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Abstract

Hierarchical Bayesian models often capture distri-
butions over a very large number of distinct atoms.
The need for these models arises when organizing
huge amount of unsupervised data, for instance,
features extracted using deep convnets that can
be exploited to organize abundant unlabeled im-
ages. Inference for hierarchical Bayesian models
in such cases can be rather nontrivial, leading to
approximate approaches. In this work, we propose
Canopy, a sampler based on Cover Trees that is
exact, has guaranteed runtime logarithmic in the
number of atoms, and is provably polynomial in
the inherent dimensionality of the underlying pa-
rameter space. In other words, the algorithm is as
fast as search over a hierarchical data structure.
We provide theory for Canopy and demonstrate its
effectiveness on both synthetic and real datasets,
consisting of over 100 million images.

1. Introduction

Fast nearest-neighbor algorithms have become a mainstay
of information retrieval (Beygelzimer et al., 2006; Liu et al.,
2007; Indyk & Motwani, 1998). Search engines are able to
perform virtually instantaneous lookup among sets contain-
ing billions of objects. In contrast, inference procedures for
latent variable models (Gibbs sampling, EM, or variational
methods) are often problematic even when dealing with
thousands of distinct objects. This is largely because, for
any inference methods, we potentially need to evaluate all
probabilities whereas search only needs the best instance.

While the above is admittedly an oversimplification of mat-
ters (after all, we can use Markov-Chain Monte Carlo meth-
ods for inference), it is nonetheless nontrivial to perform
exact sampling for large state spaces. In the current work,
we propose Canopy, an inference technique to address this
issue by marrying a fast lookup structure with an adaptive
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Figure 1. Canopy is much faster yet as accurate as other methods
like EM or ESCA (Zaheer et al., 2016). The bar graph shows time
per iteration while line plots the likelihood on held-out test set.
Results shown are for inference of a Gaussian mixture model with
32 million points having 4096 clusters at 1024 dimensions.

rejection sampler. This leads to a surprisingly simple de-
sign for a plethora of sampling-based inference algorithms.
Moreover, we provide runtime guarantees for Canopy that
depend only on the inherent dimensionality of both parame-
ter and data distributions. The expected depth for lookups is
never worse than logarithmic in the number of atoms and
the characteristic length scale at which models can be suffi-
ciently well distinguished. Furthermore, we can parallelize
Canopy for hierarchical Bayesian models using stochastic
cellular automata (ESCA) (Zaheer et al., 2016), thus leading
to an extremely scalable and efficient system design.

Most latent variable models, e.g., Gaussian mixture models
(GMM), latent Dirichlet allocation (Blei et al., 2002), hidden
Markov models, Dirichlet process clustering (Neal, 1998),
or hierarchical generative models (Adams et al., 2010), have
the structure of the form:

pla) = p(z)p(=)6-) (1)

where x denotes observed variables, z latent variables, and
0. parameters of the conditional. Often the conditional dis-
tribution p(x|6,) belongs to the exponential family, which
we assume to be the case as well. The inference procedure
on these models using either Gibbs sampling, stochastic vari-
ation methods, or ESCA would require to draw z ~ p(z|x)
repeatedly. Naively producing these draws would be expen-
sive, especially when the number of latent classes is huge.
We aim to bring the per-iteration cost down from O(mn)
to O(m + n), where m, n are the number of latent classes
and data points, respectively. For example, on GMM, the
proposed method Canopy is much faster than EM or ESCA,
while achieving the same accuracy as shown in Fig. 1.
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Our approach is as follows: we use cover trees (Beygelz-
imer et al., 2006) to design an efficient lookup structure for
p(z|6.) and approximate the values of p(z|6,) for a large
number of #,. In combination with an efficient node sum-
mary for p(z), this allows us to design a rejection sampler
that has an increasingly low rejection rate as we descend
the tree. Moreover, for large numbers of observations x, we
use another cover tree to aggregate points into groups of
similar points, perform expensive pre-computation of as-
signment probabilities p(z|x) only once, and amortize them
over multiple draws. In particular, the alias method (Walker,
1977) allows us to perform sampling in O(1) time once the
probabilities have been computed.

