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Abstract

In many biological and medical contexts, we construct a large labeled corpus by
aggregating many sources to use in target prediction tasks. Unfortunately, many
of the sources may be irrelevant to our target task, so ignoring the structure of
the dataset is detrimental. This work proposes a novel approach, the Multiple
Domain Matching Network (MDMN), to exploit this structure. MDMN embeds
all data into a shared feature space while learning which domains share strong
statistical relationships. These relationships are often insightful in their own right,
and they allow domains to share strength without interference from irrelevant
data. This methodology builds on existing distribution-matching approaches by
assuming that source domains are varied and outcomes multi-factorial. Therefore,
each domain should only match a relevant subset. Theoretical analysis shows
that the proposed approach can have a tighter generalization bound than existing
multiple-domain adaptation approaches. Empirically, we show that the proposed
methodology handles higher numbers of source domains (up to 21 empirically), and
provides state-of-the-art performance on image, text, and multi-channel time series
classification, including clinical outcome data in an open label trial evaluating a
novel treatment for Autism Spectrum Disorder.

1 Introduction

Deep learning methods have shown unparalleled performance when trained on vast amounts of
diverse labeled training data [21], often collected at great cost. In many contexts, especially medical
and biological, it is prohibitively expensive to collect or label the number of observations necessary
to train an accurate deep neural network classifier. However, a number of related sources, each
with “moderate” data, may already be available, which can be combined to construct a large corpus.
Naively using the combined source data is often an ineffective strategy; instead, what is needed is
unsupervised multiple-domain adaptation. Given labeled data from several source domains (each
representing, e.g., one patient in a medical trial, or reviews of one type of product), and unlabeled
data from target domains (new patients, or new product categories), we wish to train a classifier that
makes accurate predictions about the target domain data at test time.

Recent approaches to multiple-domain adaptation involve learning a mapping from each domain into
a common feature space, in which observations from the target and source domains have similar
distributions [14, 45, 39, 30]. At test time, a target-domain observation is first mapped into this
shared feature space, then classified. However, few of the existing works can model the relationship
among different domains, which we note is important for several reasons. First, even though data in
different domains share labels, their cause and symptoms may be different. Patients with the same

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



MNIST
MNISTM

SVHN

USPS

Source Domains

(a) Baseline model

MNIST
MNISTM

SVHN

USPS

Source Domains

(b) Proposed model MDMN

Figure 1: Figure 1(a) visualizes previous multiple-domain adaptation methods. Figure 1(b) visualizes
the proposed method, with domain adaptation between all domains.

condition can be caused by various reasons and diagnosed while sharing only a subset of symptoms.
Extracting these relationships between patients is helpful in practice because it limits the model to
only relevant information. Second, as mentioned above, a training corpus may be constructed with
only a small number of sources within a larger population. For example, we might collect data from
many patients with “small” data and domain adaptation is used to generalize to new patients [3].
Therefore, extracting these relationships is of practical importance.

In addition to the practical argument, [32] gives a theoretical proof that adding irrelevant source
domains harms performance bounds on multiple-domain adaptation. Therefore, it is necessary to
automatically choose a weighting over source domains to utilize only relevant domains. There are
only a few works that address such a domain weighting strategy [45]. In this manuscript, we extend
the proof techniques of [4, 32] to show that a multiple-domain weighting strategy can have a tighter
generalization bound than traditional multiple domain approaches.

Figure 2: Figure 2 is a visualization of the graph
induced on 22 patients by the proposed model,
MDMN. Each node represents one subject and the
target domain is shown in blue. Note that although
the target is only strongly connected to one source
domain, the links between source domains allow
them to share strength and make more robust pre-
dictions. The lines are labeled by the mean of the
directional weights learned in MDMN.

