
CONTENT BASED JPEG FRAGMENTATION POINT DETECTION

Qiming Li†, Bilgehan Sahin‡, Ee-Chien Chang‡, Vrizlynn L.L. Thing†

†Cryptography and Security Department

Institute for Infocomm Research, Singapore

{qli,vriz}@i2r.a-star.edu.sg

‡School of Computing

National University of Singapore

{bilgehan,changec}@comp.nus.edu.sg

ABSTRACT

In the forensics analysis of raw evidence data, fragmentation

point detection is crucial to differentiate fragments of evi-

dence and identify potentially corrupted data. This need is

even more prominent for JPEG images since the chance is

high that an erroneous data block passes a normal JPEG de-

coder without triggering any errors. Therefore, it is important

to verify the content of the decoded image data to determine

if fragmentation and/or corruption has occurred. In this pa-

per, we propose three different techniques for the detection of

fragmentation point based on the image contents, as well as a

detector built by combining these methods. We evaluate the

effectiveness of these techniques and the combined detector

by implementing them on a standard JPEG decoder and test-

ing them on more than 2000 fragmented images generated

from over 1200 JPEG photos.

Index Terms—Digital forensics, JPEG, fragmentation

point detection

1. INTRODUCTION

When files are stored on storage devices, they are often frag-

mented. The description of the correspondence of the logi-

cal structure of a file and its underlying raw data fragments

is typically tracked by the file system and stored separately

from the file. When such information is lost, it can be very

difficult to recover a fragmented file from the storage device,

even when all its corresponding data fragments can still be

read from it. This can happen, for example, when the file

is deleted from the file system but the underlying data stor-

age has not been recycled to store other information, or when

the file system itself is damaged. Both these scenarios are of

great interests to forensics applications, or to users who sim-

ply wish to recover files that were either deleted accidentally

or lost due to faulty file systems. Among all files, JPEG im-

ages are of special interests due to the increasing popularity

of digital cameras.

Similar to many other binary file format, the JPEG stan-

dard specifies that the first few bytes of a JPEG image must

be some special sequence. This allows us to quickly find the

headers of JPEG images among a potentially large amount

of data fragments. To recover the images in their entirety in

the presence of data fragmentation, we have to be able to au-

tomatically detect the point where the fragmentation occurs

when scanning the data from a known header, and from there

search among other data fragments instead for a better match.

The problem of fragmentation point detection is illus-

trated in Fig. 1. Essentially, given some partially decoded

JPEG image data and a new fragment f , our objective is to

determine if f is the correct fragment that follows what has

already been decoded.

Fig. 1. Fragmentation detection

A naive approach to fragmentation point detection is to

parse the new fragment f together with previous decoded data

using a standard JPEG decoder, and see if errors and/or warn-

ings occur during the decoding of f . However, this approach

is not reliable since there is a good chance that a fragment

that silently passes a standard JPEG decoder does not belong

to the JPEG image in question. In fact, as shown by Pal and

Memon [6], an incorrect JPEG image can be fully validated

by a standard JPEG decoder. There are several reasons why

this can happen. First, JPEG compressed data often looks

quite random (i.e., with high entropy) and conversely, random

high entropy data fragment may look like JPEG compressed

data too. Second, depending on the implementation details, a

JPEG decoder may choose to ignore certain errors, partly due

to efficiency considerations, partly due to efforts to display

978-1-61284-350-6/11/$26.00 ©2011 IEEE

partial images even when a small portion of it cannot be de-

coded normally. Lastly, special byte sequences, for example,

a fragment of all 1’s or all 0’s, may be deemed as part of a

valid JPEG stream.

Therefore, it is important to determine if fragmentation

occurs based on the actual contents of the decoded image.

Intuitively, this is possible because subregions within natu-

ral images are highly consistent and any inconsistency can

be easily identified by human visual system. In fact, our pro-

posed methods are all motivated from the visual abnormalities

of corrupted portions of JPEG images. However, like many

other computer vision problems, it turned out to be quite chal-

lenging, especially efficiency is a major consideration due to

the large number of data fragments in a typical file system.

