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Abstract

In a wide variety of applications, humans interact with a complex environment
by means of asynchronous stochastic discrete events in continuous time. Can we
design online interventions that will help humans achieve certain goals in such asyn-
chronous setting? In this paper, we address the above problem from the perspective
of deep reinforcement learning of marked temporal point processes, where both
the actions taken by an agent and the feedback it receives from the environment
are asynchronous stochastic discrete events characterized using marked temporal
point processes. In doing so, we define the agent’s policy using the intensity and
mark distribution of the corresponding process and then derive a flexible policy
gradient method, which embeds the agent’s actions and the feedback it receives
into real-valued vectors using deep recurrent neural networks. Our method does not
make any assumptions on the functional form of the intensity and mark distribution
of the feedback and it allows for arbitrarily complex reward functions. We apply
our methodology to two different applications in personalized teaching and viral
marketing and, using data gathered from Duolingo and Twitter, we show that it
may be able to find interventions to help learners and marketers achieve their goals
more effectively than alternatives.

1 Introduction

In recent years, the framework of marked temporal point processes (MTPPs) [1] has become in-
creasingly popular for modeling asynchronous event data in continuous time, which is ubiquitous
in a wide range of application domains, from social and information networks to finance or health
informatics. For example, in social and information networks, events may represent users’ posts,
clicks or likes; in finance, they may represent buying and selling orders; or, in health informatics,
they may represent when a patient exhibits different symptoms or receives treatment. In most cases,
the development of a new model reduces to the problem of designing an appropriate functional form
for the conditional intensity (or intensities) of the events of interest as well as the distribution of the
corresponding mark(s).

In this context, a recent line of work [[13| 27, 29, 30, 133} 134] has exploited an alternative view
of MTPPs as stochastic differential equations (SDEs) with jumps [[10] to design online, adaptive
interventions using stochastic optimal control. While this line of work has shown promise at enhancing
the functioning of social and information systems, their wide spread use and deployment is precluded
mainly by two drawbacks. First, they make strong assumptions about the functional form of the
conditional intensities and mark distributions of the MTPPs, which in turn prevent them from using
state of the art MTPP models based on deep learning [5, (11} [17]. Second, the objective functions that
the interventions optimize upon, need to be carefully chosen to ensure that the underlying stochastic
optimal control problem remains tractable. As a consequence, the use of (more) meaningful objective
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Figure 1: Reinforcement learning setups. In the traditional discrete time setting [26], actions and
feedback occur in discrete time; in the continuous time setting [4], actions and feedback are real
value functions in continuous time; and, in the marked temporal point process setting (our work),
actions and feedback are asynchronous events localized in continuous time.

functions with clear semantics is often off limits. In our work, we overcome these drawbacks by
approaching the problem from the perspective of deep reinforcement learning of MTPPs.

More specifically, we first introduce a novel reinforcement learning problem where both the actions
taken by an agent and the feedback it receives from its environment are asynchronous stochastic
events in continuous time, which are characterized using MTPPs. Here, the goal is finding the
optimal intensity and mark distribution for the agent’s actions—the optimal policy—that maximize
an arbitrary reward function, which may depend on its actions and the feedback. Then, we derive
a novel policy gradient method, specially designed to solve the above problem, which embeds the
agent’s actions and the feedback from the environment into real-valued vectors using deep recurrent
neural networks (RNNs). In contrast with the literature on stochastic optimal control of SDEs with
jumps, our method does not make any assumptions on the functional form of the conditional intensity
(or intensities) and mark distribution(s) characterizing the feedback, and it allows for arbitrarily
complex reward functions. Moreover, it departs from previous work in the reinforcement learning
literature [4) 16} 18} 9} 115, 120} 261 128} [31]] in two key aspects, which are also illustrated in Figurem

I. The agent’s actions and environment’s feedback are asynchronous stochastic events in conti-
nuous time. In contrast, previous work has considered synchronous actions and (potentially
delayed) feedback in discrete time [6} [15} 20} 31]], with few notable exceptions [4!, (9} 28]
While these exceptions considered continuous time, they assumed actions and feedback to
be continuous and deterministic and the dynamics of the environment to be known

II. Our policy is a conditional intensity function (and a mark distribution), which is used to

sample the times (and marks) of the agent’s actions. Here, note that a sampled agent’s action
may need to be resampled due to the occurrence of new feedback events before the sampled
time. In contrast, previous works considered the policy to be a probability distribution or,
more rarely, a deterministic function [4, 9} 28]].

