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A Novel Pipeline for Cell Instance Segmentation,
Tracking and Motility Classification of Toxoplasma
Gondii in 3D Space

Seyed Alireza Vaezi**, Gianni Orlando*, Mojtaba Fazli®, Gary Wardl, Silvia Moreno*, Shannon Quinn*

Abstract—Toxoplasma gondii is the parasitic protozoan that causes dissem-
inated toxoplasmosis, a disease that is estimated to infect around one-third
of the world’s population. While the disease is commonly asymptomatic, the
success of the parasite is in large part due to its ability to easily spread through
nucleated cells. The virulence of T. gondii is predicated on the parasite’s motility.
Thus the inspection of motility patterns during its lytic cycle has become a topic
of keen interest. Current cell tracking projects usually focus on cell images
captured in 2D which are not a true representation of the actual motion of a
cell. Current 3D tracking projects lack a comprehensive pipeline covering all
phases of preprocessing, cell detection, cell instance segmentation, tracking,
and motion classification, and merely implement a subset of the phases. More-
over, current 3D segmentation and tracking pipelines are not targeted for users
with less experience in deep learning packages. Our pipeline, TSeg, on the
other hand, is developed for segmenting, tracking, and classifying the motility
phenotypes of T. gondii in 3D microscopic images. Although TSeg is built initially
focusing on T. gondii, it provides generic functions to allow users with similar
but distinct applications to use it off-the-shelf. Interacting with all of TSeg’s
modules is possible through our Napari plugin which is developed mainly off the
familiar SciPy scientific stack. Additionally, our plugin is designed with a user-
friendly GUI in Napari which adds several benefits to each step of the pipeline
such as visualization and representation in 3D. TSeg proves to fulfill a better
generalization, making it capable of delivering accurate results with images of
other cell types.

Introduction

Quantitative cell research often requires the measurement of
different cell properties including size, shape, and motility. This
step is facilitated using segmentation of imaged cells. With flu-
orescent markers, computational tools can be used to complete
segmentation and identify cell features and positions over time.
2D measurements of cells can be useful, but the more difficult task
of deriving 3D information from cell images is vital for metrics
such as motility and volumetric qualities.

Toxoplasmosis is an infection caused by the intracellular
parasite Toxoplasma gondii. T. gondii is one of the most suc-
cessful parasites, infecting at least one-third of the world’s pop-
ulation. Although Toxoplasmosis is generally benign in healthy
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individuals, the infection has fatal implications in fetuses and
immunocompromised individuals [SG12] . T. gondii’s virulence
is directly linked to its lytic cycle which is comprised of invasion,
replication, egress, and motility. Studying the motility of T. gondii
is crucial in understanding its lytic cycle in order to develop
potential treatments.

For this reason, we present a novel pipeline to detect, segment,
track, and classify the motility pattern of T. gondii in 3D space.
One of the main goals is to make our pipeline intuitively easy
to use so that the users who are not experienced in the fields of
machine learning (ML), deep learning (DL), or computer vision
(CV) can still benefit from it. The other objective is to equip it with
the most robust and accurate set of segmentation and detection
tools so that the end product has a broad generalization, allowing
it to perform well and accurately for various cell types right off
the shelf.

PlantSeg uses a variant of 3D U-Net, called Residual 3D U-
Net, for preprocessing and segmentation of multiple cell types
[WCVT20]. PlantSeg performs best among Deep Learning algo-
rithms for 3D Instance Segmentation and is very robust against
image noise [KPR"21]. The segmentation module also includes
the optional use of CellPose [SWMP21]. CellPose is a generalized
segmentation algorithm trained on a wide range of cell types
and is the first step toward increased optionality in TSeg. The
Cell Tracking module consolidates the cell particles across the z-
axis to materialize cells in 3D space and estimates centroids for
each cell. The tracking module is also responsible for extracting
the trajectories of cells based on the movements of centroids
throughout consecutive video frames, which is eventually the input
of the motion classifier module.

Most of the state-of-the-art pipelines are restricted to 2D space
which is not a true representative of the actual motion of the
organism. Many of them require knowledge and expertise in pro-
gramming, or in machine learning and deep learning models and
frameworks, thus limiting the demographic of users that can use
them. All of them solely include a subset of the aforementioned
modules (i.e. detection, segmentation, tracking, and classification)
[SWMP21]. Many pipelines rely on the user to train their own
model, hand-tailored for their specific application. This demands
high levels of experience and skill in ML/DL and consequently
undermines the possibility and feasibility of quickly utilizing an
off-the-shelf pipeline and still getting good results.

