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Abstract
Many sequential processing tasks require com-
plex nonlinear transition functions from one step
to the next. However, recurrent neural networks
with "deep" transition functions remain difficult
to train, even when using Long Short-Term Mem-
ory (LSTM) networks. We introduce a novel the-
oretical analysis of recurrent networks based on
Geršgorin’s circle theorem that illuminates several
modeling and optimization issues and improves
our understanding of the LSTM cell. Based on
this analysis we propose Recurrent Highway Net-
works, which extend the LSTM architecture to al-
low step-to-step transition depths larger than one.
Several language modeling experiments demon-
strate that the proposed architecture results in pow-
erful and efficient models. On the Penn Treebank
corpus, solely increasing the transition depth from
1 to 10 improves word-level perplexity from 90.6
to 65.4 using the same number of parameters. On
the larger Wikipedia datasets for character predic-
tion (text8 and enwik8), RHNs outperform
all previous results and achieve an entropy of 1.27
bits per character.

1. Introduction
Network depth is of central importance in the resurgence of
neural networks as a powerful machine learning paradigm
(Schmidhuber, 2015). Theoretical evidence indicates that
deeper networks can be exponentially more efficient at rep-
resenting certain function classes (see e.g. Bengio & Le-
Cun (2007); Bianchini & Scarselli (2014) and references
therein). Due to their sequential nature, Recurrent Neu-
ral Networks (RNNs; Robinson & Fallside, 1987; Werbos,
1988; Williams, 1989) have long credit assignment paths
and so are deep in time. However, certain internal function

*Equal contribution 1ETH Zürich, Switzerland 2The Swiss AI
Lab IDSIA (USI-SUPSI) & NNAISENSE, Switzerland. Corre-
spondence to: Julian Zilly <jzilly@ethz.ch>, Rupesh Srivastava
<rupesh@idsia.ch>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017 by
the author(s).

mappings in modern RNNs composed of units grouped in
layers usually do not take advantage of depth (Pascanu et al.,
2013). For example, the state update from one time step to
the next is typically modeled using a single trainable linear
transformation followed by a non-linearity.

Unfortunately, increased depth represents a challenge when
neural network parameters are optimized by means of error
backpropagation (Linnainmaa, 1970; 1976; Werbos, 1982).
Deep networks suffer from what are commonly referred to
as the vanishing and exploding gradient problems (Hochre-
iter, 1991; Bengio et al., 1994; Hochreiter et al., 2001), since
the magnitude of the gradients may shrink or explode expo-
nentially during backpropagation. These training difficulties
were first studied in the context of standard RNNs where
the depth through time is proportional to the length of input
sequence, which may have arbitrary size. The widely used
Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997; Gers et al., 2000) architecture was introduced
to specifically address the problem of vanishing/exploding
gradients for recurrent networks.

The vanishing gradient problem also becomes a limitation
when training very deep feedforward networks. Highway
Layers (Srivastava et al., 2015b) based on the LSTM cell
addressed this limitation enabling the training of networks
even with hundreds of stacked layers. Used as feedforward
connections, these layers were used to improve performance
in many domains such as speech recognition (Zhang et al.,
2016) and language modeling (Kim et al., 2015; Jozefowicz
et al., 2016), and their variants called Residual networks
have been widely useful for many computer vision problems
(He et al., 2015).

In this paper we first provide a new mathematical analysis of
RNNs which offers a deeper understanding of the strengths
of the LSTM cell. Based on these insights, we introduce
LSTM networks that have long credit assignment paths not
just in time but also in space (per time step), called Recurrent
Highway Networks or RHNs. Unlike previous work on deep
RNNs, this model incorporates Highway layers inside the
recurrent transition, which we argue is a superior method
of increasing depth. This enables the use of substantially
more powerful and trainable sequential models efficiently,
significantly outperforming existing architectures on widely
used benchmarks.
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2. Related Work on Deep Recurrent
Transitions

In recent years, a common method of utilizing the computa-
tional advantages of depth in recurrent networks is stacking
recurrent layers (Schmidhuber, 1992), which is analogous
to using multiple hidden layers in feedforward networks.
Training stacked RNNs naturally requires credit assignment
across both space and time which is difficult in practice.
These problems have been recently addressed by architec-
tures utilizing LSTM-based transformations for stacking
(Zhang et al., 2016; Kalchbrenner et al., 2015).