In this paper, we propose three methods to detect frag-

mentation points of corrupted JPEG images. Our methods

aim to detect abnormal changes in (1) DC coefficients in the

DCT domain, (2) AC coefficient distributions, and (3) edges

along the block boundaries. These features can be computed

either locally from JPEG blocks decoded from the data frag-

ment in question, or by combining the new data with its neigh-

boring JPEG blocks that have been decoded previously. We

then combine these methods to form a detector, which uses

the results of these individual tests for final decision making.

We implement our methods by modifying libjpeg ([1]),

and evaluate the methods using randomly constructed cor-

rupted JPEG images that would cause no errors or warnings

when decoded using the standard libjpeg. We show that our

combined detector is able to achieve low false positives with

reasonable false negatives.

We note that although our proposed methods deals with

each fragment independently, more complex modeling and

statistical change detection techniques, such as the sequential

hypothesis testing method used by Pal et al. [7], can be used

in combination with our methods to achieve better results in

real world applications.

In the following, we briefly review related work in Sec-

tion 2, and describe our proposed methods in Section 3. The

evaluation details of our methods can be found in Section 4.

We conclude in Section 6.

2. RELATED WORK

The validation based carving technique proposed by Garfinkel

[5] is among the first studies that attempt to recover files from

fragmented data. Garfinkel studied the statistics of fragmen-

tation of files on real-life disk images, and showed that 16%

of JPEG images are fragmented, and most of which are frag-

mented into three or more pieces. Once the Start-of-Image

(SOI) marker and End-of-Image (EOI) marker are found for

a JPEG image, the data in between is then validated by pars-

ing it using a standard JPEG decompressor and see if there is

an error. If there is an error, further searching is done to lo-

cate the fragmentation point. This method is computationally

expensive during the searching when fragmentation occurs,

since the same data may need to be decompressed several

times.

Cohen [4] gave a content based JPEG fragmentation point

detection using a mapping function. In essence, given a new

fragment of data, an edge detection algorithm is applied on

boundary between the decoded data and existing data to deter-

mine if fragmentation occurs. Their edge detection is defined

as the accumulated difference between the actual pixel values

along the boundary, and their estimated values computed by

taking the average of the pixels from the lines above and be-

low the boundary. The edge detector is then integrated into

libjpeg to perform validation. Successful results are shown

for a small number of fragmented images.

Pal et al. [7] showed that the validator approach based

on standard JPEG decompressors is not sufficient by arguing

that it is quite likely that an incorrect JPEG file can silently

pass the validator without generating any errors. They pro-

posed to compute a matching metric for each new fragment,

which is defined as the average differences between pixels

along the boundary. This metric is somewhat similar to the

edge detection approach in [4]. However, they also observe

that such a metric cannot distinguish correct and corrupted

fragments with high certainty. Therefore, they further pro-

posed a method for fragmentation point detection based on

sequential hypothesis testing, where the decision of whether

a fragmentation occurs is delayed after a few fragments have

been examined.

3. PROPOSED METHODS

3.1. Main Idea

Our main idea is based on our experiences in handling cor-

rupted JPEG images. We examine a number of corrupted

images and identify image properties that change across the

fragmentation point. For example, the colors or illumination

levels may change (e.g., the corrupted region becomes much

more green or darker). Observable changes may also include

the appearances of noticeable blocking artifacts, noise-like

blocks or new edges along the boundary of the corrupted im-

age blocks. These observations are the inspirations of the pro-

posed techniques that we describe in this section. An example

of a corrupted JPEG image is shown in Fig. 2.

3.2. Changes in DC Coefficients

Our first observation is that the blocking artifacts in the first

corrupted fragment becomes much more significant than

what usually appears in a normal JPEG image. Since it is

known that blocking artifacts are mostly caused by sharp

changes in the DC coefficient, we propose to check against

such changes. In fact, since the DC coefficients are differ-

ence encoded, if one DC difference in the corrupted fragment

is decoded wrongly, all the DC coefficients from this point

Fig. 2. Corrupted JPEG image

onwards would have incorrect values, which introduces an

amplification effect that cause the visually sharp change ver-

tically.