Finally, we apply our methodology to two different applications in personalized teaching [[14, 22 [27]
and viral marketing [12, 25| 29, 33| 34], respectively. For simple dynamics and objective fun-
ctions, which allow for stochastic optimal control approaches, our method achieves a comparable
performance even though it does not have access to the true underlying dynamics. For complex
dynamics and/or objective functions, which do not allow for stochastic optimal control approaches, our
method is able to successfully find interventions that optimize the corresponding objective function
and beat several competitive baselines. To facilitate research in temporal point processes within the
reinforcement learning community at large, we are releasing an open-source implementation of our
method in TensorFlow as well as synthetic and real-world data used in our experiments

2 Problem formulation

In this section, we first briefly revisit the theoretical framework of marked temporal point processes [[1]
and then use it to formally define our novel reinforcement learning problem, where an agent interacts
with a complex environment by means of asynchronous stochastic discrete events in continuous time.

1Our setting should not be confused with the asynchronous setting of Mnih et al. [20], where the gradient descent is asynchronous but the
action/observations are synchronous and the system evolves at discrete time steps.

2https ://github.com/Networks-Learning/tpprl
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Marked temporal point processes. A marked temporal point process (MTPP) is a random process
whose realization consists of an ordered sequence of events localized in time, i.e.,

H = {60 = (to,Zo),el = (tl,Zl), N (tn,Zn)},

where ¢t; € RT is the time of occurrence of event 7 € Z and z; € Z is the associated mark. The
actual meaning of the events varies across applications, e.g. in social networks, t; may represent
the time when a message is posted, clicked or liked, z; may represent the type of interaction, the
message content, or its polarity, and the domain of the marks Z is application dependent. Here,
we characterize the event times of a MTPP using a conditional intensity function \*(¢), which
is the probability of observing an event in the time window [¢,¢ + dt) given the events history
Hy = {ei = (ti,Zi) eH | t; < t}, ie.,

A*(t) :=P{eventin [t,t + dt) | H.}, (D)

where the sign * means that the intensity may depend on the history ;. Moreover, we characterize
the marks of the events using a distribution m(z | H;) = m*(z), which is the probability that mark z
is selected, if an event has occurred at time ¢. Then, we can compute the likelihood of a history of
events A C Hr as:

Prob. of no actions at t € [0,T']\{¢; }

Prob. of an action at t;

P(A7r) = | [] A (t;) m*(z;) exp (- /0 X‘(s)ds) . 2)

e €Ap Prob. of mark z;

In the remainder of the paper, whenever an intensity function and mark distribution are parametrized
by 6, we write A;(-), m}(-), Pg(Ar), and, for notational simplicity, use p;; = (A}, m}) as a short-
hand to denote the joint probability density of the MTPP. Recent literature [5,8}112} 113}, [17,/30L133] has
established that MTPPs outperform other models (e.g., exponential law) in their ability to accurately
predict online and off-line human actions.

Reinforcement learning of marked temporal point processes. Assume there is an agent who takes
actions in a complex environment and the environment also provides feedback to the agent over time.
Moreover, both the actions and the feedback are asynchronous stochastic events localized in time and
thus we characterize them using marked temporal point processes (MTPPs), i.e.,

— Action events: A = {e; = (t;,y:)}, where (t;,y;) ~ ply.g = (A5, m5)
— Feedback events: F = {f; = (t;, zi) }, where (t;, zi) ~ pFr., = (A, m})

In the above characterization, we allow the joint probability densities p’y ., and p. , to depend on
the joint history of events H; := A; U F;. Finally, after a cuz-off time T, we assume that the agent
receives an arbitrary (stochastic) reward R*(7T'), which may depend on the agent’s actions .47 and
the environment’s feedback Fr.