A general method to increase the depth of the step-to-step
recurrent state transition (the recurrence depth) is to let an
RNN tick for several micro time steps per step of the se-
quence (Schmidhuber, 1991; Srivastava et al., 2013; Graves,
2016). This method can adapt the recurrence depth to the
problem, but the RNN has to learn by itself which parame-
ters to use for memories of previous events and which for
standard deep nonlinear processing. It is notable that while
Graves (2016) reported improvements on simple algorith-
mic tasks using this method, no performance improvements
were obtained on real world data.

Pascanu et al. (2013) proposed to increase the recurrence
depth by adding multiple non-linear layers to the recurrent
transition, resulting in Deep Transition RNNs (DT-RNNs)
and Deep Transition RNNs with Skip connections (DT(S)-
RNNs). While being powerful in principle, these architec-
tures are seldom used due to exacerbated gradient propaga-
tion issues resulting from extremely long credit assignment
paths1. In related work Chung et al. (2015) added extra
connections between all states across consecutive time steps
in a stacked RNN, which also increases recurrence depth.
However, their model requires many extra connections with
increasing depth, gives only a fraction of states access to
the largest depth, and still faces gradient propagation issues
along the longest paths.

Compared to stacking recurrent layers, increasing the recur-
rence depth can add significantly higher modeling power
to an RNN. Figure 1 illustrates that stacking d RNN layers
allows a maximum credit assignment path length (number
of non-linear transformations) of d+T − 1 between hidden
states which are T time steps apart, while a recurrence depth
of d enables a maximum path length of d× T . While this
allows greater power and efficiency using larger depths, it
also explains why such architectures are much more difficult
to train compared to stacked RNNs. In the next sections,
we address this problem head on by focusing on the key
mechanisms of the LSTM and using those to design RHNs,
which do not suffer from the above difficulties.

1Training of our proposed architecture is compared to these
models in subsection 5.1.

(a)

(b)

Figure 1: Comparison of (a) stacked RNN with depth d
and (b) Deep Transition RNN of recurrence depth d, both
operating on a sequence of T time steps. The longest credit
assignment path between hidden states T time steps is d×T
for Deep Transition RNNs.

3. Revisiting Gradient Flow in Recurrent
Networks

Let L denote the total loss for an input sequence of length
T . Let x[t] ∈ Rm and y[t] ∈ Rn represent the output of a
standard RNN at time t, W ∈ Rn×m and R ∈ Rn×n the
input and recurrent weight matrices, b ∈ Rn a bias vector
and f a point-wise non-linearity. Then y[t] = f(Wx[t] +
Ry[t−1] + b) describes the dynamics of a standard RNN.
The derivative of the loss L with respect to parameters θ of
a network can be expanded using the chain rule:

dL
dθ

=
∑

1≤t2≤T

dL[t2]

dθ
=

∑
1≤t2≤T

∑
1≤t1≤t2

∂L[t2]

∂y[t2]

∂y[t2]

∂y[t1]

∂y[t1]

∂θ
.

(1)

The Jacobian matrix ∂y[t2]

∂y[t1] , the key factor for the transport
of the error from time step t2 to time step t1, is obtained by
chaining the derivatives across all time steps:

∂y[t2]

∂y[t1]
:=

∏
t1<t≤t2

∂y[t]

∂y[t−1] =
∏

t1<t≤t2

R>diag
[
f ′(Ry[t−1])

]
,

(2)
where the input and bias have been omitted for simplicity.
We can now obtain conditions for the gradients to vanish
or explode. Let A := ∂y[t]

∂y[t−1] be the temporal Jacobian,

γ be a maximal bound on f ′(Ry[t−1]) and σmax be the
largest singular value of R>. Then the norm of the Jacobian
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Figure 2: Illustration of the Geršgorin circle theorem. Two
Geršgorin circles are centered around their diagonal entries
aii. The corresponding eigenvalues lie within the radius
of the sum of absolute values of non-diagonal entries aij .
Circle (1) represents an exemplar Geršgorin circle for an
RNN initialized with small random values. Circle (2) repre-
sents the same for an RNN with identity initialization of the
diagonal entries of the recurrent matrix and small random
values otherwise. The dashed circle denotes the unit circle
of radius 1.

satisfies:

‖A‖ ≤
∥∥R>∥∥∥∥∥diag[f ′(Ry[t−1])

]∥∥∥ ≤ γσmax, (3)

which together with (2) provides the conditions for van-
ishing gradients (γσmax < 1). Note that γ depends on
the activation function f , e.g. |tanh′(x)| ≤ 1, |σ′(x)| ≤
1
4 ,∀x ∈ R, where σ is a logistic sigmoid. Similarly, we
can show that if the spectral radius ρ of A is greater than 1,
exploding gradients will emerge since ‖A‖ ≥ ρ.

