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1  Introduction 

The size, complexity, and heterogeneity of biologically and medically relevant datasets have been 
dramatically increasing in recent decades in conjunction with newly developed experimental and clinical 
technologies. Innovative computational approaches have been essential in processing these datasets in 
order to glean the patterns and insights necessary to support translational research (Bourne et al., 2015). 
This combination of increasing data availability with novel method development has the potential to 
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greatly advance the field of biomedicine, but there are many unique challenges to overcome first. When 
developing and employing computational tools to extract meaningful patterns from biomedical data, 
sophisticated algorithms are required to handle the pervasive inconsistencies, sparseness, and noisiness 
unique to biomedical datasets. Clinical data, contained most commonly in electronic patient medical 
health records, can be analyzed in aggregate to uncover patterns that highlight, for instance, complex 
disease traits, disease onset, or drug reactions that would otherwise have gone unnoticed. Moreover, 
advancements in high-throughput molecular assays have generated swathes of multi-omic biological data, 
including genomic, proteomic, transcriptomic and epigenomic data. The decrease in cost of sequencing 
and related molecular assays has resulted in these tests becoming more routine in the clinic and thus has 
led to rapidly expanding sets of molecular omics data available for analysis. The integration of clinical 
data with these omics data and subsequent analysis of heterogeneous datasets is nontrivial and often 
requires modern statistical, machine learning approaches (Ritchie et al., 2015). The fitting of such models 
and analysis of their results promises the opportunity for an increased understanding of complex 
phenotypic traits associated with healthy individuals, those with disease, and the spectrum in between 
(Bersanelli et al., 2016). Here, we will highlight and describe recent, innovative ways to address the 
challenges associated with deriving meaningful patterns from biomedical data, including dealing with the 
quantity, quality, and integration of data.  
 
Cutting edge research discussed here can be broadly categorized into four main areas: (i) identifying 
patterns in clinical data (e.g., electronic health records or pathology images), (ii) utilizing and integrating 
molecular omics data (e.g., genome sequencing and gene expression data), (iii) statistical machine 
learning and graph-based method development, and (iv) computational challenges and reproducibility.  
 
2  Identifying patterns in clinical data 
 
One of the most comprehensive forms of clinical data are electronic health records (EHRs), which contain 
longitudinal health information for an individual patient at the point of care. EHRs include extensive yet 
noisy clinical notes, diagnosis and procedure codes, medication prescriptions, laboratory test 
measurements and results as well as pathology images where relevant. There has been a litany of 
observational or retrospective case-control studies that demonstrate the potential for using EHR data to 
improve our understanding of disease risk and prevalence across the general population. Moreover, 
automated analyses of histopathology images in conjunction with other clinical information can improve 
disease diagnosis and stratification. However, drawing conclusions from joint analyses of EHR data 
requires careful consideration of the biases inherent in EHR, including missing data, institutional 
discrepancies in coding practices, and high-throughput electronic phenotyping.  
 
In their paper entitled “Clinical concept embeddings learned from massive sources of multimodal medical 
data,” Beam et al. take advantage of extremely large medical data to derive clinical concept embeddings. 
These concept embeddings are a mathematical representation (i.e., a vector) of clinical events, where 
similar clinical events will have similar representations. These vectors are learned from patient medical 
records and can be subsequently used to make comparisons between patients and to use as input for 
machine learning models. Similarly, in the manuscript “Improving survival prediction using a novel 
feature selection and feature reduction framework based on the integration of clinical and molecular 

 

Pacific Symposium on Biocomputing 25:286-294(2020)

287



data,” Neums et al. perform data integration across different data modalities (e.g., clinical records and 
molecular datasets including gene expression) to improve prognosis predictions for kidney, lung and 
bladder cancers.  
 
