Supplemental Material: Scaling Up Sparse Support Vector Machines by
Simultaneous Feature and Sample Reduction

Weizhong Zhang“'?> Bin Hong “ '3 Wei Liu? Jieping Ye® Deng Cai' Xiaofei He! Jie Wang?

1State Key Lab of CAD&CG, Zhejiang University, China
2 Tencent Al Lab, Shenzhen, China, 3 University of Michigan, USA

In this supplement, we first present the detailed proofs of all the theorems in the main text and then report the rest experi-
ment results which are omitted in the experiment section due to the space limitation.

A. Proof for Theorem 1

Proof. of Theorem 1: -
(i) : Let X = (Xy, X, ...,X,) and z = 1 — X 'w, the primal problem (P*) then is equivalent to

. [0 9 1 n
a 1SS il
w5 Iwll® + Bllwll + ~ 2 ([z],),
S.t. z = 1 — XTW

The Lagrangian then becomes

1 — 1 -
L(w,z,0) :%\|w||2 + Bliwl: + 3 u(1z)) + ~(1-X"w ~2.0) (17)
=1
TR L 1y v 1 1
= gl + Bllwll = (R0 w05 A(el) = e 0) 47 (10) ()
=hw) = (2)

We first consider the subproblem miny, L(w,z, 6):
1.
0 € OwLl(w,z,0) = Oy f1(W) = aw — —=X0 + BO||w||; &
n
1 1 1.
—X0 € aw + Bo||w||1 = w = —Sp(=X0) 19)
n a "'n
By substituting (19) into f1(w), we get
Fu(w) = SIwll + Bliwlh — faw + Bollwlli, w) = —5 [wlf* = 515, X0) 20)
1(w) = Sllw wl|; — {(aw w1, w) = =S [[wl[* = =5~ ISs (- :

Then, we consider the problem min, L(w, z, 6):

*%[9]“ if [z]; <O,
0=V, L(w,2,0) = Vi, fo(z) = {5512l — 510];, if0 <[z]; <7,
% - %[9]1‘7 if [z]; > 7.
0, if [z]; <0,
=[0], = lzli, if0<[z]; <7, 1)
1, if [z]; > 7.

Thus, we have
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_ [ —3=ll6I%, if[6]; € (0,11, Vi € [n],
fa(2) = { —Loo otherwise . 22)
Combining Eq. (17), Eq. (20) and Eq. (22), we obtain the dual problem:
1
min X0)||% + 0|12 — = 1,0 (23)
min NS, CXOE + 0]~ 1.0
(ii) : From Eq. (19) and Eq. (21), we get the KKT conditions:
“(0.8) = ~S3(~ X0 (. B))
w = —-85(—
«, o B n «,
0, if 1 — (x;,w*(a, 8)) <0
13 if1— <ii7W*(aaB)> > 7.
The proof is complete. O
B. Proof for Lemma 1
Proof. of Theorem 1:
1) It is the conclusion of the analysis above.
2) After feature screening, the primal problem (P*) is scaled into:
min 5 Y2 + Bl[w|h + — Ze ([%i] ger W)), (scaled-P*-1)
W ERIF
Thus, we can easily derive out the dual problem of (scaled-P*-1):
- 1 -
min  D(0;a, B) = 7||35( fC[X]0)||2 116112 - 21, 6). (scaled-D*-1)
delo,a]™ 2n n
and also the KKT conditions:
w*(a, B) = —Sg( e [X10% (v, B)) (scaled-KKT-1)
_ Ou if 1 — <[)_(7,]]307“~7*(a75)> < 07
[0 (v, B)]; = %(1 —(Xilge, W (, 8)), if0<1—([Xi]lze, W (e, ) <, (scaled-KKT-2)
17 if1 — <[)_(2]]:‘C7VV*(057/8) >%

Then, it is obvious that w* (v, 3) = [w* (v, 3)] £., since essentially, problem (scaled-P*-1) can be derived by substituting
0 to the weights for the eliminated features in problem (P*) and optimize over the rest weights.

Since the solutions w*(«, ) and 6*(c, 3) satisfy the conditions KKT-1 and KKT-2 and ([X;]z., W*(c, 3)) =
(xi,w*(a, 8)) for all i , we know w*(a, 8) and 0*(a, B) satisfy the conditions scaled-KKT-1 and scaled-KKT-2. So
they are the solutions of problems (scaled-P*-1) and (scaled-D*-1). Thus, due to the uniqueness of the solution of prob-
lem (scaled-D*-1), we have

0 (a, B) = 0% (v, B) (24)

From 1) we have, [0* (o, B)lg. = 0 and [é*(a, B)]z. = 1. Therefore, from the dual problem (scaled-D*), we can see that
[0*(C, )] p. can be recovered from the following problem:

i . 1 .
min_ *||SB( G0+ G 21|12 4+ L 16]2 — =(1,0),
defo,1]®°! 2n n

Since [0*(a, B)lpe = [0%(a, B)]p., the proof is therefore completed. O
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C. Proof for Lemma 2
Proof. Due to the a-strong convexity of the objective P(w; «, ), we have

P(w* (o, Bo); a, Bo) = P(W" (e, Bo); v, Bo) + %HW*(Ofo,ﬁo) —w*(a, Bo)|?