In summary, Canopy has three parts: construction of cover
trees for both parameters and data (Sec. 3.1, 3.2), an adaptive
rejection sampler at the top-level of the cover tree until
the data representation is sufficiently high to exploit it for
sampling (Sec. 3.2.1), and a rejection sampler in the leaves
(Sec. 3.2.2), whenever the number of clusters is large. Most
importantly, the algorithm becomes more efficient as we
obtain larger amounts of data since they lead to greater
utilization of the alias table in (Walker, 1977) as shown
by theoretical analysis in Sec. 4. This makes it particularly
well-suited to big data problems as demonstrated through
experiments in Sec. 5.

2. Background

We briefly discuss latent variable models, cover trees, and
the alias method needed to explain this work.

2.1. Latent Variable Models

The key motivation for this work is to make inference
in latent variable models more efficient. As expressed in
(1), we consider latent models which have mixtures of ex-
ponential family. The reasons for limiting to exponential
families are two fold. First, most of the mixture models
used in practice belong to this class. Second, assumptions
on model structure, for instance exponential family, al-
lows for efficient design of fast inference. In particular,
we first assume that updates to p(z) can be carried out
by modifying O(1) values at any given time. For instance,
for Dirichlet process mixtures, the collapsed sampler uses
p(zi = j1Z\{z}) = nj_l/(n—&— a —1). Here, n is the
total number of observations, n;Z denotes the number of
occurrences of z; = j when ignoring z;, and « is the con-
centration parameter. Second, the conditional p(x|6) in (1)
is assumed to be a member of the exponential family, i.e.,

p(z]0) = exp((¢(z), 0) — g(0))- 2

Here ¢(z) represents the sufficient statistics and g(6,) is
the (normalizing) log-partition function.

Trying to find a metric data structure for fast retrieval is
not necessarily trivial for the exponential family. Jiang et al.
(2012) and Cayton (2008) design Bregman divergence based
methods for this problem. Unfortunately, such methods are
costlier to maintain and have less efficient lookup properties
than those using Euclidean distance, as computing and op-
timizing over Bregman divergences is less straightforward.
For example, whenever we end up on the boundary of the
marginal polytope, as is common with natural parameters
associated with single observations, optimization becomes
intractable. Fortunately, this problem can be avoided entirely
by rewriting the exponential family model as

p(z]0) = (6@ -1:0.96) — (6().0) (3
where () := (¢(z), —1) and 6 := (6, g(6)).

In this case, being able to group similar 0 together allows
us to assess their contributions efficiently without having to

<

inspect individual terms. Finally, we assume that ngg(xl)

R and

0

< T for all 7 and for all z € Z respectively.

2.2. Alias Sampler

A key component of Canopy is the alias sampler (Walker,
1977; Vose, 1991). Given an arbitrary discrete probabil-
ity distribution on n outcomes, it allows for O(1) sam-
pling once an O(n) preprocessing step has been performed.
Hence, drawing n observations from a distribution over n
outcomes costs an amortized O(1) per sample. Sec. A in
appendix has more details.

2.3. Cover Trees

Cover Trees (Beygelzimer et al., 2006) and their improved
version (Izbicki & Shelton, 2015) are a hierarchical data
structure that allow fast retrieval in logarithmic time. The
key properties are: O(n logn) construction time, O(log n)
retrieval, and polynomial dependence on the expansion con-
stant (Karger & Ruhl, 2002) of the underlying space, which
we refer to as c. Moreover, the degree of all internal nodes
is well controlled, thus giving guarantees for retrieval (as
exploited by (Beygelzimer et al., 2006)), and for sampling
(as we will be using in this paper).

Cover trees are defined as an infinite succession of levels
S; with ¢ € Z. Each level i contains (a nested subset of) the
data with the following properties:
e Nesting property: S; C S;_1.
o Allz, 2’ € S, satisfy ||z — /|| > 2.
e All z € S; have children ' € S;_1, possibly with
x = o/, with ||z — 2/|| < 2.
e As a consequence, the subtree for any z € S; has
distance at most 2°*! from z.

Please refer to appendix Sec. C for more details.
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3. Our Approach

Now we introduce notation and explain details of our
approach when the number of clusters is (a) moderate
(Sec. 3.1) and (b) large (Sec. 3.2). In what follows, the
number of data points and clusters are denoted with n and
m respectively. The function ch(x) returns children of a
node x of any tree.