One particularly rich source of information contained in medical records are pathology images. Pathology 
refers to the microscopic examination of body tissue for the purpose of diagnosis, to study the 
manifestation of known diseases, or for forensic analysis. Images of body tissue used by pathologists are 
included in EHRs, and though they provide highly disease-relevant information, they often require 
processing by domain experts to be used for translational research. Methods that automatically derive 
patterns from sets of pathology images are critical for reducing human error and improving diagnosis and 
disease stratification. In this session, Levy et al. will describe PathFlowAI, their automated and efficient 
workflow for processing and performing analytics and interpretation of digital pathology images. In the 
same vein, Hao et al. will present PAGE-Net, a deep learning approach that integrates histopathological 
images with genomic data for an interpretable analysis of survival.  
 
Beyond analyzing images at a microscope resolution, electron microscopy techniques enable researchers 
to observe molecular events at an intensely greater resolution. Gur et al. analyze temporal (4D) electron 
microscopy data to uncover microvascular dynamics using a temporal segmentation approach. As 
illustrated by these authors, the utility of temporal electron microscopy data can only be fully realized 
with advanced computational techniques for pattern elicitation.  
 
3  Integration and analysis of molecular omics data 
 
The dramatic drop in the cost of clinical sequencing has resulted in an unprecedented number of 
sequenced genomes available for analysis. These data include complete genome sequences for healthy 
patients as well as complete genome sequences for those with disease, “somatic” mutations in cancer 
patients derived from a genetic comparison between matched normal and tumor tissue samples, and 
transcriptome sequences for specific tissue types and even single cells. In addition, other forms of omics 
“big data” stem from high-throughput assays measuring protein-protein interactions, protein-DNA 
interactions, gene expression, and downstream functional molecular effects. Finding patterns across these 
large-scale omics data in order to increase our understanding of the molecular processes underlying 
human diseases remains a challenging task (Pasaniuc and Price, 2017).  
 
Novel work presented in this session pertaining to the integration and analysis of molecular omics data 
falls primarily into two areas: (i) data analysis to further our understanding of transcriptional and 
post-transcriptional processes and (ii) uncovering genes or pathways relevant to cancer onset and 
progression.  
 
3.1  Transcriptomics 
 
Transcription refers to the process where subsets of genes encoded in our genomes are “turned on” to 
produce corresponding RNA strands; these RNA can then code for protein molecules or directly carry out 
a variety of functions in the cell. Differing sets of genes are transcribed across different cell types, at 
different points in development, or in response to different environmental stimuli. Quite often, the 
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dysregulation of this process is linked to human diseases. As such, experimental assays to determine 
which genes are being transcribed across different tissues or in different individuals have been essential in 
uncovering key characteristics of disease.  
 
One of the issues with these experimental assays, for instance microarrays or RNA sequencing, is that the 
level of RNA transcripts can be quite low, and therefore data for certain lowly-transcribed genes can often 
be missing from experimental results. This biases all downstream analyses and can result in critical 
associations being missed. Various imputation methods now exist for filling in this missing gene 
expression data before further analysis. Bobak et al. present a thorough assessment of several 
state-of-the-art imputation methods for gene expression through a meta-analysis of distinct cohorts of 
tuberculosis patients. In addition to data sparsity, another issue with transcriptional data is its 
heterogeneity. In their paper, Tran et al. develop a way to represent the functions of heterogeneous RNA 
sequences by integrating this data with various multi-omics, interaction and annotation data.  
 
Even after genes are transcribed, there are various additional cellular processes involving RNA 
transcripts, such as RNA degradation, that can further regulate gene expression. These processes, 
collectively referred to as “post transcriptional regulation,” remain poorly understood, due in large part to 
difficulties in developing experimental techniques to directly measure relevant events. To alleviate this 
issue, Srivastava et al. present PTR Explorer, a new approach that uses proteogenomics data to identify 
and further explore post transcriptional regulatory mechanisms.  
 
3.2  Cancer driver detection 
 
As mentioned, dysregulation of gene transcription is often linked to human disease. One disease 
characterized by extensive gene dysregulation is cancer.  Despite numerous efforts over the past decade, 
comprehensively identifying the set of genes and pathways with roles in cancer onset and progression 
(i.e., “drivers”) and the mode of action for specific mutations within these genes and pathways has yet to 
be achieved. Haan et al. present a novel way to directly utilize transcriptional signatures in order to find 
cancer drivers with their method LURE. Park et al. take a different approach toward a similar goal of 
finding pathways associated with cancer phenotypes; their method uses Bayesian semi-nonnegative 
matrix tri-factorization.  
 
