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Abstract

Many machine learning models are reformulated
as optimization problems. Thus, it is important
to solve a large-scale optimization problem in
big data applications. Recently, stochastic sec-
ond order methods have emerged to attract much
attention for optimization due to their efficiency
at each iteration, rectified a weakness in the ordi-
nary Newton method of suffering a high cost in
each iteration while commanding a high conver-
gence rate. However, the convergence properties
of these methods are still not well understood.
There are also several important gaps between
the current convergence theory and the perfor-
mance in real applications. In this paper, we aim
to fill these gaps. We propose a unifying frame-
work to analyze local convergence properties of
second order methods. Based on this framework,
our theoretical analysis matches the performance
in real applications.

1. Introduction

Mathematical optimization is an importance pillar of ma-
chine learning. We consider the following optimization
problem

min F(z) £ %Zfz(m), (1
i=1

where the f;(z) are smooth functions. Many machine
learning models can be expressed as (1) where each f;
is the loss with respect to (w.r.t.) the i-th training sam-
ple. There are many examples such as logistic regressions,
smoothed support vector machines, neural networks, and
graphical models.

Many optimization algorithms to solve the problem in (1)
are based on the following iteration:

gt = 2 ntth(x(t))v t=0,1,2,...,
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where 7, > 0 is the step length. If Q) is the identity matrix
and g(z(®)) = VF(2"), the resulting procedure is called
Gradient Descent (GD) which achieves sublinear conver-
gence for a general smooth convex objective function and
linear convergence for a smooth-strongly convex objective
function. When n is large, the full gradient method is inef-
ficient due to its iteration cost scaling linearly in n. Conse-
quently, stochastic gradient descent (SGD) has been a typ-
ical alternative (Robbins & Monro, 1951; Li et al., 2014,
Cotter et al., 2011). In order to achieve cheaper cost in each
iteration, such a method constructs an approximate gradient
on a small mini-batch of data. However, the convergence
rate can be significantly slower than that of the full gradi-
ent methods (Nemirovski et al., 2009). Thus, a great deal
of efforts have been made to devise modification to achieve
the convergence rate of the full gradient while keeping low
iteration cost (Johnson & Zhang, 2013; Roux et al., 2012;
Schmidt et al., 2013; Zhang et al., 2013).

If Q¢ is a d x d positive definite matrix containing the curva-
ture information, this formulation leads us to second-order
methods. It is well known that second order methods en-
joy superior convergence rate in both theory and practice
in contrast to first-order methods which only make use of
the gradient information. The standard Newton method,
where Q; = [V2F(z®)]', g(z®) = VF(z®) and
1 = 1, achieves a quadratic convergence rate for smooth-
strongly convex objective functions. However, the New-
ton method takes O(nd® + d®) cost per iteration, so it
becomes extremely expensive when n or d is very large.
As a result, one tries to construct an approximation of the
Hessian in which way the update is computationally fea-
sible, and while keeping sufficient second order informa-
tion. One class of such methods are quasi-Newton meth-
ods, which are generalizations of the secant methods to find
the root of the first derivative for multidimensional prob-
lems. The celebrated Broyden-Fletcher-Goldfarb-Shanno
(BFGS) and its limited memory version (L-BFGS) are the
most popular and widely used (Nocedal & Wright, 2006).
They take O(nd + d?) cost per iteration.

Recently, when n > d, so-called subsampled Newton
methods have been proposed, which define an approximate
Hessian matrix with a small subset of samples. The most
naive approach is to sample a subset of functions f; ran-
domly (Roosta-Khorasani & Mahoney, 2016; Byrd et al.,
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2011; Xu et al., 2016) to construct a subsampled Hessian.
Erdogdu & Montanari (2015) proposed a regularized sub-
sampled Newton method called NewSamp. When the Hes-
sian can be written as V2F(z) = [B(z)]” B(x) where
B(x) is an available n x d matrix, Pilanci & Wainwright
(2015) used sketching techniques to approximate the Hes-
sian and proposed a skefch Newton method. Similarly,
Xu et al. (2016) proposed to sample rows of B(x) with
non-uniform probability distribution. Agarwal et al. (2016)
brought up an algorithm called LiSSA to approximate the
inversion of Hessian directly.

Although the convergence performance of stochastic sec-
ond order methods has been analyzed, the convergence
properties are still not well understood. There are several
important gaps lying between the convergence theory and
real application.

