Supplementary Material: Asynchronous Stochastic Gradient Descent with
Delay Compensation

A. Theorem 3.1 and Its Proof

Theorem 3.1:
Assume the loss function is Li-Lipschitz. If X € [0, 1] make the following inequality holds,
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where Cij = 1+A(zilj\/a) Gy = I+nal;)®’

is smaller than the MSE of G(w;) in approximating Hessian H(w).

and the model converges to the optimal model, then the MSE of A\G(w)

Proof:

For simplicity, we abbreviate E(y |, ) as E, G; as G(w;) and H; as H(w;). First, we calculate the MSE of G, A\G
to approximate H; for each element of G;. We denote the element in the i-th row and j-th column of G(w;) as Gﬁj and
H(wt) as Hi]‘ (t)

The MSE of G;:

E(GY; —EH};)? = B(Gi; — EGY;)* + (EH}; — EGi;)* = E(G};)” — (EGY;)” + € 2

ij

The MSE of /\giji

E(\Gi; — EH;)* = N*E(Gi; — EG};)* + (EH}; — AEGS;)”
= NE(G})? — N(EGL)? + (1 — N (EGE)? + ¢ +2(A — 1)EGE e 3)
The condition for E(G}; — EH};)? > E(AG}; — EH/;)? is

)

(1= N)(E(GE)” — (EGE)?) > 2(1 — N(EGE;)? + 2\ — DEG e “)

Inequality (4) is equivalent to
(14 NE(GI))? > 2[(EG;)” — EGije] ©)

Next we calculate E(GY;)?, and (EG};)* which appear in Eqn.(5). For simplicity, we denote o (2, W;) as oy, and Ijy—
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as zi. Then we can get:

9 279 2
E(035)* = Ey o) ( o log P(Y\x,wo) (—awj log P<Y|x,m>) ©)
K 4
Z
> Eyz,w) (Z (Ui>> (L:l;)*
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o
= o (lil;)? (7
(o)
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2 Oo (2 ) S~ 0ok (20
(Ehij)” = (EO’I w*); ow; ( O'k) ; w; ( Uk))
K 1 2
< B2 (uiu;)? . — 8
< 57 (usuj) (; Mx’wﬁ)> ®)
By substituting Ineq.(7) and Ineq.(8) into Ineq.(5), a sufficient condition for Ineq.(5) to be satisfied is Zle N —

S(@we) —

2 /
2 |:Cij (Zszl m) + CijLﬂetq because G; < L3. 0O

B. Corollary 3.2 and Its Proof
Corollary 3.2: A sufficient condition for inequality (1) is A € [0,1] and Fky € [K| such that o, €

K—-1
{1 2(CiK2+C] L6y’ 1]‘
Proof: )
- K K /
Denote A = Qéifflfz and F(O’l,...,UK) = Zk:l W — QCZJ (Zk:l m) — QCle%|€t| If Elkl S [K} such
that oy, € [1 — A, 1], we have for k # k1 o € [0, A]. Therefore

1 K—-1 1 K-1\° ,
F > — 4+ ——— 20 | —+——) —20C, 12 9
(017 aUK) = (0k1)3 + A3 J (O_kl A ) i 1‘675‘ 9)
K-1 K—1\> 1 2K-1) -
> A5 2C3; <<A) + 07]%1 + UI@A) — 2C’ijL1\et\ (10)
K—1 (K—-1)? 2K-1 I
2 x5 2C;; ( A2 P ) —2C;; L7 le] (11)
1 (K-1 (K—-1)? 2K-1 I
= K ( AQ — 2Cij ( A + oh )) - 2Cile|€t| (12)
1 (K-1 (K—-1)?+2K -1 ,
=N (AQ — 205 ( A )) —2C;;Lile| (13)
1 (K-1 /
> 3 (A — 20, K% — QCijL§|et|> (14)
=0 (15)
where Ineq.(11) and (13) is established since oy, > A; and Eqn.(15) is established by putting A = K1 in

2(Ci; K24C;; L3 |et])
Eqn.(14). O
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C. Uniform upper bound of MSE

Lemma C.1 Assume the loss function is L1-Lipschitz, and the diagonalization error of Hessian is upper bounded by €p,
ie., ||Diag(H(w;)) — H(w;)|| < ep, ! then we have, for Vt,

mse' (Diag(AG)) < 4N°*Vi + 4(1 — N)°L1 + 4€; + 4ep, (16)

where V1 is the upper bound of the variance of G(wy).

