
Online Learning to Rank in Stochastic Click Models

A. Notation
Symbol Definition
↵(d) Attraction probability of item d

↵
max

Highest attraction probability, ↵(1)
A Binary attraction vector, where A(d) is the attraction indicator of item d

P
↵

Distribution over binary attraction vectors
A Set of active batches
b
max

Index of the last created batch
B

b,`

Items in stage ` of batch b

c
t

(k) Indicator of the click on position k at time t

c
b,`

(d) Number of observed clicks on item d in stage ` of batch b

ˆc
b,`

(d) Estimated probability of clicking on item d in stage ` of batch b

¯c
b,`

(d) Probability of clicking on item d in stage ` of batch b, E [

ˆc
b,`

(d)]

D Ground set of items [L] such that ↵(1) � . . . � ↵(L)

�
T

log T + 3 log log T
˜

�

`

2

�`

I
b

Interval of positions in batch b

K Number of positions to display items
len(b) Number of positions to display items in batch b

L Number of items
L

b,`

(d) Lower confidence bound of item d, in stage ` of batch b

n
`

Number of times that each item is observed in stage `

n
b,`

Number of observations of item d in stage ` of batch b

⇧

K

(D) Set of all K-tuples with distinct elements from D
r(R, A,X) Reward of list R, for attraction and examination indicators A and X

r(R,↵,�) Expected reward of list R
R = (d

1

, . . . , d
K

) List of K items, where d
k

is the k-th item in R
R⇤

= (1, . . . ,K) Optimal list of K items
R(R, A,X) Regret of list R, for attraction and examination indicators A and X

R(T ) Expected cumulative regret in T steps
T Horizon of the experiment
U

b,`

(d) Upper confidence bound of item d, in stage ` of batch b

�(R, k) Examination probability of position k in list R
�⇤

(k) Examination probability of position k in the optimal list R⇤

X Binary examination matrix, where X(R, k) is the examination indicator of position k in list R
P
�

Distribution over binary examination matrices
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B. Proof of Theorem 1
Let R

b,`

be the stochastic regret associated with stage ` of batch b. Then the expected T -step regret of MergeRank can be
decomposed as

R(T )  E
"

2KX

b=1

T�1X

`=0

R
b,`

#

because the maximum number of batches is 2K. Let

¯�
b,`

(d) =
¯c
b,`

(d)

↵(d)
(12)

be the average examination probability of item d in stage ` of batch b. Let

E
b,`

=

⇢
Event 1: 8d 2 B

b,`

:

¯c
b,`

(d) 2 [L
b,`

(d),U
b,`

(d)] ,

Event 2: 8I
b

2 [K]

2, d 2 B
b,`

, d⇤ 2 B
b,`

\ [K] s.t. � = ↵(d⇤)� ↵(d) > 0 :

n
`

� 16K

�⇤
(I

b

(1))(1� ↵
max

)�

2

log T =) ˆc
b,`

(d)  ¯�
b,`

(d)[↵(d) +�/4] ,

Event 3: 8I
b

2 [K]

2, d 2 B
b,`

, d⇤ 2 B
b,`

\ [K] s.t. � = ↵(d⇤)� ↵(d) > 0 :

n
`

� 16K

�⇤
(I

b

(1))(1� ↵
max

)�

2

log T =) ˆc
b,`

(d⇤) � ¯�
b,`

(d⇤)[↵(d⇤)��/4]

�

be the “good event” in stage ` of batch b, where ¯c
b,`

(d) is the probability of clicking on item d in stage ` of batch b, which
is defined in (8); ˆc

b,`

(d) is its estimate, which is defined in (7); and both �⇤ and ↵
max

are defined in Section 5.3. Let E
b,`

be the complement of event E
b,`

. Let E be the “good event” that all events E
b,`

happen; and E be its complement, the “bad
event” that at least one event E

b,`

does not happen. Then the expected T -step regret can be bounded from above as

R(T )  E
"

2KX

b=1

T�1X

`=0

R
b,`

1{E}
#
+ TP (E) 

2KX

b=1

E
"
T�1X

`=0

R
b,`

1{E}
#
+ 4KL(3e+K) ,

where the second inequality is from Lemma 2. Now we apply Lemma 7 to each batch b and get that

2KX

b=1

E
"
T�1X

`=0

R
b,`

1{E}
#
 192K3L

(1� ↵
max

)�

min

log T .