Data tree (Tp): Cover tree built with levels S; on all
available data using the sufficient statistic ¢(x), constructed
once for our setup. We record ancestors at level 7 as pro-
totypes x for each data point x. In fact, we only need to
construct the tree up to a fixed degree of accuracy 7 in case
of moderate number of clusters. A key observation is that
multiple points can have a same prototype z, making it a
many-to-one map. This helps us amortize costs over points
by re-using proposal computed with z (Sec. 3.1).

Cluster tree (T¢): Similarly, T¢ is the cover tree gener-
ated with cluster parameters 6. For simplicity, we assume
that the expansion rates of clusters and data are both c.

3.1. Canopy I: Moderate number of clusters

We introduce our sampler, Canopy I, when the number of

clusters is relatively small compared to the total number of

observations. This addresses many cases where we want to

obtain a flat clustering on large datasets. For instance, it is

conceivable that one might not want to infer more than a

thousand clusters for one million observations. In a nutshell,

our approach works as follows:

1. Construct Tp and pick a level 7 € Z with accuracy 27
such that the average number of elements per node in S5
is O(m).

2. For each of the prototypes Z, which are members of S5,
compute p(z|Z) using the alias method to draw from
m components 6. By construction, this cost amortizes
O(1) per observation, i.e., a total cost of O(n).

3. For each observation = with prototype Z, perform
Metropolis-Hastings (MH) sampling using the draws
from p(z|Z) =: q(z) as proposal. Hence we accept an
MH move from z to z’ with probability

— i (1 PEICLR)
w0 0ER) O

The key reason why this algorithm has a useful acceptance
probability is that the normalizations for p(z|z) and p(z|Z),

and mixing proportions p(z) and p(z’) cancel out respec-
tively. Only terms remaining in (4) are

7T = min <l,exp (<¢(31) _ ¢(5;)7§Z, _ §Z>>> > 672:’+2L

for Héz ’ < L. This follows from the Cauchy Schwartz

inequality and the covering property of cover trees, which
ensures all descendants of Z are no more than 271! apart
from z, i.e., ||p(z) — ¢(Z)]] < 27HL.

3.2. Canopy II: Large number of clusters

The key difficulty in dealing with many clusters is that it
forces us to truncate T at a granularity in « that is less pre-
cise than desirable in order to benefit from the alias sampler
naively. In other words, for a given sampling complexity, a
larger m reduces the affordable granularity in . The prob-
lem arises because we are trying to distinguish clusters at a
level of resolution that is too coarse. A solution is to apply
cover trees not only to observations but also to the clusters
themselves, i.e., use both T and T . This allows us to de-
crease the minimum observation-group size at the expense
of having to deal with an aggregate of possible clusters.

Our method for large number of clusters operates in two
phases: (a) Descend the hierarchy in cover trees while sam-
pling (Sec. 3.2.1) (b) Sample for a single observation x from
a subset of clusters arranged in T (Sec. 3.2.2), when appro-
priate conditions are met in (a). We begin with initialization
and then elaborate each of these phases in detail.

Initialize 1: Construct T and for each node 6, assign
a(i,z) = p(z), where i is the highest level .S; such that
z € 9, else 0. Then perform bottom-up aggregation via

Bi,z) =ali,z)+ > Bli+1,2) (5)

z'€ch(z)

This creates at most O(m) distinct entries 3(i, z). Notice
that aggregated value 3(i, z) captures the mixing probability
of the node and its children in T¢.

Initialize 2: Partition both the observations and the clus-
ters at a resolution that allows for efficient sampling and
precomputation. More specifically, we choose accuracy lev-
els 7 and i to truncate T p and T, so that there are n’ and
m/ nodes respectively after truncation. These serve as parti-
tions for data points and clusters such that n’ - m’ = O(m)
is satisfied. The aggregate approximation error

§ =201 + 2" R 4 2V HIH2 (6)

due to quantizing observations and clusters is minimized
over the split, searching over the levels.

3.2.1. DESCENDING Tp AND T

Given Tp and T¢ with accuracy levels 7 and 7, we now
iterate over the generated hierarchy, as shown in Fig. 2. We
recursively descend simultaneously in both the trees until
the number of observations for a given cluster is too small.
In that case, we simply default to the sampling algorithm de-
scribed in Sec. 3.2.2 for each observation in a given cluster.