Given the above problem setting, we can formally define our reinforcement learning (RL) problem
for marked temporal point processes as follows:

Problem definition. Given an agent with py ., = (A\j,my), an environment with p%., = (A}, m})
and an arbitrary stochastic reward R*(T), the goal is to find the optimal action intensity and mark
distribution—the optimal policy—that maximize the expected reward. Formally,

maximize EATNPZ_Q(.)JTNP;_ ) [R*(T)], &)
ij;Q(') ! i®
where the expectation is taken over all possible realizations of the marked temporal point processes
associated to the agent’s action events and the environment’s feedback events. In the remainder of
the paper, we will denote the optimal policy using 7 (0) = argmax. () E[R*(T)).

Note that the above definition departs from previous work on reinforcement learning [4, 16} [9} [15] |20}
26, 28, 131]] in several ways. First, the agent’s actions and environment’s feedback are asynchronous
stochastic events in continuous time. Moreover, note that the agent may receive feedback from the
environment asynchronously at any time, not only after each of its actions. This is in contrast with
previous work in the literature, which has only considered synchronous actions (and potentially
delayed) feedback in discrete time (or, in some cases, continuous actions and feedback), as illustrated
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Figure 2: Reinforcement learning (RL) of of marked temporal point processes (MTPPs). Panel
(a) shows the type of data and representation used in RL of MTPPs. Panel (b) shows the policy
parametrization used by our policy gradient method.

in Figure[I] Second, our policy is defined by a conditional intensity function (and a mark distribution),
which is used to sample the times (and marks) of the agent’s actions. Here, note that a sampled agent’s
action may need to be resampled due to the occurrence of new feedback events before the sampled
time. In contrast, previous work has used probability distributions (or, in some cases, deterministic
functions) as policies.

Remarkably, the above problem definition naturally fits numerous problems in a wide variety of
application domains, particularly in the context of social and information online systems. For example,
in personalized teaching in online learning platforms, the platform that shows content items to learners
is the agent, the platform takes an action when it shows an item to a learner, the learners are the
environment, and the probability that the learner recalls an item defines the reward. In viral marketing
in social networks, a user who aims to increase the visibility of her posts is the agent, the user takes
an action when she posts a message, her followers’ feeds form the environment and the visibility (or
attention) she receives defines the reward. In all these cases, the environment distribution p*f; » May
be highly complex and thus our policy gradient method will only assume that it can sample from
p}; e In other words, the environment distribution will be considered a black box.

3 Proposed policy gradient method

In this section, we tackle the reinforcement learning problem defined by Eq.[3 using a novel policy
gradient method for marked temporal point processes. More specifically, we first leverage recurrent
neural networks (RNNs) to parametrize the policy p’y., and then use stochastic gradient descent

(SGD) to find the policy parameters  that maximizes the expected reward E [R*].

Policy parametrization. In many application domains, at any time ¢, the (optimal) policy p7 , that
maximizes the reward may depend on the previous history of the action events and the feedback
events, H; = A;UF;, in an unknown and complex way. To capture such dependence, we parametrize
the policy p’y ., using a recurrent neural network (RNN), where we embed both the actions events and
the feedback events into real-valued vectors h, similarly as in several recent state of the art MTPP
deep learning models [5, [11} 17 Next, we elaborate further on our architecture{ﬂ which we also
summarize in Figure[2, and then discuss how to efficiently sample action events from the (optimal)
policy.

— Input layer. After the i-th event occurs, be it an action event or a feedback event, the input
layer converts the associated information, i.e., the time ¢;, the marker z; (or y;), and the type of
event e; € {0, 1}, where e; = 0 denotes action and e; = 1 denotes feedback, into compact vectors.
Specifically, it computes:

T, = Wi(t; — ti—1) + by, Y =Wyy; + by ife; =0
b, = Wa(l — ei) + eri + by, zi=W_,zi+b, ife; =1

3Notf: that previous MTPP deep learning models aims to provide event predictions. This is contrast with the current work, which aims to
provide optimal event interventions.

4Depending on the application domains, action events or feedback events may not contain marks and, thus, the architecture may be slightly
simpler.