The first gap is the necessity of Lipschitz continuity of
Hessian. In previous work, to achieve a linear-quadratic
convergence rate, stochastic second order methods all as-
sume that V2F(x) is Lipschitz continuous. However, in
real applications without this assumption, they might also
converge to the optimal point. For example, Erdogdu
& Montanari (2015) used NewSamp to successfully train
smoothed-SVM in which the Hessian is not Lipschitz con-
tinuous.

The second gap is about the sketched size of sketch New-
ton methods. To obtain a linear convergence, the sketched
size is O(dr?) in (Pilanci & Wainwright, 2015) and then
is improved to O(dk) in (Xu et al., 2016) using Gaussian
sketching matrices, where « is the condition number of the
Hessian matrix in question. However, the sketch Newton
empirically performs well even when the Hessian matrix is
ill-conditioned. Sketched size being several tens of times
or even several times of d can achieve a linear convergence
rate in unconstrained optimization. But the theoretical re-
sult of Pilanci & Wainwright (2015); Xu et al. (2016) im-
plies that sketched size may be beyond 7 in ill-condition
cases.

The third gap is about the sample size in regularized sub-
sampled Newton methods. In both (Erdogdu & Montanari,
2015) and (Roosta-Khorasani & Mahoney, 2016), their the-
oretical analysis shows that the sample size of regularized
subsampled Newton methods should be set as the same as
the conventional subsampled Newton method. In practice,
however, adding a large regularizer can obviously reduce
the sample size while keeping convergence. Thus, this con-
tradicts the extant theoretical analysis (Erdogdu & Monta-
nari, 2015; Roosta-Khorasani & Mahoney, 2016).

In this paper, we aim to fill these gaps between the cur-
rent theory and empirical performance. More specifically,
we first cast these second order methods into an algorith-

mic framework that we call approximate Newton. Then we
propose a general result for analysis of local convergence
properties of second order methods. Based on this frame-
work, we give detailed theoretical analysis which matches
the empirical performance very well. We summarize our
contribution as follows:

e We propose a unifying framework (Theorem 3) to an-
alyze local convergence properties of second order
methods including stochastic and deterministic ver-
sions. The convergence performance of second order
methods can be analyzed easily and systematically in
this framework.

e We prove that the Lipschitz continuity condition of
Hessian is not necessary for achieving linear and su-
perlinear convergence in variants of subsampled New-
ton. But it is needed to obtain quadratic conver-
gence. This explains the phenomenon that NewSamp
(Erdogdu & Montanari, 2015) can be used to train
smoothed SVM in which the Lipschitz continuity con-
dition of Hessian is not satisfied. It also reveals the
reason why previous stochastic second order methods,
such as subsampled Newton, sketch Newton, LiSSA,
etc., all achieve a linear-quadratic convergence rate.

e We prove that the sketched size is independent of the
condition number of the Hessian matrix which ex-
plains that sketched Newton performs well even when
the Hessian matrix is ill-conditioned.

e We provide a theoretical guarantee that adding a regu-
larizer is an effective way to reduce the sample size in
subsampled Newton methods while keeping converg-
ing. Our theoretical analysis also shows that adding a
regularizer will lead to poor convergence behavior as
the sample size decreases.

1.1. Organization

The remainder of the paper is organized as follows. In
Section 2 we present notation and preliminaries. In Sec-
tion 3 we present a unifying framework for local conver-
gence analysis of second order methods. In Section 4 we
analyze the local convergence properties of sketch New-
ton methods and prove that sketched size is independent of
condition number of the Hessian. In Section 5 we give the
local convergence behaviors of several variants of subsam-
pled Newton method. Especially, we reveal the relationship
among the sample size, regularizer and convergence rate.
In Section 6, we derive the local convergence properties
of inexact Newton methods from our framework. In Sec-
tion 7, we validate our theoretical results experimentally.
Finally, we conclude our work in Section 8. All the proofs
are presented in the supplementary metarials.
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2. Notation and Preliminaries

In this section, we introduce the notation and preliminaries
that will be used in this paper.