Proof:
mse* (Diag(\G)) (7
<E||Diag(AG (w:)) — H (w)|* (18)
<4E|| Diag(AG(w;)) — E(Diag(AG(w:)))||* + 4|[E(Diag(AG(w;))) — E(Diag(G(w)))|? 19
+ 4|[E(Diag(G(w:))) — E(Diag(H(w:)))||* + 4|[E(Diag(H (wt))) — EH (w)||* (20)
<ANVI +4(1 — N\)2LT + 46 + 4ep 1)

D. Convergence Rate for DC-ASGD: Convex Case

DC-ASGD is a general method to compensate delay in ASGD. We first show the convergence rate for convex loss function.
If the loss function f(w) is convex about w, we can add a regularization term £ ||w||* to make the objective function
F(w) + &|lw||? strongly convex. Thus, we assume that the objective function is yi-strongly convex.

Theorem 4.1: (Strongly Convex) If f(w) is Lo-smooth and p-strongly convex about w, V f(w) is Ls-smooth about w
and the expectation of the || - ||3 norm of the delay compensated gradient is upper bounded by a constant G. By setting the
learning rate n; = ﬁ DC-ASGD has convergence rate as

2L2G? 2G?L30/7  LPL37%G3
EF(w;) — F(w*) < =227 (1 + 47C 2 2 ,
(wt) (w ) = t,u4 ( + 4T )\) + ,LL4t\/TE H6t2
where 0 = % %(1 + TMGTL;) and Cy = (1 — \)L? + €p, and the expectation is taking with respect to the random

sampling of DC-ASGD and E |, .~)-
Proof:

We denote g% (w;) = g(wt) + Ag(we) ® g(wi) © (Wisr — wy), 9" (wi) = g(wy) + Hy, (wp) (wisr — wy) and VF (wy) =
VF(w;) + Eq;, H;, (w;)(wy1r — w;). Obviously, we have Eg"(w;) = VF"(w;). By the smoothness condition, we have

EF(wt+T+1) — F(w*) (22)
* L
< F(wigr) = F(w') = (VF(Witr ), Wegr 41 — Wigr) + ?2Hwt+'r+l — Wepr||? (23)
y . L 2 TG2
< F(wisr) = Fw') = mesr(VF(wrer), g™ (wn)) + 52 (24)
= F(’wt+7-) — F(w*) — MNt+1 <VF(’lUt+7—), VF(wHT)) + Nt+1 <VF(U}¢+-,-), VF(’U)t+-,-) - VFh(wt)> (25)
. Lon?, .G?
e (VF (weer), Bg” (we) = g (we) + 227 26)
Since f(w) is La-smooth and p strongly convex, we have
2 *((2 2M2 *
—(VE(Witr), VF(Wetr)) < —p”[|wegr — 0™ |7 < —E(F(WHT) - F(w)). (27)

'(LeCun, 1987) demonstrated that the diagonal approximation to Hessian for neural networks is an efficient method with no much
drop on accuracy
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For the term 7,1+ (VF(wi++ ), VF(wis-) — VF"(w:)), we have

Nitr (VF(witr), VF(wisr) — VF"(w;)) (28)
< e IVEwer )|V EF(wigr) — VF" ()| (29)
< GV (werr) — V" (wy)]| (30)

By the smoothness condition for V F'(w), we have

L LytG? 2
[VF(wiyr) — VF"(wy)] < fllww —w? < 32 > nites 31)

j=0

_ Lo T2 Ly ¢ o 2L37
Letn; = n2i» Wecan get Zj:l Niy; < wt T EE+T) = pIt+7)2 "

For the term 1, (VF(w; 1), Eg" (w;) — g%¢(w;)), we have

(VF(wiir),E(g" (wr) — g% (wr))) (32)
<VF(wigr) [IIE(Ag(we) © g(we) — H(we))(wiqr — we) | (33)
< G S nes (IEg(we) © glwn) — g(we) © gwn)l| + lg(wn) © g(w) — Diag(H(w))| + | Diag(H (we)) — H(we)])
=0
(34)
2G2L2T
< W(CA + €), (35)

where Oy = (1 — \)L3 + ep.