Notably, many recently proposed transfer learn-
ing strategies are based on minimizing the H-
divergence between domains in feature space,
which was shown to bound generalization error
in domain adaptation [4]. Compared to standard
L1-divergence, H-divergence limits the hypoth-
esis to a given class, which can be better esti-
mated using finite samples theoretically. The
target error bound using H-divergence has the
desirable property that it can be estimated by
learning a classifier between the source and tar-
get domains with finite VC dimension, moti-
vating the Domain Adversarial Neural Network
(DANN) [14]. However, neural network usually
has large VC dimensions, making the bound
using H-divergence loose in practice. In this
work, we propose to use a ‘Wasserstein-like’
metric to define domain similarity in the proofs.
‘Wasserstein-like’ distance in our work extends
the binary output in H-divergence to real prob-
ability output.

Our main contribution is our novel approach to
multiple-domain adaptation. A key idea from
prior work is to match every source domain’s
feature-space distribution to that of the target domain [37, 29]. In contrast, we map the distribution (i)
among sources and target and (ii) within source domains. It is only necessary and prudent to match
one domain to a relevant subset of the others. This makes sense particularly in medical contexts,
as nearly all diagnoses address a multi-factorial disease. The Wasserstein distance is chosen to
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facilitate the mathematical and theoretical operations of pairwise matching in multiple domains. The
underlying idea is also closely related to optimal transport for domain adaptation [7, 8], but address
multiple domain matching.

The proposed method, MDMN, is visualized in Figure 1(b), compared with standard source to target
matching scheme (Figure 1(a)), showing the matching of source domains. This tweak allows for
already-similar domains to merge and share statistical strength, while keeping distant clusters of
domains separate from one another. At test time, only the domains most relevant to the target are
used [5, 32]. In essence, this induces a potentially sparse graph on all domains, which is visualized
for 22 patients from one of our experiments in Figure 2. Any neural network architecture can be
modified to use MDMN, which can be considered a stand-alone domain-matching module.

2 Method

Multiple Domain Matching Network (MDMN) is based upon the intuition that in the extracted feature
space, inherently similar domains should have similar or identical distributions. By sharing strength
within source domains, MDMN can better deal with the overfitting problem within each domain, a
common problem in scientific domains. Meanwhile, the relationships between domains can also be
learned, which is of interest in addition to classification performance.

Figure 3: The framework of MDMN.

In the following, suppose we are given N ob-
servations {(xi, yi, si)}Ni=1 from S domains,
where yi is the desired label for xi and si is
the domain. (In the target domain, the label y
is not provided and will instead be predicted.)
For brevity, we assume source domains are

1, 2, · · · , S�1, and the Sth domain is the sin-

gle target domain. In fact, our approach works
analogously for any number of unlabeled target
domains.

The whole framework, shown in Figure 3, is
composed of an feature extractor (or encoder), a domain adapter (Sec. 2.1) and a label classifier
(Sec. 2.2). In this work, we instantiate all three as neural networks. The encoder E maps data points
x to feature vectors E(x). These features are then used by the label classifier to make predictions for
the supervised task. They are also used by the domain adapter, encouraging extracted features E(x)
to be similar across nearby domains.

2.1 Domain Adaptation with Relationship Extraction

This section details the structure of the domain adapter. In order to adapt one domain to the others,
one approach is to consider a penalty proportional to the distance between each distribution and the
weighted mean of the rest. Specifically, let Ps be the distribution over data points x in domain Ds,
and P/s = 1

S�1

P
S

s0=1 wss0Ps0 the distribution of data from all other domains Dws

/s
. Note that the

weight ws = [ws1, · · · , wsS ] is domain specific and ws 2 RS , where ws lies on the simplex with
||ws||1 = 1, wss0 � 0 for s0 = 1, . . . , S and wss = 0, which will be learned in the framework. In the
following, we will use Ds to represent for its distribution Ps in order to simplify the notation. Then
we can encourage all domains to be close together in the feature space by adding the following term
to the loss:

LD(E(x;✓E);✓D) =
P

S

s=1 �sd(Ds,Dws

/s
), (1)

where d(·, ·) is a distance between distributions (domains). Here it is used to measure the discrepancy
between one domain and a weighted average of the rest. We assume the weight �s equals 1

S�1 for
s = 1, · · · , S � 1 and �S = 1 to balance the penalty for the source and target domains, although this
may be chosen as a tuning parameter. LD is the total domain adapter loss function.