Tumors have several signatures which can be detected through various experimental means. As 
previously mentioned, the expression of genes within tumors is distinct from the expression of genes in 
matched normal tissue. In addition, tumors have several somatic mutations, some of which occur in 
frequently mutated genes across patient cohorts. Histopathological images of cancer tissues have several 
features that are not present in normal human tissue. More recently, researchers have found that 
epigenetic traits, including DNA hypermethylation and accessibility, are also different in tumor genomes. 
Comparing these different sources of data–all of which provide evidence that can be used for cancer 
detection and cancer type stratification–is computationally and conceptually difficult. In their paper, 
Kompa and Coker present a step toward data integration by learning a latent space of highly 
multidimensional cancer data.  
 
 
 
 
4  Interpretable and graph-based machine learning approaches 
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Statistical machine learning approaches have long been applied in the biomedical problem-space. Of the 
research presented here with a focus on method evaluation and development, there are two distinct trends: 
(i) interpretability of machine learning models to evaluate patterns in computational biology, and (ii) 
graph-based approaches to prioritize and understand relationships between concepts. 
 
4.1  Machine learning to support the interpretability of complex relationships 
 
Statistical, machine learning approaches are commonly applied for pattern recognition across biomedical 
datasets. The input to these methods is the data (across which patterns should be derived) in the form of 
an ordered list of comparable values (e.g., numbers). There are several approaches for predicting classes 
or outcomes by statistically detecting patterns across the input data. However, although these methods 
often perform quite well, they also inherently obscure the contribution of features in the input data, 
making it difficult to interpret resultant models in order to derive clinically or medically relevant insights. 
Developing more accurate models in a domain-specific context as well as increasing the interpretability of 
these models are two important goals that are addressed here.  
 
One type of machine learning classifier is a “random forest,” where feature values that can discern 
between classes in the input data are represented as nodes in a collection of decision trees. In their paper 
entitled “Tree-weighting for multi-study ensemble learners,” Ramchandran et al. consider novel ways to 
weight different trees before combining their predictions in an ensemble approach. Importantly, they 
explore how these weights correspond to the tree structure, enabling interpretation of which features 
contribute to the weighting process.  
 
There are also domain-specific applications of machine learning approaches that require novel method 
development. For instance, Stanley et al. aim to predict which sites within human proteins are susceptible 
to being cleaved by the dengue viral protease. In their paper, “Two-stage ML classifier for identifying 
host protein targets of the dengue protease,” the authors describe how to extract biochemical and protein 
secondary structure features from their input data to eventually build a highly accurate predictor; the 
eventual usage of such features by their classifier can potentially be analyzed to learn more about the 
dengue protease. Hocking and Bourque address a different biological problem, that of jointly detecting 
“peaks” in epigenomic data analysis. More specifically, the binding of transcription factor proteins to the 
genome to affect gene expression is a form of epigenetic regulation; determining the location of these 
binding sites requires the detection of “peaks” of overlapping mapped DNA sequencing reads. The 
authors’ method PeakSegPipeline can be used to detect multiple peaks jointly, and importantly, uses a 
more interpretable model to uncover peaks that overlap at the same positions.  
 
Lee et al. address yet another biologically relevant problem, the inference of gene regulatory networks 
using gene expression data. The sparseness and noisiness of gene expression data was discussed in 
Section 3.1, and the utility of biologically networks, including transcriptome networks, is further 
discussed in the next section. In their paper, the authors present a new algorithm, NO-BEARS, that 
dramatically reduces the computational complexity of previous approaches for this task and, by utilizing 
GPU computation, drops the required compute time from hours to seconds.  
 
 
4.2  Graph-based approaches to prioritize and understand relationships 
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Graphs or networks, defined by a set of nodes connected by edges, are a powerful mathematical concept 
that have been repeatedly utilized in the fields of computational biology and biomedical informatics to 
model complex relationships between entities and decipher patterns across these entities (Cowen et al., 
2017). In this session, a number of manuscripts use graphs for various applications in biomedical 
informatics.  
 