The reasoning works as follows: Once we have the parti-
tioning into levels }, ¢ for data and clusters respectively with
n' - m’ = O(m), we draw from the proposal distribution

q(z|z) o< B(i, 2) exp ((6(7),02) — 9(6z)) (D)
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Figure 2. Hierarchical partitioning over both data observations and
clusters. Once we sample clusters at a coarser level, we descend
the hierarchy and sample at a finer level, until we have few number
of points per cluster. We then use Sec. 3.2.1 for rejection sampler.

for all the observations and clusters above the partitioned
levels j and i, respectively. That is, we draw from a distribu-
tion where both observations and clusters are grouped. We
draw from the proposal for each x in T p truncated at level 7.
Here, (%, Z) collects the prior cluster likelihood from Z and
all its children. As described earlier, we can use the alias
method for sampling efficiently from (7).

Within each group of observations, drawing from (7) leads
to a distribution over a (possibly smaller) subset of cluster
groups. Whenever the number of observations per cluster
group is small, we default to the algorithm described in
Sec. 3.2.2 for each observation. On the other hand, if we
have a sizable number of observations for a given cluster,
which should happen whenever the clusters are highly dis-
criminative for observations (a desirable property for a good
statistical model), we repeat the strategy on the subset to re-
duce the aggregate approximation error (6). In other words,
we descend the hierarchy to yield a new pair (i, j') on the
subset of clusters/observations with i < 7 and j' < j and
repeat the procedure.

The process works in a depth-first fashion in order to avoid
using up too much memory. The sampling probabilities
according to (7) are multiplied out for the path over the
various hierarchy levels and used in a MH procedure. Each
level of the hierarchy can be processed in O(1) operations
per instance, without access to the instance itself. Moreover,
we are guaranteed to descend by at least one step in the
hierarchy of observations and clusters, hence the cost is at
most O(c? min(log n, log m)).

To summarize, we employ a MH scheme as before, with
the aim of using a highly accurate, yet cheap proposal. To
overcome the loss in precision of Canopy I proposal due
to large of clusters, we devise a proposal wherein we look
at aggregates of both data and clusters at comparable gran-
ularity using both Tp and T¢. Note that the acceptance
probabilities are always at least as high as the bounds de-
rived in Sec. 3.1 as the errors on the paths are log-additive.
Instead of MH, a rejection sampler can also be devised. De-
tails are omitted for the sake of brevity, since they mirror
the single-observation argument of the following section.

3.2.2. SAMPLING FOR A SINGLE OBSERVATION x

Let = be the single observation for which we want to sam-
ple from possibly subset of clusters z that are arranged in
T¢. In this case, we hierarchically descend T using each
aggregate as a proposal for the clusters below. As before,
we can either use MH sampling or a rejection sampler. To
illustrate the effects of the latter, we describe one below,
whose theoretical analysis is provided in Sec. 4. Before we
delve into details, let us consider a simple case without T¢.
If we are able to approximate p(z|6,) by some g, such that

e “p(z]0.) < g < e“p(|0) (®)
for all z, then it follows that a sampler drawing z from
Lo 40() ©)

> qp(2)

and then accepting with probability e~ ¢q; 'p(x|6.) will
draw from p(z|z) (see Appendix Sec. B for details). More-
over, the acceptance probability is at least e~2¢. However,
finding such ¢, with a small € is not easy in general. Thus,
we propose to cleverly utilize structure of the cover tree T¢
to begin with a very course approximation and successively
improving the approximation only for a subset of 6, which
are of interest. The resultant sampler is described below:

1. Choose approximation level 7 and compute normaliza-
tion at accuracy level 7:
Y=Y Bli,z)exp <927¢(I)> : (10)
z€S;
2. Sete ¢ :=¢ % 6@ as multiplier for the acceptance
threshold of the sampler and v := €.
3. Draw a node z € S; with probability 6, :=
e B0, 2) exp (B, 6(2) ).
4. Accept z; at the current level with probability 7 :=
Y05 () exp (0, 0(2))-
5. Fori:=i— 1 down to —oo do
i Set e~ == e 2 19@ a5 the new multiplier and
7 = 6z,,, (1 — ) as the new normalizer.
ii. Draw one of the children z of z;; with probability

62; = ,y—leeﬁ(l‘7z) exp <éz7 é(m)> Exit if we do
not draw any of them (since ZZECh(z7-,+1) 6, <1

and restart from step 2, else denote this child by z;.
iii. Accept z; at the current level with probability 7 :=

Y10z p(zi) exp <§zl,q3(x)> Do not include z;11
in this setting. as we consider z only the first time
we encounter it.