This description of the problem in terms of largest singu-
lar values or the spectral radius sheds light on boundary
conditions for vanishing and exploding gradients yet does
not illuminate how the eigenvalues are distributed overall.
By applying the Geršgorin circle theorem we are able to
provide further insight into this problem.

Geršgorin circle theorem (GCT) (Geršgorin, 1931): For
any square matrix A ∈ Rn×n,

spec(A) ⊂
⋃

i∈{1,...,n}

λ ∈ C| ‖λ− aii‖C ≤
n∑

j=1,j 6=i

|aij |

 ,

(4)

i.e., the eigenvalues of matrix A, comprising the spectrum
of A, are located within the union of the complex circles

centered around the diagonal values aii of A with radius∑n
j=1,j 6=i |aij | equal to the sum of the absolute values of

the non-diagonal entries in each row of A. Two example
Geršgorin circles referring to differently initialized RNNs
are depicted in Figure 2.

Using GCT we can understand the relationship between the
entries of R and the possible locations of the eigenvalues
of the Jacobian. Shifting the diagonal values aii shifts the
possible locations of eigenvalues. Having large off-diagonal
entries will allow for a large spread of eigenvalues. Small
off-diagonal entries yield smaller radii and thus a more
confined distribution of eigenvalues around the diagonal
entries aii.

Let us assume that matrix R is initialized with a zero-mean
Gaussian distribution. We can then infer the following:

• If the values of R are initialized with a standard devia-
tion close to 0, then the spectrum of A, which is largely
dependent on R, is also initially centered around 0. An
example of a Geršgorin circle that could then be corre-
sponding to a row of A is circle (1) in Figure 2. The
magnitude of most of A’s eigenvalues |λi| are initially
likely to be substantially smaller than 1. Additionally,
employing the commonly used L1/L2 weight regular-
ization will also limit the magnitude of the eigenvalues.

• Alternatively, if entries of R are initialized with a large
standard deviation, the radii of the Geršgorin circles
corresponding to A increase. Hence, A’s spectrum
may possess eigenvalues with norms greater 1 result-
ing in exploding gradients. As the radii are summed
over the size of the matrix, larger matrices will have an
associated larger circle radius. In consequence, larger
matrices should be initialized with correspondingly
smaller standard deviations to avoid exploding gradi-
ents.

In general, unlike variants of LSTM, other RNNs have no
direct mechanism to rapidly regulate their Jacobian eigenval-
ues across time steps, which we hypothesize can be efficient
and necessary for learning complex sequence processing.

Le et al. (2015) proposed to initialize R with an identity
matrix and small random values on the off-diagonals. This
changes the situation depicted by GCT – the result of the
identity initialization is indicated by circle (2) in Figure 2.
Initially, since aii = 1, the spectrum described in GCT is
centered around 1, ensuring that gradients are less likely
to vanish. However, this is not a flexible remedy. During
training some eigenvalues can easily become larger than
one, resulting in exploding gradients. We conjecture that
due to this reason, extremely small learning rates were used
by Le et al. (2015).
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4. Recurrent Highway Networks (RHN)
Highway layers (Srivastava et al., 2015a) enable easy train-
ing of very deep feedforward networks through the use
of adaptive computation. Let h = H(x,WH), t =
T (x,WT ), c = C(x,WC) be outputs of nonlinear trans-
forms H,T and C with associated weight matrices (includ-
ing biases) WH,T,C . T and C typically utilize a sigmoid
(σ) nonlinearity and are referred to as the transform and
the carry gates since they regulate the passing of the trans-
formed input viaH or the carrying over of the original input
x. The Highway layer computation is defined as

y = h · t+ x · c, (5)

where "·" denotes element-wise multiplication.