2.1. Notation

Given a matrix A = [a;;] € R™™ of rank ¢ and a
positive integer £ < /¢, its condensed SVD is given as
A=UxVT = UkEkaT—l—U\kE\kV\TI;, where Uy, and Uy,
contain the left singular vectors of A, V}, and Vi, contain
the right singular vectors of A, and 2 = diag(oy, ..., 0y)
with o9y > 09 > -+ > o4 > 0 are the nonzero singular
values of A. We use opax(A) to denote the largest sin-
gular value and o, (A) to denote the smallest non-zero
singular value. Thus, the condition number of A is defined

by k(A) £ %. If A is positive semidefinite, then

U =V and the square root of A can be defined as A'/? =
UXY2UT . 1t also holds that \;(A) = o;(A), where \;(A)
is the i-th largest eigenvalue of A, Apax(A) = omax(4),
and )\min (A) = Umin(A)-

Additionally, ||A| £ o is the spectral norm. Given a pos-
itive definite matrix M, ||x||a; £ ||[M"/2z| is called the
M -norm of z. Give square matrices A and B with the same
size, we denote A < B if B — A is positive semidefinite.

2.2. Randomized sketching matrices

We first give an e-subspace embedding property which will
be used to sketch Hessian matrices. Then we list two most
popular types of randomized sketching matrices.

Definition 1 S € R**™ is said to be an e-subspace em-
bedding matrix w.rt. a fixed matrix A € R™*?% where
d <m, if|SAz||? = (1 £ )| Az|? Gie., (1 — €)]|Az||®> <
|SAz||? < (1 + €)||Az||?) for all z € RY.

From the definition of the e-subspace embedding matrix,
we can derive the following property directly.

Lemma 2 S € R**"™ is an e-subspace embedding matrix
w.r.t. the matrix A € R™*? if and only if

(1-e)ATA < ATSTSA < (1 +e)ATA.

Leverage score sketching matrix. A leverage score
sketching matrix S = DQ € R**™ w.rt. A € R™*4 is de-
fined by sampling probabilities p;, a sampling matrix 2 €
R™># and a diagonal rescaling matrix D € R**®. Specif-
ically, we construct S as follows. Forevery j = 1,...,s,
independently and with replacement, pick an index ¢ from
the set {1,2...,m} with probability p;, and set Q;; = 1
and Q = 0 for k # i as well as D;; = 1/,/p;s. The sam-
pling probabilities p; are the leverage scores of A defined
as follows. Let V' € R™*? be the column orthonormal

basis of A, and let v; , denote the i-th row of V. Then
0; = ||lvi«||?/d fori = 1,...,m are the leverage scores of

A. To achieve an e-subspace embedding property w.r.t. A,
s = O(dlog d/e?) is sufficient.

Sparse embedding matrix. A sparse embedding matrix
S € R%*™ is such a matrix in each column of which there
is only one nonzero entry uniformly sampled from {1, —1}
(Clarkson & Woodruff, 2013). Hence, it is very efficient
to compute S A, especially when A is sparse. To achieve
an e-subspace embedding property w.r.t. A € R™*4, 5 =
O(d?/€?) is sufficient (Meng & Mahoney, 2013; Woodruft,
2014).

Other sketching matrices such as Gaussian Random Projec-
tion and Subsampled Randomized Hadamard Transforma-
tion as well as their properties can be found in the survey
(Woodruff, 2014).

2.3. Assumptions and Notions

In this paper, we focus on the problem described in
Eqgn. (1). Moreover, we will make the following two as-
sumptions.

Assumption 1 The objective function F' is p-strongly
convex, that is,

F(y) > F(@)+[VF(@)] (y=2)+ 5 ly—a|, for 1> 0.

Assumption 2V F(z) is L-Lipschitz continuous, that is,
IVF(z) ~ VE@)| < Llly — ], for L > 0.
Assumptions 1 and 2 imply that for any 2 € R?, we have
pl < V2F(x) < LI,
where I is the identity matrix of appropriate size. With a

little confusion, we define k = ;% In fact, x is an upper

bound of condition number of the Hessian matrix V2F(x)
for any x.

Besides, if V2F(CU) is Lipschitz continuous, then we have
IV2F(2) = V2F(y)| < Lljz -y,
where L > 0 is the Lipschitz constant of V2F(z).

Throughout this paper, we use notions of linear conver-
gence rate, superlinear convergence rate and quadratic con-
vergence rate. In our paper, the convergence rates we will
use are defined w.r.t. || - ||ar+, where M* = [V2F(z*)]~!
and z* is the optimal solution to Problem (1). A sequence
of vectors {x(!)} is said to converge linearly to a limit point
z*, if for some 0 < p < 1,

IVE @) [are

)
el T IVE @) [ar-

t—o0
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Similarly, superlinear convergence and quadratic conver-
gence are respectively defined as

IVE (@) |ae
IVE@®)|[ar-

2D 1y
= 0,limsup IVE@E™ )l =p

y
im sup tooo  ||[VE(@®)||3-

t—o0

We call it the linear-quadratic convergence rate if the fol-
lowing condition holds:

IVE@ D) e < prlVE @) lare+p2] VE (@) 3,

where 0 < p; < 1.