Algorithm 1: Returns the next action time

: Input: Parameters by, w;, Vi, h;, last event time ¢’
: Output: Next action time ¢
: CDF(e) < Cumulative distribution of next arrival time
: u <UNIF[0, 1]
i t+ CDF ™' (u)
: whilet < T do
(s,2) +WAITUNTILNEXTFEEDBACK (¥)
if feedback arrived before ¢ then
CDF(e) < MODIFY(CDF(e),s, z)
10: t «— CDF ™' (u)
11:  else
12: return t
13:  endif
14: end while
15: return t

where W,, b, by, b, and by, are trainable weights. Moreover, note that we encode the action marks
y; and feedback marks z; separately since they may belong to different domains. To this aim, one of
the inputs y; and z; will be marked as absent using sentinel values depending on whether e; = 0 or
e; = 1, respectively. Finally, these signals are fed into the hidden layer, which we describe next.

— Hidden layer. This layer iteratively updates the latent embedding h;_1, by taking inputs of previous
events from the input layer:

h; = tanh(Wyh;_1 + WiT; + Woy; + Waz; + Wyb,; + by,), 4
where W, and by, are trainable weights.

— Output layer. The output layer computes the policy p%., = (Aj,m}), i.e., the intensity function
Ap and the mark distribution mj. Assume the agent has generated ¢ events by time ¢, then, the output
layer computes the intensity as:

Ao (t) = exp (bx + we(t — t;) + Vah;) )

where V), by and w; are trainable weights and ¢; denotes the time of the i-th action event. Here, the
by encodes a base intensity level for the occurrence of the (i 4 1)-th action event, the term w; (¢ — ;)
encodes the influence of the ¢-th action event, and the term V), encodes the influence of previous
events. The particular choice of mark distribution mj depends on the application domain. Here, we
experiment with discrete marks and thus model the marks using a multinomial distribution, i.e.,

Pl | exp(VZhi) ©

yi+1 = Cc| = .
Zle)} exp(‘/l?hz) ’

where ) denote the domain of the marks and V¥ are trainable weights.

Sampling action events from the policy. To implement the above policy p%., = (A;, mj), we need
to be able to sample the action times ¢ and marks y from the intensity function defined by Eq.[5]and
the mark distribution defined by Eq.[6, respectively. While the latter reduces to sampling from a
multinomial distribution, which is straightforward, the former requires developing a novel sampling
algorithm leveraging inverse transform sampling, which we describe in Algorithm 1| The details of
calculating C DF (e) and the related modifications are provided in Appendix

Maximizing the expected reward. In the following, we denote the expected reward as a function of
the policy parameters 6 as:

J(0) = Eapmpsy o () Frpy, () [T (T)] ()

Then, we find the optimal policy p’ ., that maximizes the expected reward function J (0) using
stochastic gradient descent (SGD) [23]], i.e., 6;11 = 0; + «;VgJ(0)|o=p,- To do so, we need to
compute the gradient of the expected reward function Vy.J (), however, this may seem challenging
at first especially since the expectation is taken over realizations of marked temporal point processes.

Perhaps surprisingly, we can compute such gradient using the following proposition (proved in
Appendix [A).



Proposition 1. Given an agent with p’y., = (Ap,mp), an environment with Pr.g = (A5, my), the
gradient of the expected reward function J(0) with respect to 0 is given by:

VgJ(@) = EATNP;;()(‘)1’FTNP;;¢(‘) [R* (T)Vg log ]P)Q(AT)] s (8)

where logPg(Ar) = >°, c 4. (log \j(ti) +logmy(2:)) — fOT A (s) ds.

In the above proposition, the gradient of the log-likelihood of the times and marks of a realization
of the marked temporal point process associated to the agent’s actions, Vy log PZ;@(’HT)v can be
easily computed using the policy parametrization defined by Egs.[5 and[6. Moreover, note that the
proposition formally shows that the REINFORCE trick [32] is still valid if the expectation is taken
over realizations of marked temporal point processes, which are a type of random elements [3|] whose
values are discrete events localized in continuous time.