P(w* (o, fo); a0, Bo) = P(W* (o, Bo); o, o) + %HW*(@o,ﬁo) —w*(a, Bo)|?

which are equivalent to
a * * 1 - = *
511w (@0, Bo)l[* + Bollw™ (a0, Bo)llr + — Z;ﬂ(l — (%i, w" (a0, )

*HW (e, Bo)lI* + Bol [w™ (ev, Bo)l[1 + — Zﬁ (xi, w*(a; fo)))

=1

+ Sl (0, Bo) = w* (e o)

S (s Bo)lI? + Bol[w* (e, Bo)lla + Zz (%, w* (@, o))

>*||W (@0, Bo)II* + Bollw* (a0, Bo)lln + — Z€ (%i, w* (a0, fo)))

i=1
(%)) * *
+ 5l (a0, Bo) = (e, o) ||
Adding the above two inequalities together, we get

a—
2

=||w*(a, Bo) —

o — oo+«

2
||w* (w0, Bo)|[? (25)

20w (e, Bo)I* + W™ (o, Bo) — W™ (c, Bo)| |2

(a — O[())2
42

0
[[w* (o, Bo)|I* >

g+«
2c0

w* (o, Bo)||* <

Substitute the prior that [w*(c, 5p)] # = 0 into (25), we get

N agt+a
H[W (aaﬁo)]]}c - O2a [W (a()?BO)]ﬁc 2
(a—ap)?, (ap + @)?
S W (a0, Bo)lI* = ozl (0, Bo)l 1.
The proof is complete. O

D. Proof for Lemma 3
Proof. Firstly, we need to extend the definition of D(6; o, 3) to R™:

= on [ D(;«,B), if6el0,1]",
Dt 5) = { 400, otherwise (26)

Due to the strong convexity of objective D(G; a, 3), we have

D(0" (a0, Bo) @, Bo) = D(O" (e o), a, Bo) + 5110 (@0, B0) = 0 (e, Bo) I,
D(g*(OZ,B()),OéO”B()) Z D(G*(Oé(),Bo),O(O,IBO) + %Ho*(a()a 60) - 9*((15 50)H2

Since 6*(ay, Bo), 6* (e, By) € [0, 1]", the above inequalities are equivalent to
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51185 (X0 (a0, B2 + 2= 0% ao, o) 2 = = (1,6 o, o)
zﬂn(sao(gx%*(a,ﬂo)nﬁ L1167 (o o) = (1,6 (@ o))
+ 51167 (a0, Bo) — 0° (. Bo)I .
o 15 GXT0" (@ o))+ 516" )| = (1,6 (0, o)
> o150 (G XT0" (a0, ) + 55 167 (0, Bo) 2 = (1.6 o)) + 51 6" (a0, o) — 6 av )

Adding the above two inequalities, we get

20 20)) g, B2~ 2 (1,6 0, )

2n

> 2090 g+ )2~ 220 0,0% 500) + L9 19 g, ) — 0" )1
That is equivalent to
167 (@ Bo) 2 = (=1 + 226" (g, o)., o)
< = 218" (o, Bo)|I* — " {1, 6% (a0, o)) @7
That is
16 (@1 o) = (S50 + 2520 o, o)) < (520216 0, o) — 1P (8)

Substitute the priors that [0* («, 80)]5 = 0 and [0*(«, Bp)]; = 1 into (28), we have

a—a01+a0+a

2va 2a

116" (cv, Bo)lpe — ( [6* (0, Bo)1pe )| P

O — Q09 s 1. 2y —1Da+ag ag+a 9
<(—)“||6 — 71 — 1- 0 :
<(EGR" ( Bo) = 1 = [ 210" (a0, o)l
o — Qg oo + o
— 1 [6*
1%+ S0 o, o)
The proof is complete. O

E. Proof for Lemma 4
Before the proof of Lemma 4, we should prove that the optimization problem in (1) is equivalent to

1 St . 7~c
( ,B0) = maé({|<[x Ipe,0) + ([x ]£,1>|},z€}'. (29)
To avoid notational confusion, we denote the feasible region © in (1) as . Then,

mag({ i } = max{ }xz0|}
(4SS) n USSi

1 . ) .
= max { — [ pe[01p. + [X14[01 + [X'151015] }

0c©

{ ([ pe [0]pe) + ([Xi]ﬁ,1>|}—8i(a»ﬂo)~

=maXx
0cO
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The last equation holds since [0]; =1, [#]5 = 0 and [03.] € ©.