3. Approximate Newton Methods and Local
Convergence Analysis

The existing variants of stochastic second order methods
share some important attributes. First, these methods such
as NewSamp (Erdogdu & Montanari, 2015), LiSSA (Agar-
wal et al., 2016), subsampled Newton with conjugate gradi-
ent (Byrd et al., 2011), and subsampled Newton with non-
uniformly sampling (Xu et al., 2016), all have the same
convergence properties; that is, they have a linear-quadratic
convergence rate.

Second, they also enjoy the same algorithm procedure sum-
marized as follows. In each iteration, they first construct an
approximate Hessian matrix H(*) such that

(1—e)HY < V2F(D) < 1+e6)HY, (2
where 0 < ¢y < 1. Then they solve the following opti-
mization problem

min %pTH(t)p — pTVF(x(t)) 3)
P

approximately or exactly to obtain the direction vector
pY). Finally, their update equation is given as z(**1) =
) — p() With this procedure, we regard these stochastic
second order methods as approximate Newton methods.

In the following theorem, we propose a unifying frame-
work which describes the convergence properties of the
second order optimization procedure depicted above.

Theorem 3 Let Assumptions 1 and 2 hold. Suppose that
V2F (z) exists and is continuous in a neighborhood of a
minimizer *. H") is a positive definite matrix that satis-
fies Eqn. (2) with 0 < ey < 1. Let p\Y) be an approximate
solution of Problem (3) such that

IVF (@) —

HOpO| < 2 ZIVEEO)L @

where 0 < €1 < 1. Define the iteration z(*T1) = z(t) —p(®),

(a) There exists a sufficient small value ~, 0 < v(t) < 1,
and 0 < n(t) < 1 such that when ||z — || < 5, we
have that

IVE (D) ar-

€1 () \ 14 v(t)
§<€0+1—60+1—60>1 0

IV E @) || ar--

®)
Besides, v(t) and n(t) will go to 0 as =*) goes to x*.

(b) Furthermore, if V2F(z) is Lipschitz continuous with
parameter L, and 2® satisfies

I

|2®) — 2 || < Fu(t), (6)
Lk

where 0 < v(t) < 1, then it holds that

HVF(x(tH))HM

€1 1—|—V()
< (04 722 T IVFG)
2 Le (1+v(t))?

+ (1—€)?puyp 1—v(t)

IVF@@)|3-. (D

From Theorem 3, we can find some important in-
sights. First, Theorem 3 provides sufficient conditions to
get different convergence rates including super-liner and

quadratic convergence rates.

is a constant,

then sequence {z(Y)} converges linearly because v(t) and
n(t) will go to 0 as ¢ goes to infinity. If we set ¢g = €o(t)
and €; = €;1(¢) such that €(t) and €;(t) decrease to 0
as t increases, then sequence {2(*)} will converge super-
linearly. Similarly, if eo(t) = O(||VF(z™)|ar+), €1(t) =

O(|IVF(z®)||ar+), and V2F(z) is Lipschitz continuous,
then sequence {x(t)} will converge quadratically.

Second, Theorem 3 makes it clear that the Lipschitz conti-
nuity of V2F(z) is not necessary for linear convergence
and superlinear convergence of stochastic second order
methods including Subsampled Newton method, Sketch
Newton, NewSamp, etc. This reveals the reason why
NewSamp can be used to train the smoothed SVM where
the Lipschitz continuity of the Hessian matrix is not sat-
isfied. The Lipschitz continuity condition is only needed
to get a quadratic convergence or linear-quadratic conver-
gence. This explains the phenomena that LiSSA(Agarwal
et al., 2016), NewSamp (Erdogdu & Montanari, 2015),
subsampled Newton with non-uniformly sampling (Xu
et al., 2016), Sketched Newton (Pilanci & Wainwright,
2015) have linear-quadratic convergence rate because they
all assume that the Hessian is Lipschitz continuous. In fact,
it is well known that the Lipschitz continuity condition of
V2F(z) is not necessary to achieve a linear or superlinear
convergence rate for inexact Newton methods.
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Algorithm 1 Sketch Newton.