This concludes our proof.
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C. Upper Bound on the Probability of Bad Event E
Lemma 2. Let E be defined as in the proof of Theorem 1 and T � 5. Then

P (E)  4KL(3e+K)

T
.

Proof. By the union bound,

P (E) 
2KX

b=1

T�1X

`=0

P (E
b,`

) .

Now we bound the probability of each event in E
b,`

and then sum them up.

Event 1

The probability that event 1 in E
b,`

does not happen is bounded as follows. Fix I
b

and B
b,`

. For any d 2 B
b,`

,

P (

¯c
b,`

(d) /2 [L
b,`

(d),U
b,`

(d)])  P (

¯c
b,`

(d) < L
b,`

(d)) + P (

¯c
b,`

(d) > U
b,`

(d))


2e

⌃
log(T log

3 T ) log n
`

⌥

T log

3 T


2e

⌃
log

2 T + log(log

3 T ) log T
⌥

T log

3 T


2e

⌃
2 log

2 T
⌥

T log

3 T

 6e

T log T
,

where the second inequality is by Theorem 10 of Garivier & Cappe (2011), the third inequality is from T � n
`

, the fourth
inequality is from log(log

3 T )  log T for T � 5, and the last inequality is from
⌃
2 log

2 T
⌥
 3 log

2 T for T � 3. By the
union bound,

P (9d 2 B
b,`

s.t. ¯c
b,`

(d) /2 [L
b,`

(d),U
b,`

(d)])  6eL

T log T

for any B
b,`

. Finally, since the above inequality holds for any B
b,`

, the probability that event 1 in E
b,`

does not happen is
bounded as above.

Event 2

The probability that event 2 in E
b,`

does not happen is bounded as follows. Fix I
b

and B
b,`

, and let k = I
b

(1). If the event
does not happen for items d and d⇤, then it must be true that

n
`

� 16K

�⇤
(k)(1� ↵

max

)�

2

log T , ˆc
b,`

(d) > ¯�
b,`

(d)[↵(d) +�/4] .

From the definition of the average examination probability in (12) and a variant of Hoeffding’s inequality in Lemma 8, we
have that

P (

ˆc
b,`

(d) > ¯�
b,`

(d)[↵(d) +�/4])  exp [�n
`

D
KL

(

¯�
b,`

(d)[↵(d) +�/4] k ¯c
b,`

(d))] .

From Lemma 9, ¯�
b,`

(d) � �⇤
(k)/K (Lemma 3), and Pinsker’s inequality, we have that

exp [�n
`

D
KL

(

¯�
b,`

(d)[↵(d) +�/4] k ¯c
b,`

(d))]  exp [�n
`

¯�
b,`

(d)(1� ↵
max

)D
KL

(↵(d) +�/4 k↵(d))]

 exp


�n

`

�⇤
(k)(1� ↵

max

)�

2

8K

�
.
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From our assumption on n
`

, we conclude that

exp


�n

`

�⇤
(k)(1� ↵

max

)�

2

8K

�
 exp[�2 log T ] =

1

T 2

.

Finally, we chain all above inequalities and get that event 2 in E
b,`

does not happen for any fixed I
b

, B
b,`

, d, and d⇤ with
probability of at most T�2. Since the maximum numbers of items d and d⇤ are L and K, respectively, the event does not
happen for any fixed I

b

and B
b,`

with probability of at most KLT�2. In turn, the probability that event 2 in E
b,`

does not
happen is bounded by KLT�2.

Event 3

This bound is analogous to that of event 2.

Total probability

The maximum number of stages in any batch in BatchRank is log T and the maximum number of batches is 2K. Hence,
by the union bound,

P (E) 
✓

6eL

T log T
+

KL

T 2

+

KL

T 2

◆
(2K log T )  4KL(3e+K)

T
.