To address these we present TSeg. It segments T. gondii cells
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Fig. 1: The overview of TSeg’s architecture.

in 3D microscopic images, tracks their trajectories, and classifies
the motion patterns observed throughout the 3D frames. TSeg is
comprised of four modules: pre-processing, segmentation, track-
ing, and classification. We developed TSeg as a plugin for Napari
[SLE"22] - an open-source fast and interactive image viewer for
Python designed for browsing, annotating, and analyzing large
multi-dimensional images. Having TSeg implemented as a part of
Napari not only provides a user-friendly design but also gives more
advanced users the possibility to attach and execute their custom
code and even interact with the steps of the pipeline if needed.
The preprocessing module is equipped with basic and extra filters
and functionalities to aid in the preparation of the input data.
TSeg gives its users the advantage of utilizing the functionalities
that PlantSeg and CellPose provide. These functionalities can be
chosen in the pre-processing, detection, and segmentation steps.
This brings forth a huge variety of algorithms and pre-built models
to select from, making TSeg not only a great fit for T. gindii, but
also a variety of different cell types.

The rest of this paper is structured as follows: After briefly re-
viewing the literature in Related Work, we move on to thoroughly
describe the details of our work in the Method section. Following
that, the Results section depicts the results of comprehensive tests
of our plugin on T. gondii cells.

Related Work

The recent solutions in generalized and automated segmentation
tools are focused on 2D cell images. Segmentation of cellular
structures in 2D is important but not representative of realistic
environments. Microbiological organisms are free to move on the
z-axis and tracking without taking this factor into account cannot
guarantee a full representation of the actual motility patterns.

As an example, Fazli et al. [FVMQI18] identified three distinct
motility types for T. gondii with two-dimensional data, however,
they also acknowledge and state that based established heuristics
from previous works there are more than three motility phenotypes
for T. gondii. The focus on 2D research is understandable due to
several factors. 3D data is difficult to capture as tools for capturing
3D slices and the computational requirements for analyzing this
data are not available in most research labs. Most segmentation
tools are unable to track objects in 3D space as the assignment of
related centroids is more difficult. The additional noise from cap-
ture and focus increases the probability of incorrect assignment.
3D data also has issues with overlapping features and increased
computation required per frame of time.

Fazli et al. [FVMQ18] studies the motility patterns of T. gondii
and provides a computational pipeline for identifying motility
phenotypes of T. gondii in an unsupervised, data-driven way. In
that work Ca2+ is added to T. gondii cells inside a Fetal Bovine
Serum. T. gondii cells react to Ca2+ and become motile and
fluorescent. The images of motile T. gondii cells were captured
using an LSM 710 confocal microscope. They use Python 3 and
associated scientific computing libraries (NumPy, SciPy, scikit-
learn, matplotlib) in their pipeline to track and cluster the trajecto-
ries of T. gondii. Based on this work Fazli et al. [FVM ™ 18] work
on another pipeline consisting of preprocessing, sparsification, cell
detection, and cell tracking modules to track T. gondii in 3D
video microscopy where each frame of the video consists of image
slices taken 1 micro-meters of focal depth apart along the z-axis
direction. In their latest work Fazli et al. [FSA™19] developed a
lightweight and scalable pipeline using task distribution and paral-
lelism. Their pipeline consists of multiple modules: reprocessing,
sparsification, cell detection, cell tracking, trajectories extraction,
parametrization of the trajectories, and clustering. They could
classify three distinct motion patterns in T. gondii using the same
data from their previous work.

While combining open source tools is not a novel architecture,
little has been done to integrate 3D cell tracking tools. Fazeli et
al. [FRF"20] motivated by the same interest in providing better
tools to non-software professionals created a 2D cell tracking
pipeline. This pipeline combines Stardist [WSH*20] and Track-
Mate [TPS " 17] for automated cell tracking. This pipeline begins
with the user loading cell images and centroid approximations to
the ZeroCostDL4Mic [vCLJ"21] platform. ZeroCostDL4Mic is
a deep learning training tool for those with no coding expertise.
Once the platform is trained and masks for the training set are
made for hand-drawn annotations, the training set can be input
to Stardist. Stardist performs automated object detection using
Euclidean distance to probabilistically determine cell pixels versus
background pixels. Lastly, Trackmate uses segmentation images to
track labels between timeframes and display analytics.