Using Lemma F.1, ¢; < 0\/% < 0,/ 7= Putting inequality 27 and 31 in inequality 26, we have

, 2 . LsL3m2G3
EF(wisrt1) — F(w*) < (1= —— ) (EF(w;) — F =
(wesran) = Fw?) < (1= 22 ) (BF(w) - ) + S2E2TC G6)
2G? L3t T L3G?
ML (C* e > P 4D
We can get
e _ 2L3G? 2G? 130T  LPL3m°G*®
EF(w;) — F(w*) < t;4 (1+47Cy) + u%i/zf u26t2 (38)

by induction. [

Discussion:

(1). Following the above proof steps and using |V F(wiyr) — VF(we)|| < La||wiyr — wy
rate of ASGD is

, we can get the convergence

2L3G?
tus

EF (w;) — F(w*) < (1+47Ly). (39)

L3263

2r2
Compared the convergence rate of DC-ASGD with ASGD, the extra term 2G7 L30T 672

AVt
than 262462 (1 + 47C)) in terms of the order of ¢. Thus, when ¢ is large, the extra term has smaller value. We assume that
t is large and the term can be neglected. Then the condition for DC-ASGD outperforming ASGD is Ly > C.

+ converge to zero faster

E. Convergence Rate for DC-ASGD: Nonconvex Case

Theorem 5.1: (Nonconvex Case) Assume that Assumptions 1-4 hold. Set the learning rate

_ [2(F(w) — F(w")
= \/ e T A (40)
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where b is the mini-batch size, and V is the upper bound of the variance of the delay-compensated gradient. If T >
max{O(1/r*),2DobLs/V?} and delay 7 is upper-bounded as below,

< min LQV\/LQT L\/LZT TV [ L» VLQT | TLy b
- Cy 21)0!77 Cy 2170b7 bDo 2Dgb

then DC-ASGD has the following ergodic convergence rate,

: 2Do Ly
E(|VF H<vy == 42
_min | B(IVFOn)[?) < V202 “2)
where the expectation is taken with respect to the random sampling in SGD and the data distribution P(Y |z,w™*).
Proof:
We denote g,,, (W) + Agm (0¢) © gm (wi) ® (Wi r — wy) as g4 (w;) where m € {1,--- b} is the index of instances in the
minibatch. From the proof the Theorem 1 in ASGD (Lian et al., 2015), we can get
EF(witri1) — F(wesr) (43)
L
< (VEF(Witr), Wer —we) + ?2||wt+r+1 — weir|)? (44)
b W2 L b 2
c T2 c
< e (VF(wiee), Y Bgi(w)) + 5 —F g (w0) (45)
m=1 m=1
b b 2 b 2
= _% <||VF(wt+T)||2+ ;Egﬁf(wt) HVF Wetr) ;Egm we) )

b

Z Q;inc(wt)

m=1

+ 77152+;L2 ]E (

2
) (46)

2
For the term T = HVF(wHT) - mezl ngn?(wt)‘ , by using the smooth condition of g, we have

T = ‘VF Wiir) ZIEg (47)
m=1
2
< ‘VF(wH_T)—VFh’( )+ VF"(w Z]Eg (48)
m=1
2
< H—llwm o VE" (w;) ZEgm (wr) 49)
m=1
< (L3r?/242((1 = N LT + €p) + €))|Jwer — wel|® (50)

Thus by following the proof of ASGD, we have

bEgrdnc (we)

E(Ty) < A(L3w%/4+ (1= ML+ ep)® +€;) <bm?+fv2 + 70,

2
). (51)
For the term Ty = (HZm L 9% (wy H ),ithas

2
E(Ts) < bV2 + HbEg;‘if(wt) (52)
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By putting Ineq.(51) and Ineq.(52) in Ineq.(46), we can get

E(F(wer41) — F(wesr) (53)
b T 7 ‘rL T c 2
< UV R(we)|? + (22 e g Hbngn (wr)
2 2 2b
77t2+TbL2 2 2 2 2 272 3 2
+ ( 9 + (L37T /2 + 2((1 — A)Ll + ED) + Et)b 7—77t+7-> 1% (54)
2
+(L3m? /24 2((1 — M) LT + ep)? + €)bm?n} L E (Hbng,f(wt) ) (55)
Summarizing the Ineq.(55) from¢ = 1tot + 7 =T, we have
EF(wT+1) — F(wl) (56)
b 2 (3L
<— 3> mEIVEw?+ > (—’“*; 24 (L3n /2 4+ 2((1 = ML +ep)? + e?>b2mf+T) v? (57)

t=1 t=1

2

(58)