Unfortunately, the above procedure does not limit the intensity of actions by the agent and this may
be problematic in practice (e.g., in viral marketing in social networks, a user who aims to increase
the visibility of her posts may only be able to post a certain number of times). To overcome this,
we consider instead a penalized expected reward function J,.(f) with differentiable regularizers
gr(A3(¢)) and gy, (my(¢)), which implicitly impose a budget on the number of action events and
marks, respectively, i.e.,

Ir(0) = Eapmpy o) Frops,, ()

T T
R*(T)—qz/o gA(Aé(t))—qm/O gm(mé(t))dt]. )

The gradient of the penalized reward can be readily computed using the following proposition (proved
in Appendix B):

Proposition 2. Given an agent with p’y., = (A\j,my), an environment with p%. , = (X}, m3), the
gradient of J,.(0) is given by,

VoJr(0) = Earmps, o () Frmps, () [

T T
(R* (T) - a / A (3(0) — am / gm(m (1)) dt) Vo log Py(Ar)

T

T
= ((Jz / gr (N5 ())VoAy(t) dt + qm / Im (M (1)) Vomy(t) dtﬂ , (10
0 0

* d A5 (t « d gm(my(t
where g4 (A (1)) = “2338 and g, (mj (1)) = “4atl).
In our experiments, we will approximate the expectation in Eq. by first running a batch of
realizations (or episodes) of the corresponding marked temporal point processe and then calculating
the mean of the resulting gradients for each batch.

4 Experiments on spaced repetition

Problem definition. It is well known in the psychology literature that repeated and temporally
distributed reviewing of information aids long term memorization [[14}116,|19, [18]]. Following recent
work in the machine learning literature [[18, 22} 27]], we will consider the following setting: an online
learning platform needs to teach one student some number of items with varying difficulty, say, words
from the vocabulary of a foreign language. To this aim, the platform interacts with the student during
a studying period by asking her to review each item multiple times, i.e., show a word to the student,
ask for its translation, and then show the correct answer. Then, the goal is to help the platform decide
when to ask the student to review each item to better prepare her for a fest, which will take place
sometime after the learning period is over. Under our problem definition, the online platform is
the agent, it generates action events .4 when it asks a student to review an item, the student is the

In some applications, we may be able to play back historical data from the environment against our policy and, in other domains, we may
need to resort to a (complex) environment simulator.
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Figure 3: Spaced Repetition. Performance of our policy gradient method against MEMORIZE [27]] and
a uniform baseline, which follows a constant reviewing rate and chooses items uniformly at random.
Panel (a) shows the empirical recall probability at time 7" 4 7 and Panel (b) shows the difficulty
level of the items selected for review by different methods. In both cases, the solid horizontal line
(triangle) shows the median (average) value across review sequences and the box limits correspond
to the 25%-75% percentiles. All methods schedule (within a small tolerance) the same number of
review events. Panel (c) compares the average fraction of review events per day across all items for
our method (above) and MEMORIZE (below).

environment and she generates feedback events /7 when she reviews an item, indicating whether she
was able to recall the item or not, and the recall probability at the test time defines the reward.

Interestingly, the above setting has been recently studied from the point of view of stochastic optimal
control [27], where the authors have derived the optimal scheduling algorithm for a set of items.
However, their solution assumes that the difficulty of the items and the student model are known [24]]
and that the objective function—the reward—has a particular functional form which depends on the
average recall probability over time (and not the actual sampled recall at test time). Here, we use
our reinforcement learning method to derive (optimal) policies for arbitrarily complex and unknown
student models, items with unknown difficulties and more intuitive reward definitions.

Experimental setup. Since we cannot make real interventions in an online learning platform, we use
data from Duolingo to fit a probabilistic student model, as reported in previous work [24,27]], which
we then use to simulate a student’s performance over time (refer to Appendix [E for further details
on the student model). Here, the optimal policy p., = (A;(t),m;(t)) comprises of a reviewing
intensity function and a multinomial mark distribution. The former characterizes when to review and
the latter characterizes which item to review each time. Then, we train and test our policy gradient
method as follows.

Given a student model and a set of items, we train the platform’s policy p’ ., by using SGD with a
quadratic (entropy) regularizer on the reviewing intensity (mark distribution), i.e., g(A;(t), mj(t)) =
(N () + H(my(t)) where H (mj(t;)) == — > cy Ply; = ] log P[y; = c], on a training consisting
of simulated reviewing and test sequences. More specifically, on iteration ¢, we build a batch of b
reviewing (or studying) sequences of time length 7', where we sample student’s recalls from the
student model every time our policy p, generates a reviewing events and compute the reward at the
end of each sequence. Here, the reward is the sampled recall at test time 7" + 7, which is a natural
performance measure for the goal stated in the problem definition. To test the trained model, we
just generate additional reviewing sequences using the student model and the trained policy and
compute the reward at the end of each sequence. Appendix [D for further details on the training and
testing procedure. Here, we compare the performance of our method with two alternatives: (i) a state
of the art method called MEMORIZE [27]] which, in contrast with our work, has full access to the
student model and is specially designed to maximize the average recall probability over time, and (ii)
a baseline reviewing schedule which follows a constant reviewing rate and choose items uniformly at
random.

