
Canopy — Fast Sampling with Cover Trees

A. Alias Sampler
A key component is the alias sampler of (Walker, 1977). Given an arbitrary discrete probability distribution on n outcomes, it
allows forO(1) sampling once anO(n) preprocessing step has been performed. Hence, drawing n observations a distribution
over n outcomes costs an amortized O(1) per sample. Given probabilities πi with π ∈ Pn the algorithm proceeds as follows:

• Decompose {1, . . . n} into sets L,H with i ∈ L if πi < n−1 and i ∈ H otherwise.
• For each i ∈ L pick some j ∈ H .

– Append the triple (i, j, πi) to an array A
– Set residual π′j := πj + πi − n−1

– If π′j > n−1 return π′j to H , otherwise to L.

Preprocessing takes O(n) computation and memory since we remove one element at a time from L.

• To sample from the array pick u ∼ U(0, 1) uniformly at random.
• Choose the tuple (i, j, πi) at position bunc.
• If u− n−1bunc < πi return i, else return j.

This step costs O(1) operations and it follows by construction that i is returned with probability πi. Now we need a data
structure that will allow us to sample many objects in bulk without the need to inspect each item individually. Cover trees
satisfy this requirement.

B. Rejection Sampling
B.1. Flat Clusters

The proof for the proposed rejection sampler in case of sampling a cluster for a single observation x is as follows. If we
approximate p(x|θz) by some qz such that

e−εp(x|θz) ≤ qz ≤ eεp(x|θz) (13)

then it follows that a sampler drawing z from

z ∼ qzp(z)∑
z′ qz′p(z

′)
(14)

and then accepting with probability e−εq−1
z p(x|θz) will draw from p(z|x). To prove this, we begin by computing the

probability of this sampler r(z) to return a particular value z. The sampler returns z when it (a) samples and accepts z, or (b)
samples any value, rejects it to proceed to next iteration of sampling. Using γ =

∑
z′ qz′p(z

′) and γT =
∑
z′ p(x|θz′)p(z′)

to denote normalization for proposal and true posterior respectively, we have:

r(z) =
qzp(z)

γ
e−εq−1

z p(x|θz) +
∑
z′

(1− e−εq−1
z′ p(x|θz′))

qz′p(z
′)

γ
r(z)

=
e−ε

γ
p(z)p(x|θz) +

r(z)

γ

∑
z′

qz′p(z
′)− r(z)e

−ε

γ

∑
z′

p(x|θz′)p(z′)

=
e−ε

γ
p(z)p(x|θz) + r(z)− r(z)e

−ε

γ
γT

r(z) =
p(z)p(x|θz)

γT

(15)

Hence the procedure will draw from the true posterior p(z|x).

B.2. Clusters Arranged in Cover Tree

We now extend the above proof strategy when the clusters are arranged in a cover tree, thereby proving the correctness of
our rejection sampler in Sec. 3.2.2.

Canopy — Fast Sampling with Cover Trees

Similar to previous case, we approximate p(x|θz) for z in level i by some qz such that

e−εip(x|θz) ≤ qz ≤ eεip(x|θz). (16)

Note that approximation error εi now depends on the location of the cluster in the cover tree. To be specific, if the cluster z
is located at level i, then εi = 2i‖φ̄(x)‖. Also, we assume the path to reach the node z starting from its (grand) parent at
level ı̂ is given by T = [T (̂ı), T (̂ı− 1), ..., T (i)], with T (i) = z.