T 2

L S c

+3 (m2 2 4 (L5377 /2 + 2((1 = NLT + ep)? + €)br2ni — %) E HbEgﬁn (Wmax{t—r,1})
t=1

By Lemma F.1 and under our assumptions, we have when ¢t > Tp, w; will goes into a strongly convex neighbourhood of
some local optimal wj,.. Thus, €; < €, + 0+/1/(t — 1), when t > T and €, < maxge1,... 1, €s When ¢t < Tp.

2(F(w1) —F(w*)

TV L, . It follows that

Letn, =

L
ST (L% /2 4 2((1 - N LE + ep)? + D )brin? (59)

T
L
<> { T2 1 (L37° /2 + 2((1 = ML +ep)® + 2eic)b72nf} + 2077 (4To _max (e;)” +40%log(T = Tp))  (60)

» L0

We ignore the log(T" — Tp) term and regards C? = 4T max,e1.... 1, (€5)? + 462 log(T — Tp) as a constant, which yields

T
L
ST 4 (L3n%/2 4 2((1 = ML + en)? + €D)br ] ©D
t=1
T L ~
<3 { B2 4 (Lin® /24 2((1 = NLE 4 en)” + 2eic)b72n?} + 20707 0C? ©2)

o
Il
-

7 should be set to make

2L 2723602
> ("t2 2 4 (L272/2+2((1 — N L2 + ep)? + 262 )brn + ”?t = % <0. (63)
t=1
Then we can get
1 T
= S BV R (64)
t=1
2F(w1) — F(w*) + Th(n? L + 2(L3n2/2 + 2((1 — N)L2 + €p)? + 262, )brn?) V2 4 12T y2
< o, (65)
_ * 252 2
gw + (Lo + 2(L272/2 4 2((1 — N L2 + ep)? + 22 )brn2)V2 + ’RC# (66)
Nt

(67)
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We set 7, to make

2C24p
(2L3n®/2+ 2((1 = VLT + ep)* + 2600 )bry) + 1" <miLo (68)
Thus let n, = %ﬂm,
= iEHW(w I < vy 2ol .
T~ vl = b

And we can get the condition for 7" by putting 7 in ineq.63 and ineq.68, we can get that

< min LQV\/LQT 1\/L2T TV [ Lo VLQT [TL, a0
- Cx V 2Dob’ Cx V 2Dob” ¢V bDy’ 2Dob

F. Decreasing rate of the approximation error ¢,

Since €; is contained the proof of the convergence rate for DC-ASGD , in this section we will introduce a lemma which
describes the approximation error ¢, the for both convex and nonconvex cases.

Lemma F.1 Assume that the true label y is generated according to the distribution P(Y = klz,w") = ox(z,w™) and
flz,y,w) =-S5, (Iry=k) log o (x; w)). If we assume that the loss function is p-strongly convex about w. We denote wy is
the output of DC-ASGD by using the outerproduct approximation of Hessian, we have

et:‘]E *a—Zf(xywt)fE x if(acyw,g) ® if(acywt) ‘<0\/I
(z,y|w )awg 'Yy (z,y|w*) Iw 'Y ow s Ys S P

Ly+AL2
2HK/JL2VL2 (1+ 2+ )

If we assume that the loss function is p-strongly convex in a neighborhood of each local optimal d(wiec,r),
2 —
9 P(};Qf‘w’w) ’ < H, Vk,z,w, each oy(w) is L-Lipschitz continuous about w. We denote w, is the out-

where 0 =

1
X PY=k[z,0)

put of DC-ASGD by using the outerproduct approximation of Hessian, we have

et:']E *i?f(:cywt)—]E * if(xywt) ® if(acyw,g) ’<0\/ 1 + €ne.
(z,y|w )awg -4} (z,y|w*) aw » I 8W s Yy = t*T()

where t > Ty > O(%).