In particular, let C = {c1, · · · , cn} be a subset of the

DC coefficients decoded from a given fragment f such that

the DCT blocks that these coefficients belong to are immedi-

ately below another set of DCT blocks with DC coefficients

C ′ = {d1, · · · , dn}, which are previously decoded from other

fragments. This is illustrated in Fig. 3 with n = 7.

d 5 d 6 d 7

d 2 d 3 d 4d 1

c 5 c 6 c 7

c 2c 1 c 3 c 4

Fig. 3. Vertical DC changes

We compute the average vertical DC change of a fragment

f as

Df =
1

n

n∑

i=1

|ci − di|. (1)

To effectively distinguish normal JPEG images and corrupted

ones, we gather the statistics of Df for both the correct frag-

ments from normal JPEG images and incorrect fragments

from corrupted images. After that, we set a threshold on the

value of Df based on the statistics and the required false-

positive and/or false-negative rates. The actual statistics and

the corresponding ROC performance can be found in Section

4.1.

3.3. Distribution of AC Coefficients

When data fragmentation occurs during the decoding of AC

coefficients, we can also observe higher level of high fre-

quency noise, compared with the statistics of natural images.

An example of such noisy image blocks can be found in Fig.

4, which is a close-up look of the corrupted region of the im-

age shown in Fig. 2.

Noisy images blocks like these correspond to AC coeffi-

cients that have higher energy in the mid-to-high frequency

region, which we define as frequency band from the 33-rd to

the 64-th DCT coefficients in the zig-zag order.

Fig. 4. Noisy image blocks

To differentiate normal AC coefficients and noisy ones,

we find the distributions of mid-to-high frequency AC coef-

ficients from normal JPEG images. Given a new fragment f

that is decoded into n DCT blocks, for each DCT block bi
(1 ≤ i ≤ n) we examine the absolute values of the AC coef-

ficients.

We say that an AC coefficient at the j-th location in the

zig-zag order is large if its absolute value is larger than 97%
of the AC coefficients at the same location in normal JPEG

fragments.

We count the number Ai of AC coefficients in the mid-to-

high frequency band that are large, and we take the maximum

value Af of Ai over n DCT blocks as the AC statistics of the

fragment f . In other words, we have

Af = max
1≤i≤n

(Ai). (2)

We further gather statistics of the value Af over normal

JPEG fragments and that in corrupted fragments to determine

the performance of the AC test in terms of ROC (Section 4.2).

3.4. Edge Density

In many of the corrupted images, horizontal edges are clearly

seen at the boundary of the corrupted DCT blocks. An exam-

ple of a corrupted image and its edges are shown in Fig. 5. As

expected, horizontal edges are concentrated in the corrupted

region.

Fig. 5. Edges in corrupted JPEG image

Therefore, if we run an edge detection algorithm on the

boundary pixels when the fragment is not the right one, we

should be able to detect an edge with high probability. In fact,

the mapping function proposed by Cohen [4] is essentially an

edge detector. Some other methods [7, 6] are similar, and can

be considered as simple edge detectors as well.

We use the OpenCV [2] implementation of the Canny

edge detector [3] for our purpose, which is widely used for

many computer vision applications. This edge detector as-

signs a value to each pixel of the input image to indicate if

there is an edge and the direction of it.

For a given fragment f , assume that there are n pixels

along the boundary of the DCT blocks that are next to previ-

ously decoded DCT blocks from other fragments. We define

pi = 1 (1 ≤ i ≤ n) if the edge detector detects a horizontal

edge at the i-th pixel along the boundary, and pi = 0 other-

wise. We further define the edge density Ef of fragment f

as

Ef =
1

n

n∑

i=1

pi. (3)

Similar to the other two tests, we gather statistics of Ef

from both normal fragments and corrupted fragments, and ex-

amine its performance in terms of ROC (Section 4.3).