To prove the correctness of our rejection sampler in Sec. 3.2.1, we simply show that probability of this sampler to return a
particular value z is equal to the true posterior. The sampler returns z when it (a) reaches the corresponding node in the
cover tree and accepts it, or (b) rejects or exits to proceed to next iteration of sampling. So, the probability of this sampler to
return z is given by:

r(z) = A(z)︸ ︷︷ ︸
Probability of the

sampler accepting z

+ r(z) E︸︷︷︸
Probability of the

sampler rejecting or exiting

(17)

We calculate these individual terms beginning with the probability of sampler accepting z. Using γ as defined in (10) and
γT =

∑
z′ p(x|θz′)p(z′), we have:

A(z) =
eεı̂β(̂ı, T (̂ı))p(x|θT (ı̂))

γ︸ ︷︷ ︸
Selecting the first parent (Step 4)


ı̂∏

i′=i+1︸ ︷︷ ︸
The loop
(Step 5)

(
1−

p(T (i′))p(x|θT (i′))

eεi′β(i′, T (i′))p(x|θT (i′))

)
︸ ︷︷ ︸

Rejecting the nodes (Step 5iii)

eεi′−1β(i′ − 1, T (i′ − 1))p(x|θT (i′−1))

eεi′β(i′, T (i′))p(x|θT (i′))− p(T (i′))p(x|θT (i′))︸ ︷︷ ︸
Selecting the next node (Step 5ii)


× p(z)p(x|θz)
eεiβ(i, T (i))p(x|θT (i))︸ ︷︷ ︸

Accepting node z

=
eεı̂β(̂ı, T (̂ı))p(x|θT (ı̂))

γ

[
ı̂∏

i′=i+1

eεi′−1β(i′ − 1, T (i′ − 1))p(x|θT (i′−1))

eεi′β(i′, T (i′))p(x|θT (i′))

]
p(z)p(x|θz)

eεiβ(i, T (i))p(x|θT (i))

=
eεı̂β(̂ı, T (̂ı))p(x|θT (ı̂))

γ

[
eεiβ(i, T (i))p(x|θT (i))

eεı̂β(̂ı, T (̂ı))p(x|θT (ı̂))

]
p(z)p(x|θz)

eεiβ(i, T (i))p(x|θT (i))

=
p(z)p(x|θz)

γ
(by telescoping)

(18)

Next, the probability of rejecting or exiting from the sampler is one minus probability of accepting any node z, i.e.

E = 1−
∑
z′∈Z

A(z′)

= 1−
∑
z′∈Z

p(z′)p(x|θz′)
γ

= 1− γT
γ

(19)

Plugging back the acceptance and exit probabilities into (17):

r(z) = A(z) + r(z)E

=
p(z)p(x|θz)

γ
+ r(z)

(
1− γT

γ

)
=
p(z)p(x|θz)

γ
+ r(z)− r(z)γT

γ

r(z) =
p(z)p(x|θz)

γT

(20)

Canopy — Fast Sampling with Cover Trees

(a) Expansion rate (b) Separation property (c) Covering property

Figure 6. Illustration of various properties of covering tree.

Hence the procedure will draw from the true posterior p(z|x).

The above describes a rejection sampler that keeps on upper-bounding the probability of accepting a particular parameter or
any of its children. It is as aggressive as possible at retaining tight lower bounds on the acceptance probability such that
not too much effort is wasted in traversing the cover tree to he bottom. In other words, we attempt to reject as quickly as
possible. Some computational considerations are in order:

1. The computationally most expensive part is to compute the inner products
〈
φ̃(x), θ̃z

〉
.

2. As soon as we compute this value for a particular θ̃z we cache it at the corresponding vertex of the cover tree.
3. To avoid expensive bookkeeping we attach to each vertex two variables: the value of the last compute inner product

and the observation ID of x that it is associated with. +

C. Cover Trees
Cover Trees (Beygelzimer et al., 2006) and their improved version (Izbicki & Shelton, 2015) form a hierarchical data
structure that allows fast retrieval in logarithmic time. The key properties for the purpose of this paper are that it allows for
O(n log n) construction time, O(log n) retrieval, and that it only depends polynomially on the expansion rate (Karger &
Ruhl, 2002) of the underlying space, which we refer to as c. Moreover, the degree of all internal nodes is well controlled,
thus giving guarantees for retrieval (as exploited in (Beygelzimer et al., 2006)), and for sampling (as we will be using in this
paper).