The above describes a rejection sampler that keeps on upper-
bounding the probability of accepting a particular cluster or
any of its children. It is as aggressive as possible at retaining
tight lower bounds on the acceptance probability such that
not too much effort is wasted in traversing the cover tree to
the bottom, i.e., we attempt to reject as quickly as possible.
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4. Theoretical Analysis

The main concern is to derive a useful bound regarding the
runtime required for drawing a sample. Secondary concerns
are those of generating the data structure. We address each
of these components, reporting all costs per data point.

Construction The data structure Tp costs O(c®logn)
(per data-point) to construct and T costs O(c® logm) (per
data-point, as m < n) — all additional annotations cost
negligible time and space. This includes computing o and
[, as discussed above.

Startup The first step is to draw from .S;. This costs
O(]S;]) for the first time to compute all probabilities and
to construct an alias table. Subsequent samples only cost 3
CPU cycles to draw from the associated alias table. The ac-
ceptance probability at this step is e ~2¢. Hence the aggregate

cost for the top level is bounded by O (|Sz| + eQHZH&w)”).

Termination To terminate the sampler successfully, we
need to traverse T at least once to its leaf in the worst case.
This costs O(c? logm) if the leaf is at maximum depth.

Rejections The main effort of the analysis is to obtain
useful guarantees for the amount of effort wasted in drawing
from the cover tree. A brute-force bound immediately would
A 2a+2|
yield O (e
the upper bound on the acceptance probability, a term of ¢*
arises from the maximum number of children per node and
lastly the c? logm term quantifies the maximum depth. It
is quite clear that this term would dominate all others. We
now derive a more refined (and tighter) bound.

@] 6 log m) . Here the first term is due to

Essentially we will exploit the fact that the deeper we de-
scend into the tree, the less likely we will have wasted com-
putation later in the process. We use the following relations

o0
e® —1 < ze® for z € [0, a] and 22*1 =1. (11

1=1
In expectation, the first step of the sampler requires e2¢ =
2 6@ steps in expectation until a sample is accepted.
Thus, e?¢ — 1 effort is wasted. At the next level below we
waste at most 2 lé@l — 1 effort. Note that we are less
likely to visit this level commensurate with the acceptance
probability. These bounds are conservative since any time
we terminate above the very leaf levels of the tree we are
done. Moreover, not all vertices have children at all levels,
and we only need to revisit them whenever they do. In
summary, the wasted effort can be bounded from above by

e a .
oi—i
04 E {6
i=1

4

Here ¢* was a consequence of the upper bound on the num-
ber of children of a vertex. Moreover, note that the exponen-
tial upper bound is rather crude, since the inequality (11) is

[eS)
$@)| _ 1} < e I6@I § 91 = 0]
=1

very loose for large a. Nonetheless we see that the rejection
sampler over the tree has computational overhead indepen-
dent of the tree size! This result is less surprising than it may
seem. Effectively we pay for lookup plus a modicum for the
inherent top-level geometry of the set of parameters.

Theorem 1 The cover tree sampler incurs worst-case com-
putational complexity per sample of

O (|SZ\ + blogn + B logm + 0462”2“5(’”)”) (12)

Note that the only data-dependent terms are c, S;,7 and
H(;Nb(sc) H and that nowhere the particular structure of p(z)

entered the analysis. This means that our method will work
equally well regardless of the type of latent variable model
we apply. For example, we can even apply the model to
more complicated latent variable models like latent Dirich-
let allocation (LDA). The aforementioned constants are all
natural quantities inherent to the problems we analyze. The
constant ¢ quantifies the inherent dimensionality of the pa-

rameter space, Hqg(x) H measures the dynamic range of the

distribution, and S}, 7 measure the “packing number” of the
parameter space at a minimum level of granularity.