Recall that the recurrent state transition in a standard RNN is
described by y[t] = f(Wx[t] +Ry[t−1] + b). We propose
to construct a Recurrent Highway Network (RHN) layer
with one or multiple Highway layers in the recurrent state
transition (equal to the desired recurrence depth). Formally,
let WH,T,C ∈ Rn×m and RH`,T`,C`

∈ Rn×n represent the
weights matrices of the H nonlinear transform and the T
and C gates at layer ` ∈ {1, . . . , L}. The biases are denoted
by bH`,T`,C`

∈ Rn and let s` denote the intermediate output
at layer ` with s

[t]
0 = y[t−1]. Then an RHN layer with a

recurrence depth of L is described by

s
[t]
` = h

[t]
` · t

[t]
` + s

[t]
`−1 · c

[t]
` , (6)

where

h
[t]
` = tanh(WHx[t]I{`=1} +RH`

s
[t]
`−1 + bH`

), (7)

t
[t]
` = σ(WTx

[t]I{`=1} +RT`
s
[t]
`−1 + bT`

), (8)

c
[t]
` = σ(WCx

[t]I{`=1} +RC`
s
[t]
`−1 + bC`

), (9)

and I{} is the indicator function.

A schematic illustration of the RHN computation graph is
shown in Figure 3. The output of the RHN layer is the
output of the Lth Highway layer i.e. y[t] = s

[t]
L .

Note that x[t] is directly transformed only by the first High-
way layer (` = 1) in the recurrent transition1 and for this
layer s[t]`−1 is the RHN layer’s output of the previous time
step. Subsequent Highway layers only process the outputs
of the previous layers. Dotted vertical lines in Figure 3
separate multiple Highway layers in the recurrent transition.

For conceptual clarity, it is important to observe that an
RHN layer with L = 1 is essentially a basic variant of an
LSTM layer. Similar to other variants such as GRU (Cho
et al., 2014) and those studied by Greff et al. (2015) and

1This is not strictly necessary, but simply a convenient choice.

Jozefowicz et al. (2015), it retains the essential components
of the LSTM – multiplicative gating units controlling the
flow of information through self-connected additive cells.
However, an RHN layer naturally extends to L > 1, extend-
ing the LSTM to model far more complex state transitions.
Similar to Highway and LSTM layers, other variants can
be constructed without changing the basic principles, for
example by fixing one or both of the gates to always be
open, or coupling the gates as done for the experiments in
this paper.

The simpler formulation of RHN layers allows for an analy-
sis similar to standard RNNs based on GCT. Omitting the in-
puts and biases, the temporal Jacobian A = ∂y[t]/∂y[t−1]

for an RHN layer with recurrence depth of 1 (such that
y[t] = h[t] · t[t] + y[t−1] · c[t]) is given by

A = diag(c[t]) +H′diag(t[t]) (10)

+C′diag(y[t−1]) +T′diag(h[t]),

where

H′ = R>Hdiag
[
tanh′(RHy[t−1])

]
, (11)

T′ = R>T diag
[
σ′(RTy

[t−1])
]
, (12)

C′ = R>Cdiag
[
σ′(RCy

[t−1])
]
, (13)

and has a spectrum of:

spec(A) ⊂
⋃

i∈{1,...,n}

{
λ ∈ C

∣∣∥∥λ− c
[t]
i −H′iit

[t]
i

−C′iiy
[t−1]
i −T′iih

[t]
i

∥∥
C

≤
n∑

j=1,j 6=i

∣∣H′ijt[t]i +C′ijy
[t−1]
i +T′ijh

[t]
i

∣∣}. (14)

Equation 14 captures the influence of the gates on the eigen-
values of A. Compared to the situation for standard RNN,
it can be seen that an RHN layer has more flexibility in
adjusting the centers and radii of the Geršgorin circles. In
particular, two limiting cases can be noted. If all carry
gates are fully open and transform gates are fully closed,
we have c = 1n, t = 0n and T′ = C′ = 0n×n (since σ is
saturated). This results in

c = 1n, t = 0n ⇒ λi = 1 ∀i ∈ {1, . . . , n}, (15)

i.e. all eigenvalues are set to 1 since the Geršgorin circle
radius is shrunk to 0 and each diagonal entry is set to ci = 1.
In the other limiting case, if c = 0n and t = 1n then
the eigenvalues are simply those of H′. As the gates vary
between 0 and 1, each of the eigenvalues of A can be dy-
namically adjusted to any combination of the above limiting
behaviors.
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Figure 3: Schematic showing computation within an RHN layer inside the recurrent loop. Vertical dashed lines delimit
stacked Highway layers. Horizontal dashed lines imply the extension of the recurrence depth by stacking further layers. H ,
T & C are the transformations described in equations 7, 8 and 9, respectively.