Results. Figures[3(a-b) summarize the results, where the number of reviewing events by each method
is the same. The results show that: (i) by maximizing the actual reward one is aiming for, our method
is able to outperform both MEMORIZE and the baseline by large margins; and, (ii) given the limited
study time, our method tends to focus on less difficult items. Finally, in Figure [3(c), we compare
how our method and MEMORIZE distribute reviewing events during the studying period. While our
method keeps a constant load over time, MEMORIZE provides initially a heavier studying load.
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Figure 4: Smart broadcasting. Performance of our policy gradient method against REDQUEEN [34]
(RQ), a variant of REDQUEEN which has access to true ranks (RQ*), and Karimi’s method [12]] on
feeds using a sorting algorithm based on a priority queue (refer to Appendix [F)). Panels (a) and (b)
show the average rank and time at the top, where the solid horizontal line shows the median value
across users, normalized with respect to the value achieved by a user who follows a uniform Poisson
intensity, and the box limits correspond to the 25%-75% percentiles. For the average rank, lower is
better and, for time at the top, higher is better. In both cases, the number of messages posted by each
method is the same. Panel (c) shows a user’s intensity Aj(-) (in blue), as provided by our method, the
counts of the user’s posts (in green), the average rank (in red), the posting times of a competing user
with higher priority (in purple), and the posting times of another competing user with lower priority
(in yellow).

5 Experiments on smart broadcasting

Problem definition. In the smart broadcasting problem, first introduced by Spasojevic et al. [25]],
the goal is to help a social media user decide when to post to achieve high visibility in her followers’
feeds, i.e., to elicit attention from her followers. Under our problem definition, the user is the agent,
she generates action events A when she posts, her followers’ feeds forms the environment, the
environment generates feedback events F when any of the other users her followers follow post, and
the visibility she receives defines the reward. Then, the problem reduces to finding the (optimal)
policy p%., that maximizes the reward.

Following previous work [29, 33} 34]], we measure visibility a user achieves, i.e., the reward, using
two different metrics: (i) the position of her most recent post on her followers’ feeds over time,

or rank, i.e., R*(T) = fOT r(t)dt, where the position zero, r(t) = 0, corresponds to top and thus
lower is better; (ii) the (amount of) time that her most recent post is at the top of her followers’

feeds, or time at the top, i.e., R*(T) = fOT I(r(t) < 1)dt, and thus higher is better. If the followers’
feeds are sorted in reverse chronological order, previous work has derived optimal offline [12]] and
online [34] algorithms for (i) and (ii), respectively, under the additional assumption that the posting
intensity of other users her followers follow adopts certain functional form. However, as pointed
out by previous work, feeds are typically algorithmically sorted, the posting intensity of other users
may be highly complex, and thus the derived algorithms may be of limited use in practice. Here,
we use our reinforcement learning method to derive (optimal) policies for algorithmically sorted
feeds and, by doing so, we are able to help users achieve higher visibility than the above algorithms.
Appendix [G contains additional experiments for feeds sorted in reverse chronological order.

Experimental setup. We use data gathered from Twitter as reported in previous work [2], which
comprises profiles of 52 million users, 1.9 billion directed follow links among these users, and 1.7
billion public tweets posted by the collected users. The follow link information is based on a snapshot
taken at the time of data collection, in September 2009. Here, we focus on the tweets published during
a two month period, from July 1, 2009 to September 1, 2009, and sample 1000 users uniformly at
random. For each of these users, we retrieve five of her followers (chosen at random), select five other
followees of each follower (chosen at random), and collect all the (re)tweets they published. Each
follower represents a wall and our broadcaster is competing with the other followees of follower for
attention. Since we do not have access to the feed sorting algorithm used by Twitter, we experiment
with a relatively simple sorting algorithm based on a priority queue{ﬂ (refer to Appendix [F). Here,

6We expect that, the more complex the sorting algorithm, the larger the competitive advantage our algorithm will offer in comparison with
competing methods designed for feeds sorted in reverse chronological order.



since our feed sorting algorithm does only depends on the time of the post and the identity of the
user who posts, not marks (e.g., content of the post), the optimal policy only comprises an intensity
function, i.e., p% ., = A (t). Then, we train and test our policy gradient method as follows.