5. Experiments

We now present empirical studies for our fast sampling tech-
niques in order to establish that (i) Canopy is fast (Sec. 5.1),
(i) Canopy is accurate (Sec. 5.2), and (iii) it opens new
avenues for data exploration and unsupervised learning
(Sec. 5.3), previously unthinkable. To illustrate these claims,
we evaluate on finite mixture models, more specifically,
Gaussian Mixture models (GMM), a widely used probabilis-
tic models. However, the proposed method can be applied
effortlessly to any latent variable model like topic modeling
through Gaussian latent Dirichlet allocation (Gaussian LDA)
(Das et al., 2015). We pick GMMs due to their wide-spread
application in various fields spanning computer vision, nat-
ural language processing, neurobiology, efc.

Methods For each experiment, we compare our two sam-
plers (Canopy I, Section 3.1 and Canopy II, Section 3.2)
with both the traditional Expectation Maximization (EM)
(Dempster et al., 1977) and the faster Stochastic EM through
ESCA (ESCA) (Zaheer et al., 2016) using execution time,
cluster purity, and likelihood on a held out TEST set.

Software & hardware All the algorithms are imple-
mented multithreaded in simple C'+ 411 using a distributed
setup. Within a node, parallelization is implemented using
the work-stealing Fork/Join framework, and the distribu-
tion across multiple nodes using the process binding to a
socket over MPI. We run our experiments on a cluster of 16
Amazon EC2 c4.8xlarge nodes connected through 10Gb/s
Ethernet. There are 36 virtual threads per node and 60GB
of memory. For purpose of experiments, all data and calcu-
lations are carried out at double floating-point precision.
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Figure 3. Showing scalability of per-iteration runtime of different algorithms with increasing dataset size. From Fig. 3a, 3b, and 3c
we see that our approaches take orders of magnitude less time compared to the traditional EM and ESCA methods, while varying
the number of points and clusters respectively. Note that we trade off memory for speed as seen from Fig. 3d. For instance, with
(n,m,d) = (32mil, 4096, 1024), we see that there is a speed-up of /50 for a mere 2x memory overhead.

Initialization Recall that speed and quality of inference
algorithms depend on initialization of the random variables
and parameters. Random initializations often lead to poor re-
sults, and so many specific initialization schemes have been
proposed, like KMeans++ (Arthur & Vassilvitskii, 2007), K-
MC2 (Bachem et al., 2016). However, these initializations
can be costly, roughly O(mn).

Our approach provides a good initialization using cover trees
free of cost, as the construction of cover tree is at the heart of
our sampling approach. The proposed initialization scheme
relies on the observation that cover trees partition the space
of points while preserving important invariants based on
its structure. They thus help in selecting initializations that
span the entirety of space occupied by the points, which is
desired to avoid local minima. The crux of the approach is to
descend to a level [ in T p such that there are no more than
m points at level [. These points from level [/ are included
in set of initial points /. We then randomly pick a point
from I such that it belongs to level [ and replace it with
its children from level [ + 1 in I. This is repeated until we
finally have m elements in . The chosen m elements are
mapped to parameter space through the inverse link function
g~ %(+) and used as initialization. All our experiments use
cover tree based initializations. We also make comparisons
against random and KMeans++ in Sec. 5.2.

5.1. Speed

To gauge the speed of Canopy, we begin with inference on
GMMs using synthetic data. Working with synthetic data is
advantageous as we can easily vary parameters like number
of clusters, data points, or dimensionality to study its effect
on the proposed method. Note that, from a computational
perspective, data being real or synthetic does not matter as
all the required computations are data independent, once the
cover tree has been constructed.

Synthetic Dataset Generation Data points are assumed
to be i.i.d. samples generated from m Gaussian probability

distributions parameterized by (u}, Xf) fori = 1,2,--- ,m,
which mix with proportions given by 7. Our experiments
operate on three free parameters: (n, m, d) where n is the
total number of points, m is the number of distributions, and
d is the dimensionality. For a fixed (n, m, d), we randomly
generate a TRAIN set of n points as follows: (1) Randomly
pick parameters (pf, ¥.F) along with mixing proportions 7,
fori = 1,2,--- ,m, uniformly random at some scale. (2)
To generate each point, select a distribution based on {7} }
and sample from the corresponding d-dimensional Gaussian
pdf. Additionally, we also generate another set of points as
TEST set using the same procedure. For all the four models
(Canopy I, Canopy II, EM, ESCA), parameters are learnt
using TRAIN and log-likelihood on the TEST set is used as
evaluation.

