Online Learning to Rank in Stochastic Click Models

A. Notation
Symbol Definition
a(d) Attraction probability of item d
Omax Highest attraction probability, (1)
A Binary attraction vector, where A(d) is the attraction indicator of item d
P, Distribution over binary attraction vectors
A Set of active batches
bmax Index of the last created batch
By, Items in stage ¢ of batch b
c:(k) Indicator of the click on position k at time ¢
¢y o(d) Number of observed clicks on item d in stage ¢ of batch b
ép0(d) Estimated probability of clicking on item d in stage ¢ of batch b
Cpo(d) Probability of clicking on item d in stage £ of batch b, E [é;, ¢(d)]
D Ground set of items [L] such that a(1) > ... > (L)
o7 log T + 3loglog T
Ag 2t
I Interval of positions in batch b
K Number of positions to display items
len(b) Number of positions to display items in batch b
L Number of items
Ly (d) Lower confidence bound of item d, in stage ¢ of batch b
ng Number of times that each item is observed in stage ¢
N0 Number of observations of item d in stage ¢ of batch b
Ik (D) Set of all K-tuples with distinct elements from D
(R, A, X) Reward of list R, for attraction and examination indicators A and X
r(R,a, x) Expected reward of list R
R =(dy,...,dk) | Listof K items, where dy, is the k-th item in R
R*=(1,...,K) | Optimal list of K items
R(R, A, X) Regret of list R, for attraction and examination indicators A and X
R(T) Expected cumulative regret in 7" steps
T Horizon of the experiment
U, (d) Upper confidence bound of item d, in stage £ of batch b
X(R, k) Examination probability of position & in list R
x*(k) Examination probability of position & in the optimal list R*
X Binary examination matrix, where X (R, k) is the examination indicator of position & in list R
P, Distribution over binary examination matrices
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B. Proof of Theorem 1

Let R} ¢ be the stochastic regret associated with stage ¢ of batch b. Then the expected T-step regret of MergeRank can be
decomposed as

2K T—

R(T) <E [ Rb,é]

b=1 ¢=0

[

because the maximum number of batches is 2K . Let

Eb)g(d)
a(d)

be the average examination probability of item d in stage ¢ of batch b. Let

Xb,e(d) = (12)

51,7@ = {Event 1: Vd € Bbyg : éb’g(d) S [Lb’g(d), Ub’g(d)] R

Event 2: VI, € [K]?, d € Byy, d* € ByyN[K]s.t. A = a(d*) —a(d) >0 :

- 16K

~ XF(Ip(1)) (1 — ammax) A2

Event 3: VI, € [K]?, d € Byy, d* € By N [K]st. A =a(d*) —a(d) >0:
16K

2 ST - e PTG T fald) - /1

be the “good event” in stage ¢ of batch b, where ¢ ¢(d) is the probability of clicking on item d in stage ¢ of batch b, which
is defined in (8); € ¢(d) is its estimate, which is defined in (7); and both x* and aynax are defined in Section 5.3. Let ﬁ’g
be the complement of event &, 4. Let & be the “good event” that all events &, , happen; and & be its complement, the “bad
event” that at least one event &, ; does not happen. Then the expected T'-step regret can be bounded from above as

g logT — éb,é(d) < )Zbyg(d)[a(d) + A/ﬁﬂ ,

2K T—1 2K T—1
R(T)<E|Y > Ry, {&}| +TPE) <Y E|> Ry, M{}| +4KL(3e + K),
b=1 ¢=0 b=1 £=0

where the second inequality is from Lemma 2. Now we apply Lemma 7 to each batch b and get that

2K [T-1

192K3L
E E E Ry A{E}| £ ——————1ogT'.
b=1 Le=0 et }] (1= Q) A "

This concludes our proof.
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C. Upper Bound on the Probability of Bad Event £
Lemma 2. Let & be defined as in the proof of Theorem 1 and T > 5. Then

— _AKL(3¢+K)
PE) < ——7——.

Proof. By the union bound,

2K T

|
—

P(&ps) -
b=1 ¢

Il
o

Now we bound the probability of each event in &, ¢ and then sum them up.