3.5. Combined Detection

To form a final decision as whether a given fragment is the

correct fragment that follows a given (partially decoded)

JPEG image, we combine the three proposed detection meth-

ods together.

In particular, we assign a weight for each of the detec-

tion values of the three proposed methods, and compute a

weighted sum as the final detection value, which is then com-

pared with a threshold for making the final decision. That is,

the final “score” for a given fragment f is given by

Sf = αDf + βAf + γEf (4)

where α + β + γ = 1, and Df , Af and Ef are defined in

equations (1), (2) and (3) respectively.

4. EVALUATIONS

To evaluate our proposed methods, we implement them on top

of the libjpeg library, and randomly generate corrupted JPEG

files using a database that contains over 1200 public domain

photos of natural scenes (http://www.pdphoto.org).

We use these photos to generate statistics of “normal” JPEG

images.

Next, for each JPEG file, we divide it (logically) into

blocks of 512 bytes, and randomly select a fragmentation

point that is beyond its first SOS marker, which ensures that

fragmentation occurs in the compressed data stream and not

in the “header” part. Next, we randomly select another data

block from all other files, append the selected data block to

the JPEG file at the selected fragmentation point to create a

corrupted JPEG image.

The resulting image is then parsed by the standard libjpeg

decoder, and it is only accepted when no errors or warnings is

generated from libjpeg, except the one warning that indicates

premature ending of the JPEG image. In other words, we only

deal with corruptions that cannot be detected by a standard

decoder. We generated over 2100 corrupted photos as our test

images. The statistics of “corrupted” fragments are obtained

from the corrupted regions of these generated images.

For each generated corrupted JPEG image, our detectors

process it block by block to find a fragmentation point. If no

fragmentation is reported when the actual fragmentation point

is reached, it is counted as a false-negative, and if the reported

fragmentation point is before the actual one, it is counted as

a false-positive. We then vary the threshold to find the ROC

curves.

Fig. 6. DC changes in normal JPEG images

4.1. Statistics of Vertical DC Changes

The statistics of DC changes in the vertical direction in nor-

mal JPEG images is obtained by examining the DC changes

in all the fragments in the original images in our database.

The result is as shown in Fig. 6.

The statistics of DC changes in corrupted images is com-

puted from the corrupted fragments of all the generated im-

ages. The result is as shown in Fig. 7.

Fig. 7. DC changes in corrupted JPEG fragments

We build a detector using only the DC statistics and its

performance is as shown in Fig. 8.

4.2. Distributions of AC

For AC coefficients, we first gather histograms for all the mid-

to-high frequency components, and for an AC coefficient ai at

the i-th position in the DCT block, we set a threshold δi, such

that the probability Pr[ai > δi] < 0.03, where 0.03 is another
empirical threshold that we used throughout our experiments.

After that, if an AC coefficient ai in a given DCT block

is greater than δi, we say that it is suspicious. Then we find

Fig. 8. ROC curve for detector based on DC changes

the statistics of suspicious AC coefficients in a random block

from a normal JPEG fragment through experiments, which is

shown in Fig. 9.

Fig. 9. Suspicious AC coefficients in normal JPEG images

Similarly, we find the statistics of suspicious AC coeffi-

cients of corrupted fragments from the test images we gener-

ated, which is shown in Fig. 10.

Fig. 10. Suspicious AC coefficients in JPEG fragments

We build a detector using only the AC statistics and its

performance is as shown in Fig. 11.

4.3. Statistics of Edge Density

We build the histograms for edge density as defined in Sec-

tion 3.4 for normal JPEG fragments and corrupted JPEG frag-

ments, which are as shown in Fig. 12 and Fig. 13 respectively.

We build a detector using only the edge density and its

performance is as shown in Fig. 14.

4.4. Combined Detector

To evaluate the combined detector (Section 3.5), we try many

possible combinations of the weights to search for the optimal

Fig. 11. ROC curve for detector based on AC statistics

Fig. 12. Edge density in normal JPEG images

values for the three different tests. The optimal weights we

found are as follows.