Observations We run all algorithms for a fixed number
of iterations and vary n, m, d individually to investigate the
respective dependence on performance of our approach as
shown in Fig. 3. We make the following observations: (1)
Overall, Fig. 3 is in line with our claim that the proposed
method reduced the per iteration complexity from O(nm)
of EM/ESCA to O(n + m). (2) To illustrate this further,
we consider n = O(m) and vary m (shown in Fig. 3c).
While EM and ESCA have per-iteration time of O(mn),
i.e., O(m?) in this case, our Canopy I and Canopy II show
O(m + n), i.e., O(m). (3) However, there is no free lunch.
The huge speed-up comes at the cost of increased memory
usage (for storing the data-structures). For example, in the
case of n = 32 mil, m = 4096, and d = 1024 (Fig. 1), a
mere 2x increase in memory gets us a speed up of 150 x.

5.2. Correctness

Next, we demonstrate correctness of Canopy using medium
sized real world datasets with labels, i.e., ground truth group-
ing of the points are known. We setup an unsupervised clas-
sification task on these datasets and perform evaluation on
both cluster purity and log-likelihood.
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Figure 4. Plots of cluster purity and loglikehood of ESCA, Canopy I, and Canopy II on benchmark real datasets -MNIST8m and
CIFAR-100. All three methods have roughly same performance on cluster purity. See Sec. 5.2 for more details.

Datasets We use two benchmark image datasets—
MNIST8m (Loosli et al., 2007) and CIFAR-100 (Krizhevsky
& Hinton, 2009). The former contains 8 million annotated
handwritten digits of size 28 x 28, giving us data points of
dimension 784. CIFAR-100, on the other hand, contains 50k
images annotated with one of 100 object categories. Each
image has 3 channels (RGB) and of size 32 x 32, resulting
in a vector of dimension 3072.

Unsupervised Classification. We run unsupervised clas-
sification on the above two datasets and evaluate using clus-
ter purity and log-likelihood. Here, cluster purity is defined
as the mean of accuracy across all clusters, where each
cluster is assigned the class of majority of its members. In
addition to using data points as is, we also experiment with
unsupervised features learnt from a denoising autoencoder
(Hinton & Salakhutdinov, 2006). We extract 30 and 256
dimensional features for MNIST8m and CIFAR-100 respec-
tively. Details of our unsupervised feature extraction are in
Appendix E. Further, we evaluate in multiple scenarios that
differ in (a) number of clusters: m = 10, 100 for MNIST8m
and m = 100, 500 for CIFAR-100, and (b) parameter ini-
tializations (Random, Kmeans++ and CTree).

Observations Fig. 4 shows our results on MNIST8m
(m = 10, 100) and CIFAR-100 (m = 100, 500), with error
bars computed over 5 runs. Here are the salient observa-
tions: (1) All the methods (SEM, Canopy I, Canopy II) have
roughly the same cluster purity with Canopy II outperform-
ing in CIFAR-100 (256 dim) and MNIST8m by around
10% and 3% respectively. In CIFAR-100, SEM does slightly
better than other methods by 2-3%. (2) Similar results are
obtained for log-likelihood except for MNIST8m, where
SEM heavily outperforms Canopy. However, note that log-
likelihood results in an unsupervised task can be misleading
(Chang et al., 2009), as evidenced here by superior perfor-
mance of Canopy in terms of cluster purity.

5.3. Scalability - A New Hope

Finally, we demonstrate the scalability of our algorithm
by clustering a crawled dataset having more than 100 mil-
lion images that belong to more than 80,000 classes. We
query Flickr! with the key words from WordNet (Fellbaum,
1998) and downloaded the returned images for each key
word, those images roughly belong to the same category.
We extracted the image features of dimension 2048 with
ResNet (He et al., 2015; 2016) — the state-of-the-art convo-
lutional neural network (CNN) on ImageNet 1000 classes
data set—using publicly available pre-trained model of 200
layers?. It takes 5 days with 20 GPUs to extract these fea-
tures for all the images. We then use Canopy II to cluster
these images with m = 64000, taking around 27 hours.