1: Input: 2@ 0<5<1,0<e < 1;

2: fort =0,1,... until termination do

3:  Construct an ep-subspace embedding matrix S
for B(zY) and where V?F(z) is of the form
V2F(z) = (B(z))TB(z®), and
H® = [B(z")]TSTSB(zY);

4:  Calculate p™® = argmin,, %pTH(t)p —pTVE(z®);

5. Update £tV =z — p®);

6: end for

calculate

Third, the unifying framework of Theorem 3 contains not
only stochastic second order methods, but also the deter-
ministic versions. For example, letting H") = V2F(z(1))
and using conjugate gradient to get p(*), we obtain the fa-
mous “Newton-CG” method. In fact, different choice of
H® and different way to calculate p(*) lead us to differ-
ent second order methods. In the following sections, we
will use this framework to analyze the local convergence
performance of these second order methods in detail.

4. Sketch Newton Method

In this section, we use Theorem 3 to analyze the local con-
vergence properties of Sketch Newton (Algorithm 1). We
mainly focus on the case that the Hessian matrix is of the
form

V2F(x) = B(z)TB(z) (8)

where B(z) is an explicitly available n x d matrix. Our
result can be easily extended to the case that

V2F(z) = B(z)" B(z) + Q(a),

where () is a positive semi-definite matrix related to the
Hessian of regularizer.

Theorem 4 Let F(x) satisfy the conditions described in
Theorem 3. Assume the Hessian matrix is given as Eqn. (8).
Let 0 < 6§ < 1,0 < e < 1/2and0 < e < 1 be
given. S € RY™ is an ey-subspace embedding matrix w.r.t.
B(x) with probability at least 1 — §, and direction vector
p®) satisfies Eqn. (4). Then Algorithm 1 has the following
convergence properties:

(a) There exists a sufficient small value v, 0 < v(t) < 1,
and 0 < n(t) < 1 such that when ||z — 2*|| < 7,
then each iteration satisfies Eqn. (5) with probability
at least 1 — 6.

(b) If V2F(2")) is also Lipschitz continuous and {x")}
satisfies Eqn. (6), then each iteration satisfies Eqn. (7)
with probability at least 1 — 0.

Table 1. Comparison with previous work

Reference Sketched Size
Pilanci & Wainwright (2015) O (2kat)
0
Xu et al. (2016) O (2l
Our result(Theorem 4) O (%)
0

Theorem 4 directly provides a bound of the sketched size.
Using the leverage score sketching matrix as an example,
the sketched size ¢ = O(dlogd/e?) is sufficient. We com-
pare our theoretical bound of the sketched size with the
ones of Pilanci & Wainwright (2015) and Xu et al. (2016) in
Table 1. As we can see, our sketched size is much smaller
than the other two, especially when the Hessian matrix is
ill-conditioned.

Theorem 4 shows that the sketched size ¢ is independent
on the condition number of the Hessian matrix V2F(z)
just as shown in Table 1. This explains the phenomena that
when the Hessian matrix is ill-conditioned, Sketch Newton
performs well even when the sketched size is only several
times of d. For a large condition number, the theoretical
bounds of both Xu et al. (2016) and Pilanci & Wainwright
(2015) may be beyond the number of samples n. Note that
the theoretical results of (Xu et al., 2016) and (Pilanci &
Wainwright, 2015) still hold in the constrained optimiza-
tion problem. However, our result proves the effectiveness
of the sketch Newton method for the unconstrained opti-
mization problem in the ill-conditioned case.

5. The Subsampled Newton method and
Variants

In this section, we apply Theorem 3 to analyze Subsampled
Newton and regularized subsampled Newton method.

First, we make the assumption that each f;(x) and F(x)
have the following properties:

max IV2fi(2)]| < K < oo, ©9)
Amin(V2F(2)) > 0 > 0. (10)

Accordingly, if V2F(z) is ill-conditioned, then the value
% is large.
5.1. The Subsampled Newton method

The Subsampled Newton method is depicted in Algo-
rithm 2, and we now give its local convergence properties
in the following theorem.

Theorem 5 Let F'(x) satisfy the properties described in
Theorem 3. Assume Egn. (9) and Egn. (10) hold and let
0<d<1,0<e€ <1/2and0 < ¢ <1 be given. |S|
and HY are set as in Algorithm 2, and the direction vector
p) satisfies Eqn. (4). Then Algorithm 2 has the following
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Algorithm 2 Subsampled Newton.