For each user, we divide her feedback events, i.e., the posts by other users her followers follow, into
a training set and a test set. The latter contains all feedback events generated in a time window of
length T at the end of the recording period and the former contains all other feedback events. Here,
we set the length T" such that the overall expected number of events in the test set is ~200. Then, we
train each user’s policy A} (t) by using stochastic gradient descent (SGD) with a quadratic regularizer

g(A*(t)) = (A\*(t))®. More specifically, on each iteration i, we build a batch of b sequences of
length T', taken uniformly at random from the training set, we replay the feedback events from these
sequences while interleaving the posts generated by our policy Aj , and compute the reward at the
end of each sequence. To test the trained policy A (t), we just replay the feedback events from the
test set while interleaving the posts generated by the policy and compute the reward at the end of the
sequence. Appendix [D contain additional implementation details.

In the above, we experiment both with rank and time at the top as rewards and compare our method
with two state of the art methods, REDQUEEN [34] and the method by Karimi et al. [12]]. The former
is an online algorithm specially designed to minimize the average rank in feeds sorted in reverse
chronological order and the latter is an offline algorithm specially designed to maximize the time at
the top in feeds sorted in reverse chronological order. However, because REDQUEEN assumes that
the feed is inverse chronologically sorted and posts with intensity o rankepsono(t), we also compare
our method TPPRL against a stronger heuristic RQ*, which posts with intensity oc rankpriority(t).

Results. Figures4[a-b) summarize the results, where the number of messages posted by each method
is the same and all rewards are normalized by the reward achieved by a baseline user who follows
a uniform Poisson intensity. The results show that, by not making any assumption about the feed
sorting algorithm, our method is able to outperform both REDQUEEN and Karimi’s method, which
were specially designed to minimize the average rank and time at the top in feeds sorted in reverse
chronological order, respectively. Moreover, our method provides solutions with smaller variance in
performance than REDQUEEN. Finally, in Figure f{c), we give some intuition on the type of policy
our method learns using a toy example, where a user competes for attention with two other users in a
follower’s feed, one with higher priority and another with lower priority. Our method learns to avoid
posting whenever the user with higher priority posts.

6 Conclusions

In this paper, we approached a novel reinforcement learning problem where both actions and feedback
are asynchronous stochastic events in continuous time, characterized using marked temporal point
processes (MTPPs). In this problem, the policy is a conditional intensity function (and mark
distribution), which is then used to sample the times (and marks) of the agent’s actions. Then, we
derived a flexible policy gradient method, which does not make any assumptions on the functional
form of the intensity and mark distribution of the feedback and it allows for arbitrarily complex reward
functions. Experiments on two different applications in personalized teaching and viral marketing
show that our method beats competing methods.

There are many interesting venues for future work. For example, we have taken a first step towards
developing reinforcement learning algorithms for MTPPs, however, a natural follow up would be
deriving more sophisticated reinforcement learning algorithms, e.g., actor-critic algorithms, for our
novel problem setting. We have evaluated in two real-world applications in personalized teaching and
viral marketing, however, there are many other (high impact) applications fitting our novel problem
setting, e.g., quantitative trading. Finally, it would be very interesting to develop multiple agent
reinforcement learning algorithms for MTPPs.

References

[1] O. Aalen, O. Borgan, and H. Gjessing. Survival and event history analysis: a process point of view.
Springer Science & Business Media, 2008.

[2] M. Cha, H. Haddadi, F. Benevenuto, and P. K. Gummadi. Measuring user influence in twitter: The million
follower fallacy. ICWSM, 10(10-17):30, 2010.



(3]

(4]

(5]

[6

—_

[7

—

[8

—

(9]

(10]

(1]
[12]

(13]

(14]
(15]

[16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]
[26]

D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes: volume II: general theory
and structure. Springer Science & Business Media, 2007.

K. Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):219-245,
2000.