Proof. of Lemma 4:

s(o o) = max {1|<x1pf, 0) + (%1 1]}

0€B(c,r)

Lo <i <i
= e (%] pe.¢) + (%12, 1) + (%))}

1 , . .
== ([{[X'1pes €) + (K12, 1| + (X5 [I7)

n

The last equality holds since —||[X"]5

< ([X'1pesm)| < |[[X“]p. |- The proof is complete. O

F. Proof for Theorem 4

Proof. (1) It can be obtained fr9m the the rule (R1).
(2) It is from the definition of F.

O
G. Proof for Lemma 5
Firstly, we need to point out that the optimization problems in (2) and (3) are equivalent to the problems:
u;i(a, fBo) = meax{l —([Xilge, W)} i € De, (30)
i Bo) = min {1 — ([l 7., w)},i € D° (31)
They follow from the fact that [w] 2. € VW and
{1 —(w, %)}
={1— (W, [l zo) — ([Wlg, [Xil £)}
Proof. of Lemma 5:
ui(a, Bo) = wé%%fr){l — ([Xil e, W)}
= ’I’]GHB}E(%{T {1 - <[x1]].‘ca > <[il]]:‘c7 77>}
=1 — ([Xil e, €) + ||[Xi]]i-c||r
li(v, Bo) = erglgl(rgr){l (il ge, W)}
= HEIB%(I_} 7"){1 - <[X2]].‘c7 > <[)_(7,]]:‘C; 77>}
=1 — ([Xilze,c) + %%1 ){ (Xilge,m}
=1 — (Xl ze,c) — [[[Xi] g7
The proof is complete. U

H. Proof for Theorem 5
Proof. (1) It can be obtained from the the rule (R2).



Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

(2) Tt is from the definitions of R and L. O

I. Proof for Theorem 2

Proof. of Theorem 2:

We prove this theorem by verifying that the solutions w*(c, 3) = 0 and 6*(«, 8) = 1 satisfy the conditions KKT-1 and
KKT-2.

Firstly, since 8 > Bmax = ||2X1||, we have Sg(1X1) = 0. Thus w*(cv, 3) = 0 and 6* (cv, 3) = 1 satisfy the condition
KKT-1.

Then, for all ¢ € [n], we have

Thus w*(a, ) = 0 and 0*(«, 8) = 1 satisfy the condition KKT-2. Hence, they are the solutions for the primal problem
(P*) and the dual problem (D*), respectively. O]

J. Proof for Theorem 3

Proof. of Theorem 3:

Similar with the proof of Theorem 2, we prove this theorem by verifying that the solutions w*(at, ) = 1Sz(1X6* (o, 8))
and 0*(a, ) = 1 satisfy the conditions KKT-1 and KKT-2.

1. Case 1: aupax(8) < 0. Then for all > 0, we have

min {1 — (X;, w* (e, 8))}

ze[n]
= min {1 (%, S5(- X0 (o, 5)))} = min {1~ ~ (x;, S5(- X1))}

ze[n] le[n]
=1- 1 max(xl,SB( Xl)} =1-(1- '7)lamax(6)
ze[n a

21>~

Then, £ = [n] and w*(a, 8) = 183(1X6*(cv, 8)) and 0% (v, B) = 1 satisfy the conditions KKT-1 and KKT-2.
Hence, they are the optimal solution for the primal and dual problems (P*) and (D*).

2. Case 2: aypax(f) > 0. Then for any o > amax (), we have

min {1 — (x;, w*(a, 8))}

ze[n]

*mm{lfé@(usﬁ( X0 (0 6)))} = min {1~ (%, S5(- X1)}

ze[n] 1€ [n]

=1- 1 rg[a)i<xl785( X1)> =1-(1- 7)$amax(ﬁ) z21-(1-7)=7.

Thus, £ U £ = [n] and w*(, 8) = 1S3(1X0*(a, B)) and 0% (v, ) = 1 satisfy the conditions KKT-1 and KKT-2.
Hence, they are the optimal solution for the primal and dual problems (P*) and (D*).