Input: 29, 0< 6§ <1,0< ¢ < 1;

Set the sample size |S| > w

fort =0,1,... until termination (010
Select a sample set S, of size |S| and construct H*) =
ﬁ Zjes V2fj(x<t));
Calculate p™® = argmin,, %pTH(t)p —pTVE(z®);
Update z(*+1) = 2 — p(®);

end for

RN

R

convergence properties:

(a) There exists a sufficient small value v, 0 < v(t) < 1,
and 0 < n(t) < 1 such that when ||z — 2*|| < ~,
then each iteration satisfies Eqn. (5) with probability
at least 1 — 4.

(b) If V2F(z") is also Lipschitz continuous and {z()}
satisfies Eqn. (6), then each iteration satisfies Eqn. (7)
with probability at least 1 — 0.

As we can see, Algorithm 2 almost has the same conver-
gence properties as Algorithm 1 except several minor dif-
ferences. The main difference is the construction manner of
H® which should satisfy Eqn. (2). Algorithm 2 relies on
the assumption that each || V2 f; ()| is upper bounded (i.e.,
Eqn. (9) holds), while Algorithm 1 is built on the setting of
the Hessian matrix as in Eqn. (8).

5.2. Regularized Subsampled Newton

In ill-conditioned cases (i.e., % is large), the subsampled
Newton method in Algorithm 2 should take a lot of sam-
ples because the sample size |S| depends on = quadratl-
cally. To overcome this problem, one resorts to a regular-
ized subsampled Newton method. The key idea is to add
al to the original subsampled Hessian just as described
in Algorithm 3. Erdogdu & Montanari (2015) proposed
NewSamp which is another regularized subsampled New-
ton method depicted in Algorithm 4. In the following anal-
ysis, we prove that adding a regularizer is an effective way
to reduce the sample size while keeping converging in the-
ory.

We first give the theoretical analysis of local convergence
properties of Algorithm 3.

Theorem 6 Let F'(x) satisfy the properties described in
Theorem 3. Assume Egns. (9) and (10) hold, and let
0<d0<1,0<e€ <land0 < «be given. Assume [3 is
a constant such that 0 < 3 < o + Z, the subsampled size

2
|S| satisfies |S| > %W, and H® is constructed

as in Algorithm 3. Define

€9 = max oo o+ p
0= c+ra—-Bo+a+pB)’
which implies that 0 < €y < 1. Besides, the direction

vector pt) satisfies Eqn. (4). Then Algorithm 3 has the
following convergence properties:

(1)

(a) There exists a sufficient small value vy, 0 < v(t) < 1,
and 0 < n(t) < 1 such that when ||z — z*| <
v, each iteration satisfies Eqn. (5) with probability at
least 1 — 4.

(b) If V2F(z") is also Lipschitz continuous and {z()}
satisfies Eqn. (6), then each iteration satisfies Eqn. (7)
with probability at least 1 — 0.

In Theorem 6 the parameter ¢y mainly decides convergence
properties of Algorithm 3. It is determined by two terms
just as shown in Eqn. (11). These two terms depict the re-
lationship among the sample size, regularizer o, and con-
vergence rate.

The first term describes the relationship between the regu-
larizer ol and sample size. Without loss of generality, we
set 5 = « which satisfies 0 < 8 < a + ¢/2. Then the
sample size |S| = % decreases as « increases.
Hence Theorem 6 gives a theoretical guarantee that adding
the regularizer o is an effective approach for reducing the
sample size when K /o is large. Conversely, if we want to
sample a small part of f;’s, then we should choose a large
a. Otherwise, 8 will go to a + ¢/2 which means ¢y = 1,
i.e., the sequence {z(*} does not converge.

Though a large o can reduce the sample size, it is at the
expense of slower convergence rate just as the second term
shows. As we can see, ff 5 goes to 1 as o 1ncreases
Besides, ¢; also has to decrease. P
may be beyond 1 which means that Algorlthm 3 w111 not

converge.

In fact, slower convergence rate via adding a regularizer is
because the sample size becomes small, which implies less
curvature information is obtained. However, a small sam-
ple size implies low computational cost in each iteration.
Therefore, a proper regularizer which balances the cost of
each iteration and convergence rate is the key in the regu-
larized subsampled Newton algorithm.