For the rest of this manuscript, we have chosen to use the Wasserstein distance as d(·, ·). This approach
is facilitated by the use of Kantorovich-Rubenstein dual formulation of the Wasserstein-1 distance
[2], which is given for distributions D1 and D2 as d(D1,D2) = sup

||f ||L1 Ex⇠P1 [f(E(x))] �
Ex⇠P2 [f(E(x))], where ||f ||L  1 denotes that the Lipschitz constant of the function f(·) is at
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most 1, i.e. |f(x0) � f(x)|  ||x0 � x||2. f() is any Lipschitz-smooth nonlinear function, which
can be approximated by a neural network [2]. When S is reasonably small (< 100), it is feasible to
include S small neural networks fs(·;✓D) to approximate these distances for each domain. In our
implementation, we use shared layers in the domain adapter to enhance computational efficiency and
the output of the domain adapter is f(·;✓D) = [f1, · · · , fs, · · · , fS ]. The domain loss term is then
given as

P
S

s=1 sup||fs||L1 �s

⇣
Ex⇠Ds

[fs(E(x))]� Ex⇠D
ws

/s

[fs(E(x))]
⌘
. (2)

To make the domain penalty in (2) feasible, it is necessary to discuss how the penalty can be included
in the optimization flow of neural network training. To develop this mathematical approach, let ⇡s be
the proportion of the data that comes from the s

th domain, then the penalty can be rewritten as

1
S

P
S

s=1 �s

⇣
Ex⇠Ds

[fs(E(x))]� Ex⇠D
ws

/s

[fs(E(x))]
⌘

= Es⇠Uniform(1,...,S)

⇥
Ex⇠Ds

[rT
s
f(E(x))]

⇤

= Es⇠⇡

h
Ex⇠Ds

[ 1
S⇡s

⇥ rT
s
f(E(x))]

i
, (3)

where f(E(x)) is the concatenation of fs(E(x)), i.e. f(E(x)) = [f1(E(x)), · · · , fS(E(x))]T .
r 2 RS is defined as

rs =

⇢
��swss0 , s

0 6= s

�s, s
0 = s

, s
0 = 1, · · · , S. (4)

The form in (3) is natural to include in an optimization loop because the expectation is empirically
approximated by a mini-batch of data. Let {(xi, si)}, i = 1, . . . , N denote observations and their
associated domain si, and then

Es⇠⇡

h
Ex⇠Ds

[ 1
S⇡s

⇥ rT
s
f(E(x))]

i
' 1

SN

P
N

i=1 ⇡
�1
si

rT
si
f(E(xi;✓E);✓D). (5)

The weight vector ws for domain Ds should choose to focus only on relevant domains, and the
weights on mismatched domains should be very small. As noted previously, adding uncorrelated
domains hurts generalization performance [32]. In our Theorem 3.3, we shows that a weighting
scheme with these properties decreases the target error bound. Once the function fs(·;✓D) is known,
we can estimate ws by using a softmax transformation on the function expectations from fs between
any two domains. Specifically, the weight ws to match Ds to other domains is calculated as

ws = softmax/s(ls), with lss0 =
�
Ex⇠Ds

[fs(E(x))]� Ex⇠D
s0 [fs(E(x))]

�
, (6)

where ls = [ls1, · · · , lss0 , · · · , lsS ]. The subscript /s means that the value wss is restricted to 0
and lss is excluded from the softmax. The scalar quantity  controls how peaked ws is. Note that
setting ws in (2) to the closest domain and 0 otherwise would correspond to the  ! 1 case, and
 ! 0 corresponds to an unweighted (e.g. conventional) case. It is beneficial to force the domain
regularizer to match to multiple, but not necessarily all, available domains. Practically, we can either
modify  in the softmax or change the Lipschitz constant used to calculate the distance (as was done).
As an example, the learned graph connectivity is shown in Figure 2 is constructed by thresholding
1
2 (wss0 + ws0s) to determine connectivity between nodes.

