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ABSTRACT

A compression-based similarity measure assesses the similarity

between two objects using the number of bits needed to describe

one of them when a description of the other is available. The-

oretically, compression-based similarity depends on the concept

of Kolmogorov complexity but implementations require suitable

(normal) compression algorithms. We argue that the approach is

of interest for challenging image applications but we identify one

obstacle: standard high-performance image compression methods

are not normal, and normal methods such as Lempel-Ziv type al-

gorithms might not perform well for images. To demonstrate the

potential of compression-based similarity measures we propose an

algorithm that is based on finite-context models and works directly

on the intensity domain of the image. The proposed algorithm is

compared with several other methods.

Index Terms— Image similarity, normalized compression dis-

tance, image compression

1. INTRODUCTION

Measuring similarity between images is an important open problem.

The challenge is twofold: ideally one would like to assess the sim-

ilarity without requiring the images to be perfectly aligned, illumi-

nated etc. and on the other hand one would like the results to corre-

late well with our visual perception.

The simplest approach is to use a norm to calculate the differ-

ence between two images. Although it is often criticized for not

being correlated with our perception, the L2-norm is among those

most often used. This approach works reasonably well when one im-

age is a degraded or noisy version of the other. Under more general

circumstances, and in particular when the images are not perfectly

aligned, direct application of a norm becomes useless.

A good method would give a meaningful indication of how sim-

ilar two images are, regardless of their geometry, orientation, scale,

and other similar characteristics. A common approach is to extract

a set of features from the images and then compare them. Popular

choices include shape-based, color-based or texture-based features.

A major difficulty associated with these methods is precisely how to

select meaningful features.

Recently, there has been interest in image similarity measures

based on compression methods [1, 2, 3, 4]. They rely on the notion

of Kolmogorov complexity and opened a line of research that seems

promising.

Given a string of bitsA, its Kolmogorov complexityK(A) is by
definition the minimum size of a program that producesA and stops.

A repetitive structure can be described by a small program (“print

ab 1000 times”) which scales with the logarithm of |A|, indicating
low complexity. On the other hand, for a very complex pattern there

might be no better program than “printA”, the length of which scales

with |A|, indicating high complexity.

A major drawback of the Kolmogorov complexity (also known

as the algorithmic entropy) is that it is not computable. There-

fore, one is forced to deal with approximations that provide upper

bounds to the true complexity. Compression algorithms provide nat-

ural ways of approximating the Kolmogorov complexity, because,

together with the appropriate decoder, the bitstream produced by

a lossless compression algorithm allows the reconstruction of the

original data. The number of bits required for representing these

two components (decoder and bitstream) can be viewed as an esti-

mate of the Kolmogorov complexity of the original bitstream. From

this point of view, the search for better compression algorithms is

directly related to the problem of how to improve the complexity

bounds.

This theory and its relation with data compression has been

known for some time but a systematic investigation of its possi-

ble interest for image analysis is still lacking. The assessment

of compression-based similarity measures in the context of image

analysis requires, first and foremost, a suitable image compression

method. This does not appear to be a problem, since image compres-

sion has been a vibrant field of research for decades, but in reality

there is a serious obstacle.

To measure similarity, a compression method needs to be nor-

mal, that is, it should generate essentially the same number of

bits when compressing AA (the concatenation of A with A) and

when compressing A alone. Lempel-Ziv based compressors are

approximately normal and as such are frequently used in reference

to compression-based similarity measurement. However, generally

speaking, they do not perform well on images. On the other hand,

most of the best performing image compression algorithms are not

normal.

The goals of this paper are twofold. First and foremost, we want

to emphasize the potential interest and applications of compression-

based similarity measures in the field of image analysis. The present

work is by no means closed and we hope that it may stimulate dis-

cussion and interest in the problem.