The key takeaways from the above analysis are as follows.
Firstly, GCT allows us to observe the behavior of the full
spectrum of the temporal Jacobian, and the effect of gating
units on it. We expect that for learning multiple temporal
dependencies from real-world data efficiently, it is not suffi-
cient to avoid vanishing and exploding gradients. The gates
in RHN layers provide a more versatile setup for dynami-
cally remembering, forgetting and transforming information
compared to standard RNNs. Secondly, it becomes clear
that through their effect on the behavior of the Jacobian,
highly non-linear gating functions can facilitate learning
through rapid and precise regulation of the network dynam-
ics. Depth is a widely used method to add expressive power
to functions, motivating us to use multiple layers of H , T
and C transformations. In this paper we opt for extending
RHN layers to L > 1 using Highway layers in favor of
simplicity and ease of training. However, we expect that in
some cases stacking plain layers for these transformations
can also be useful. Finally, the analysis of the RHN layer’s
flexibility in controlling its spectrum furthers our theoretical
understanding of LSTM and Highway networks and their
variants. For feedforward Highway networks, the Jacobian
of the layer transformation (∂y/∂x) takes the place of the
temporal Jacobian in the above analysis. Each Highway
layer allows increased flexibility in controlling how var-
ious components of the input are transformed or carried.
This flexibility is the likely reason behind the performance
improvement from Highway layers even in cases where
network depth is not high (Kim et al., 2015).

5. Experiments
Setup: In this work, the carry gate was coupled to the
transform gate by setting C(·) = 1n − T (·) similar to
the suggestion for Highway networks. This coupling is
also used by the GRU recurrent architecture. It reduces
model size for a fixed number of units and prevents an

unbounded blow-up of state values leading to more stable
training, but imposes a modeling bias which may be sub-
optimal for certain tasks (Greff et al., 2015; Jozefowicz
et al., 2015). An output non-linearity similar to LSTM
networks could alternatively be used to combat this issue.
For optimization and Wikipedia experiments, we bias the
transform gates towards being closed at the start of training.
All networks use a single hidden RHN layer since we are
only interested in studying the influence of recurrence depth,
and not of stacking multiple layers, which is already known
to be useful. Detailed configurations for all experiments are
included in the supplementary material.

Regularization of RHNs: Like all RNNs, suitable regular-
ization can be essential for obtaining good generalization
with RHNs in practice. We adopt the regularization tech-
nique proposed by Gal (2015), which is an interpretation of
dropout based on approximate variational inference. RHNs
regularized by this technique are referred to as variational
RHNs. For the Penn Treebank word-level language mod-
eling task, we report results both with and without weight-
tying (WT) of input and output mappings for fair compar-
isons. This regularization was independently proposed by
Inan & Khosravi (2016) and Press & Wolf (2016).

5.1. Optimization

RHN is an architecture designed to enable the optimization
of recurrent networks with deep transitions. Therefore, the
primary experimental verification we seek is whether RHNs
with higher recurrence depth are easier to optimize com-
pared to other alternatives, preferably using simple gradient
based methods.

We compare optimization of RHNs to DT-RNNs and DT(S)-
RNNs (Pascanu et al., 2013). Networks with recurrence
depth of 1, 2, 4 and 6 are trained for next step prediction
on the JSB Chorales polyphonic music prediction dataset



Recurrent Highway Networks

Figure 4: Swarm plot of optimization experiment results for various architectures for different depths on next step prediction
on the JSB Chorales dataset. Each point is the result of optimization using a random hyperparameter setting. The number of
network parameters increases with depth, but is kept the same across architectures for each depth. For architectures other
than RHN, the random search was unable to find good hyperparameters when depth increased. This figure must be viewed
in color.