2.2 Combining the Loss Terms

The proposed method uses the loss in (5) to perform the domain matching. A label classifier is also
necessary, which is defined as a neural network parameterized by ✓Y . The label classifier in Figure 3
is represented as Y [E(x)], where the classifier Y is applied on the extracted feature vector E(x). The
label predictor usually contains several fully connected layers with nonlinear activation functions. The
cross entropy loss is used for classification, i.e. LY (x,y;✓Y ,✓E) =

P
N

i=1

P
C

c=1 yic log Yc[E(xi)],
where Yc means the c

th entry of the output. The MSE loss is used for regression.

With the label prediction loss LY , the complete network loss is given by

min✓E ,✓Y
max✓D

LY (✓Y ,✓E) + ⇢LD(✓D,✓E), (7)

where ✓E denotes the parameters in the feature extractor/encoder, ✓D denotes the parameters in the
domain adapter, and ✓Y in the label classifier. The pseudo code for training is given in Algorithm 1.
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Algorithm 1 Multiple Source Domain Adaptation via WDA
Input: Source samples from Ds, s = 1, · · · , S � 1 and target samples from DS . Note that we
assume index 1, · · · , S � 1 are for source domains and S is for the target domain. Iteration kY

and kD for training label classifier and domain discriminator.
Output: Classifier parameters ✓E ,✓Y ,✓D.

for iter = 1 to max_iter do

Sample a mini-batch of {xs} from {Ds}S�1
s=1 and {xt} from DS .

for iterY = 1 to kY do

Compute lss0 = Ex2Ds
[fs(E(x))]� Ex2D

s0 [fs(E(x))] for 8s, s0 2 [1, S].
Compute the weight vectors ws = softmax/s(ls) and wss = 0 for 8s 2 [1, S], where
ls = (ls1, · · · , lsS).
Compute domain loss LW

D
(xs

,xt) and classifier loss LY (xs).
Compute r✓Y = @LY

@✓Y

and r✓E = @LY

@✓E

+ ⇢
@LD

@✓E

Update ✓Y = ✓Y �r✓Y , ✓E = ✓E �r✓E .
end for

for iterD = 1 to kD do

Update the weight vectors ws, 8s 2 [1, S].
Compute LD(xs

,xt) and r✓D = @LD

@✓D

.
Update ✓D = ✓D +r✓D.

end for

end for

During training, the target domain weight �S in eq. (1) is always set to one, while sources domain
weights are normalized to have sum one. This is because the ultimate goal is to work well on target
domain. We use the gradient penalty introduced in [18] to implement the Lipschitz constraint. A
concern is that the feature scale may change and impact the Wasserstein distance. One potential
solution to this is to include batch normalization to keep the summary statistics of the extracted
features constant. In practice, this is not necessary. Adam [20] is used as the optimization method
while the gradient descent step in Algorithm 1 reflects the basic strategy.

2.3 Complexity Analysis

Although the proposed algorithm computes pairwise domain distance, the computational cost in
practice is similar compared to standard DANN model.