This concludes our proof.
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D. Upper Bound on the Regret in Individual Batches
Lemma 3. For any batch b, positions I

b

, stage `, set B
b,`

, and item d 2 B
b,`

,

�⇤
(k)

K
 ¯�

b,`

(d) ,

where k = I
b

(1) is the highest position in batch b.

Proof. The proof follows from two observations. First, by Assumption 6, �⇤
(k) is the lowest examination probability of

position k. Second, by the design of DisplayBatch, item d is placed at position k with probability of at least 1/K.

Lemma 4. Let event E happen and T � 5. For any batch b, positions I
b

, set B
b,0

, item d 2 B
b,0

, and item d⇤ 2 B
b,0

\
[K] such that � = ↵(d⇤)� ↵(d) > 0, let k = I

b

(1) be the highest position in batch b and ` be the first stage where

˜

�

`

<

r
�⇤

(k)(1� ↵
max

)

K
� .

Then U
b,`

(d) < L
b,`

(d⇤).

Proof. From the definition of n
`

in BatchRank and our assumption on ˜

�

`

,

n
`

� 16

˜

�

2

`

log T >
16K

�⇤
(k)(1� ↵

max

)�

2

log T . (13)

Let µ =

¯�
b,`

(d) and suppose that U
b,`

(d) � µ[↵(d) +�/2] holds. Then from this assumption, the definition of U
b,`

(d),
and event 2 in E

b,`

,

D
KL

(

ˆc
b,`

(d) kU
b,`

(d)) � D
KL

(

ˆc
b,`

(d) kµ[↵(d) +�/2])1{ˆc
b,`

(d)  µ[↵(d) +�/2]}
� D

KL

(µ[↵(d) +�/4] kµ[↵(d) +�/2]) .

From Lemma 9, µ � �⇤
(k)/K (Lemma 3), and Pinsker’s inequality, we have that

D
KL

(µ[↵(d) +�/4] kµ[↵(d) +�/2]) � µ(1� ↵
max

)D
KL

(↵(d) +�/4 k↵(d) +�/2)

� �⇤
(k)(1� ↵

max

)�

2

8K
.

From the definition of U
b,`

(d), T � 5, and above inequalities,

n
`

=

log T + 3 log log T

D
KL

(

ˆc
b,`

(d) kU
b,`

(d))
 2 log T

D
KL

(

ˆc
b,`

(d) kU
b,`

(d))
 16K log T

�⇤
(k)(1� ↵

max

)�

2

.

This contradicts to (13), and therefore it must be true that U
b,`

(d) < µ[↵(d) +�/2] holds.

On the other hand, let µ⇤
=

¯�
b,`

(d⇤) and suppose that L
b,`

(d⇤)  µ⇤
[↵(d⇤) � �/2] holds. Then from this assumption,

the definition of L
b,`

(d⇤), and event 3 in E
b,`

,

D
KL

(

ˆc
b,`

(d⇤) kL
b,`

(d⇤)) � D
KL

(

ˆc
b,`

(d⇤) kµ⇤
[↵(d⇤)��/2])1{ˆc

b,`

(d⇤) � µ⇤
[↵(d⇤)��/2]}

� D
KL

(µ⇤
[↵(d⇤)��/4] kµ⇤

[↵(d⇤)��/2]) .

From Lemma 9, µ⇤ � �⇤
(k)/K (Lemma 3), and Pinsker’s inequality, we have that

D
KL

(µ⇤
[↵(d⇤)��/4] kµ⇤

[↵(d⇤)��/2]) � µ⇤
(1� ↵

max

)D
KL

(↵(d⇤)��/4 k↵(d⇤)��/2)

� �⇤
(k)(1� ↵

max

)�

2

8K
.

From the definition of L
b,`

(d⇤), T � 5, and above inequalities,

n
`

=

log T + 3 log log T

D
KL

(

ˆc
b,`

(d) kL
b,`

(d⇤))
 2 log T

D
KL

(

ˆc
b,`

(d⇤) kL
b,`

(d⇤))
 16K log T

�⇤
(k)(1� ↵

max

)�

2

.
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This contradicts to (13), and therefore it must be true that L
b,`

(d⇤) > µ⇤
[↵(d⇤)��/2] holds.