Proof:

9? 9 [
E(y‘sz*) Ow2 f(ﬂ?, K Wt) = _E('ylz,w*) w2 Z([[y:k] log Ok (33; Wt))

k=1

0 5
= 7E(y|z,w*) W lOg (H O’k(x, wt)f[yk]>

k=1

82
—E(yjz,w) w2 log P(y|x, w:)

2 2
E %P(yLT,Wt) E %P(y‘wit)
- (ylwvw*)]}pi + Eylz,w) ]P)(i

(ylz, we) yla, wi)

82 2
7z P(ylz, we) )
92 =+ Egyjo,we) (8 log P(y|z, wt))

=-FE x,w*
G B (yle, w) w
9? 2
P(y|x7wt) 0
—Eyjew) 25— L By | = f (2, Y, . 71



Supplementary: Asynchronous Stochastic Gradient Descent with Delay Compensation

92 P(ylx
. 202 (y|z,we)
Since By jzw,) *5yTmwe

2001), we have

= 0 by the two equivalent methods to calculating fisher information matrix (Friedman et al.,

2 2 2
g, . B2P@lw)l | gEPlylew) sz Pylz, we)
W Byl w) W Bl wa N Byl w)
K
o? P(Y = k|z,w") — P(Y = k|z, w)
- =kl X = 72
kg 8 ‘ :C,Wt) X ]P;(Y — ]f|m7Wt) ( )
K
<H- Z Y = klz,w") —P(Y = k|z, w,)|
< HK LHwt Wioe| + HK ,max [P(Y = k|z, Wioe) — P(Y = k|z,w")| (73)
S HK LHWt Wloc” + €nc- (74)

For strongly convex objective functions, €,. = 0 and w;,. = w*. The only thing we need is to prove the convergence of
DC-ASGD without using the information of ¢; like before. By the smoothness condition, we have

EF (witr+1) — F(w") (75)
. . L 2 Tv?
< F(weer) = F@') = nesr(VF(weyr), Bg™(wy)) + =107 (76)
= F(wiyr) — Fw") = nsr (VF(wigr), VF (wisr)) 77
dc LQnt2+TV2
e (VE(Wetr), VE(werr) = Eg™ (we)) + ——5—— (78)
WMpgr b2 . . Lon2, V2
< 0= T (F(wer) = F(") 4 mer | VE o) [IVF(wr) = g™ (o)l + =257 (9)
o r 12 . Lon? V2
< 0= T (F(werr) = F@) 4 eV - (Ls+ ALY fwer —wil| + =257 (80)
2 T 2 * T . L 2 TV2
S 0= T () = F") 40V - (Lo ALDI Y merr g™ (wo)l| + =57 @1
j=1
Taking expectation to the above inequality, we can get
. 2o pr i . 2 (Lo + ML) V? Loni, . V?
BF(urrn) ~ Fw') < (1= 25y R () - F)) 4 Ter B P ALVT Lo 32)
2y pr i . L V2L Lo+ AL3
< (1= Y R wn) - Fwt) + T2 g 22 A (83)
Lo 2 Lo
Letn, = 2 =, we have
EF Fw*) < 2\ &F o) 4 Vb Lo + AL
(werr) = F(w") < (1= 2 ) (EF(w) = F(w?)) + e A G e (84)
We can get
o 2L3V7 Lo+ AL3
EF(w:) — F(w") < e 1+ I, (85)
by induction. Then we can get
4I3V? Ly + AL}
_ * (12 < 2 1 2 1 )
[lwe —w™||” < e ( + I, (86)

By putting Ineq.86 into Ineq.73, we can get the result in the theorem.

For nonconvex case, if wy € B(Wj,c, 1), we have E(wi —wo.) <

iEVF(wt) under the assumptions. Next we will prove that,

for nonconvex loss function f(x,y,w;), DC-ASGD has ergodic convergence rate. min;—s ... 1 EHaith(x, y,we)||? =

O(1/V/T), where the expectation is taking with respect to the stochastic sampling.