Event 1

The probability that event 1 in &, ¢ does not happen is bounded as follows. Fix I, and By, ¢. For any d € By g,

P(ey,e(d) & [Le(d), Upe(d)]) < P(Ce(d) < Lpe(d)) + P(€e(d) > Uy e(d))
- 2e [log(T log® T') log ne|
- Tlog® T
e ﬂog2 T + log(log® T) log T]
Tlog® T
< 2e {2 log? T]
Tlog®T
6e
= TlogT’

where the second inequality is by Theorem 10 of Garivier & Cappe (2011), the third inequality is from T" > ny, the fourth
inequality is from log(log® T') < log T for T > 5, and the last inequality is from [21log® T'| < 3log®T for T' > 3. By the
union bound,

6eL
TlogT

P(Hd € Bb7g S.t. ébj(d) ¢ [Lbj(d), Ubj(d)]) <

for any By ¢. Finally, since the above inequality holds for any By ¢, the probability that event 1 in &, , does not happen is
bounded as above.

Event 2

The probability that event 2 in &, ; does not happen is bounded as follows. Fix I, and B, ¢, and let k& = I,,(1). If the event
does not happen for items d and d*, then it must be true that

S 16K
~ x* (k) (1 — cumax)A?

From the definition of the average examination probability in (12) and a variant of Hoeffding’s inequality in Lemma 8, we
have that

Ny logT, éb,é(d) > vag(d)[a(d) + A/4] .

P (é.e(d) > xp,e(d)[a(d) + A/4]) < exp [—ne Dxr(Xp,o(d)[a(d) + A/4] [ €.e(d))] -
From Lemma 9, x3 ¢(d) > x*(k)/K (Lemma 3), and Pinsker’s inequality, we have that
exp [=neDkr(Xp.e(d)[e(d) + A/4] [ €b,0(d))] < exp [=neXp,e(d)(1 = max) Dxr(e(d) + A/4 ] a(d))]

X (k) (1 — qumax ) A2
8K

S exp | —
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From our assumption on n,, we conclude that

X*(k) (1 - amaX)A2
8K

1
<exp[—2logT]| = —

exp | —ny T2

Finally, we chain all above inequalities and get that event 2 in &, ;, does not happen for any fixed Iy, By ¢, d, and d* with
probability of at most T2, Since the maximum numbers of items d and d* are L and K, respectively, the event does not
happen for any fixed I, and By, ; with probability of at most K LT 2. In turn, the probability that event 2 in &, , does not
happen is bounded by K LT 2.

Event 3

This bound is analogous to that of event 2.

Total probability

The maximum number of stages in any batch in BatchRank is log 7" and the maximum number of batches is 2K . Hence,
by the union bound,

L KL KL
e + ) (2K logT) <

LKL AKL(3e + K)
TlogT T2 T2 '

T

PE) < (

This concludes our proof. m
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D. Upper Bound on the Regret in Individual Batches

Lemma 3. For any batch b, positions I, stage {, set By, o, and item d € By, y,

%(k) S Xb,f(d) 3

where k = I (1) is the highest position in batch b.
Proof. The proof follows from two observations. First, by Assumption 6, x*(k) is the lowest examination probability of
position k. Second, by the design of DisplayBatch, item d is placed at position k with probability of at least 1/ K. m

Lemma 4. Let event £ happen and T' > 5. For any batch b, positions Iy, set By g, item d € By o, and item d* € By, g N
[K] such that A = o(d*) — a(d) > 0, let k = I},(1) be the highest position in batch b and { be the first stage where

NP STy

Then Uy, (d) < Ly ¢(d¥).

Proof. From the definition of n, in BatchRank and our assumption on A[,

16K
X* (k)(l - anlax)A

16
ng > N—QlogT > 5 logT'. (13)
Aj

Let it = Xp.¢(d) and suppose that Uy, ¢(d) > p[a(d) + A/2] holds. Then from this assumption, the definition of Uy ¢(d),
and event 2 in & 4,
Dxi(€,e(d) | Ub,e(d)) = Dxiféne(d) || pla(d) + A/2]) 1{ép o(d) < pla(d) + A/2]}
> Dicu(pla(d) + A/4] | pla(d) + A/2)

From Lemma 9, p > x*(k)/K (Lemma 3), and Pinsker’s inequality, we have that

Dxr(pla(d) + A/4] || ple(d) + A/2]) 2 p(1 = omax) Dxi(a(d) + A/4 | a(d) + A/2)