First, molecular omics data can often be represented as a graph, most commonly as protein–protein 
interaction networks. Pham and Lichtarge present a new method for an old problem in their manuscript 
entitled “Graph-based information diffusion method for prioritizing functionally related genes in 
protein-protein interaction networks.” Yao and Ramsey derive features from the same types of molecular 
networks used by Pham and Lichtarge, and use these features to improve the computational prediction of 
functional noncoding single-nucleotide polymorphisms (SNPs) in their method, CERENKOV3. Indeed, 
understanding the functional importance of SNPs that fall outside of genes remains an extremely 
challenging problem in computational biology. Many of these SNPs may have functionality with low 
penetrance, where their true effect can only be measured in the context of several other genetic changes. 
Validating the functionality of noncoding SNPs has also proved notoriously difficult.  
 
It is thought that several rare or undiagnosed diseases might have etiological origins from changes within 
noncoding parts of the genome. As mentioned, identifying such mutations is quite challenging. However, 
finding innovative ways to treat these disorders before having a complete understanding of their 
molecular basis would be highly impactful. Sosa et al. present a graph-based method for exactly this 
purpose, and present their findings in their manuscript, “A literature-based knowledge graph embedding 
method for identifying drug repurposing opportunities for rare diseases.”  
 
5  Computational challenges and reproducibility 
 
Moving forward, one of the biggest challenges across several scientific fields including the field of 
biomedicine is that of reproducibility. Biases, inconsistencies and general shift over time across datasets 
can severely impact results and lead to erroneous conclusions or pattern detection. Aggregating and 
integrating datasets properly can reduce the prevalence of this issue. To enable this, however, 
computational methods must be scalable and allow for real-time dataset changes and additions. Various 
cutting-edge solutions for this problem are presented in this session. First, Wheeler et al. discuss and 
evaluate solutions for reproducing and scaling large-scale studies that analyze genomic sequences. 
Similarly in their manuscript, Wang et al. address the issue of reproducibility through the lens of 
interpreting and assessing accuracy of prediction methods. Their work enhances the interpretability and 
accuracy of a learned model for predicting disease progression by using phenotype-based patient 
similarity. Finally, incorporating and integrating novel data in a machine learning model can be critical 
for confirming trends that were previously established using alternate datasets. In their paper, Burkhardt 
et al. address the serious issue of discovering side effects of drugs by using active learning and 
crowdsourcing to analyze social media data.  
 
 
6  Discussion 
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The exciting new work we have briefly summarized here touches on a breadth of topics related to the 
computational processing of “big” clinical, biomedical, and omics datasets with the goal of recognizing 
patterns relevant for translational research.  
 
One theme that recurs throughout these papers is the multimodality and heterogeneous nature of 
biomedical data. Whereas some papers address this issue as their primary focus (e.g., Beam et al., Tran et 
al.), other papers deal with this issue indirectly by successfully processing and integrating diverse datasets 
with a distinct end goal. The heterogeneity of data stems in part from differing data types, but also arises 
through institutional or technical artifacts. Indeed, as novel technologies enable more clinics, hospitals, 
and research centers to integrate and access clinical records across sites, for instance through Fast 
Healthcare Interoperability Resources (FHIR) or the Observational Medical Outcomes Partnership 
(OMOP), heterogeneity stemming from institutional artifacts will continue to grow but may become more 
transparent.  
 
Another theme that threads through the papers in this session is that of innovation in the algorithmic and 
methods space. Several machine learning methods can be applied on new datasets and toward new 
applications. However, sometimes attempts to apply existing methods to new problem areas generates 
enough complications to warrant the development of entirely new methods. Several new algorithmic 
methods were developed to address pertinent issues in the biomedical field, including interpreting 
transcriptomes (e.g., Lee et al., Srivastava et al.), processing image data (e.g., Levy et al., Hao et al.), and 
deriving features from molecular networks (e.g., Pham and Lichtarge, Yao and Ramsey). The innovative 
development of new methods is essential for furthering the field of biomedical informatics and enabling 
researchers now and in the future to continue to recognize important patterns throughout biomedical data.  
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