For the domain loss functions, we share all the bottom layers for all domains. This is similar to the
setup of a multi-class domain classifier with softmax output while in our model, the output is a real
number. Specifically, the pairwise distance (6) is updated in each mini-batch by averaging samples in
the same domain.

l̂ss0 ⇡
1

ns

X

8xi2Ds

fs(E(xi))�
1

ns0

X

8xi2D
s0

fs(E(xi)) (8)

Because these pairwise calculations happen late in the network, their computational cost is dwarfed
by feature generation. We believe that the methods will easily scale to hundreds of domains based on
computational and memory scaling. We use exponential smoothing during the updates to improve
the quality of the estimates, with l

t+1
ss0 = 0.9lt

ss0 + 0.1l̂c
ss0 . l̂

c

ss0 is the value from current iteration’s
mini-batch. Then the softmax is applied on the calculated values to get the weight wss0 . This
procedure is used to update ws, so those parameters are not included in the backpropagation. The
domain weights and network parameters are updated iteratively, as shown in Algorithm 1.

3 Theoretical Results

In this section, we investigate the theorems and derivations used to bound the target error with
the given method in Section 2. Specifically, the target error is bounded by the source error, the
source-target distance plus additional terms which is constant under certain data and hypothesis
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classes. The theory is developed based on prior theories of source to target adaptation. The adaptation
within source domains can be developed in the same way. Additional details and derivations are
available in the Supplemental Section A.

Let Ds for s = 1, · · · , S and DT represent the source and the target domain, respectively. Note that
there is a notation change in the target domain, where the Sth domain was denoted as the target in
previous section. Here, it is easier to separate the target domain out. Suppose that there is probabilistic
true labeling functions gs, gT : X ! [0, 1] and a probabilistic hypothesis f : X ! [0, 1], which in
our case is a neural network. The output value of the labeling function determines the probability that
the sample is 0 or 1. gs, gT are assumed Lipschitz smooth with parameters �s and �T , respectively.
This differs from the previous derivation [14] that assumes that the hypothesis and labeling function
were deterministic ({0, 1}). In the following, the notation of encoder E() is removed for simplicity.
Thus f(x) is actually f(E(x;✓E);✓D). Since we first only focus on the adaptation from source to
target, the output of f(·) in this section is a scalar (The last element of f(·)). Same for notation ws,
which is the domain similarity of Ds and target.
Definition 3.1 (Probabilistic Classifier Discrepancy). The probabilistic classifier discrepancy for

domain Ds is defined as

�s(f, g) = Ex⇠Ds
[|f(x)� g(x)|]. (9)

Note that if the label hypothesis is limited to {0, 1}, this is classification accuracy. In order to
construct our main theorem, we use notation ||f ||L 6 � to denote �-smooth function. Mathematical
details are given in Definition A.6 in the appendix. Next we define the weighted Wasserstein-like
quantity between sources and the target.
Definition 3.2 (Weighted Wasserstein-like quantity). Given S multi-source probability distributions

Ps, s = 1, · · · , S and PT for the target domain, the difference between the weighted source domains

{Ds}Ss=1 and target domain DT is described as,

↵�(DT ,
P

s
wsDs) = maxf :X![0,1],||f ||L� Ex⇠DT

[f(x)]� Ex⇠
P

s
wsDs

[f(x)]. (10)

Note that if the bound on the function from 0 to 1 is removed, then this quantity is the Kantorovich-
Rubinstein dual form of the Wasserstein-1 distance. As � ! 1, this is the same as the commonly
used L1-divergence or variation divergence [4]. Thus, we can derive this theorem with H-divergence
exactly, but prefer to use the smoothness constraint to match the used Wasserstein distance. We also
define f

⇤ as an optimal hypothesis that achieves the minimum discrepancy �
⇤, which is given in the

appendix A.3. Now we come to the main theorem of this work.
Theorem 3.3 (Bound on weighted multi-source discrepancy). For a hypothesis f : X ! [0, 1],

�T (f, gT ) 
P

S

s=1 ws�s(f, gs) + ↵�T+�⇤(
P

S

s=1 wsDs,DT ) + �
⇤ (11)