> X" (k>(1 - O‘nlam)A2
- 8K

From the definition of U, ¢(d), T' > 5, and above inequalities,

_ logT +3loglogT 2logT < 16K logT
Dx1(€pe(d) | Upe(d)) — Dxrf€oe(d) | Upe(d)) = x*(k)(1 — max) A%

This contradicts to (13), and therefore it must be true that U, ¢(d) < p[a(d) + A/2] holds.

e

On the other hand, let ;1* = X3 .¢(d*) and suppose that Ly ¢(d*) < p*[a(d*) — A/2] holds. Then from this assumption,
the definition of L;, 4(d*), and event 3 in &, ¢,

Dxr(€p,e(d”) || Loe(d*)) = Dxr(€pe(d”) || p*[e(d”) — A/2]) 1{&pe(d") = p*[a(d”) — A/2]}
> Dxi(p*a(d”) — A/4] || p*la(d®) — A/2]) .
From Lemma 9, p* > x*(k)/K (Lemma 3), and Pinsker’s inequality, we have that
Dyxr(p*[a(d”) — A4 || pte(d”) — A/2]) > p*(1 = amax) Dxcr(a(d”) — A/l a(d”) — A/2)

< X (B) (1 — aumax) A2
> Sk )

From the definition of Ly, o(d*), T' > 5, and above inequalities,

_ logT +3loglogT < 2logT < 16K logT
Dxr(€y,e(d) | Lye(d*)) — Dxr(@y,e(d*) || Loe(d*)) = x*(k)(1 = atmax) A%

g
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This contradicts to (13), and therefore it must be true that Ly, ,(d*) > p*[a(d*) — A/2] holds.

Finally, based on inequality (11),

. Could*) _ epeld)
~a(dY) 2 a(d) -

and item d is guaranteed to be eliminated by the end of stage ¢ because

Upi(d) < pla(d) + A/2]
i a(d”) — pa(d)

< po(d) + 5

— /,L*O[(d*> _ M*a(d*)Q_ /’[’a(d)
< 1la(d) - A/

< Ly e(d¥).

This concludes our proof. m

Lemma 5. Let event € happen and T > 5. For any batch b, positions I, where I,(2) = K, set By, o, and item d € By
such that d > K, let k = I,(1) be the highest position in batch b and ¢ be the first stage where

< X000

Jor A = a(K) — a(d). Then item d is eliminated by the end of stage (.

Proof. Let Bt = {k,..., K}. Now note that a(d*) — a(d) > A for any d* € B*. By Lemma 4, L;, ¢(d*) > Uy ¢(d) for
any d* € B™; and therefore item d is eliminated by the end of stage /. m

Lemma 6. Let € happen and T > 5. For any batch b, positions Iy, and set By o, let k = I,(1) be the highest position in
batch b and { be the first stage where

A *k 1_amax
A<y X0 —om]

Jor Apax = a(s) —a(s+ 1) and s = arg max [a(d) — a(d + 1)]. Then batch b is split by the end of stage (.
de{Iy(1),....I(2)—1}

Proof. Let Bt = {k,...,s} and B~ = By \ B*. Now note that a(d*) — a(d) > Apax for any (d*,d) € BT x B™.
By Lemma 4, Ly, ;(d*) > U, 4(d) for any (d*,d) € BT x B~; and therefore batch b is split by the end of stage £. m

Lemma 7. Let event £ happen and T > 5. Then the expected T-step regret in any batch b is bounded as

T-1
96 K%L
E E R <————logT.
lZO b,£‘| N (1 _amax)Amax o8

Proof. Let k = I,(1) be the highest position in batch b. Choose any item d € B, o and let A = a(k) — a(d).

First, we show that the expected per-step regret of any item d is bounded by x*(k)A when event £ happens. Since event £
happens, all eliminations and splits up to any stage ¢ of batch b are correct. Therefore, items 1, ...,k — 1 are at positions
1,...,k — 1; and position k is examined with probability x*(k). Note that this is the highest examination probability in
batch b (Assumption 4). Our upper bound follows from the fact that the reward is linear in individual items (Section 3.1).