Supplementary: Asynchronous Stochastic Gradient Descent with Delay Compensation
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Figure 1. Error rates of the global model with Different A¢ w.r.t. number of effective passes on CIFAR-10

Compared with the proof of ASGD (Lian et al., 2015), DC-ASGD with Hessian approximation has

Ti = |[[VF(werr) —Eg®(we)? (87)
= |IVF(wisr) = VF(wi) = AEg(ws) © g(we) - (werr — we)||? (88)
< 2 VF(wirr) — VE(we)[* 4 2/|AEg(wi) © g(we) - (werr — wy)|? (89)
< 2(L3 4+ NLY)|[wegr — we|?, (90)

since L is the upper bound of V f(w) and L4 is the smooth coefficient of f(w). Suppose that p = ,/ % and 7 is
upper bounded as Theorem 5.1,

T

_min_ E[|VF(w) Z |V F(w) <O(ﬁ). 1)

t

Referring to a recent work of Lee et.al (Lee et al., 2016), GD with a random initialization and sufficiently small constant
step size converges to a local minimizer almost surely under the assumptions in Theorem 1.2. Thus, the assumption that
F(w) is p-strongly convex in the r-neighborhood of arbitrary local minimum w;,. is easily to be satistied with probability
one. By the L;-Lipschitz assumption, we have P(Y = k|z, w;) — P(Y = k|z, wioe) < L1 ||ws — wioe||- By the Lo-smooth
assumption, we have La||w; — wioe||? > (VE (wt), w — wioe). Thus for w, € B(wiee, ), we have | VF(w,)| < La|lw; —
Wiee|| < Laor. By the continuously twice differential assumption, we can assume that ||V F(w;)|| < La||ws — wioe|| < Lar
for wy € B(wioe,r) and ||VF(wt)|| < Lo||wy — wiee|| > Lot for wy ¢ B(wioe, ) without loss of generality 2. Therefore
ming—; ... 7 E||VF(w;)||? < L3r? is a sufficient condition for E||wr — wjec|| < 7.

“min_ E[|[VF(w,)|* < O(

=1,---,To

;) <t 92)

We have Ty > O ().

Thus we have finished the proof for nonconvex case.

G. Experimental Results on the Influence of \

In this section, we show how the parameter A affect our DC-ASGD algorithm. We compare the performance of respectively
sequential SGD, ASGD and DC-ASGD-a with different value of initial Ao®>. The results are given in Figure 1. This
experiment reflects to the discussion in Section 5, too large value of this parameter (Ao > 2 in this setting) will introduce
large variance and lead to a wrong gradient direction, meanwhile too small will make the compensation influence nearly
disappear. As A decreasing, DC-ASGD will gradually degrade to ASGD. A proper A will lead to significant better accuracy.

2We can choose r small enough to make it satisfied.
3We also compare different Ao for DC-ASGD-c and the results are very similar to DC-ASGD-a.
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H. Large Mini-batch Synchronous SGD with Delay-Compensated Gradient

In this section, we discuss how delay-compensated gradient can be used in synchronous SGD. The effective mini-batch
size in SSGD is usually enlarged M times comparing with sequential SGD. A learning rate scaling trick is commonly used
to overcome the influence of large mini-batch size in SSGD (Goyal et al., 2017): when the mini-batch size is multiplied by
M, multiply the learning rate by M. For sequential mini-batch SGD with learning rate n we have:

M—-1

Wipm =W — 1) Z 9(Wetj, 2e45), 93)
=0

where z; ; is the ¢ + j-th minibatch.

On the other hand, taking one step with M times large mini-batch size and learning rate 7 = Mn in synchronous SGD
yields:
] M-l '
Wipl = Wi — ﬁM Jz_: g(ws, 21), 94)
where zf is the ¢-th minibatch on local machine j.

Assume that z;4; = 2] . The assumption 9(Witj, 2e45) = g(We, z]) was made in synchronous SGD(Goyal et al., 2017).
However, it often may not hold.

If we denote W’ 1= We— g Die ;5 9(we, %), we can unfold the summation in Eq.94 to

_ oy 1 i
Wil =Wl —iigre(We ) g < M, (95)
then we have w1 = Wi\il. We propose to use Eq.(5) in the main paper to compensate this assumption and apply

delay-compensated gradient to update Eq.95 with:

9(Wesj 2e0g) = G(Wiy, 21) = g(we, 2]) + Ag(we, 1) © g(we, 2]) © (W) — we)), (96)
Wil = Wiy — 03wy 2, < M. (97)

Please note that we redefine the previous Wiill in Eq.97. For 5 > 1, we need to design an order to make W{ 11 R Wi

Choosing w;_, ; according to the increasing order of |[w/, ; — w; || can be used since the smaller distance with w; will
induce more accurate approximation by using Taylor expansion.
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