The quantity �
⇤ given in (27) is defined in the appendix and addresses the fundamental mismatch in

true labeling functions, which is uncontrollable by domain adaptation. Note that a weighted sum of
Lipschitz continuous functions is also Lipschitz continuous. �⇤ is the Lipschitz continuity for the
weighted domain combination �

⇤ =
P

S

s=1 ws�s, where fs() of domain Ds has Lipschitz constant
�s. We note that in Theorem 3.3 we are dependent on the weighted sum of the source domains,
implying that increasing the weight on irrelevant source domain may hurt generalization performance.
This matches existing literature. Second, a complex model with high learning capacity will reduce
the source error �s(f, gs), but the uncertainty introduced by the model will increase the domain
discrepancy measurement ↵�+�⇤({Ds}Ss=1,DT ).

Compared to the multi-source domain adversarial network’s (MDAN’s) [45] bound, �T (f, gT ) 
maxs �s(f, gs) + maxs dH�H(Ds,DT ) + �

⇤, where the definition of dH�H is given in appendix
section A.2. Theorem 3.3 reveals that weighting has a tighter bound because an irrelevant domain
with little weight will not seriously hurt the generalization bound whereas prior approaches have
taken the max over the least relevant domain. Also, the inner domain matching helps prevent spurious
relationships between irrelevant domains and the target. Therefore, MDAN can pick out more relevant
source domains compared to the alternative methods evaluated.

4 Related Work

There is a large history in domain adaptation to transfer source distribution information to the
target distribution or vice versa, and has been approached in a variety of manners. Kernel Mean
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Matching (KMM) is widely used in the assumption that target data can be represented by a weighted
combination of samples in the source domain [37, 19, 12, 29, 40]. Clustering [25] and late fusion [1]
approaches have also been evaluated. Distribution matching has been explored with the Minimum
Mean Discrepancy [29] and optimal transport [8, 7], which is similar to the motivation used in our
domain penalization.

With the increasing use of neural networks, weight sharing and transfer has emerged as an effective
strategy for domain adaptation [15]. With the development of Generative Adversarial Networks
(GANs) [17], adversarial domain adaptation has become popular. The Domain Adversarial Neural
Network (DANN) is a newly proposed model for feature adaptation rather than simple network weight
sharing [14]. Since its publication, the DANN approach has been generalized [39, 43] and extended
to multiple domains [45]. In the multiple domain case, a weighted combination of source domains
is used for adaptation. [22] is based on the DANN framework, but uses distributional summary
statistics in the adversary. Several other methods use source or target sample generation with GANs
on single source domain adaptation [35, 27, 26, 33], but extensions to multi-source domains are not
straightforward. [3] provides a multi-stage multi-source domain adaptation.

There has also been theoretical analysis of error bounds for multi-source domain adaptation. [9]
analyzes the theory on distributed weighted combining of multiple source domains. [32] gives a bound
on target loss when only using k-nearest source domains. It shows that adding more uncorrelated
source domains training data hurts the generalization bound. The bound that [4] gives is also on the
target risk loss. It introduces the H-divergence as a measurement of the distance between source
and target domains. [5] further analyzes whether source sample quantity can compensate for quality
under different methods and different target error measurements.

Domain adaptation can be used in a wide variety of applications. [16, 10] uses it for natural language
processing tasks. [12] perform video concept detection using multi-source domain adaptation with
auxiliary classifiers. [15, 14, 1, 3, 39] focus on image domain transfer learning. The multi-source
domain adaptation in previous works is usually limited to fewer than five source domains. Some
scientific applications have more challenging situation by adapting from a significantly higher number
of source domains [44]. In some neural signals, different methods have been employed to transfer
among subjects based on hand crafted EEG features [38, 24]; however, these models need to be
trained in several steps, making them less robust.

5 Experiment

We tested MDMN by applying it to three classification problems: image recognition, natural-language
sentiment detection, and multi-channel time series analysis. The sentiment classification task is given
in the Appendix due to limited space.