(Boulanger-Lewandowski et al., 2012). Network sizes are
chosen such that the total number of network parameters
increases as the recurrence depth increases, but remains the
same across architectures. A hyperparameter search is then
conducted for SGD-based optimization of each architec-
ture and depth combination for fair comparisons. In the
absence of optimization difficulties, larger networks should
reach a similar or better loss value compared to smaller
networks. However, the swarm plot in Figure 4 shows that
both DT-RNN and DT(S)-RNN become considerably harder
to optimize with increasing depth. Similar to feedforward
Highway networks, increasing the recurrence depth does
not adversely affect optimization of RHNs.

5.2. Sequence Modeling

5.2.1. PENN TREEBANK

To examine the effect of recurrence depth we train RHNs
with fixed total parameters (32 M) and recurrence depths
ranging from 1 to 10 for word level language modeling on
the Penn TreeBank dataset (Marcus et al., 1993) prepro-
cessed by Mikolov et al. (2010). The same hyperparameters
are used to train each model. For each depth, we show the
test set perplexity of the best model based on performance
on the validation set in Figure 5(a). Additionally we also
report the results for each model trained with WT regulariza-
tion. In both cases the test score improves as the recurrence
depth increases from 1 to 10. For the best 10 layer model,
reducing the weight decay further improves the results to

67.9/65.4 validation/test perplexity.

As the recurrence depth increases from 1 to 10 layers the
"width" of the network decreases from 1275 to 830 units
since the number of parameters was kept fixed. Thus, these
results demonstrate that even for small datasets utilizing
parameters to increase depth can yield large benefits even
though the size of the RNN "state" is reduced. Table 1
compares our result with the best published results on this
dataset. The directly comparable baseline is Variational
LSTM+WT, which only differs in network architecture and
size from our models. RHNs outperform most single models
as well as all previous ensembles, and also benefit from
WT regularization similar to LSTMs. Solely the yet to be
analyzed architecture found through reinforcement learning
and hyperparamater search by Zoph & Le (2016) achieves
better results.

5.2.2. WIKIPEDIA

The task for this experiment is next symbol prediction on
the challenging Hutter Prize Wikipedia datasets text8 and
enwik8 (Hutter, 2012) with 27 and 205 unicode symbols
in total, respectively. Due to its size (100 M characters in to-
tal) and complexity (inclusion of Latin/non-Latin alphabets,
XML markup and various special characters for enwik8)
these datasets allow us to stress the learning and generaliza-
tion capacity of RHNs. We train various variational RHNs
with recurrence depth of 5 or 10 and 1000 or 1500 units per
hidden layer, obtaining state-of-the-art results. On text8 a
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Table 1: Validation and test set perplexity of recent state of the art word-level language models on the Penn Treebank dataset.
The model from Kim et al. (2015) uses feedforward highway layers to transform a character-aware word representation
before feeding it into LSTM layers. dropout indicates the regularization used by Zaremba et al. (2014) which was applied to
only the input and output of recurrent layers. Variational refers to the dropout regularization from Gal (2015) based on
approximate variational inference. RHNs with large recurrence depth achieve highly competitive results and are highlighted
in bold.

Model Size Best Val. Test

RNN-LDA + KN-5 + cache (Mikolov & Zweig, 2012) 9 M – 92.0
Conv.+Highway+LSTM+dropout (Kim et al., 2015) 19 M – 78.9
LSTM+dropout (Zaremba et al., 2014) 66 M 82.2 78.4
Variational LSTM (Gal, 2015) 66 M 77.3 75.0
Variational LSTM + WT (Press & Wolf, 2016) 51 M 75.8 73.2
Pointer Sentinel-LSTM (Merity et al., 2016) 21 M 72.4 70.9
Variational LSTM + WT + augmented loss (Inan et al., 2016) 51 M 71.1 68.5
Variational RHN 32 M 71.2 68.5
Neural Architecture Search with base 8 (Zoph & Le, 2016) 32 M – 67.9
Variational RHN + WT 23 M 67.9 65.4
Neural Architecture Search with base 8 + WT (Zoph & Le, 2016) 25 M – 64.0
Neural Architecture Search with base 8 + WT (Zoph & Le, 2016) 54 M – 62.4

Table 2: Entropy in Bits Per Character (BPC) on the
enwik8 test set (results under 1.5 BPC & without dynamic
evaluation). LN refers to the use of layer normalization (Lei
Ba et al., 2016).