We analyze two cases. First, suppose that A < 2K A .« for Ak in Lemma 6. Then by Lemma 6, batch b splits when
the number of steps in a stage is at most

16K
x* (k) (1 — aHlaX)A?nax

logT'.
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By the design of DisplayBatch, any item in stage ¢ of batch b is displayed at most 2n, times. Therefore, the maximum
regret due to item d in the last stage before the split is

2K x*(k)A 64 K2 Amax 64 K2
logT < ————————logT = ————— logT.
xX*(k)(1 — amaX)A?nax 08T = (1- amaX)A?naX o8 (1 — omax)Amax o8
Now suppose that A > 2K A, .x. This implies that item d is easy to distinguish from item K. In particular,
A

a(K) —a(d) = A —(ak) — a(K)) 2 A = KAmax 2 -,

where the equality is from the identity
A=alk)—ald) =alk)—a(K)+ a(K) —a(d);

the first inequality is from a(k) — a(K) < KApax, which follows from the definition of A, and k € [K]; and the last
inequality is from our assumption that K Ap,.x < A/2. Now we apply the derived inequality and, by Lemma 5 and from
the design of DisplayBatch, the maximum regret due to item d in the stage where that item is eliminated is

32K x* (k) A 128K

64
P — < - - .
)0 = ) (@(K) —a@)2 T = T ) d T = 0 ) B 27

The last inequality is from our assumption that A > 2K A ..

Because the lengths of the stages quadruple and BatchRank resets all click estimators at the beginning of each stage, the
maximum expected regret due to any item d in batch b is at most 1.5 times higher than that in the last stage, and hence

o 1 - amax)Arnax

T-1
96K?2|B
E lz Rb4 < (|b’o|logT.
=0

This concludes our proof. m
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E. Technical Lemmas

Lemma 8. Let (X1)?, be n i.i.d. Bernoulli random variables, i = >, X;, and jp = E [fi]. Then
P(p > p+e) <expl-nDgi(pu+ el p)]

foranye € 10,1 — pl, and
P < i — ¢) < expl—nDict (st — | )]

forany e € [0, pl.

Proof. We only prove the first claim. The other claim follows from symmetry.

From inequality (2.1) of Hoeffding (1963), we have that

U pte 1— U 17(/"4’5) "
<u+6) <1—(u+8)>
for any € € [0,1 — p]. Now note that

( M >H+€ (1_M>1—(M+E) ~ exp [n [(/H—g)log K
pte 1—(u+e) pte

Pp>p+e) <

+<1—<u+e>>log1‘“)ﬂ

1—(u+e
H+e 1—(n+e)
=exp |—n (M+E)10g +(1—(H+8))10gﬁ
= exp[—nDki(u + el p)].
This concludes the proof. m
Lemma 9. For any c¢,p,q € [0, 1],
(1 =max{p, q}) Dxw(p [l ¢) < Dxurlcp|lcq) < cDxulp|l q) - (14)

Proof. The proof is based on differentiation. The first two derivatives of Dy (cp || ¢q) with respect to g are

(q—p)? + ep(1 — cp) _
¢*(1 — cq)? ’

0 c(q —p) 0?
94 kr(ep || cq) d—cg) oF kr(cp || cq)

and the first two derivatives of cDk1(p || ¢) with respect to g are

Q[CDKL(p I q)] = ca—p) iQ[CDKL(p 1g)] = (g —p)* +ep(l —p)

dq q(1—q)" 0q¢? *(1—q)?

The second derivatives show that Dk1,(cp || ¢q) and eDxky(p || ¢) are convex in ¢ for any p. Their minima are at ¢ = p.

Now we fix p and ¢, and prove (14) for any g. The upper bound is derived as follows. Since
Dxifcp || ex) = cDxu(p |l x) = 0

when & = p, the upper bound holds when ¢Dki,(p || ) increases faster than Dky,(cp || cz) for any p < x < ¢, and when
c¢Dx1(p || x) decreases faster than Dkry,(cp || cx) for any ¢ < 2 < p. This follows from the definitions of a%DKL(cp || cx)
and 8% [¢Dki(p || )]. In particular, both derivatives have the same sign and |8%DKL(cp | cx)| < |a%[cDKL(p [| 2)]| for
any feasible x € [min {p, ¢} ,max {p, ¢}].

9
d

The lower bound is derived as follows. The ratio of -2 [cDx(p || z)] and 2 D1 (cp || cz) is bounded from above as

%[CDKL(pHx)] Cl—cx < 1 < 1
%DKL(cpHc:r) l—z —1—2 ~ 1—max{p,q}

for any x € [min {p, ¢}, max {p, ¢}]. Therefore, we get a lower bound on Dxy,(cp | cz) when we multiply cDkr(p | z)
by 1 —max {p,q}.®