Since standard coding methods cannot be used for measuring

similarity, and normal methods do not appear to lead to good per-

formance, we need alternatives. Our second goal is to demonstrate

the potential of compression-based similarity measures by using al-

gorithms based on finite-context models that work directly on the

intensity domain of the image and avoid the transform or predictive

step that other encoders use.
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2. THE NORMALIZED COMPRESSION DISTANCE

The work of Solomonoff, Kolmogorov, Chaitin and others [5, 6, 7,

8, 9, 10] on how to measure complexity has been of paramount im-

portance for several areas of knowledge. However, because it is not

computable, the Kolmogorov complexity ofA,K(A), is usually ap-
proximated by some computable measure, such as Lempel-Ziv based

complexity measures [11], linguistic complexity measures [12] or

compression-based complexity measures [13].

Kolmogorov theory also leads to an approach to the problem of

measuring similarity. Li et al. proposed a similarity metric [14]

based on an information distance [15], defined as the length of the

shortest binary program that is needed to transform A and B into

each other. This distance depends not only on the Kolmogorov com-

plexity of A and B, K(A) and K(B), but also on conditional com-

plexities, for example K(A|B), that indicates how complex A is

whenB is known. Because this distance is based on the Kolmogorov

complexity (not computable), they proposed a practical analog based

on standard compressors, which they call the normalized compres-

sion distance [14],

NCD(A,B) =
C(AB)−min{C(A), C(B)}

max{C(A), C(B)}
, (1)

where C(A) gives the number of bits required by compressor C for

compressing string A. Successful applications of these principles

have been reported in areas such as genomics, virology, languages,

literature, music, handwritten digits and astronomy [16]. However,

applications of the normalized compressing distance to the imaging

area are scarce. This seemingly surprising fact is due to the following

reasons.

According to Li et al. [14], a compression method needs to be

normal in order to be used in a normalized compression distance.

One of the conditions for a compression method to be normal is that

the compression ofAA (the concatenation ofA withA) should gen-

erate essentially the same number of bits as the compression of A
alone [16]. This characteristic holds, for example, in Lempel-Ziv

based compressors, making them a frequent choice in the applica-

tions of the complexity principles to image analysis [1, 2, 17]. How-

ever, generally speaking, Lempel-Ziv based compressors do not per-

form well on images. Moreover, most of the best performing image

compression algorithms are not normal compressors, according to

the definition of [16].

A normal compression algorithm accumulates knowledge of the

data while compression is performed. It finds dependencies, collects

statistics, i.e., it creates a model of the data. Most state-of-the-art

image compressors start by decorrelating the data using a transfor-

mation (for example, the DCT or DWT as in JPEG or JPEG2000)

or a predictive method (as in JPEG-LS). Therefore, they assume an

a priori data model that remains essentially static during compres-

sion. Moreover, this first step destroys most of the data dependen-

cies, leaving to the entropy coding stage the mere task of encod-

ing symbols from an (assumed) independent source. This makes

them unsuitable for measuring similarity and alternatives need to be

sought.

3. A NEW ENCODER FORMEASURING SIMILARITY

We implemented an image encoder for gray scale images based on

finite-context modeling, similar in principle to that used by JBIG.

However, it differs from JBIG in two major aspects. First, instead

of addressing image coding in a bit-plane basis, as JBIG does, we

Fig. 1. Context templates used by the encoder, corresponding to

model orders of 2, 4 and 6.

designed an encoder that handles the whole pixel at once. The draw-

back of this approach is that since finite-context modeling usually

requires memory resources that grow exponentially with the order

of the model, it is unpractical to apply them to large alphabets. Al-

though it is possible to alleviate this memory burden through the use

of sophisticated data structures such as hashing, in this exploratory

work we opted for reducing the size of the alphabet. Therefore, be-

fore being processed by the encoder, the images are quantized to just

four levels, using a Lloyd-Max quantizer. At first thought this might

sound too severe, but in fact the results that we have obtained show

that even with only four levels our approach behaves globally better

than the others to which we compared.