Observations For a qualitative assessment, we randomly
pick four clusters and show four images (more in Ap-
pendix F) closest to the means in Fig. 5 (each cluster in a
row). We highlight two important observations: (a) Though
the underlying visual feature extractor, ResNet, is trained
on 1000 semantic classes, our clustering is able to discover
semantic concepts that go beyond. To illustrate, images from
the first row indicate a semantic class of crowd even though
ResNet never received any supervision for such a concept.
(b) The keywords associated with these images do not nec-
essarily collate with the semantic concepts in the image. For
example, images in first row are associated with key words
‘heave’ ,‘makeshift’, ‘bloodbath’, and ‘fullfillment’, respec-
tively. It is not too surprising as the relatedness of retrieved
images for a query key word generally decreases for lower
ranked images. This suggests that pre-processing images to
obtain more meaningful semantic classes could potentially
improve the quality of labels used to learn models. Such a
cleanup would definitely prove beneficial in learning deep
image classification models from weakly supervised data.

"http://www.flickr.com/
2github.com/facebook/fb.resnet.torch
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Figure 5. Illustration of concepts captured by clustering images in the ResNet (He et al., 2015; 2016) feature space. We randomly pick
three clusters and show four closest images (one in each row), possibly denoting the semantic concepts of ‘crowd’, ‘ocean rock scenery’
and ‘horse mounted police’. Our clustering discovers new concepts beyond the Resnet supervised categories (does not include ‘crowd’).

6. Discussion

We present an efficient sampler, Canopy, for mixture models
over exponential families using cover trees that brings the
per-iteration cost down from O(mn) to O(m + n). The
use of cover trees over both data and clusters combined
with alias sampling can significantly improve sampling time
with no effect on the quality of the final clustering. We
demonstrate speed, correctness, and scalability of Canopy
on both synthetic and large real world datasets. To the best
of our knowledge, our clustering experiment on a hundred
million images is the largest to be reported. We conclude
with some related works and future extensions.

Related works There has been work using nearest-
neighbor search for guiding graphical model inference like
kd-trees (Moore, 1999; Gray & Moore, 2000). But use of
kd-trees is not scalable with respect to dimensionality of the
data points. Moreover, kd-trees could be deeper (especially
for small c) and do not have special properties like covering,
which can be exploited for speeding up sampling. We ob-
serve this empirically when training kd-tree based methods
using publicly available code®. The models fail to train for
dimensions greater than 8, or number of points greater than
few thousands. In contrast, our method handles millions of
points with thousands of dimensions.

Further approximations From our experiments, we ob-
serve that using a simplified single observation sampling in
Canopy II works well in practice. Instead of descending on

*http://www.cs.cmu.edu/-psand/

the hierarchy of clusters, we perform exact proposal com-
putation for k closest clusters obtained through fast lookup
from T. All other clusters are equally assigned the least
out of these k exact posteriors.

In the future, we plan to integrate Canopy with:

Coresets Another line of work to speed up mixture mod-
els and clustering involves finding a weighted subset of
the data, called coreset (Lucic et al., 2016; Feldman et al.,
2013). Models trained on the coreset are provably com-
petitive with those trained on the original data set. Such
approaches reduce the number of samples n, but perform
traditional inference on the coreset. Thus, our approach can
be combined with coreset for additional speedup.

Inner product acceleration In an orthogonal direction
to Canopy, several works (Ahmed et al., 2012; Mussmann
& Ermon, 2016) have used maximum inner product search
to speed up inference and vice versa (Auvolat et al., 2015).
We want to incorporate these ideas into Canopy as well,
since the inner product is evaluated m times each iteration,
it becomes the bottleneck for large m and d. A solution
to overcome this problem would be to use binary hashing
(Ahmed et al., 2012) as a good approximation and therefore
a proposal distribution with high acceptance rate.

Combining these ideas, one could build an extremely scal-
able and efficient system, which potentially could bring
down the per-iteration sampling cost from O(mnd) to

O(m + n + d) or less!
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