5.1 Results on Image Datasets

We first test the performance of the proposed MDMN model on MNIST, MNISTM, SVHN and USPS
datasets. Visualizations of these datasets are given in the Appendix Section C.1. In each test, one
dataset is left out as target domain while the remaining three are treated as source domains. The
feature extractor E consists of two convolutional layers plus two fully connected layers. Both the
label predictor and domain adapter are two layers MLP. ReLU nonlinearity is used between layers.
The baseline method is the concatenation of feature extractor and label predictor as a standard CNN
but it has no access to any target domain data during training process.

While TCA [34] and SA [13] methods can process raw images, the results are significantly stronger
following a feature extraction step. The results from these methods are given by following two
independent steps. First, a convolutional neural network with the same structure as in our proposed
approach is used as a baseline. This model is trained on the source domains, and then features
are extracted for all domains to use as inputs into TCA and SA. Another issue is computational
complexity for TCA, because this algorithm computes the matrix inverse during the inference, which
is of complexity O(N3). Hence, data was limited for this algorithm. For the adversarial based
algorithms [39, 14, 45] and MDMN model, the domain classifier is the uniform, which is a two layer
MLP with ReLU nonlinearities and a soft-max top layer.
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(a) Baseline (b) DANN (c) MDANs (d) MDMN

Figure 4: Visualization of feature spaces of different models by t-SNE. Each color represents one
dataset of MNIST, MNISTM, SVHN and USPS. The testing target domain is MNISTM. The digit
label is shown in the plot. The goal is to adapt generalized feature from source domains to the target
domains; the digits should cluster together rather than the color clustering.

(a) Classification accuracy on SEED dataset. (b) Relative classification accuracy on ASD dataset.

Figure 5: Relative classification accuracy by subject on two EEG datasets. The accuracy without
subtracting the baseline performance is given in appendix C.2.

The classification accuracy is compared in Table 1. The top row shows the baseline result on
the target domain with the classifier trained on the three other datasets. The proposed model
MDMN outperforms the other baselines on all datasets. Note that some domain-adaptation al-
gorithms actually lower the accuracy, revealing that domain-specific features are being trans-
fered. Another problem encountered is the mismatch between the source domain and target
domain. For instance, when the target domain is the MNIST-M dataset, it is expected to give
large weight to MNIST dataset samples during training. However, algorithms like TCA, SA
and DANN equally weight all source domain datasets, making the result worse than MDMN.

Acc. % MNIST MNISTM USPS SVHN
Baseline 94.6 60.8 89.4 43.7
TCA [34] 78.4 45.2 75.4 39.7
SA [13] 90.8 59.9 86.3 40.2
DAN [28] 97.1 67.0 90.4 51.9
ADDA [39] 89.0 80.3 85.2 43.5
DANN [14] 97.9 68.8 89.3 50.1
MDANs [45] 97.2 68.5 90.1 50.5
MDMN 98.0 83.8 94.5 53.1

Table 1: Accuracy on image classification. For the TCA
method, 20% of the data was randomly selected.

If we project the feature vector for
each data to two dimensions using the
TSNE embedding [31], the features
are shown in Figure 4. The goal is
to mix different colors while distin-
guishing different digits. The baseline
model in Figure 4(a) shows no adapta-
tion for the target domain, i.e. the digit
‘0’ from USPS and MNIST datasets
form two islands if domain adaptation
is not imposed. The DANN model
and the MDANs model shows some
“mixing” effect, which indicates that
domain adaptation is happening because the extracted features are more similar between domains.
MDMN has the most clear digit mixing effect. The model finds the digit label features instead of
domain specific features. A larger figure of the same result is given in Appendix C.1 for enhanced
clarity.