Next, we give the theoretical analysis of local convergence
properties of NewSamp (Algorithm 4).

Theorem 7 Let F'(x) satisfy the properties described in
Theorem 3. Assume Egn. (9) and Egn. (10) hold and let
0 < 0 < 1 and target rank r be given. Let 3 be a con-

)
stant such that 0 < 3 < % where )‘521 is the (r +1)-th
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Algorithm 3 Regularized Subsample Newton.

1: Input: 29,0 < 6 < 1, regularizer parameter o, sample size
IS

2: fort =0,1,... until termination do

3:  Select a sample set S, of size |S| and construct H*) =
& Djes Vi) +al;

4:  Calculate p ~ argmin,, %pTH(t)p —pTVE(z®)

5:  Update 2D = g _ p®),

6: end for

Algorithm 4 NewSamp.

I: Input: (%, 0 < § < 1, 7, sample size |S|;

2: fort =0,1,... until termination do

3:  Select a sample set S, of size |S| and get H‘S‘ =
e VR ();

4:  Compute rank r 4 1 truncated SVD deompostion of H, |(é)|
to get Upy1 and App1. Construct H®) = H‘(;)‘ +

(i N
0 (T - AU

5:  Calculate p*) ~ argmin,, IpTHWp — p"VF(2®)

6:  Update £+ = 2 — p®);

7: end for

eigenvalue of V>F(x (). Set the subsampled size |S| such
2
that |S| > %W, and define

2 AW
€y = max ( (t)ﬁ i T—H > ) (12)
A1 — B o+28+ )\'r+1

which implies 0 < ¢y < 1. Assume the direction vector
pt) satisfies Eqn. (4). Then Algorithm 4 has the following
convergence properties:

(a) There exists a sufficient small value vy, 0 < v(t) < 1,
and 0 < n(t) < 1 such that when ||z — z*| <
v, each iteration satisfies Eqn. (5) with probability at
least 1 — .

(b) If V2F(2") is also Lipschitz continuous and {x®}
satisfies Eqn. (6), then each iteration satisfies Eqn. (7)
with probability at least 1 — 4.

Similar to Theorem 6, parameter €y in NewSamp is also de-
termined by two terms. The first term reveals the the rela-
tionship between the target rank r and sample size. Without

loss of generality, we can set 8 = /\(rtJ)rl /4. Then the sam-

ple size is linear in 1/ [/\(rﬂ)rl]Q. Hence, a small  means that
a small sample size is sufficient. Conversely, if we want
to sample a small portion of f;’s, then we should choose
a small 7. Otherwise, 8 will go to )\5.21 /2 which means
€o = 1, i.e., the sequence {x(t)} does not converge. The
second term shows that a small sample size will lead to a
poor convergence rate. If we set 7 = 0 and 8 = A1 /2, then

€ will be 1 — m Consequently, the convergence
rate of NewSamp is almost the same as gradient descent.
Similar to Algorithm 3, a small » means a precise solution
to Problem (3) and the initial point z(°) being close to the
optimal point z*.

It is worth pointing out that Theorem 7 explains the empir-
ical results that NewSamp is applicable in training SVM in
which the Lipschitz continuity condition of V2 F(x) is not
satisfied (Erdogdu & Montanari, 2015).

‘We now conduct comparison between Theorem 6 and The-
orem 7. We mainly focus on the parameter ¢ in these
two theorems which mainly determines convergence prop-
erties of Algorithm 3 and Algorithm 4. Specifically, if we
®)
= pg+ )\£+1 in Eqn. (11), then ¢y = %
which equals to the second term on the right-hand side in
Eqn. (12). Hence, we can regard NewSamp as a special
case of Algorithm 3. However, NewSamp provides an ap-
proach for automatical choice of a.

set «

Recall that NewSamp includes another parameter: the tar-
get rank r. Thus, NewSamp and Algorithm 3 have the
same number of free parameters. If r is not properly cho-
sen, NewSamp will still have poor performance. Therefore,
Algorithm 3 is theoretically preferred because NewSamp
needs extra cost to perform SVDs.

6. Inexact Newton Methods

Let H®) = V2F(z®), that is, ¢¢ = 0. Then Theo-
rem 3 depicts the convergence properties of inexact Newton
methods.