The expansion rate of a set, due to (Karger & Ruhl, 2002) captures several key properties.

Definition 2 (Expansion Rate) Denote by Bρ(r) a ball of radius of r centered at ρ. Then a set S has a (l, c) expansion
rate iff all r > 0 and ρ ∈ S satisfy

|Bρ(r) ∩ S| ≥ l =⇒ |Bρ(2r) ∩ S| ≤ c |Bρ(r) ∩ S| . (21)

In the following we set l = O(log |S|), thus referring to c simply as the expansion rate of S.

Cover trees are defined as an infinite succession of levels Si with i ∈ Z. Each level i contains (a nested subset of) the data
with the following properties:

• Nesting property: Si ⊆ Si−1.
• Separation property: All x, x′ ∈ Si satisfy ‖x− x′‖ ≥ 2i.
• All x ∈ Si−1 have a parent in x′ ∈ Si, possibly with x = x′, with ‖x− x′‖ ≤ 2i.
• As a consequence, the subtree for any x ∈ Si has distance at most 2i+1 from x.

Clearly we need to reperesent each x only once, namely in terms of Si with the largest i for which x ∈ Si holds. This data
structure has a number of highly desirable properties, as proved in (Beygelzimer et al., 2006). We list the most relevant ones
below:

• The depth of the tree in terms of its explicit representation is at most O(c2 log n).

Canopy — Fast Sampling with Cover Trees

• The maximum degree of any node is O(c4).

• Insertion & removal take at most O(c6 log n) time.

• Retrieval of the nearest neighbor takes at most O(c12 log n) time.

• The time to construct the tree is O(c6n log n).

The fast lookup of cover tree is built upon the implicit assumption in terms of the distinguishability of parameters θz , which
we also borrow in Canopy. This is related to the issue that if we had many choices of θz that, a-priori, all looked quite
relevant yet distinct, we would have no efficient means of evaluating them short of testing all by brute force. Note that this
could be achieved, e.g. by using the fast hash approximation of a sampler in (Ahmed et al., 2012). This is complementary to
the present paper.

D. Theoretical Analysis
Some more conclusions we can make about the algorithm Canopy I:

Remark 3 (Rejection Sampler) The same reasoning yields a rejection sampler since

p(z|x̄)

p(z|x)
≥ e−‖φ(x)−φ(x̄)‖‖θz‖ ≥ e−2̄+1L. (22)

Here we may bound each term (and the normalization) in computing p(z|x) appropriately.

Remark 4 The efficiency of the sampler increases as the sample size m increases. In particular, an increase of m by O(c4)
is guaranteed to decrease ̄ by 1, thus increasing the acceptance probability π from π to

√
π. This follows from the fact that

each node in the cover tree has at most O(c4) children.

Remark 5 There is no need to build a cover tree to a level beyond ̄ since we do not exploit the improvement. This could be
used to remove the logarithmic dependence O(n log n) in constructing the cover tree and reduce it to O(n̄).

E. Feature Extraction
E.1. Denoising Autoencoder for MNIST

The autoencoder consists of an encoder with fully connected layers of size (28x28)-1000-500-250-30 and a symmetric
decoder. The thirty units in the code layer were linear and all the other units were logistic. The network was trained on the 8
million images using mean square error loss.

E.2. Denoising Autoencoder for CIFAR100

The autoencoder consists of an encoder with convolutional layers of size (3x32x32)-(64, 5, 5)-(32, 5, 5)-(16, 4, 4) and having
a 2x2 max pooling after each convolutional layer. The decoder is symmetric with max pooling replaced by upsampling. The
256 units in the code layer were linear and all the other internal units were RelU while the final layer was sigmoid. The
network was trained on the 50 thousand images using mean square error loss.