Finally, based on inequality (11),

µ⇤
=

¯c
b,`

(d⇤)

↵(d⇤)
�

¯c
b,`

(d)

↵(d)
= µ ,

and item d is guaranteed to be eliminated by the end of stage ` because

U
b,`

(d) < µ[↵(d) +�/2]

 µ↵(d) +
µ⇤↵(d⇤)� µ↵(d)

2

= µ⇤↵(d⇤)� µ⇤↵(d⇤)� µ↵(d)

2

 µ⇤
[↵(d⇤)��/2]

< L
b,`

(d⇤) .

This concludes our proof.

Lemma 5. Let event E happen and T � 5. For any batch b, positions I
b

where I
b

(2) = K, set B
b,0

, and item d 2 B
b,0

such that d > K, let k = I
b

(1) be the highest position in batch b and ` be the first stage where

˜

�

`

<

r
�⇤

(k)(1� ↵
max

)

K
�

for � = ↵(K)� ↵(d). Then item d is eliminated by the end of stage `.

Proof. Let B+

= {k, . . . ,K}. Now note that ↵(d⇤)� ↵(d) � � for any d⇤ 2 B+. By Lemma 4, L
b,`

(d⇤) > U
b,`

(d) for
any d⇤ 2 B+; and therefore item d is eliminated by the end of stage `.

Lemma 6. Let E happen and T � 5. For any batch b, positions I
b

, and set B
b,0

, let k = I
b

(1) be the highest position in
batch b and ` be the first stage where

˜

�

`

<

r
�⇤

(k)(1� ↵
max

)

K
�

max

for �
max

= ↵(s)� ↵(s+ 1) and s = argmax

d2{Ib(1),...,Ib(2)�1}
[↵(d)� ↵(d+ 1)]. Then batch b is split by the end of stage `.

Proof. Let B+

= {k, . . . , s} and B�
= B

b,0

\ B+. Now note that ↵(d⇤) � ↵(d) � �

max

for any (d⇤, d) 2 B+ ⇥ B�.
By Lemma 4, L

b,`

(d⇤) > U
b,`

(d) for any (d⇤, d) 2 B+ ⇥B�; and therefore batch b is split by the end of stage `.

Lemma 7. Let event E happen and T � 5. Then the expected T -step regret in any batch b is bounded as

E
"
T�1X

`=0

R
b,`

#
 96K2L

(1� ↵
max

)�

max

log T .

Proof. Let k = I
b

(1) be the highest position in batch b. Choose any item d 2 B
b,0

and let � = ↵(k)� ↵(d).

First, we show that the expected per-step regret of any item d is bounded by �⇤
(k)� when event E happens. Since event E

happens, all eliminations and splits up to any stage ` of batch b are correct. Therefore, items 1, . . . , k � 1 are at positions
1, . . . , k � 1; and position k is examined with probability �⇤

(k). Note that this is the highest examination probability in
batch b (Assumption 4). Our upper bound follows from the fact that the reward is linear in individual items (Section 3.1).

We analyze two cases. First, suppose that �  2K�

max

for �
max

in Lemma 6. Then by Lemma 6, batch b splits when
the number of steps in a stage is at most

16K

�⇤
(k)(1� ↵

max

)�

2

max

log T .
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By the design of DisplayBatch, any item in stage ` of batch b is displayed at most 2n
`

times. Therefore, the maximum
regret due to item d in the last stage before the split is

32K�⇤
(k)�

�⇤
(k)(1� ↵

max

)�

2

max

log T  64K2

�

max

(1� ↵
max

)�

2

max

log T =

64K2

(1� ↵
max

)�

max

log T .

Now suppose that � > 2K�

max

. This implies that item d is easy to distinguish from item K. In particular,

↵(K)� ↵(d) = �� (↵(k)� ↵(K)) � ��K�

max

� �

2

,

where the equality is from the identity

� = ↵(k)� ↵(d) = ↵(k)� ↵(K) + ↵(K)� ↵(d) ;

the first inequality is from ↵(k)� ↵(K)  K�

max

, which follows from the definition of �
max

and k 2 [K]; and the last
inequality is from our assumption that K�

max

< �/2. Now we apply the derived inequality and, by Lemma 5 and from
the design of DisplayBatch, the maximum regret due to item d in the stage where that item is eliminated is

32K�⇤
(k)�

�⇤
(k)(1� ↵

max

)(↵(K)� ↵(d))2
log T  128K

(1� ↵
max

)�

log T  64

(1� ↵
max

)�

max

log T .