N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and L. Song. Recurrent marked temporal
point processes: Embedding event history to vector. In KDD, 2016.

Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning
for continuous control. In ICML, 2016.

H. Ebbinghaus. Memory: a contribution to experimental psychology. Teachers College, Columbia
University, 1885.

M. Farajtabar, J. Yang, X. Ye, H. Xu, R. Trivedi, E. Khalil, S. Li, L. Song, and H. Zha. Fake news
mitigation via point process based intervention. In /CML, 2017.

N. Frémaux, H. Sprekeler, and W. Gerstner. Reinforcement learning using a continuous time actor-critic
framework with spiking neurons. PLoS computational biology, 9(4):¢1003024, 2013.

F. B. Hanson. Applied stochastic processes and control for Jump-diffusions: modeling, analysis, and
computation, volume 13. Siam, 2007.

H. Jing and A. J. Smola. Neural survival recommender. In WSDM, 2017.

M. R. Karimi, E. Tavakoli, M. Farajtabar, L. Song, and M. Gomez Rodriguez. Smart broadcasting: Do you
want to be seen? In KDD, 2016.

J. Kim, B. Tabibian, A. Oh, B. Scholkopf, and M. Gomez-Rodriguez. Leveraging the crowd to detect and
reduce the spread of fake news and misinformation. In WSDM, 2018.

S. Leitner. So lernt man lernen: Der weg zum erfolg. Herder, 1972.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra. Continuous
control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

R. V. Lindsey, J. D. Shroyer, H. Pashler, and M. C. Mozer. Improving students’ long-term knowledge
retention through personalized review. Psychological science, 25(3):639-647, 2014.

H. Mei and J. M. Eisner. The neural hawkes process: A neurally self-modulating multivariate point process.
In NIPS, 2017.

E. Mettler, C. M. Massey, and P. J. Kellman. A comparison of adaptive and fixed schedules of practice.
Journal of Experimental Psychology: General, 145(7):897, 2016.

C. Metzler-Baddeley and R. J. Baddeley. Does adaptive training work? Applied Cognitive Psychology,
23(2):254-266, 20009.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In /ICML, 2016.

H. Pashler, N. Cepeda, R. V. Lindsey, E. Vul, and M. C. Mozer. Predicting the optimal spacing of study: A
multiscale context model of memory. In NIPS, 2009.

S. Reddy, I. Labutov, S. Banerjee, and T. Joachims. Unbounded human learning: Optimal scheduling for
spaced repetition. In KDD, 2016.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors.
Nature, 323(6088):533, 1986.

B. Settles and B. Meeder. A trainable spaced repetition model for language learning. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 18481858, 2016.

N. Spasojevic, Z. Li, A. Rao, and P. Bhattacharyya. When-to-post on social networks. In KDD, 2015.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT press Cambridge,
1998.

10



[27]

(28]

[29]

(30]

(31]

(32]

[33]

(34]

B. Tabibian, U. Upadhyay, A. De, A. Zarezade, B. Schoelkopf, and M. Gomez-Rodriguez. Enhancing
human learning via spaced repetition optimization. In Proceedings of the National Academy of Sciences,
2019.

E. Vasilaki, N. Frémaux, R. Urbanczik, W. Senn, and W. Gerstner. Spike-based reinforcement learning
in continuous state and action space: when policy gradient methods fail. PLoS computational biology,
5(12):¢1000586, 2009.

Y. Wang, E. Theodorou, A. Verma, and L. Song. A stochastic differential equation framework for guiding
online user activities in closed loop. In AISTATS, 2018.

Y. Wang, G. Williams, E. Theodorou, and L. Song. Variational policy for guiding point processes. In
ICML, 2017.

D. Wierstra, A. Foerster, J. Peters, and J. Schmidhuber. Solving deep memory POMDPs with recurrent
policy gradients. In ICANN, 2007.

R.J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229-256, 1992.

A. Zarezade, A. De, U. Upadhyay, H. Rabiee, and M. Gomez-Rodriguez. Steering social activity: A
stochastic optimal control point of view. JMLR, 2018.

A. Zarezade, U. Upadhyay, H. Rabiee, and M. Gomez-Rodriguez. Redqueen: An online algorithm for
smart broadcasting in social networks. In WSDM, 2017.

11