Model BPC Size

Grid-LSTM (Kalchbrenner et al., 2015) 1.47 17 M
MI-LSTM (Wu et al., 2016) 1.44 17 M
mLSTM (Krause et al., 2016) 1.42 21 M
LN HyperNetworks (Ha et al., 2016) 1.34 27 M
LN HM-LSTM (Chung et al., 2016) 1.32 35 M
RHN - Rec. depth 5 1.31 23 M
RHN - Rec. depth 10 1.30 21 M
Large RHN - Rec. depth 10 1.27 46 M

validation/test set BPC of 1.19/1.27 for a model with 1500
units and recurrence depth 10 is achieved. Similarly, on
enwik8 a validation/test set BPC of 1.26/1.27 is achieved
for the same model and hyperparameters. The only differ-
ence between the models is the size of the embedding layer,
which is set to the size of the character set. Table 2 and
Table 3 show that RHNs outperform the previous best mod-
els on text8 and enwik8 with significantly fewer total
parameters. A more detailed description of the networks is
provided in the supplementary material.

6. Analysis
We analyze the inner workings of RHNs through inspection
of gate activations, and their effect on network performance.
For the RHN with a recurrence depth of six optimized on the
JSB Chorales dataset (subsection 5.1), Figure 5(b) shows the
mean transform gate activity in each layer over time steps

Table 3: Entropy in Bits Per Character (BPC) on the text8
test set (results under 1.5 BPC & without dynamic evalua-
tion). LN refers to the use of layer normalization (Lei Ba
et al., 2016).

Model BPC Size

MI-LSTM (Wu et al., 2016) 1.44 17 M
mLSTM (Krause et al., 2016) 1.40 10 M
BN LSTM (Cooijmans et al., 2016) 1.36 16 M
HM-LSTM (Chung et al., 2016) 1.32 35 M
LN HM-LSTM (Chung et al., 2016) 1.29 35 M
RHN - Rec. depth 10 1.29 20 M
Large RHN - Rec. depth 10 1.27 45 M

for 4 example sequences. We note that while the gates are
biased towards zero (white) at initialization, all layers are
utilized in the trained network. The gate activity in the first
layer of the recurrent transition is typically high on average,
indicating that at least one layer of recurrent transition is
almost always utilized. Gates in other layers have varied
behavior, dynamically switching their activity over time in
a different way for each sequence.

Similar to the feedforward case, the Highway layers in
RHNs perform adaptive computation, i.e. the effective
amount of transformation is dynamically adjusted for each
sequence and time step. Unlike the general methods men-
tioned in section 2, the maximum depth is limited to the
recurrence depth of the RHN layer. A concrete description
of such computations in feedforward networks has recently
been offered in terms of learning unrolled iterative estima-
tion (Greff et al., 2016). This description carries over to
RHNs – the first layer in the recurrent transition computes a
rough estimation of how the memory state should change
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Figure 5: (a) Test set perplexity on Penn Treebank word-level language modeling using RHNs with fixed parameter budget
and increasing recurrence depth. Increasing the depth improves performance up to 10 layers. (b) Mean activations of the
transform (T) gates in an RHN with a recurrence depth of 6 for 4 different sequences (A-D). The activations are averaged
over units in each Highway layer. A high value (red) indicates that the layer transforms its inputs at a particular time step to
a larger extent, as opposed to passing its input to the next layer (white).

given new information. The memory state is then further
refined by successive layers resulting in better estimates.

The contributions of the layers towards network perfor-
mance can be quantified through a lesioning experiment
(Srivastava et al., 2015a). For one Highway layer at a time,
all the gates are pushed towards carry behavior by setting
the bias to a large negative value, and the resulting loss on
the training set is measured. The change in loss due to the
biasing of each layer measures its contribution to the net-
work performance. For RHNs, we find that the first layer in
the recurrent transition contributes much more to the overall
performance compared to others, but removing any layer
in general lowers the performance substantially due to the
recurrent nature of the network. A plot of obtained results
is included in the supplementary material.

7. Conclusion
We developed a new analysis of the behavior of RNNs based
on the Geršgorin Circle Theorem. The analysis provided in-
sights about the ability of gates to variably influence learning
in a simplified version of LSTMs. We introduced Recur-
rent Highway Networks, a powerful new model designed to
take advantage of increased depth in the recurrent transition
while retaining the ease of training of LSTMs. Experiments
confirmed the theoretical optimization advantages as well as
improved performance on well known sequence modeling
tasks.
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