E.3. ResNet for ImageNet

We use the state of the art deep convolutional neural network (DCNN), based on the ResNet (”Residual Network”)
architecture (He et al., 2015; 2016). ResNet consists of small building blocks of layers which learn the residual functions
with reference to the input. It is demonstrated that ResNet is able to train networks that are substantially deeper without the
problem of noisy backpropagation gradient. For feature extraction We use a 200 layer ResNet that is trained on a task of
classification on ImageNet. In the process, the network learned which high-level visual features (and combinations of those
features) are important. After training the model, we remove the final classification layer of the network and extract from the
next-to-last layer of the DCNN, as the representation of the input image which is of dimension 2048.

Canopy — Fast Sampling with Cover Trees

F. Further Experimental Results

MNIST8m - Direct
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH Purity LLH Purity LLH Purity LLH Purity

10

EM 39.588 ± 1.801 3.04 ×107 32.39% 3.05 ×107 30.76% 3.04 ×107 30.81% 3.05 ×107 30.50%
SEM 7.124 ± 0.241 3.04 ×107 32.33% 3.03 ×107 30.65% 3.04 ×107 30.61% 3.04 ×107 31.69%
Canopy I 7.453 ± 0.255 1.49 ×107 42.12% 1.49 ×107 40.51% 1.49 ×107 40.41% 1.50 ×107 42.84%
Canopy II 7.534 ± 0.320 1.49 ×107 42.85% 1.49 ×107 40.69% 1.49 ×107 40.95% 1.50 ×107 42.59%

100

EM 512.185 ± 13.295 3.27 ×107 53.20% 3.26 ×107 53.24% 3.28 ×107 52.45% 3.32 ×107 53.10%
SEM 10.085 ± 0.162 3.34 ×107 53.19% 3.34 ×107 53.21% 3.34 ×107 52.42% 3.33 ×107 53.52%
Canopy I 6.882 ± 0.174 2.02 ×107 53.39% 2.04 ×107 53.53% 2.01 ×107 53.88% 2.02 ×107 52.69%
Canopy II 6.483 ± 0.298 1.91 ×107 60.19% 1.90 ×107 61.09% 1.90 ×107 60.61% 1.90 ×107 60.29%

MNIST8m - Embedding
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH (×107) Purity LLH (×107) Purity LLH (×107) Purity LLH (×107) Purity

10

EM 6.595 ± 0.230 -4.35 ×105 58.43% -4.36 ×105 63.14% -4.35 ×105 63.19% -4.34 ×105 63.22%
SEM 0.943 ± 0.037 -4.35 ×105 58.43% -4.35 ×105 62.05% -4.36 ×105 61.44% -4.35 ×105 60.58%
Canopy I 0.932 ± 0.027 -4.35 ×105 58.78% -4.36 ×105 61.61% -4.35 ×105 64.46% -4.35 ×105 58.78%
Canopy II 1.008 ± 0.053 -4.35 ×105 58.78% -4.35 ×105 62.30% -4.36 ×105 61.69% -4.35 ×105 58.78%

100

EM 56.640 ± 1.060 -3.93 ×105 83.95% -3.94 ×105 82.33% -3.94 ×105 83.44% -3.94 ×105 82.77%
SEM 4.006 ± 0.050 -3.93 ×105 83.99% -3.93 ×105 83.37% -3.94 ×105 83.05% -3.95 ×105 83.44%
Canopy I 1.220 ± 0.025 -3.96 ×105 83.44% -3.96 ×105 83.20% -3.97 ×105 83.48% -3.96 ×105 83.22%
Canopy II 1.015 ± 0.029 -3.97 ×105 82.77% -3.97 ×105 83.21% -3.97 ×105 82.66% -3.97 ×105 82.66%

CIFAR100 - Direct
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH Purity LLH Purity LLH Purity LLH Purity

100

EM 78.019 ± 10.702 2.86 ×106 14.27% 3.03 ×106 13.31% 3.09 ×106 13.84% 3.09 ×106 14.19%
SEM 1.055 ± 0.095 2.93 ×106 14.08% 2.93 ×106 14.12% 2.86 ×106 14.75% 3.00 ×106 14.90%
Canopy I 1.027 ± 0.095 3.20 ×106 12.98% 3.36 ×106 12.43% 3.21 ×106 13.55% 3.25 ×106 12.91%
Canopy II 1.190 ± 0.099 2.99 ×106 12.87% 3.08 ×106 13.23% 3.28 ×106 13.72% 3.08 ×106 12.87%