The proof is complete. O

K. Proof for Theorem 6
Proof. of Theorem 6:

(1) Given the reference solutions pair w*(c;—1 5, 8;) and 6* (a1 ;, B;), if we do ISS first in SIFS and apply ISS and IFS
for infinite times. If after p times of triggering, no new inactive features or samples are identified, then we can denote the
sequence of F,Rand L as:

Fit =R = Lot =0 55 FARE £ TS FRRS L T (32
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with Fit = P = Fil, = R =R, =R, = and L} =L} =L, = (33)

In the same way, if we do IFS first in SIFS and no new inactive feature or samples are identified after ¢ times of triggering
of ISS and IFS, then the sequence can be denoted as:

IFS 158 B IFS

FO=RE =[P =0 S 7B RE LB 1SS 7B ORE LB IS | FPORB pB IS (34)
with FP = FB, = FB, = . RE=RE, =RE ,= . and LE = LD, = LD, = .. (35)

We first prove that .7-",? - }—k+1’ RB - Rk+1 and EB C £k+1 hold for all £ > 0 by induction.

1) When k = 0, the equalities ]-'63 c ,RB C R4 and LB C £ hold since FB = RE = LB = 0.

2) If ]-'k ]-'kH,RB - Rk+1 and £P C £k+1 hold, by the synergy effect of ISS and IFS, we have .7-',€Jrl C
]-'kJr27 Rk+1 - Rk+2 and £k+1 C £k+2 hold.

Thus, P C ]—'k_H,RB - Rk+1 and LP C £k+1 hold for all k£ > 0.

Similar with the analysis in (1), we can also prove that 7' C P, |, R C RE,, and £ C LF | hold for all k > 0.
Combine (1) and (2), we can get

>

FBCcFACFECFL.. (36)
FrCFPCH CF . (37)
R§ SR CRE CRY. (38)
R{ CRY CRY CRE.. (39)
LECLpcLlciy. (40)
Ly C LV CLycih. (41)
by the first equality of (33), (36) and (37), we can get ]:'A .7:'3 Similarly, we can get 7@‘4 7A€B and ﬁA ﬁB
(2) If p is odd, then by (36), (38 and (40), we have F! C F! +1,RA C R py1 and L4 c cp '1- Thus ¢ < p+ 1.
Else if p is even, then by (37), (39) and (41), we have .7:'];4 C FB D1 RA C RPH and E;j‘ C £p+1- Thus g < p+ 1.
Do the same analysis for ¢, we can getp < ¢ + 1.
Hence, [p — ¢| < 1.
The proof is complete.
O

L. Experiment Result

L.1. Verification of the Synergy Effect

Here, we verify the synergy effect between ISS and IFS in SIFS from the experiment results on the dataset real-sim. In
Fig. 4, SIFS performs ISS (sample screening) first, while in Fig. 5, it performs IFS (feature screening) first. All the rejection
ratios (Fig. 4(a)-(d)) of the 1st triggering of IFS when SIFS performs ISS first are much higher than (at least equal to) those
(Fig. 5(a)-(d)) when SIFS performs IFS first. In turn, all the rejection ratios (Fig. 5(e)-(h)) of the 1st triggering of ISS when
SIFS performs IFS first are also much higher than those (Fig. 4(e)-(h)) when SIFS performs ISS first. This demonstrates
that the screening result of ISS can reinforce the capability of IFS and vice versa, which is the so called synergy effect. At
last, in Fig. 5 and Fig. 4, we can see that the overall rejection ratios at the end of SIFS are the same, so no matter which (ISS
or IFS) we perform first in SIFS, SIFS has the same screening performances in the end. This is consistent with Theorem 6.

L.2. The Rest Experiment Result
Below, we report the rejection ratios of SIFS on synl (Fig. 6), syn3 (Fig. 7), rcvl-train (Fig. 8), rcvl-test(Fig. 9), url
(Fig. 10) and kddb (Fig. 11), which are omitted in the main text due to the space limitation.
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Figure 4. Rejection ratios of SIFS on real-sim when it performs ISS first (first row: Feature Screening, second row: Sample Screening).
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Figure 5. Rejection ratios of SIFS on real-sim when it performs IFS first(first row: Feature Screening, second row: Sample Screening).
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Figure 7. Rejection ratios of SIFS on syn3 (first row: Feature Screening, second row: Sample Screening).
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Figure 8. Rejection ratios of SIFS on rcv1-train dataset (first row: Feature Screening, second row: Sample Screening).
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Figure 9. Rejection ratios of SIFS on rcv1-test dataset (first row: Feature Screening, second row: Sample Screening).
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Figure 10. Rejection ratios of SIFS on url dataset (first row: Feature Screening, second row: Sample Screening).
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Figure 11. Rejection ratios of SIFS on kddb dataset (first row: Feature Screening, second row: Sample Screening).
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