5.2 Result on EEG Time Series

Two datasets are used to evaluate performance on Electroencephalography (EEG) data: SEED dataset
and an Autism Spectrum Disorder (ASD) dataset.
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The SEED dataset [46] focuses on analyzing emotion using EEG signal. This dataset has 15 subjects.
The EEG signal is recorded when each subject watches 15 movie clips for 3 times at three different
days. Each video clip is attached with a negative/neutral/positive emotion label. The sampling rate is
at 1000Hz and a 62-electrode layout is used. In our experiment, we downsample the EEG signal to
200Hz. The test scheme is the leave-one-out cross-validation. In each time, one subject is picked out
as test and the remaining 14 subjects are used as training and validation.

The Autism Spectrum Disorder (ASD) dataset [11] aims at discovering whether there are significant
changes in neural activity in a open label clinical trial evaluating the efficacy of a single infusion
of autologous cord blood for treatment of ASD [11]. The study involves 22 children from ages
3 to 7 years undergoing treatment for ASD with EEG measurements at baseline (T1), 6 months
post treatment (T2), and 12 months post treatment (T3). The signal was recorded when a child was
watching a total of three one-minute long videos designed to measure responses to dynamic social
and nonsocial stimuli. The data has 121 signal electrodes. The classification task is to predict the
treatment stage T1, T2 and T3 to test the effectiveness of the treatment and analyze what features are
dynamic in response to the treatment. By examining the features, we can track how neural changes
correlate to this treatment stages. We also adopt the leave-one-out cross-validation scheme for this
dataset, where one subject is left out as testing, the remaining 21 subjects are separated as training
and validation. Leaving complete subjects out better estimates generalization to a population in these
types of neural tasks [42].

The classification accuracy using different methods is compared in Table 2. In this setting, we choose
our baseline model as the SyncNet [23]. SyncNet is a neural network with structured filter targeting
at extracting neuroscience related features. The simplest framework of SyncNet is adopted which
only contains one layer of convolutional filters. As in [23], we set the filter number to 10 for both
datasets. For TCA, SA and ITL methods, the baseline model was trained as before without a domain
adapter on the source domain data. Extracted features from this model were then used to extract
features from target domains.

Dataset SEED ASD
SyncNet [23] 49.29 62.06
TCA [34] 39.70 55.65
SA [13] 53.90 62.53
ITL [36] 45.27 54.62
DAN [28] 50.28 61.88
DANN [14] 55.87 63.81
MDANs [45] 56.65 63.38
MDMN 60.59 67.78

Table 2: Classification mean accuracy in percent-
age on EEG datasets.

MDMN outperforms other competitors on both
EEG datasets. A subject by subject plot is shown
in Figure 5. Because performance on subjects is
highly variable, we only visualize performance
relative to baseline, and absolute performance
is visualized in Figure 8 in the appendix. Be-
cause the source domains are large but each
source domain is highly variable, the require-
ment to find relevant domains is of increased
importance on both of the EEG datasets. For the
ASD dataset, DANN and MDANs do not match
the performance of MDMN mainly because they
cannot correctly pick out most related subject
from source domains. This is also true for TCA,
SA and ITL. Our proposed algorithm MDMN overcomes this problem by computing domain similar-
ity in feature space while performing feature mapping, and a domain relationship graph by subject is
given in Figure 2. Each subject is related to all the others with different weight. The missing edges,
like the edges to node ‘s10’, are those with weight less than 0.09. Our algorithm automatically finds
the relationship and the domain adaptation happens with the calculated weight, instead of treating all
domains equally.

6 Conclusion

In this work, we propose the Multiple Domain Matching Network (MDMN) that uses feature matching
across different source domains. MDMN is able to use pairwise domain feature similarity to give
a weight to each training domain, which is of key importance when the number of source domains
increases, especially in many neuroscience and biological applications. While performing domain
adaptation, MDMN can also extract the relationship between domains. The relationship graph itself
is of interest in many applications. Our proposed adversarial training framework further applies this
idea on different domain adaptation tasks and shows state-of-the-art performance.
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