500

EM 407.764 ± 18.160 3.37 ×106 25.19% 3.31 ×106 24.70% 3.27 ×106 26.03% 3.31 ×106 25.59%
SEM 6.486 ± 0.613 3.39 ×106 25.14% 3.30 ×106 24.33% 3.36 ×106 26.16% 3.22 ×106 25.39%
Canopy I 2.745 ± 0.225 3.38 ×106 22.35% 3.50 ×106 22.14% 3.45 ×106 24.03% 3.44 ×106 22.31%
Canopy II 1.908 ± 0.152 3.17 ×106 22.68% 3.18 ×106 22.83% 3.19 ×106 24.91% 3.19 ×106 22.71%

CIFAR100 - Embedding
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH Purity LLH Purity LLH Purity LLH Purity

100

EM 12.589 ± 0.255 5.45 ×105 12.38% 5.50 ×105 12.14% 5.50 ×105 12.25% 5.46 ×105 12.59%
SEM 0.491 ± 0.022 5.46 ×105 12.21% 5.53 ×105 11.57% 5.45 ×105 12.72% 5.47 ×105 12.68%
Canopy I 0.315 ± 0.014 5.01 ×105 12.34% 5.04 ×105 11.96% 4.99 ×105 13.16% 5.06 ×105 12.30%
Canopy II 0.313 ± 0.124 5.00 ×105 12.50% 5.02 ×105 11.97% 4.99 ×105 13.01% 5.02 ×105 12.29%

500

EM 62.520 ± 1.135 6.94 ×105 19.17% 6.96 ×105 18.93% 6.86 ×105 21.13% 6.86 ×105 21.05%
SEM 2.276 ± 0.112 6.92 ×105 18.97% 6.93 ×105 18.64% 6.85 ×105 21.16% 6.85 ×105 21.20%
Canopy I 0.963 ± 0.061 6.25 ×105 20.07% 6.21 ×105 19.19% 6.14 ×105 21.57% 6.24 ×105 20.04%
Canopy II 0.333 ± 0.101 6.20 ×105 22.26% 6.16 ×105 21.61% 6.12 ×105 23.18% 6.18 ×105 22.25%

Table 1. Comparison of ESCA, Canopy I and Canopy II on cluster purity and loglikelihood on real, benchmark datasets–MNIST8m and
CIFAR-100. Additionally, standard deviations are shown for 5 runs.

F.1. Image Clustering

We sample images from varied sized clusters, as described below, to study the semantic concept they usually represent: (a)
> 10k members: As our dataset is extracted from Flickr, a photo sharing platform, it is heavily biased towards everyday
objects like humans, flowers, birds, etc. We found several consistent clusters containing people (sitting, standing, crowd). (b)
> 5 but < 10k members: These contains less common semantic groups like swings, transmission lines, etc, out of which
some are absent as explicit concepts in underlying Resnet model. (c) < 5 members: We found around 15% small sized
clusters which are typically outliers containing less than 5 images. Fig. 7 contains more examples.

Canopy — Fast Sampling with Cover Trees

Figure 7. Illustration of concepts captured by clustering images in the feature space extracted by ResNet (He et al., 2015; 2016). Figure
shows four closest images of seven more randomly selected clusters (one in each row) possibly denoting the semantic concepts of ‘electrical
transmission lines’, ‘image with text’, ‘lego toys’, ‘lightening’, ‘Aurora’, ‘buggy’ and ‘eyes’. Few of the concepts are discovered by
clustering as Resnet received supervision only for 1000 categories (for example does not include label ‘lightening’, ‘thunder’, or ‘storm’).
Full set of 1000 imagenet label can be seen at http://image-net.org/challenges/LSVRC/2014/browse-synsets.

http://image-net.org/challenges/LSVRC/2014/browse-synsets

Canopy — Fast Sampling with Cover Trees

G. Graphical Explanation
We now present insights about our approach graphically.

Motivation

 Latent variable models (LVM), such as Mixture Models,
Latent Dirichlet Allocation, are popular tools in statistical
data analysis.