This Stardist pipeline is similar in concept to TSeg. Both
create an automated segmentation and tracking pipeline but TSeg
is oriented to 3D data. Cells move in 3-dimensional space that
is not represented in a flat plane. TSeg also does not require
the manual training necessary for the other pipeline. Individuals
with low technical expertise should not be expected to create
masks for training or even understand the training of deep neural
networks. Lastly, this pipeline does not account for imperfect
datasets without the need for preprocessing. All implemented
algorithms in TSeg account for microscopy images with some
amount of noise.

Wen et al. [WMV " 21] combines multiple existing new tech-
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nologies including deep learning and presents 3DeeCellTracker.
3DeeCellTracker segments and tracks cells on 3D time-lapse
images. Using a small subset of their dataset they train the deep
learning architecture 3D U-Net for segmentation. For tracking,
a combination of two strategies was used to increase accuracy:
local cell region strategies, and spatial pattern strategy. Kapoor
et al. [KC21] presents VollSeg that uses deep learning methods
to segment, track, and analyze cells in 3D with irregular shape
and intensity distribution. It is a Jupyter Notebook-based Python
package and also has a UI in Napari. For tracking, a custom
tracking code is developed based on Trackmate.

Many segmentation tools require some amount of knowledge
in Machine or Deep Learning concepts. Training the neural
network in creating masks is a common step for open-source
segmentation tools. Automating this process makes the pipeline
more accessible to microbiology researchers.

Method
Data

Our dataset consists of 11 videos of T. gondii cells under a
microscope, obtained from different experiments with different
numbers of cells. The videos are on average around 63 frames in
length. Each frame has a stack of 41 image slices of size 500x502
pixels along the z-axis (z-slices). The z-slices are captured 1um
apart in optical focal length making them 402umx401umx40um
in volume. The slices were recorded in raw format as RGB TIF
images but are converted to grayscale for our purpose. This data
is captured using a PlanApo 20x objective (NA = 0:75) on a
preheated Nikon Eclipse TE300 epifluorescence microscope. The
image stacks were captured using an iXon 885 EMCCD camera
(Andor Technology, Belfast, Ireland) cooled to -700C and driven
by NIS Elements software (Nikon Instruments, Melville, NY) as
part of related research by Ward et al. [LRK ™ 14]. The camera was
set to frame transfer sensor mode, with a vertical pixel shift speed
of 1:0 ps, vertical clock voltage amplitude of +1, readout speed
of 35MHz, conversion gain of 3:8x, EM gain setting of 3 and 22
binning, and the z-slices were imaged with an exposure time of
16ms.

Software

Napari Plugin: TSeg is developed as a plugin for Napari -
a fast and interactive multi-dimensional image viewer for python
that allows volumetric viewing of 3D images [SLE"22]. Plugins
enable developers to customize and extend the functionality of
Napari. For every module of TSeg, we developed its corresponding
widget in the GUI, plus a widget for file management. The widgets
have self-explanatory interface elements with tooltips to guide
the inexperienced user to traverse through the pipeline with ease.
Layers in Napari are the basic viewable objects that can be shown
in the Napari viewer. Seven different layer types are supported
in Napari: Image, Labels, Points, Shapes, Surface, Tracks, and
Vectors, each of which corresponds to a different data type,
visualization, and interactivity [SLE"22]. After its execution, the
viewable output of each widget gets added to the layers. This
allows the user to evaluate and modify the parameters of the
widget to get the best results before continuing to the next widget.
Napari supports bidirectional communication between the viewer
and the Python kernel and has a built-in console that allows users
to control all the features of the viewer programmatically. This
adds more flexibility and customizability to TSeg for the advanced
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user. The full code of TSeg is available on GitHub under the MIT
open source license at https://github.com/salirezav/tseg. TSeg can
be installed through Napari’s plugins menu.

