays in a single DataFrame
using columns, allowing you to group and select from the full set.

Distributing

Building a Python library designed to work absolutely anywhere
on a C++14 code base provided several challenges. Binding for
boost-histogram is accomplished with PyBind11 [PyBind], and all
Boost dependencies are included via git submodules and header-
only, so a compatible compiler is the only requirement for building
if a binary is not available. Serialization, which optionally depends
on the non-header only Boost.Serialization, was redesigned to
work on top of Python tuple picking in PyBind11 reusing the same
interface internally in Boost.Histogram (one of the many benefits
of a close collaboration with the original author).

The first phase of wheel building was a custom set of shareable
YAML template files for Azure DevOps. This tool, azure-wheel-
helpers6, became the basis for building several other projects in
Scikit-HEP, including the iMinuit fitter7 and the new Awkward
1.0 [Awkward]. Building a custom wheel production from scratch
is somewhat involved; and since boost-histogram is expected to
support Python 2.7 until after the first LTS release, it had to
include Python 2.7 builds, which make the process even more
convoluted. To get C++14 support in manylinux1, a custom docker
repository (skhep/manylinuxgcc8) was developed with GCC
9. The azure-wheel-helpers repository is a good place to look for
anyone wishing to learn about wheel building, but recently boost-
histogram moved to a better solution.

6. https://github.com/scikit-hep/azure-wheel-helpers
7. https://github.com/scikit-hep/iminuit
8. https://github.com/scikit-hep/manylinuxgcc

As the cibuildwheel [CIBW] project matured, boost-histogram
became the first Scikit-HEP azure-wheel-helpers project to mi-
grate over. Several of the special cases that were originally
supported in boost-histogram are now supported by cibuildwheel,
and it allows a custom docker image, so the modified manylinux1
image is available as well. This has freed us from lock-in to a
particular CI provider; boost-histogram now uses GitHub Actions
for everything except ARM and Power PC builds, which are done
on Travis CI. This greatly simplified the release process. The
scikit-hep.org developer pages now have extensive tutorials for
new developers, including setting up wheels; much of that work
was inspired by boost-histogram.

An extremely important resource for HEP is Conda; many of
our projects (such as CERN’s ROOT toolkit) cannot reasonably
(at least yet) be distributed by pip. Scikit-HEP has a large number
of packages in conda-forge; and boost-histogram is also available
there, including ARM and PowerPC builds. Only Python 2.7 on
Windows is excluded due to conda-forge policies on using extra
SDKs with Python.

Conclusion and Plans

The future for histogramming in Python is bright. At least
three more projects are being developed on top or using boost-
histogram. Hist9 is a histogram front-end for analysts, much like
Pandas is to NumPy, it is intended to make plotting, statistics,
file IO, and more simple and easy; a Google Summer of Code
student is working on that. One feature of note is named axes;
you can assign names to axes and then fill and index by name.
Conversions between histogram libraries, such as the HEP-specific
ROOT toolkit and file format are being developed in Aghast10.
The mplhep11 library is making common plot styles and types for
HEP easy to make, including plots with histograms. The scikit-
hep-tutorials12 project is beginning to show how the different
pieces of Scikit-HEP packages work together, and one of the first
tutorials shows boost-histogram and Aghast. And a new library,
histoprint13, is being reviewed for including in Scikit-HEP to
print up to five histograms at a time on the command line, either
from ROOT or boost-histogram.

An example of mplhep and boost-histogram interaction is
shown in Figure 5:

import mplhelp
mplhep.histplot(hist)

We hope that more libraries will be interested in building on top
of boost-histogram. It was designed to be a powerful back-end
for any front-end, with Hist planned as the reference front-end
implementation. The high performance, excellent flexibility, and
universal availability make an ideal choice for any toolkit.

In conclusion, boost-histogram provides a powerful abstraction
for histograms as a collection of axes with an accumulator-backed
storage. Filling and manipulating histograms is simple and natural,
while being highly performant. In the future, Scikit-HEP is rapidly
building on this foundation and we expect other libraries may want
to build on this as well. At the same time, Boost.Histogram in
C++ is continuously improved and expanded with new features,

9. https://github.com/scikit-hep/hist
10. https://github.com/scikit-hep/aghast
11. https://github.com/scikit-hep/mplhep
12. https://github.com/scikit-hep/scikit-hep-tutorials
13. https://github.com/scikit-hep/histoprint

https://github.com/scikit-hep/azure-wheel-helpers
https://github.com/scikit-hep/iminuit
https://github.com/scikit-hep/manylinuxgcc
https://github.com/scikit-hep/hist
https://github.com/scikit-hep/aghast
https://github.com/scikit-hep/mplhep
https://github.com/scikit-hep/scikit-hep-tutorials
https://github.com/scikit-hep/histoprint
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Fig. 5: An example of a 1D plot with mplhep. It is not completely
trivial to get a proper "skyline" histogram plot from Matplotlib with
prebinned data, while here it is simple.

from which boost-histogram benefits nearly automatically. The
shared code-base with C++ allows Python to profit, while boost-
histogram in C++ is profiting from ideas feed back from Python,
creating a win-win situation for all parties.
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