The second significant difference to JBIG is the use of simulta-

neous multiple contexts, combined using a mixture model that relies

on the past performance of each of those models. In the remainder

of this section we present some more details regarding this setup.

A finite-context model assigns probability estimates to the sym-

bols of the alphabet A = {s1, s2, . . . , s|A|}, where |A| denotes
the size of the alphabet, regarding the next outcome of the infor-

mation source, according to a conditioning context computed over

a finite and fixed number, k > 0, of the most recent past out-

comes ck,n = xn−k+1 . . . xn−1xn (order-k finite-context model)

[18]. The number of conditioning states of the model is |A|k.
The probability estimates, P (Xn+1 = s|ck,n), ∀s∈A, are cal-

culated using symbol counts that are accumulated while the image is

processed, making them dependent not only of the past k symbols,

but also of n. We use the estimator

P (Xn+1 = s|ck,n) =
n
ck,n
s + α

nck,n + α|A|
, (2)

where n
ck,n
s represents the number of times that, in the past, the in-

formation source generated symbol s having ck,n as the conditioning

context and where

n
ck,n =

∑

a∈A

n
ck,n
a (3)

is the total number of events that has occurred so far in association

with context ck,n. Parameter α allows balancing between the max-

imum likelihood estimator and an uniform distribution. Note that

when the total number of events, n, is large, the estimator behaves as

a maximum likelihood estimator. For α = 1, (2) is the well-known
Laplace estimator.

The per symbol information content average provided by the

finite-context model of order-k, after having processed n symbols,

is given by

Hk,n = −
1

n

n−1∑

i=0

log2 P (Xi+1 = xi+1|ck,n) bps, (4)

where “bps” stands for bits per symbol.

The encoder was implemented using three finite-context models,

of orders k = 2, 4, 6, that operate simultaneously. Figure 1 displays

the configuration of the three contexts. For each symbol, the proba-

bility estimate given by each of the three models is combined using
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averaging, according to

P (Xn+1 = s) =
∑

k=2,4,6

P (Xn+1 = s|ck,n) wk,n, (5)

where

wk,n ∝ w
γ

k,n−1
P (Xn = xn|ck,n−1) (6)

and ∑

k=2,4,6

wk,n = 1. (7)

Although not explained in detail here, for lack of space, it can be

shown that these weights favor the models that have provided better

performance in the recent past of the sequence of symbols. Parame-

ter γ is usually very close to one (we used γ = 0.99).

4. EXPERIMENTAL RESULTS

For performing the experiments reported in this paper, we used the

ORL face database, which contains 92 × 112, 8 bits per pixel gray

level image faces of 40 distinct subjects (10 from each one), taken

between April 1992 and April 1994 at the Olivetti Research Labora-

tory in Cambridge, UK [19]. Figure 2 shows some examples taken

from this image face database.

For comparison, we calculated the normalized compression

distance using four general purpose compressors and three im-

age coding standards, namely lossless JPEG2000 1, JPEG-LS 2,

and JBIG 3. The set of general purpose compressors was com-

posed by the Linux implementations of GZIP version 1.3.12 (based

on LZ77 Lempel-Ziv coding), BZIP2 version 0.9.0b (based on

Burrows-Wheeler block-sorting and Huffman coding), LZMA ver-

sion 4.32.0beta3, SDK 4.43 (Lempel-Ziv-Markov chain-Algorithm),

and PPMd (based on prediction by partial matching).

We divided the set of 400 face images in two subsets. The first

subset (which we call the reference subset) contains the first image of

each of the 40 subjects. The second subset (the test subset) contains

the 360 remaining images. For each image in the reference subset,

we calculated the normalized compression distance to all images in

the test subset. Then we picked the nine images having the shortest

distances and we determined how many of them corresponded to the

reference subject. These are the numbers presented in Table 1, where

nine means that all face images have been correctly associated to that

subject.