 They are used in diverse fields ranging from text, images,
to user modelling and content recommendations.

 Inference is often slow

2/37

-20000

-17500

-15000

-12500

-10000

3.20E+01

1.28E+02

5.12E+02

2.05E+03

8.19E+03

EM ESCA Canopy I Canopy II
Lo

g-
lik

e
lih

o
o

d

Ti
m

e
(s

/i
te

r)

Inference Strategy

 Inference using Gibbs sampling, stochastic EM, or
stochastic variational methods requires drawing from

3/37

 z

LocalGlobal

Inference Strategy

 Inference using Gibbs sampling, stochastic EM, or
stochastic variational methods requires drawing from

 Assume exponential family, i.e.

4/37

 z

LocalGlobal

Insights

 For example assume we have following data:

5/37

Insights

 For example assume we have following data:

 Two key observations

 Points close by will have similar posteriors

 No need to consider clusters far away

6/37

Insights

 For example assume we have following data:

 Two key observations

 Points close by will have similar posteriors

 No need to consider clusters far away

 Two tools to exploit the observations
 Cover trees

 Metropolis Hasting sampling

7/37

Canopy — Fast Sampling with Cover Trees

Cover Tree

 Cover tree is a hierarchical data structure

8/37

Cover Tree

 Cover tree is a hierarchical data structure

 Covering property:

9/37

Cover Tree

 Cover tree is a hierarchical data structure

 Covering property:

 Separating property:

10/37

Computational Cost of Cover Trees

 Does not depend on the dimension of the data

 c: Expansion rate of data or Hausdorff dimension
(special case of fractal dimension)

11/37

Insights

 For example assume we have following data:

 Two key observations

 Points close by will have similar posteriors

 No need to consider clusters far away

 Two tools to exploit the observations
 Cover trees

 Metropolis Hasting sampling

12/37

Metropolis Hasting Sampling
13/37

 Enables us to construct sound sampler that incorporates
our intuitions

Accept/
Reject

Sample
from p

Acceptance
probability

An easy to draw
distribution

Only need to
look at a few
probabilities!

Canopy — Fast Sampling with Cover Trees

How to Design a Good Proposal?

 For example assume we have following data:

14/37

How to Design a Good Proposal?

 For example assume we have following data:

 Suppose for each point x we can find surrogates

15/37

How to Design a Good Proposal?

 For example assume we have following data:

 Suppose for each point x we can find surrogates

 Then becomes a good proposal for

 Compute alias table and re-use for many points

 Cost for sampling from proposal given alias table is O(1)

16/37

Outline

 Background
 Latent Variable Models

 Cover tree

 Metropolis Hastings

 Canopy: Proposed Method

 Moderate number of clusters

 Large number of clusters

 Experimental Results
 Synthetic data

 Images

17/37

Canopy I – Method 1

 Build a cover tree on data points – Cost

18/37

1

2

3 4 5

6

7 8 9

Cover Tree:Data:

Canopy I – Method 2

 Build a cover tree on data points – Cost

 Pick an accuracy level having elements

19/37

Cover Tree:

1

2

3 4 5

6

7 8 9

Data:

Canopy — Fast Sampling with Cover Trees

Canopy I – Method 3

 Build a cover tree on data points – Cost

 Pick an accuracy level having elements

20/37

Cover Tree:

1

2

3 4 5

6

7 8 9

Data:

Canopy I – Method 4

 Build a cover tree on data points – Cost

 Pick an accuracy level having elements

21/37

Cover Tree:

1

2

3 4 5

6

7 8 9

Data:

Surrogates:

Canopy I – Method 5

 Build a cover tree on data points – Cost

 Pick an accuracy level having elements

 Build alias tables for – Cost

22/37

Cover Tree:

1

2

3 4 5

6

7 8 9

Data:

Surrogates:

Canopy I – Method 6

 For each observation x perform Metropolis-Hastings

23/37

Data:

Surrogates:

Sample from

Canopy I – Method 7

 For each observation x perform Metropolis-Hastings

24/37

Data:

Surrogates:

Sample from

Propose in O(1)

Canopy I – Method 8

 For each observation x perform Metropolis-Hastings

25/37

Data:

Surrogates:

Sample from

Propose in O(1)

Accept/Reject

Canopy — Fast Sampling with Cover Trees

Canopy I – Method 9

 For each observation x perform Metropolis-Hastings

26/37

Data:

Surrogates:

Sample from

Propose in O(1)

Accept/Reject

Canopy I – Method 10

 For each observation x perform Metropolis-Hastings
 For exponential families:

27/37

Data:

Surrogates:

Sample from

Propose in O(1)

Accept/Reject

Large Number of Clusters

 Using first insight, cost reduced

 When moderate number of clusters, e.g.

 Choose

 Then alias table will be used at least K times – full amortization!

 Total cost

 When there many clusters, e.g.
 Either high overhead of memory and computation,

 Or granularity in x that is less precise than desired

 Use second insight: not all clusters are relevant

 Apply cover trees not only to observations but also to the
clusters themselves!

28/37

Canopy II – Method 1

 Build a cover tree on cluster parameters – Cost

 Pick an accuracy level

29/5

Cover Tree:Cluster Parameters:

1

2

4 5

3

6 7

8 9 A B C D E F

Canopy II – Method 2
30/5

1

2

4 5

3

6 7

8 9 A B C D E F

 The nodes at the selected
accuracy level act as coarse
approximation to the posterior

 (Sec 3.2.2 of paper)

Canopy II – Method 3
31/5

1

2

4 5

3

6 7

8 9 A B C D E F

 The nodes at the selected
accuracy level act as coarse
approximation to the posterior

 Treat this as a proposal for a
rejection sampler

 (Sec 3.2.2 of paper)

Canopy — Fast Sampling with Cover Trees

Canopy II – Method 4
32/5

1

2

4 5

3

6 7

8 9 A B C D E F

 The nodes at the selected
accuracy level act as coarse
approximation to the posterior

 Treat this as a proposal for a
rejection sampler

 Sample from the proposal

 (Sec 3.2.2 of paper)

Canopy II – Method 5
33/5

 If the proposed sample is
accepted, exit

 Else descend down the tree,
and obtain a finer proposal
around the region of interest

 (Sec 3.2.2 of paper)

1

2

4 5

3

6 7

8 9 A B C D E F

Canopy II – Method 6
34/5

1

2

4 5

3

6 7

8 9 A B C D E F

 If the proposed sample is
accepted, exit

 Else descend down the tree,
and obtain a finer proposal
around the region of interest

 (Sec 3.2.2 of paper)

Canopy II – Method 7
35/5

1

2

4 5

3

6 7

8 9 A B C D E F

∞

 Sampler is as aggressive as
possible in rejecting early on
such that not much effort is
wasted in traversing the tree

 The deeper we descend into the
tree, the less likely we reject

 In worst case the cost is

Canopy II – Full Picture

 Using both the trees allows to
deal with an aggregate of
clusters and data

 This leads to a much smaller
observation group

 Employ a MH
scheme as before

 We propose from a
distribution where
both observations
and clusters are
grouped

36/5

1

2

3
4

5

6

7
8

9

1

2

3 5

6

7 9

Clusters

Data

Canopy II – Descending both Trees

 Recursively descend in both the trees while sampling
 Until number of observations for a given cluster is too small

 Then use the rejection sampler as describer earlier

 Finally perform a MH accept/reject step
 Acceptance probabilities are as high as in previous case

 This reduces total cost

37/5