The last inequality is from our assumption that � > 2K�

max

.

Because the lengths of the stages quadruple and BatchRank resets all click estimators at the beginning of each stage, the
maximum expected regret due to any item d in batch b is at most 1.5 times higher than that in the last stage, and hence

E
"
T�1X

`=0

R
b,`

#
 96K2 |B

b,0

|
(1� ↵

max

)�

max

log T .

This concludes our proof.
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E. Technical Lemmas
Lemma 8. Let (X

1

)

n

i=1

be n i.i.d. Bernoulli random variables, ¯µ =

P
n

i=1

X
i

, and µ = E [

¯µ]. Then

P (

¯µ � µ+ ")  exp[�nD
KL

(µ+ " kµ)]

for any " 2 [0, 1� µ], and

P (

¯µ  µ� ")  exp[�nD
KL

(µ� " kµ)]

for any " 2 [0, µ].

Proof. We only prove the first claim. The other claim follows from symmetry.

From inequality (2.1) of Hoeffding (1963), we have that

P (

¯µ � µ+ ") 
"✓

µ

µ+ "

◆
µ+"

✓
1� µ

1� (µ+ ")

◆
1�(µ+")

#
n

for any " 2 [0, 1� µ]. Now note that
"✓

µ

µ+ "

◆
µ+"

✓
1� µ

1� (µ+ ")

◆
1�(µ+")

#
n

= exp


n


(µ+ ") log

µ

µ+ "
+ (1� (µ+ ")) log

1� µ

1� (µ+ ")

��

= exp


�n


(µ+ ") log

µ+ "

µ
+ (1� (µ+ ")) log

1� (µ+ ")

1� µ

��

= exp[�nD
KL

(µ+ " kµ)] .

This concludes the proof.

Lemma 9. For any c, p, q 2 [0, 1],

c(1�max {p, q})D
KL

(p k q)  D
KL

(cp k cq)  cD
KL

(p k q) . (14)

Proof. The proof is based on differentiation. The first two derivatives of D
KL

(cp k cq) with respect to q are

@

@q
D

KL

(cp k cq) = c(q � p)

q(1� cq)
,

@2

@q2
D

KL

(cp k cq) = c2(q � p)2 + cp(1� cp)

q2(1� cq)2
;

and the first two derivatives of cD
KL

(p k q) with respect to q are

@

@q
[cD

KL

(p k q)] = c(q � p)

q(1� q)
,

@2

@q2
[cD

KL

(p k q)] = c(q � p)2 + cp(1� p)

q2(1� q)2
.

The second derivatives show that D
KL

(cp k cq) and cD
KL

(p k q) are convex in q for any p. Their minima are at q = p.

Now we fix p and c, and prove (14) for any q. The upper bound is derived as follows. Since

D
KL

(cp k cx) = cD
KL

(p kx) = 0

when x = p, the upper bound holds when cD
KL

(p kx) increases faster than D
KL

(cp k cx) for any p < x  q, and when
cD

KL

(p kx) decreases faster than D
KL

(cp k cx) for any q  x < p. This follows from the definitions of @

@x

D
KL

(cp k cx)
and @

@x

[cD
KL

(p kx)]. In particular, both derivatives have the same sign and
�� @

@x

D
KL

(cp k cx)
�� 

�� @

@x

[cD
KL

(p kx)]
�� for

any feasible x 2 [min {p, q} ,max {p, q}].

The lower bound is derived as follows. The ratio of @

@x

[cD
KL

(p kx)] and @

@x

D
KL

(cp k cx) is bounded from above as

@

@x

[cD
KL

(p kx)]
@

@x

D
KL

(cp k cx)
=

1� cx

1� x
 1

1� x
 1

1�max {p, q}

for any x 2 [min {p, q} ,max {p, q}]. Therefore, we get a lower bound on D
KL

(cp k cx) when we multiply cD
KL

(p kx)
by 1�max {p, q}.