Theorem 8 Let F'(x) satisfy the properties described in
Theorem 3, and p(t) be a direction vector such that

IVE(@®) = V2F @)t ||<*||VF( NI,

where 0 < €1 < 1. Consider the iteration ztT1) = z() —
(t)
p®),

(a) There exists a sufficient small value v, 0 < v(t) < 1,
and 0 < n(t) < 1 such that when ||z) — z*|| < ~, then it
holds that

1+v(t)

IVF (D)6 < (@t =5

IV E (@) |-

( b) If V2F (z) is also Lipschitz continuous with parameter
L, and {x(M)} satisfies Eqn. (6), then it holds that

14 v(t)
1—v(t)
2Lk (1+v(t)?
pviE L—v(t)

IVE@ D) < IVE @) ar-+

IVE )3
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7. Empirical Study

In this section, we validate our theoretical results about
sketched size of the sketch Newton, and sample size of
regularized Newton, experimentally. Experiments for vali-
dating unnecessity of the Lipschitz continuity condition of
V2F(x) are given in the supplementary materials.

7.1. Sketched Size of Sketch Newton

Now we validate that our theoretical result that sketched
size is independent of the condition number of the Hessian
in Sketch Newton. To control the condition number of the
Hessian conveniently, we conduct the experiment on least
squares regression which is defined as

min%HA:c—bHQ. (13)

In each iteration, the Hessian matrix is A7 A. In our exper-
iment, A is a 10000 x 54 matrix. We set the singular values
o; of A as: 0; = 1.27% Then the condition number of A
is k(A) = 1.2%% = 1.8741 x 10%. We use different sketch
matrices in Sketch Newton (Algorithm 1) and set different
values of the sketched size ¢. We report our empirical re-
sults in Figure 1.

From Figure 1, we can see that Sketch Newton performs
well when the sketch size ¢ is several times of d for all
different sketching matrices. Moreover, the corresponding
algorithms converge linearly. This matches our theory that
the sketched size is independent of the condition number
of the Hessian matrix to achieve a linear convergence rate.
In contrast, the theoretical result of (Xu et al., 2016) shows
that the sketched size is £ = d x k(A) = 1.02 x 10° bigger
than n = 10%.

Levereage Score Sketching Sparse Sketching

loglerr)

iteration iteration

(a) Leverage Score Sam- (b) Sparse Sketching.
pling.

Figure 1. Convergence properties of different sketched sizes

7.2. Sample Size of Regularized Subsampled Newton

We also choose least squares regression defined in
Eqn. (13) in our experiment to validate the theory that
adding a regularizer is an effective approach to reducing
the sample size while keeping convergence in Subsampled
Newton. Let A € R™*? where n = 8000 and d = 5000.
Hence Sketch Newton can not be used in this case because
n and d are close to each other. In our experiment, we set
different sample sizes |S|. For each |S| we choose different

regularizer terms « and different target ranks . We report
our results in Figure 2.

As we can see, if the sample size |S| is small, then we
should choose a large a; otherwise, the algorithm will di-
verge. However, if the regularizer term « is too large, then
the algorithm will converge slowly. Increasing the sample
size and choosing a proper regularizer will improve conver-
gence properties obviously. When |S| = 600, it only needs
about 1200 iterations to obtain a precise solution while it
needs about 8000 iterations when |S| = 100. Similarly, if
the sample size |S| is small, then we should choose a small
target rank. Otherwise NewSamp may diverge. Also, if
the target rank is not chosen properly, NewSamp will have
poor convergence properties. Furthermore, from Figure 2,
we can see that the two algorithms have similar conver-
gence properties. This validates the theoretical result that
NewSamp provides a method to choose o automatically.
Our empirical analysis matches the theoretical analysis in
Subsection 5.2 very well.

30
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
iteration

mv 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
(a) Sample Size |S| = 100

-/

51 = 300

ogfern)

0 500 000 1500 2000 500 W00 1500 200 2500 3000

(b) Sample Size |S| = 600

Figure 2. Convergence properties of Regularized Subsampled
Newton and NewSamp

8. Conclusion

In this paper, we have proposed a framework to analyze the
local convergence properties of second order methods in-
cluding stochastic and deterministic versions. This frame-
work reveals some important convergence properties of the
subsampled Newton method and sketch Newton method,
which are unknown before. The most important thing is
that our analysis lays the theoretical foundation of several
important stochastic second order methods.

We believe that this framework might also provide some
useful insights for developing new subsampled Newton-
type algorithms. We would like to address this issue in
future.
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