Computational Pipeline

Pre-Processing: Due to the fast imaging speed in data
acquisition, the image slices will inherently have a vignetting
artifact, meaning that the corners of the images will be slightly
darker than the center of the image. To eliminate this artifact we
added adaptive thresholding and logarithmic correction to the pre-
processing module. Furthermore, another prevalent artifact on our
dataset images was a Film-Grain noise (AKA salt and pepper
noise). To remove or reduce such noise a simple gaussian blur
filter and a sharpening filter are included.

Cell Detection and Segmentation: TSeg’s Detection and
Segmentation modules are in fact backed by PlantSeg and Cell-
Pose. The Detection Module is built only based on PlantSeg’s
CNN Detection Module [WCV120] , and for the Segmentation
Module, only one of the three tools can be selected to be executed
as the segmentation tool in the pipeline. Naturally, each of the tools
demands specific interface elements different from the others since
each accepts different input values and various parameters. TSeg
orchestrates this and makes sure the arguments and parameters are
passed to the corresponding selected segmentation tool properly
and the execution will be handled accordingly. The parameters
include but are not limited to input data location, output directory,
and desired segmentation algorithm. This allows the end-user
complete control over the process and feedback from each step
of the process. The preprocessed images and relevant parameters
are sent to a modular segmentation controller script. As an effort
to allow future development on TSeg, the segmentation controller
script shows how the pipeline integrates two completely different
segmentation packages. While both PlantSeg and CellPose use
conda environments, PlantSeg requires modification of a YAML
file for initialization while CellPose initializes directly from com-
mand line parameters. In order to implement PlantSeg, TSeg gen-
erates a YAML file based on GUI input elements. After parameters
are aligned, the conda environment for the chosen segmentation
algorithm is opened in a subprocess. The $CONDA_PREFIX
environment variable allows the bash command to start conda and
context switch to the correct segmentation environment.

Tracking: Features in each segmented image are found
using the scipy label function. In order to reduce any leftover
noise, any features under a minimum size are filtered out and
considered leftover noise. After feature extraction, centroids are
calculated using the center of mass function in scipy. The centroid
of the 3D cell can be used as a representation of the entire
body during tracking. The tracking algorithm goes through each
captured time instance and connects centroids to the likely next
movement of the cell. Tracking involves a series of measures in or-
der to avoid incorrect assignments. An incorrect assignment could
lead to inaccurate result sets and unrealistic motility patterns. If the
same number of features in each frame of time could be guaranteed
from segmentation, minimum distance could assign features rather
accurately. Since this is not a guarantee, the Hungarian algorithm
must be used to associate a COST with the assignment of feature
tracking. The Hungarian method is a combinatorial optimization
algorithm that solves the assignment problem in polynomial time.
COST for the tracking algorithm determines which feature is the
next iteration of the cell’s tracking through the complete time
series. The combination of distance between centroids for all
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previous points and the distance to the potential new centroid.
If an optimal next centroid can’t be found within an acceptable
distance of the current point, the tracking for the cell is considered
as complete. Likewise, if a feature is not assigned to a current
centroid, this feature is considered a new object and is tracked as
the algorithm progresses. The complete path for each feature is
then stored for motility analysis.

Motion Classification: To classify the motility pattern of
T. gondii in 3D space in an unsupervised fashion we implement
and use the method that Fazli et. al. introduced [FSA ™ 19]. In that
work, they used an autoregressive model (AR); a linear dynamical
system that encodes a Markov-based transition prediction method.
The reason is that although K-means is a favorable clustering
algorithm, there are a few drawbacks to it and to the conventional
methods that draw them impractical. Firstly, K-means assumes Eu-
clidian distance, but AR motion parameters are geodesics that do
not reside in a Euclidean space, and secondly, K-means assumes
isotropic clusters, however, although AR motion parameters may
exhibit isotropy in their space, without a proper distance metric,
this issue cannot be clearly examined [FSA™ 19].

Conclusion and Discussion

TSeg is an easy to use pipeline designed to study the motility
patterns of T. gondii in 3D space. It is developed as a plugin
for Napari and is equipped with a variety of deep learning based
segmentation tools borrowed from PlantSeg and CellPose, making
it a suitable off-the-shelf tool for applications incorporating im-
ages of cell types not limited to T. gondii. Future work on TSeg
includes the expantion of implemented algorithms and tools in its
preprocessing, segmentation, tracking, and clustering modules.
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