5. DISCUSSION

Measuring image similarity using the concept of Kolmogorov com-

plexity might open new ways for dealing with problems such as

content-based image retrieval. The normalized compression distance

as been applied with success to several types of uni-dimensional

data, usually using general purpose data compressors. Being an ap-

proximation of the normalized information distance, the normalized

compression distance relies on a good approximation of K(A) by
C(A) and, therefore, requires good compressors for the type of data

addressed.

1JPEG2000 codec from http://jj2000.epfl.ch
2The original website of this codec, http://spmg.ece.ubc.ca, is

currently unavailable, but it can be obtained from ftp://www.ieeta.

pt/˜ap/codecs/jpeg_ls_v2.2.tar.gz.
3JBIG codec from http://www.cl.cam.ac.uk/˜mgk25/

jbigkit/.

Subject bzip2 gzip lzma ppmd jbig jp2k jpls fcm
s01 5 3 0 3 2 1 3 7
s02 9 9 6 5 2 0 0 9
s03 3 4 1 4 2 1 1 4
s04 4 4 0 2 1 2 2 4
s05 4 4 2 4 2 2 1 4
s06 6 3 0 1 2 0 0 5
s07 7 6 0 0 1 2 0 6
s08 7 4 1 3 5 1 4 7
s09 2 2 2 2 1 3 0 3
s10 6 7 2 3 3 0 4 9
s11 7 9 1 6 4 0 0 9
s12 3 5 0 2 2 0 5 4
s13 3 4 0 3 2 0 0 4
s14 8 7 1 4 4 0 1 9
s15 4 4 0 2 3 0 1 4
s16 0 0 1 0 0 0 0 6
s17 6 6 2 3 2 3 0 8
s18 6 8 0 0 0 1 3 6
s19 9 9 3 9 3 2 0 9
s20 3 5 0 0 1 0 0 3
s21 4 6 0 1 0 0 0 2
s22 7 9 2 8 1 0 0 8
s23 4 4 4 6 0 2 0 7
s24 5 9 0 3 3 0 0 8
s25 6 6 2 4 3 3 0 7
s26 4 5 1 3 1 0 2 7
s27 9 9 1 7 4 0 0 9
s28 4 4 1 1 1 0 3 4
s29 4 4 3 3 3 1 3 2
s30 8 5 2 6 3 0 1 7
s31 2 4 2 4 0 0 0 2
s32 7 9 1 4 6 1 6 9
s33 5 2 0 2 2 0 0 6
s34 9 7 2 3 2 0 2 7
s35 5 6 0 3 1 1 0 3
s36 1 1 0 1 1 0 0 1
s37 4 4 0 0 2 0 0 4
s38 4 4 3 3 2 2 1 2
s39 2 1 0 2 1 0 0 4
s40 3 4 1 0 0 0 0 4
Sum 199 206 47 120 78 28 43 223

Table 1. Comparison of the compression methods. Columns 2–5

correspond to general purpose compressors. Columns 6–8 corre-

spond, respectively, to the JBIG, JPEG2000 and JPEG-LS standards.

The last column shows the results of the method proposed. The val-

ues indicate the number of correct images within the nine shortest

normalized compression distances of each reference image.

It is known for long that dedicated algorithms for image com-

pression behave (much) better than general purpose data compres-

sors. The problem is that the most popular image compression tech-

niques, and particularly the image compression standards, do not

comply with the requirements of a normal compressor. This is con-

firmed by the results presented in Table 1, where we can see the poor

performance of the three standards, JBIG, JPEG2000 and JPEG-LS.

Even JBIG, which is based on global context modeling, although on

a bit-plane basis, performs poorly, but, even so, better that the other

two image coding standards.

Regarding the four general purpose compressors used, both

BZIP2 and GZIP behaved surprisingly well, with a small advan-

tage to the one based on LZ77. The other two, LZMA and PPMd

performed much worse.
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Fig. 2. Examples from the ORL face database. In the first row, ten face images corresponding to the same subject (s01). In the second row,

the first face image of subjects s02 to s11.