α = 0.40, β = 0.45, γ = 0.15. (5)

The performance of the combined detector when the

weights in (5) are used is shown in Fig. 15.

As we can see, the combined detector has an equal-error-

rate (ERR) that is slightly larger than 0.2. From this figure,

we can also determine the trade-off between the false-positive

rate and the false-negative rate. For example, if we require

a small false-positive rate of 5%, we can see from Fig. 15

that the corresponding false-negative is slightly less than 0.4,
where the threshold value is about 0.3.

5. FUTURE WORK

In this paper we show that it is possible to make use of various

statistics of the decoded image content to distinguish between

a normal JPEG fragment from a corrupted one. We are work-

ing on improving the detection results from these statistics,

while at the same time devising better statistics as the mea-

sure of corruption.

We note that two of our three proposed methods rely only

on decoding results in the DCT domain, which means that

these methods do not require full decompression of the JPEG

image. This approach is favorable when processing speed is

a major consideration, since the inverse DCT operations in

JPEG decompression is, in general, the most computationally

expensive step. Our future plan includes further exploration

of reduction of computational costs of fragmentation detec-

tion.

Fig. 13. Edge density in JPEG fragments

Fig. 14. ROC curve for detector based on edge density

We note that our techniques can be, and should be, used

together with other statistical techniques to obtain better per-

formance. In general, the fragmentation point detection prob-

lem is a special case of statistical change detection, and it is

possible to utilize existing statistical tools. In fact, it is shown

by Pal et al. [7] that sequential hypothesis testing can be used

effectively in combination with fragment statistics. We will

investigate how such techniques can be integrated into our

methods.

Lastly, in some of the previous work, the evaluation of

fragmentation techniques is typically done in a more or less

ad-hoc manner by using a small set of test images. In this

paper, we have employed a moderately large number of ran-

domly fragmented images for testing. In the future we are

planning to design more systematic methods to generate test

sets that would resemble fragmentation and corruption that

would occur in real world file systems.

6. CONCLUSIONS

In this paper, we study the problem of fragmentation point

detection for JPEG images. In contrast with some previous

techniques, which rely heavily on finding invalid JPEG code

streams, we acknowledge that it is very likely that a high en-

tropy corrupted fragment can be part of a valid JPEG stream,

and focus on using the statistics of the image content to deter-

mine the fragmentation points.

We propose three different techniques, which are all mo-

tivated through observations of actual corrupted images, and

evaluate their performances through experiments with real-

life JPEG photos and corrupted images that are randomly gen-

erated from them. We then find the optimal weights to com-

Fig. 15. ROC curve for the combined detector

bine the three methods together to form a integrated detector,

and analyze its performance through experiments.

We also note that there are various ways to improve our

current results, including the integration with change detec-

tion techniques such as hypothesis testing.

7. REFERENCES

[1] Independent JPEG group’s free JPEG software. http:

//www.ijg.org/.

[2] Gary R. Bradski and Vadim Pisarevsky. Intel’s computer

vision library: Applications in calibration, stereo, seg-

mentation, tracking, gesture, face and object recognition.

In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, volume 2, page 2796, 2000.

[3] John F. Canny. A computational approach to edge detec-

tion. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, 8(6):679–714, 1986.

[4] Michael I. Cohen. Advaned Jpeg carving. In Proceed-

ings of the 1st international conference on Forensic ap-

plications and techniques in telecommunications, infor-

mation, and multimedia and workshop (e-Forensics), Jan-

uary 2008.

[5] Simson Garfinkel. Carving contiguous and fragmented

files with fast object validation. In Digital Forensics

Research Workshop, volume 4S of Digital Investigation,

pages S2–S12, 2007.

[6] Anandabrata Pal and Nasir Memon. The evolution of file

carving. IEEE Signal Processing Magazine, 26(2):59–71,

March 2009.

[7] Anandabrata Pal, Husrev T. Sencar, and Nasir Memon.

Detecting file fragmentation point using sequential hy-

pothesis testing. InDigital Forensics Research Workshop,

volume 5 of Digital Investigation, pages S2–S13, 2008.