The simple encoder that we have developed for the purpose of

beginning studying this new paradigm of image similarity provided

the best results in this experimental setup. Due to the memory re-

quirements imposed by the finite-context models on large alphabets,

we decided to quantize the images to just four levels before com-

pression. This was done only for this encoder. All the other encoders

have been provided with the original images. We also tested them

on the quantized images, but the results have been much worse than

those attained with the original images.

The experiments that we have performed confirm that current

image coding standards are not suited for calculating the normalized

compression distance. We believe that this is due, in a large part, to

the violation of the conditionC(AA) = C(A) that is required by the
complexity measure. For example, the NCD(A,A) values given by

GZIP, BZIP2, JBIG, JPEG-LS and JPEG2000, where A was a ran-

dom image, were 0.0143, 0.2200, 0.8165, 0.9543 and 0.9796, re-
spectively. The encoder that we have developed gave 0.6595, which
is still a high value, but lower than that provided by the other image

encoders. When compared to the general purpose compressors, we

believe that the good performance attained by the encoder based on

finite-context models is related to the fact that 2D contexts are being

used. Therefore, it is more suited for handling 2D data, despite using

images with only four gray levels and not being able to attain values

ofNCD(A,A) closer to zero. Much work still needs to be done, but

there it seems to be also plenty of room for improvement.
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[3] J. Perkiö and A. Hyvärinen, “Modelling image complexity by

independent component analysis, with application to content-

based image retrieval,” in Proc. of the Int. Conf. on Artificial

Neural Networks, ICANN 2009, Limassol, Cyprus, 2009.

[4] J. Mortensen, J. J. Wu, J. Furst, J. Rogers, and D. Raicu, “Ef-

fect of image linearization on normalized compression dis-

tance,” in Signal Processing, Image Processing and Pat-

tern Recognition, D. Slezak, S. K. Pal, B.-H. Kang, J. Gu,

H. Kuroda, and T.-H. Kim, Eds. 2009, vol. 61 of Communi-

cations in Computer and Information Science, pp. 106–116,

Springer Berlin Heidelberg.

[5] R. J. Solomonoff, “A formal theory of inductive inference. Part

I,” Information and Control, vol. 7, no. 1, pp. 1–22, Mar. 1964.

[6] R. J. Solomonoff, “A formal theory of inductive inference. Part

II,” Information and Control, vol. 7, no. 2, pp. 224–254, June

1964.

[7] A. N. Kolmogorov, “Three approaches to the quantitative defi-

nition of information,” Problems of Information Transmission,

vol. 1, no. 1, pp. 1–7, 1965.

[8] G. J. Chaitin, “On the length of programs for computing finite

binary sequences,” Journal of the ACM, vol. 13, pp. 547–569,

1966.

[9] C. S. Wallace and D. M. Boulton, “An information measure

for classification,” The Computer Journal, vol. 11, no. 2, pp.

185–194, Aug. 1968.

[10] J. Rissanen, “Modeling by shortest data description,” Auto-

matica, vol. 14, pp. 465–471, 1978.

[11] A. Lempel and J. Ziv, “On the complexity of finite sequences,”

IEEE Trans. on Information Theory, vol. 22, no. 1, pp. 75–81,

Jan. 1976.

[12] G. Gordon, “Multi-dimensional linguistic complexity,” Jour-

nal of Biomolecular Structure & Dynamics, vol. 20, no. 6, pp.

747–750, 2003.

[13] T. I. Dix, D. R. Powell, L. Allison, J. Bernal, S. Jaeger, and

L. Stern, “Comparative analysis of long DNA sequences by per

element information content using different contexts,” BMC

Bioinformatics, vol. 8, no. Suppl. 2, pp. S10, 2007.

[14] M. Li, X. Chen, X. Li, B. Ma, and P. M. B. Vitányi, “The
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